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Abstract
We give a short proof of the Littlewood-Richardson rule using a sign-reversing
involution.

Introduction.
The Littlewood-Richardson rule is one of the most important results in the theory of
symmetric functions. It provides an explicit combinatorial rule for expressing either a
skew Schur function, or a product of two Schur functions, as a linear combination of
(non skew) Schur functions. Since Schur functions in n variables are the irreducible
polynomial characters of GLn(C), the Littlewood-Richardson rule amounts to a tensor
product rule for GLn(C).

The rule was first formulated in a 1934 paper by Littlewood and Richardson [LR],
but the first complete proofs were not published until the 1970’s. (For a historical
account of the evolution of the rule and its proofs, see the recent survey paper of
van Leeuwen [vL].) There are now many proofs available, such as those based on the
Robinson-Schensted-Knuth correspondence, jeu de taquin, or the plactic monoid. In
this note, we present a very simple, self-contained proof of the rule; the argument also
proves at the same time the “bi-alternant” formula for Schur functions—the formula
originally used by Cauchy to define Schur functions.

We obtained this proof by specializing a crystal graph argument that works in much
greater generality (see Theorem 2.4 of [S]). The fact that crystal graphs (or the closely
related Path Model of Littelmann) may be used to prove the Littlewood-Richardson rule,
as well as tensor product rules for other semisimple Lie groups, is well-known (see [KN]
or [L]), but we believe that it is not widely understood that there exist versions of these
proofs that are self-contained, with no need to appeal to a general theory.

The proof we present here is not the first short proof. Alternatives include proofs
by Berenstein and Zelevinsky [BZ], Remmel and Shimozono [RS], and Gasharov [G].
Furthermore, aside from the differences in language between semistandard tableaux and
Gelfand patterns, the sign-reversing involution we use here is essentially a translation
of the one used by Berenstein and Zelevinsky.
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The Details.

Let P denote the set of nonnegative integer sequences of the form λ = (λ1 ≥ λ2 ≥ · · ·)
with finitely many nonzero terms; i.e., the set of partitions. We let Pn denote the set
of partitions with at most n nonzero terms, viewed (by truncation) as a subset of Zn.

Now regard n as fixed, and set ρ = (n − 1, . . . , 1, 0) and ? = (0, . . . , 0) ∈ Pn.
For each λ ∈ Zn, define xλ = xλ1

1 · · ·xλn
n and aλ = det[xλj

i ] =
∑

w∈Sn
sgn(w)xwλ.

Given µ, ν ∈ P, let D(µ, ν) = {(i, j) ∈ Z2 : 1 ≤ i ≤ n, νi < j ≤ µi}. Assuming
ν ≤ µ (meaning νi ≤ µi for all i), define S(µ/ν) to be the set of semistandard tableaux
of shape µ/ν; i.e., the set of mappings T : D(µ, ν) → [n] with increasing columns
(T (i, j) < T (i + 1, j)) and weakly increasing rows (T (i, j) ≤ T (i, j + 1)). The weight of
T is ω(T ) = (ω1(T ), . . . , ωn(T )) ∈ Zn, where ωk(T ) = |T−1(k)| denotes the number of
k’s in T . The generating series sµ/ν =

∑
T∈S(µ/ν) xω(T ) is a skew Schur function.

There is a well-known set of involutions σ1, . . . , σn−1 on S(µ/ν), due to Bender and
Knuth [BK], with the property that σk acts by changing certain entries of T ∈ S(µ/ν)
from k to k +1 and vice-versa in such a way that ω(σk(T )) = skω(T ), where sk denotes
the transposition (k, k + 1) ∈ Sn. The existence of these involutions proves that sµ/ν is
a symmetric function of x1, . . . , xn.

To explicitly describe the action of σk on T ∈ S(µ/ν), declare an entry k or k+1 to
be free in T if there is no corresponding k +1 or k (respectively) in the same column. It
is easy to check that the free entries in a given row must occur in consecutive columns;
moreover, the entries in the free positions may be arbitrarily changed from k to k + 1
and vice-versa without violating semistandardness as long as the free positions remain
weakly increasing by row. The tableau σk(T ) is obtained by reversing the numbers of
free k’s and k + 1’s within each row; i.e., if there are ai free k’s and bi free k + 1’s in
row i of T , then there should be bi free k’s and ai free k + 1’s in row i of σk(T ).

In the following, T≥j denotes the subtableau of T formed by the entries in columns
j, j + 1, . . . , and we use similar notations such as T<j and T>j in the obvious way.

Theorem. For all λ ∈ Pn and all µ, ν ∈ P such that ν ≤ µ, we have

aλ+ρsµ/ν =
∑

aλ+ω(T )+ρ,

where the sum ranges over all T ∈ S(µ/ν) such that λ + ω(T≥j) ∈ Pn for all j ≥ 1.

Proof. As noted above, we know that sµ/ν is symmetric, so for each w ∈ Sn, the
quantities w(λ + ρ) + ω(T ) and w(λ + ρ + ω(T )) are identically distributed as T varies
over S(µ/ν). Hence,

aλ+ρsµ/ν =
∑

w∈Sn

∑

T∈S(µ/ν)

sgn(w)xw(λ+ρ+ω(T )) =
∑

T∈S(µ/ν)

aλ+ω(T )+ρ. (1)

We declare T to be a Bad Guy if λ + ω(T≥j) fails to be a partition for some j; i.e.,

λk + ωk(T≥j) < λk+1 + ωk+1(T≥j)
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for some pair k, j. Among all such pairs k, j, choose one that maximizes j, and among
those, choose the smallest k. It must be the case that λ + ω(T>j) is a partition, and
since ωk(T≥j) − ωk+1(T≥j) can change by at most one if we increment or decrement j,
there must be a k + 1 in column j of T (and no k), and

λk + ωk(T≥j) + 1 = λk+1 + ωk+1(T≥j). (2)

Let T ∗ denote the tableau obtained from T by applying the Bender-Knuth involution
σk to the subtableau T<j , leaving the remainder of T unchanged. Since this involves
changing some subset of the entries of T<j from k to k + 1 and vice-versa, and column
j has a k + 1 but no k, it is easy to see that T ∗ is semistandard. Furthermore, (T ∗)≥j

and T≥j are identical, so T 7→ T ∗ is an involution on the set of Bad Guys. In comparing
the contributions of T and T ∗ to (1), note that skω(T<j) = ω(T ∗

<j), whereas (2) implies
that sk fixes λ + ω(T≥j) + ρ, whence sk(λ + ω(T ) + ρ) = λ + ω(T ∗) + ρ and

aλ+ω(T )+ρ = −aλ+ω(T∗)+ρ.

The contributions of Bad Guys may therefore be canceled from (1). �

For the shape µ = µ/?, we have ω(T≥j) ∈ Pn for all j only if every entry in row i
of T is i; thus, there is a unique such T , it has weight µ, and hence aρsµ = aµ+ρ, or

Corollary (The Bi-Alternant Formula). For all µ ∈ Pn, we have sµ = aµ+ρ/aρ.

Corollary. For all λ ∈ Pn and all µ, ν ∈ P such that ν ≤ µ, we have

sλsµ/ν =
∑

sλ+ω(T ),

where the sum ranges over all T ∈ S(µ/ν) such that λ + ω(T≥j) ∈ Pn for all j ≥ 1.

This corollary is Zelevinsky’s extension of the Littlewood-Richardson rule [Z].
Taking the specialization λ = ?, we obtain the decomposition of sµ/ν into Schur

functions; it is simpler than the traditional formulation of the Littlewood-Richardson
rule as found (e.g.) in [M], since it does not involve converting tableaux to words
and imposing the “lattice permutation” condition. However, it still involves counting
semistandard tableaux of shape µ/ν satisfying certain properties, and it is a not-too-
difficult exercise to show that these two formulations count the same tableaux.

Via the specialization ν = ?, we obtain yet another formulation of the Littlewood-
Richardson rule— in this case involving the decomposition of sλsµ into Schur functions.
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