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Abstract

Knowing the excluded minors for a minor-closed matroid property provides a
useful alternative characterization of that property. It has been shown in [R. Hall,
J. Oxley, C. Semple, G. Whittle, On Matroids of Branch-Width Three, submitted
2001] that if M is an excluded minor for matroids of branch-width 3, then M has
at most 14 elements. We show that there are exactly 10 such binary matroids M (7
of which are regular), proving a conjecture formulated by Dharmatilake in 1994. We
also construct numbers of such ternary and quaternary matroids M , and provide a
simple practical algorithm for finding a width-3 branch-decomposition of a matroid.
The arguments in our paper are computer-assisted — we use a program Macek
[P. Hliněný, The Macek Program, http://www.mcs.vuw.ac.nz/research/macek,
2002] for structural computations with represented matroids. Unfortunately, it seems
to be infeasible to search through all matroids on at most 14 elements.
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1 Introduction

We assume that the reader is familiar with basic terms of graph theory. In the past
decade, the notion of a tree-width (and tree-decompositions) of graphs attracted plenty of
attention, both from graph-theoretical and computational points of view. This attention
followed the pioneer work of Robertson and Seymour on the Graph Minor Project, and
results of various researchers concerning tree-width in parametrized complexity.

The notion of a branch-width is closely related to that of tree-width. However, unlike
tree-width, branch-width routinely generalizes from graphs to matroids. Similarly to
the situation in graph theory, branch-width has recently shown to be a very interesting
structural matroid parameter. Besides others, we want to mention the following recent
works: well-quasi-ordering of matroids of bounded branch-width over finite fields [4], size-
bounds on the excluded minors for matroids of fixed branch-width [6, 3], or an analogue
of Courcelle’s MS2-theorem for matroids over finite fields [9].

The interest of our paper is in minimal obstacles (excluded minors) for matroids of
branch-width three. Knowing these excluded minors would provide a useful characteriza-
tion of branch-width. We prove a conjecture formulated by Dharmatilake that there are
exactly 10 such excluded minors among binary matroids in Theorem 4.1. Moreover, we
present some results about the ternary and quaternary excluded minors. The arguments
in our paper are assisted by the computer program Macek [7], which was developed by
the author for efficient general structural computations with represented matroids.

2 Connectivity and Branch-Width

We refer the reader to [10] for standard concepts in matroid theory. Here we want to
mention few things directly related to our paper.

The ground set of a matroid M is denoted by E(M), and the rank function by rM .
If G is a graph, then its cycle matroid (on the ground set E(G) ) is denoted by M(G).
All matroids obtained in this way are called graphic, and their duals are cographic. They
together form special subclasses of regular matroids, which are representable by a matrix
over any field. Binary (ternary, quaternary) matroids are those representable by a matrix
over GF (2) ( GF (3), GF (4) ). However, not all matroids are representable.

A matroid N is called a minor of a matroid M if N is obtained from M by a sequence of
deletions and contractions of elements. It is well-known that the order of these operations
does not matter, and so we may write N = M \ D/C for some disjoint subsets C, D ⊆
E(M). We say that M has an N -minor if M has a minor isomorphic to N .

In this section we focus on matroid connectivity, and on branch-decompositions. We
mostly follow the definitions and concepts from [6]. Let M be a matroid on the ground
set E = E(M). The connectivity function λM of M is defined for all subsets A ⊆ E by

λM(A) = rM(A) + rM(E − A) − r(M) + 1 .

Notice that always λM(A) = λM(E −A). It is well-known that the connectivity function
is the same for the dual matroid, that is λM(A) = λM∗(A) for all A ⊆ E.
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Figure 1: An example of a width-3 branch-decomposition of the Pappus matroid.

A subset A ⊆ E is k-separating if λM(A) ≤ k. When equality holds here, A is said to
be exactly k-separating. A partition (A, E−A) is called a k-separation if A is k-separating
and both |A|, |E − A| ≥ k. For n > 1, the matroid M is called n-connected if it has no
k-separation for k = 1, 2, . . . , n−1. Of particular interest to us are 3-connected matroids.
One of the basic tools in matroid theory is Seymour’s Splitter Theorem [14].

Theorem 2.1 (Seymour) Let M, N be 3-connected matroids such that N is a minor of
M . Suppose that if N is a wheel (a whirl), then M has no larger wheel (no larger whirl)
as a minor. Then there is a 3-connected matroid N1 such that |E(N1)| = |E(N)|+1, and
that M has an N1-minor.

Now we are ready to define a branch-decomposition of a matroid. A cubic tree is a
tree in which all non-leaf vertices have degree three.

Let M be a matroid on the ground set E = E(M). A branch-decomposition of M is
a pair (T, τ) where T is a cubic tree, and τ is a bijection of E to `(T ) (called labeling).
The width ω(e) of an edge e in T is defined by ω(e) = λM(A), where A = τ−1(`(T ′)) and
T ′ is one of the two components of T − e. (This is well defined since, for T ′′ being the
other component of T − e, the sets `(T ′), `(T ′′) form a partition of `(T ).) The width of
the branch-decomposition (T, τ) is the maximum of the widths of the edges of T , and the
branch-width of M is the minimal width over all branch-decompositions of M . If T has
no edge, then we take its width as 0. See an example in Figure 1.

Let Bk, k ≥ 1 denote the class of matroids of branch-width at most k. We say that
a matroid M is minor-closed if, for every M ∈ M, also all minors of M are in M. Many
natural combinatorial problems lead to minor-closed classes; like the classes of graphic
matroids, or of matroids representable over some field, or the classes Bk for all k. The
next elementary properties of branch-width are well-known [6].

Lemma 2.2 For any fixed k ≥ 1, the class Bk is closed under minors, duality, direct
sums, and 2-sums.

We remark that the branch-width of a graph is defined analogously, using connectivity
function λG where λG(F ) for F ⊆ E(G) is the number of vertices incident both with F
and E(G)−F . Clearly, λM(G)(F ) ≤ λG(F ) in a connected graph, but these numbers may
not be equal if the subgraph induced by F is not connected. Hence the cycle matroids
of branch-width-k graphs belong to Bk for k ≥ 1. On the other hand, it is still an open
conjecture that the branch-width of a graph G is equal to the branch-width of its cycle
matroid M(G).
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Figure 2: The four excluded minors for graphs of branch-width at most 3.

3 Excluded Minors

A matroid F is called an excluded minor (also known as forbidden) for a nonempty minor-
closed class M if F 6∈ M, but all proper minors of F are in M. Obviously, if N 6∈ M,
then there is a minor N0 of N such that N0 is an excluded minor for M. A nonempty
minor-closed family M is said to be characterized by a set F of excluded minors for M if
the following is true: A matroid M is not in M if and only if M has an F -minor for some
F ∈ F.

In graph theory, a breakthrough result of the Graph Minor Project by Robertson and
Seymour can be formulated as follows [12]:

Theorem 3.1 (Robertson, Seymour) If G is a nonempty minor-closed family of graphs,
then G can be characterized by a finite set of excluded minors.

The situation is not so nice in matroids. There are known sets of matroids that form infi-
nite antichains with respect to the minor ordering, for example, so called “free spikes” [4]
that even have all branch-width three. Nevertheless, it is always interesting to look for
natural matroid classes which have finite sets of excluded minors that we can find.

Recall that Bk denotes the class of matroids of branch-width at most k. Clearly, B1

consists of matroids with no dependencies, and so the only excluded minor for B1 is a
loop. It was shown in [11] that the class B2 coincides with the class of direct sums of
series-parallel networks. Hence there are two excluded minors for B2, namely the uniform
matroid U2,4 and the graphic matroid M(K4). The smallest matroids not in B3 are the
uniform matroids U3,7, U4,7.

By Theorem 3.1, there is a finite set of excluded minors for graphs of branch-width at
most k for all k, but those sets are not known for k > 3. (After all, there are only few
natural minor-closed properties of graphs for which the set of excluded minors is known.)
The excluded minors for graphs of branch-width at most 3 were found by Dharmatilake
and others in [2]. The same list was independently found later in [1]. See the graphs in
Figure 2.

Theorem 3.2 (Dharmatilake, Chopra, Johnson, Robertson) A graph has branch-width
at most 3 if and only if it has no minor isomorphic to one of the graphs {K5, Q3, O6, V8}.
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1 −1 1 0 0
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1 0 0 1 −1




Figure 3: The matroid R10 by Bixby, in a totally unimodular representation.
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0 1 0 1 1 0
0 0 1 1 0 1
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1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 1
1 0 1 0 1




Figure 4: The matroids N11, N23 by Dharmatilake, in binary representations.

Since the matroids of all these four graphs have branch-width greater than 3, the
theorem gives the graphic (and cographic as duals) excluded minors for the class B3. It is
easy to find out that the regular matroid R10 (Figure 3) is also an excluded minor for B3.
In addition to Theorem 3.2, Dharmatilake used a specialized computer program to search
for small binary matroids (up to 12 elements) that are excluded minors for B3. He found
three more non-regular matroids denoted by N11, N23, N

∗
11 (Figure 4). Let

F2 = {M(K5), M(K5)
∗, M(Q3), M(O6), M(V8), M(V8)

∗, R10, N11, N
∗
11, N23}.

Notice that M(Q3), M(O6) are dual to each other, and that R10 and N23 are both self-dual.
Dharmatilake then conjectured [2]:

Conjecture 3.3 (Dharmatilake, 1994) A binary matroid has branch-width at most 3 if
and only if it has no minor isomorphic to one of the members of F2.

We prove this conjecture next in Sections 4,6. In addition, we present some results
about ternary and quaternary excluded minors for the class B3. We use the following
theorem [6, 5] in our proof.

Theorem 3.4 (Hall, Oxley, Semple, Whittle) If N is an excluded minor for the class
B3, then N has at most 14 elements.

In fact, another recent paper [3] gives a surprisingly short proof that there are finitely
many excluded minors for the class Bk for every k.

Theorem 3.5 (Geelen, Gerards, Robertson, Whittle) If N is an excluded minor for the
class Bk, then N has at most (6k+1 − 1)/5 elements.
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1 1 1 0 0 0
1 1 0 1 0 0
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Figure 5: The matroid R12 by Seymour, in a regular representation.

4 Our Results

Here we state the major result of our paper — a proof of Conjecture 3.3.

Theorem 4.1 A binary matroid has branch-width at most 3 if and only if it has no minor
isomorphic to one of the members of F2 (see on page 5).

Before proving the theorem itself, we present three short lemmas. The first lemma is
proved in [6, Lemma 7.4].

Lemma 4.2 Every excluded minor N for the class B3 is 3-connected, and the only 3-
separations in N have one side of size at most 4.

Let R12 be the regular matroid from Figure 5.

Lemma 4.3 No regular excluded minor for the class B3 has an R12-minor.

Proof. Let M be a regular matroid with an R12-minor. A supplementary result of
Seymour’s decomposition theorem for regular matroids [14] states that a regular matroid
with an R12-minor has an exact 3-separation in which both sides have at least 6 elements.
However, then M cannot be an excluded minor for B3 by Lemma 4.2.

Lemma 4.4 Let M be a 3-connected binary matroid on at most 14 elements with an
F7-minor. If M has branch-width 4, then M has an N-minor for N ∈ F2.

Proof. Verifying this lemma is clearly a matter of a finite case check. We have
done the case analysis with help of the computer program Macek [7]. Details of this
computation are presented in Section 6.

Proof of Theorem 4.1. Recall the set F2 = {M(K5), M(K5)
∗, M(Q3), M(O6),

M(V8), M(V8)
∗, R10, N11, N

∗
11, N23} that is closed under duality. Let N be a binary ex-

cluded minor for the class B3 of matroids of branch-width at most 3. Then N is 3-
connected by Lemma 4.2.

We first consider the case that N is a regular matroid. Then, by Seymour’s decom-
position theorem for regular matroids [14] (also [10, Section 13.2]), one of the following
is true: N is graphic, or N is cographic, or N has an R10- or R12-minor. The last case
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is not possible here due to Lemma 4.3. If N has an R10-minor, then N ' R10 ∈ F2. It
remains to consider, up to duality, the case that N is a graphic matroid. Then, using
Theorem 3.2, N is isomorphic to one of the graphic members of F2.

Otherwise, N is not a regular matroid. So by Tutte’s characterization of regular
matroids [15] (also [10, Section 13.1]), binary N must have an F7- or F ∗

7 -minor. Then, up
to duality, the proof is finished in Lemma 4.4 and Theorem 3.4.

Remark It would be possible to do a computer search similar to Lemma 4.4 also for
regular matroids, thus avoiding use of the previous theoretical results about regular ma-
troids.

It is natural to ask about other, non-binary excluded minors for B3. The paper [6]
remarks that it is “certainly feasible to write a computer program that would quickly find all
excluded minors that are representable over a given field”. We think that, while making
this remark, the authors did not fully understand the effects of so called “exponential
combinatorial explosion”. Similarly as in Lemma 4.4, we have done the computer search
for ternary excluded minors on up to 12 elements, and for quaternary ones on up to 10
elements. More details can be found in Section 6.

Proposition 4.5 Let F3 be the set of (pairwise non-isomorphic) excluded minors for B3

that are ternary but not binary. Then F3 contains no matroids on less than 9 elements,
18 matroids on 9 elements, 31 matroids on 10 elements, and no matroid on 11 or 12
elements.

Proposition 4.6 Let F4 be the set of (pairwise non-isomorphic) excluded minors for B3

that are quaternary but neither ternary nor binary. Then F4 contains no matroids on less
than 8 elements, 5 matroids on 8 elements, 90 matroids on 9 elements, and 32 matroids
on 10 elements.

Remark The computer searches in the previous two propositions are not complete since
they reached only up to 12 and 10, respectively, elements instead of 14. Unfortunately,
the numbers of matroids in the ternary and quaternary searches grew enormously. (For
example, there were more than 16000 quaternary matroid representations searched on 10
elements, compared to about 2400 binary ones searched on 14 elements. The total number
of quaternary matroids on 10 elements is even larger.) We estimated that finishing the
easier search in ternary matroids would take at least several months on a single home
computer, which is not worth the effort, we think.

5 Testing Branch-width Three

In this section we present a small detour dedicated to testing branch-width three in 3-
connected matroids. We do so because we need a simple and fast practical algorithm for
this problem in our computer analysis.
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A nice elementary linear time algorithm for finding graphs of branch-width three is
given by Bodlaender and Thilikos in [1]. Unlike other linear time algorithms known
for testing, for example, bounded tree-width of graphs, this algorithm has reasonably
small constant and it is suitable for practical implementation. It is probably possible to
generalize the method of this algorithm to matroids of branch-width three, but a major
problem would be that the excluded minors for B3 were needed in the algorithm. Hence,
moreover, a possible generalization of the above mentioned algorithm to matroids would
also be much more complicated and not so practical to implement.

In contrast to the above approach, we use a polynomial algorithm with higher expo-
nent, but which is very simple to implement and fast in practical computations. The
algorithm is based on the next interesting result of [6, Theorem 4.1]. We also acknowl-
edge an informal suggestion from Geoff Whittle about a possibility to develop such an
algorithm.

A partitioned matroid is a pair (M, P ) where M is a matroid on the ground set E,
and P = (E1, . . . , Ep) is a partition (into nonempty parts) of the set E. If the context is
clear, we briefly refer to the partitioned matroid as to M . We generalize the connectivity
function to subsets of P by λM(Q) = λM(

⋃
X∈Q X). A partition (Q, P − Q) of P is a

k-separation if λM(Q) ≤ k and k ≤ |⋃X∈Q X| ≤ |E| − k. A partitioned matroid (M, P )
is n-connected if it has no k-separation for k = 1, . . . , n − 1.

We define a partitioned branch-decomposition (T, τ) of (M, P ) analogously to a normal
branch-decomposition, but using a bijection τ : P → `(T ) (i.e. the leaves are labeled by
the sets of P ). A subset Q ⊆ P is displayed by an edge e in T if Q = τ−1(`(T ′)) where T ′

is a component of T − e.

Theorem 5.1 (Hall, Oxley, Semple, Whittle) Let (M, P ) be a 3-connected partitioned
matroid of branch-width 3, and let Q ⊂ P be a 3-separating set that is not displayed in
any width-3 branch-decomposition of M . Then, for R = Q or R = P − Q, the following
holds: |R| ∈ {2, 3}, and |X| = 1 for all X ∈ R.

To turn this theorem into a simple greedy algorithm for finding a width-3 branch-
decomposition, we need one more technical lemma. A subset F ⊆ P is 3-branched in a
partitioned matroid (M, P ) if the partitioned matroid (M, PF ) has branch-with 3, where
PF = {E(M) − ⋃

X∈F X} ∪ F .

Lemma 5.2 Let (M, P ) be a 3-connected partitioned matroid of branch-width 3 with
|P | ≥ 3 and |E(M)| ≥ 6. Then there is a 3-separating subset Q ⊆ P in M such that Q is
3-branched, and that

1. 4 ≤ |Q| ≤ 6 and |X| = 1 for all X ∈ Q, or

2. 2 ≤ |Q| ≤ 4 and |X| > 1 for precisely one X ∈ Q, or

3. |Q| = 2 and |X| > 1 for both X ∈ Q.
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Proof. Let (T, τ) be a width-3 branch-decomposition of the partitioned matroid
(M, P ). We say that a leaf l of T is single if |τ−1(l)| = 1. A subtree T1 of T is nice if T1

contains at least 4 leaves from `(T ), or if T1 contains at least 2 leaves from `(T ) and some
of them is not single. Clearly, a nice subtree can be obtained from T by deleting any leaf
which is single if possible. Let T0 be a nice subtree of T that has the smallest size. We
prove that the τ -preimages of the leaves of T0 define our set Q.

Notice that T0 is a proper subgraph of the cubic tree T on more than 2 vertices, and
so T0 has a vertex v of degree 2. Let T1, T2 be the two components of T0 − v. We proceed
by a contradiction to (1),(2),(3), respectively: If T0 has at least 7 leaves in `(T ), then one
of T1, T2 is nice, and smaller than T0. If T0 has 5 or 6 leaves in `(T ) and not all of them
are single, then one of T1, T2 is nice. Finally, if T0 has 3 or 4 leaves in `(T ) and at least 2
of them are not single, then one of T1, T2 is nice again.

Notice that any set Q from the lemma can be displayed in some width-3 branch-
decomposition of (M, P ) by Theorem 5.1. The greedy algorithm for finding a width-
3 branch-decomposition of a given 3-connected matroid M is now pretty obvious: We
initially set the partition P = ({x} : x ∈ E(M) ). Then we find a set Q according to
Lemma 5.2, replace the sets of Q in P by a single part, and repeat the whole process
again. When we get to a partition P with only two parts, we have found a width-3
branch-decomposition of M . If we fail to find Q at any step, then the branch-width of M
must be bigger than 3 by Theorem 5.1.

We present a formal description of the algorithm implementation in Figure 6. Let
n = |E(M)|. To make the implementation faster, at each program pass we precompute
the triangles and triads formed by the remaining singleton elements in S, and store them
in the set T . Actually, we better use an (internal) linear order on S to prevent repetitions
of the same triples in T . Then, unless a 4-element line or coline is found, there are only
O(n2) triples in T . Hence the next search over all pairs in U ∪V takes only at most O(n4)
iterations. Notice that the set Q, which we possibly find there, is already branched into
two branches given by the sets X, Y . In total the algorithm needs O(n5) rank evaluations
in M to finish. (We cannot tell the absolute computation time since the length of one
rank evaluation depends on the given representation of M .)

6 Computing Details

This section provides a detailed description of the computation we use in the proof of
Lemma 4.4. The related computer files and intermediate results of the computation can
be found in [8].

As already noted above, we have used the computer program Macek [7], which was
written by the author for general structural computations with represented matroids. This
program can input and output matrices over different fields (and so called partial fields),
perform usual elementary matrix operations, look for matroid minors and equivalence
(subject to a particular matrix representation), test some matroid-structural properties
like branch-width 3, and generate non-equivalent 3-connected matrix extensions.
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# Finding a width-3 branch-decomposition of a 3-connected matroid M .
begin

input 3-connected matroid M on the ground set E, |E| ≥ 6
# Variable S keeps the remaining singletons of E, and P the constructed partition.
set P = ∅, S = E
while |P | + |S| > 2 do

# Variable T collects triangles and triads, and Q gets the new part for P .
set Q = T = ∅
for all pairs {x, y} ⊆ S do

set K = clM({x, y}) ∩ S, L = cl∗M({x, y}) ∩ S
for X=K,L do if |X| = 3 then set T = T ∪ {X}
for X=K,L do if |X| > 3 then set Q = X; break

done

if Q 6= ∅ then

# A 4-element line or coline Q is good for Theorem 5.1.
set Q = any 4-element subset (or whole) of Q

else

# Searching through all remaining possibilities for Q (cf. Lemma 5.2).
set U = all disjoint pairs from (P ∪ T ∪ {{x, y} : x, y ∈ S})
set V = {{{x}, Y } : x ∈ S, Y ∈ P}
for {X, Y } ∈ U ∪ V do

# If X ∪ Y is 3-separating, then it is clearly also branched into X, Y .
if λM(X ∪ Y ) ≤ 3 then set Q = X ∪ Y ; break

done

fi

if Q = ∅ then break

# When Q was found above, update the partition P and the singletons S.
set S = S − Q, P = {Q} ∪ {X : X ∈ P ∧ X ∩ Q = ∅}
exec remember the (sub)branching of Q in P for output

done

if |P | + |S| > 2 then output “No width-3 branch-decomposition exists.”
else output “A width-3 branch-decomposition found here: . . . ”

end.

Figure 6:
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Remark We want to emphasize that the Macek program we use is a general toolkit for
matroid computations, and not a specialized closed program prepared only for one task.
Also, the reader may get feeling that our main advantage over Dharmatilake’s work [2]
is in today’s faster computers. This is, however, not so since Dharmatilake used the
resources of the Ohio Supercomputer Center for his search, while our computation was
carried out on a usual cheap home computer (with AMD 800MHz processor).

Let us look at a 3-connected matroid M with an F7-minor. By Theorem 2.1, there is
a sequence of 3-connected matroids N0 = F7, N1, . . . , Nt = M such that Ni+1 is a single-
element extension or coextension of Ni. Since binary matroids have unique representations
up to matrix equivalence, we actually consider a one-row or one-column extension of the
matrix of Ni in the search. At the t-th step of our computation, for t = 1, . . . , 7, we
generate all one-row or one-column extensions on 7 + t elements from the branch-width-3
extensions on 6 + t elements. Then we put aside the new extensions having branch-width
bigger than 3, and verify that all of them contain a minor in the set F2. We continue the
next step with the remaining (branch-width-3) extensions.

For reader’s information, we have generated the following numbers of branch-width-3
extensions (the total number of all extensions is higher) at each step: 2 extensions on 8
elements, 4 on 9 elements, 14 on 10 elements, 38 on 11 elements, 125 on 12 elements, 432
on 13 elements, and 1551 on 14 elements. We carried out the master computation on a
PC computer with AMD Duron 800MHz processor and 256MB memory, running Linux
kernel 2.4.8, glibc 2.2.2, and using compiler gcc 2.96. The whole computation took about
1 day with no self-checks. We also verified the results on various university computers
with Sparc–Solaris, Alpha–OSF, or Intel–NetBSD, using other versions of gcc 2.7, 2.8 or
2.95.

Notice that, if we had not known the set F2, our approach would automatically provide
the new excluded minors at each step.

Let us now move to Proposition 4.5. All non-binary matroids contain a U2,4-minor.
Unfortunately, U2,4 (the 2-whirl) is one of the exceptions in Theorem 2.1, but an enhance-
ment of this theorem presented in [10, Section 11.3] implies that all ternary extensions
of U2,4 that are not whirls contain a single-element extension or coextension of W3 (the
3-whirl) as a minor. All whirls have branch-width at most 3. Therefore we perform a
similar computation as above starting from the self-dual matroid W3. We must not forget
to exclude those matroids having some ternary (i.e. regular) member of F2 as a minor.
For details of the computation we refer to [8].

To present a similar computational proof for Proposition 4.6, we use the following
result of [13]: A non-binary non-ternary matroid representable over some field has a U2,5-
or U3,5-minor. Clearly, such a matroid must contain a U2,5-minor, unless it is isomorphic to
Un−2,n which has branch-width 3. The computation is then analogous to the previous two.
Again, we should exclude those matroids having some member of F2 or some quaternary
member of F3 as a minor. (In particular, we must do this computation after the previous
one.) One new theoretical problem arises for quaternary matroids — one matroid may
have non-equivalent quaternary representations. Fortunately, in this case there may be
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only at most two non-equivalent representations of the same matroid obtained by the
automorphism ω → ω2 of the field GF (4), and such pairs can be easily detected in the
resulting list. Again, we refer the reader to [8] for details.

Remark The numbers of matroids and excluded minors for B3 generated in Proposi-
tions 4.5,4.6 suggest that it is likely infeasible to search all (including non-representable)
matroids on up to 14 elements for the excluded minors for B3. However, it looks like there
are only few excluded minors on more than 10 elements, and hence it may be possible to
strengthen Theorem 3.4 so that it would suffice to exhaustively search only matroids up
to 10 elements.
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