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Abstract
The density of a permutation pattern π in a permutation σ is the proportion of

subsequences of σ of length |π| that are isomorphic to π. The maximal value of the
density is found for several patterns π, and asymptotic upper and lower bounds for
the maximal density are found in several other cases. The results are generalised to
sets of patterns and the maximum density is found for all sets of length 3 patterns.
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1 Introduction

The permutation 24153 has three subsequences 243, 253, 153 that are all isomorphic to
(ordered in the same way as) the permutation 132. We can regard 132 as defining a
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pattern that occurs three times within 24153. There have been many investigations of
this sort of pattern containment (for example [1, 5, 6, 8]) but most of them have focussed
on characterising (or counting) the permutations which contain no instances of some
particular pattern. In this paper we consider an opposite phenomenon: for some given
permutation π, we shall want to know which permutations of a given length contain π the
largest number of times (or, more precisely, which permutations of a given length contain
the pattern defined by π the largest number of times). For example, the pattern (defined
by) 2413 is contained in 35817246 a total of 17 times and no other permutation of length
8 has a greater “density” of 2413 occurrences.

Studies of this type were first suggested by Herbert Wilf in his 1992 address to the
SIAM meeting on Discrete Mathematics. Although Wilf’s lecture evidently inspired a
great deal of work on pattern containment, very little on the question above has hitherto
been published.

The most significant contribution that we know of is the doctoral thesis of Alkes Price
[4] who proved a number of results about layered patterns (of which more below). Price’s
thesis is also a useful source of references to unpublished work by earlier researchers.
Our work builds on these studies and solves some of the problems raised by these earlier
workers. We address also the more general situation of maximising (within permutations
of a given length) the number of occurrences from a particular set of patterns rather than
a singleton set.

Let Π denote a set of patterns all of the same length k. For any permutation σ of length
n let ν(Π, σ) be the number of subsequences of σ that are isomorphic to a permutation
in Π (for brevity, we call these Π-subsequences of σ). Then it is natural to consider

d(Π, σ) =
ν(Π, σ)(

n
k

)
which is the proportion of Π-subsequences in σ. In other words d(Π, σ) is the probability
that a subsequence of length k of σ is isomorphic to a pattern in Π. We are interested in
how large this probability can be and we therefore define

δn(Π) = max{d(Π, σ)}
where the maximum is taken over all permutations of length n. This type of situation
arises in other combinatorial settings (see, for example, [2] Theorem 4) and so the following
result may be regarded as part of the combinatorial folklore.

Proposition 1.1 If k < n then δn−1(Π) ≥ δn(Π).

Proof: Let σ be a permutation of length n for which d(Π, σ) = δn(Π). Consider the
following procedure for randomly choosing a subsequence of σ of length k. First choose
(uniformly at random) a symbol s of σ to omit. Second choose (also uniformly at random)
a subsequence of σ − s of length k. Clearly this procedure produces subsequences of σ of
length k uniformly at random and so

d(Π, σ) =
1

n

∑
s∈σ

d(Π, σ − s)
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Therefore, for some s, d(Π, σ − s) ≥ d(Π, σ). But then

δn−1(Π) ≥ d(Π, σ − s) ≥ d(Π, σ) = δn(Π)

as required.

It follows immediately that, as n → ∞, the sequence (δn(Π)) approaches a limit δ(Π)
which is called the packing density of Π. In cases where Π = {π} is a singleton set it is
convenient to denote this just by δ(π) and refer to the packing density of the permutation
π. From the way in which δ(Π) has been defined it is evident that δ(Π) ≤ δn(Π) for
all n > k. Much of this paper is concerned with evaluating δ(Π) for various sets Π. To
do this it is helpful to know the values δn(Π) and therefore it is of interest to know the
permutations σ for which d(Π, σ) = δn(Π).

If Π contains 12 . . . k then, clearly, d(Π, 12 . . . n) = 1 and so δ(Π) = 1. Another obvious
remark is that packing density is invariant under the usual 8 symmetries of permutation
patterns [8]. As a first application of this consider δ(π) where π has length 3. By symmetry
we can assume that π = 123 or π = 132. In the former case δ(π) = 1. For the latter
case Galvin, Kleitmann, and Stromquist (independently but unpublished) showed that
δ(132) = 2

√
3 − 3. Price extended this to π = 1k(k − 1) · · ·2 and also handled a number

of other cases where Π contains a single permutation including the case Π = {2143}.
He concentrated exclusively on the case of layered permutations and relied heavily on an
unpublished result of Stromquist [7] (which we prove and generalise in section 2).

Definition 1.2 A layered permutation is one which has a partition into segments
σ1, σ2, . . . , σr where σ1 < σ2 < . . . < σr (that is, the elements of each σi are less than
those of σi+1), and where the elements within each σi are consecutive and decreasing. The
segments σi are called the layers of the permutation.

The main theorem of [7] is that, when Π consists of layered permutations, there is a
layered permutation σ that maximises ν(Π, σ). We give the proof of this theorem in section
2 and give a condition on Π which ensures that all maxima of ν(Π, σ) occur at layered
permutations. This result is very useful because it reduces the search for permutations of
maximal density to a numerical optimisation problem and we show how to solve this in
several cases.

Also in section 2 we shall compute δ(Π) for several sets Π of layered permutations.
This touches on what appears to be an important dichotomy: for some Π the number of
layers in an optimal permutation σ of length n is unbounded as n → ∞, and for other
Π this number is bounded. Price gave examples of singleton sets Π = {π} of both types.
Specifically, he proved that if π has two layers of sizes 1 and k − 1 then Π = {π} is of
the unbounded type; on the other hand, if π has either two layers each of size greater
than 1, or layers all of the same size b > 1, then Π = {π} is of the bounded type. We
shall generalise these results and show that the issue is quite sensitive to the presence or
absence of layers of size 1.
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The non-layered case appears to be much more difficult but, in section 3, we give some
lower and upper bounds for the packing density of {1342} and {2413}. We also compute
δ(Π) for any set of permutations of length 3.

In section 4 we list some open problems.

2 Layered patterns

Although this section is about the special case of layered patterns we need to begin by
generalising the situation in two ways.

• We drop the requirement that the members of Π have the same length,

• We allow Π to be a multiset where each πi ∈ Π occurs wi times (wi > 0). Then each
occurrence of πi in a permutation σ contributes wi to the total number ν(Π, σ).

We shall be interested in the maximal value of the Π-enumerator

ν(Π, σ) =

m∑
i=1

wiν(πi, σ)

as σ varies over permutations of length n. Those permutations for which the Π-enumerator
is maximal will be called Π-maximal.

As an inductive aid we define a permutation π to be layered on top if it ends with
a non-empty segment of the form p, p − 1, p − 2 . . . where p is the maximum symbol of
π. Even though π itself may not be layered it is convenient to call this segment the final
layer of π.

Proposition 2.1 Let Π be a multiset of permutations all of which are layered on top.
Then among the Π-maximal permutations of each length there will be one that is layered
on top. Furthermore if the final layer of every π ∈ Π has size greater than 1 then every
Π-maximal permutation is layered on top.

Proof: In this proof we shall use the representation of a permutation as a planar
poset, i.e. as a set of points in the plane ordered by dominance ((x1, y1) ≤ (x2, y2) if
x1 ≤ x2 and y1 ≤ y2). Given a permutation σ = s1, . . . , sn the corresponding planar poset
is the set {(i, si)}. Conversely, given a planar poset as a set of points in the plane with
distinct x-coordinates and distinct y-coordinates we can replace them by an equivalent
set using the unique order preserving bijections

{x1, x2, . . . , xn} −→ {1, 2, . . . , n}
{y1, y2, . . . , yn} −→ {1, 2, . . . , n}

Now if we list the pairs by increasing order of first coordinate, the second coordinates
define a permutation of {1, 2, . . . , n}.
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Figure 1: A permutation layered on top

The planar poset of a permutation that is layered on top has the form shown in Figure
1.

Consider an arbitrary planar poset. We say that two maximal points (x1, y1) and
(x2, y2) of the poset are adjacent if there are no points in the poset whose first components
lie between x1 and x2 and no points whose second components lie between y1 and y2. Of
course, if the first (respectively second) components comprise the set {1, 2, . . . , n} this
says that x1 and x2 (respectively y1 and y2) differ by 1; but, in practice, this assumption
is not very useful.

Furthermore, we say that a pair of maximal points is connected if the pair is in the
transitive closure of the adjacency relation. It is easy to see that a poset is layered on top
if and only if every pair of maximal points is connected.

Let σ be a Π-maximiser that is not layered on top and let P be its associated planar
poset. Consider any two maximal points u and v of P that are not connected. We
categorise the Π-subposets of P according to which of u, v they contain by defining

ν(Π, P, u, v), the number of Π-subposets of P containing both u and v
ν(Π, P, ū, v), the number of Π-subposets of P containing v but not u
ν(Π, P, u, v̄), the number of Π-subposets of P containing u but not v
ν(Π, P, ū, v̄), the number of Π-subposets of P containing neither u nor v

Obviously

ν(Π, P ) = ν(Π, P, u, v) + ν(Π, P, ū, v) + ν(Π, P, u, v̄) + ν(Π, P, ū, v̄)

is the total number of Π-subposets of P .
We now consider two posets P1 and P2 obtained by slight ‘editing’ of the poset P . In

P1 the point v has been moved so that it is adjacent to u, while in P2 the point u has
been moved so that it is adjacent to v. An example of planar posets P and P1 which are
related in this way is shown in Figure 2. In the example, maximal points are shown as
squares and other points are shown as circles.

Clearly
ν(Π, P, ū, v̄) = ν(Π, P1, ū, v̄) = ν(Π, P2, ū, v̄)
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v
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v

Figure 2: Planar posets P and P1

since the subposets of P, P1, P2 consisting of points other than u, v are equal.
Similarly

ν(Π, P, u, v̄) = ν(Π, P1, u, v̄)

since the subposets of P, P1 consisting of points other than v are equal, and

ν(Π, P, ū, v) = ν(Π, P2, ū, v)

for a similar reason.
Also

ν(Π, P1, ū, v) = ν(Π, P1, u, v̄)

and
ν(Π, P2, ū, v) = ν(Π, P2, u, v̄)

since each of P1, P2 have an automorphism that exchanges u, v while fixing the other
points.

We also have
ν(Π, P, u, v) ≤ ν(Π, P1, u, v)

and
ν(Π, P, u, v) ≤ ν(Π, P2, u, v)

These inequalities follow from the layered on top condition by the following argument.
Consider a Π-subposet Q of P with u, v ∈ Q. Since u and v are maximal in P they must
correspond to maximal points of Q. Since Q is layered on top its maximal points are all
greater than every non-maximal point. But, in P1, the new position of u ensures that it
has the same comparabilities as v does. Therefore there is a Π-subposet Q1 of P1 on the
same set of points as Q. A similar argument holds for P2.

Two equalities now follow from the maximality of ν(Π, P ). First, we must have
ν(Π, P, ū, v) = ν(Π, P, u, v̄). For, suppose the left hand side was greater than the right
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hand side, then

ν(Π, P ) = ν(Π, P, u, v) + ν(Π, P, ū, v) + ν(Π, P, u, v̄) + ν(Π, P, ū, v̄)

< ν(Π, P, u, v) + ν(Π, P, ū, v) + ν(Π, P, ū, v) + ν(Π, P, ū, v̄)

≤ ν(Π, P2, u, v) + ν(Π, P2, ū, v) + ν(Π, P2, ū, v) + ν(Π, P2, ū, v̄)

≤ ν(Π, P2, u, v) + ν(Π, P2, ū, v) + ν(Π, P2, u, v̄) + ν(Π, P2, ū, v̄)

= ν(π, P2)

This contradicts the maximality of ν(Π, P ). It also shows that ν(Π, P, u, v) = ν(Π, P1, u, v) =
ν(Π, P2, u, v). In particular we have

ν(Π, P ) = ν(Π, P1) = ν(Π, P2)

The procedure just described shows that we can transfer maximal points from one
component to another and obtain another Π-maximal poset. We can now prove the first
part of the proposition. Starting from any Π-maximal poset we transfer maximal points
between components until all the maximal points are in one component. The resulting
poset is still Π-maximal and is now layered on top.

We turn to the proof of the second part of the proposition where we have the hypothesis
that every π ∈ Π has top layer of size greater than 1.

Suppose, for a contradiction, that there exist Π-maximisers which are not layered on
top and choose one, σ say, with a largest number of maximal points.

q
p

r

A

B

M

N

Figure 3: Two components of maximal points

We carry out a sequence of the operations described above until we have ensured that
the number of connected components of maximal elements is 2 and we have a poset as
shown in Figure 3 where these components are denoted by M and N . Notice that these
operations do not reduce the number of maximal elements in a poset.

Consider the two maximal points marked as q and r in Figure 3. Since the set of
maximal points does not form a single component there exists at least one point in one
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of the two regions marked A and B. We shall derive a contradiction from the assumption
that region A is non-empty (a similar argument gives a contradiction if B is non-empty).

Among the points of region A choose the point p with largest ‘value’ (second compo-
nent). There must be at least one Π-subsequence which uses p (otherwise we could move
p elsewhere within the planar poset so that it produced another Π-subsequence).

We consider two cases. In the first case p is matched to some point x of some π ∈ Π
such that x is not in the final layer T of π. In this case the match of π must match
T to some of the points of M . In particular this implies that |M | ≥ |T |. But now the
‘editing’ operation that moves r to be adjacent to q (which we know does not decrease
the number of Π-subsequences containing at most one of q and r) must introduce some
further Π-subsequences containing both q and r. This is a contradiction.

In the second case we can assume that, for every π ∈ Π, all π-subsequences containing p
match p to a point of the final layer of π (and therefore to the largest point of π). However
we may now ‘edit’ the poset in a different way. We move p vertically upwards so that it
has highest value in the poset. Since p matched only points of largest value, this cannot
decrease the number of Π-subsequences. As it increases the number of maximal points we
shall have a contradiction unless the maximal points now form a single component (recall
that σ was chosen to have as many maximal points as possible). For the maximal points
now to be connected we must have had A = {p} and B = ∅. Now consider some π ∈ Π
that takes part in one of the matches involving p. Since the top layer of π has more than
one point the remainder of the top layer of π is matched to some of the elements of N .
But with p in its new position there will be additional matches where the rest of the top
layer will be matched to points of M ∪ N , a final contradiction.

Theorem 2.2 Let Π be a multiset of layered permutations. Then among the Π-maximal
permutations of each length there will be one that is layered. Furthermore if all the layers
of every π ∈ Π have size greater than 1 then every Π-maximal permutation is layered.

Proof: For each permutation πi ∈ Π we let πi = φiλi where λi is the final layer of πi.
By Proposition 2.1 for every n > 0 we can find a Π-maximal permutation that is layered
on top. Thus, in searching for every Π-maximal permutations of length n we can confine
our attention to permutations of the form σ = θλ where λ is the final layer of some fixed
length n − k and θ is a permutation of length k < n.

The πi-subsequences of σ have two possible forms

• a πi-subsequence of θ, and

• a φi-subsequence of θ together with a λi-subsequence of λ (of which there are
( |λ|
|λi|

)
).

This proves that

ν(πi, σ) = ν(πi, θ) +

( |λ|
|λi|

)
ν(φi, θ)
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and so

ν(Π, σ) =
∑

wiν(πi, σ)

=
∑

wiν(πi, θ) +
∑

wi

( |λ|
|λi|

)
ν(φi, θ)

= ν(Π′, θ)

where Π′ is the multiset in which each πi occurs wi times and each φi occurs wi

( |λ|
|λi|

)
times. Since σ is a Π-maximal permutation, θ is necessarily a Π′-maximal permutation.
By induction on n we can find a layered Π′-maximal permutation θ and then σ itself will
be layered.

This proves the first part. The second part is proved by a similar argument. In this
case every Π-maximal permutation is layered on top and has the form θλ as above. Then,
because Π′ also consists of permutations whose layer sizes are greater than 1, we can use
induction again to deduce that θ is necessarily layered.

Remark 2.3 The hypothesis about layers of size 1 in the second statement of the theorem
cannot be omitted. Let Π consist of 43215 alone. Then

16, 15, . . . , 2, 1, 17, 19, 20, 18

is a Π-maximiser of length 20 that is not layered on top.

As a first application of this theorem we have

Proposition 2.4 Let Π consist of the single permutation 1243. Then every Π-maximiser
has the form

1 2 . . . k n n − 1 . . . k + 1

where k = bn/2c or dn/2e. In addition, δ(Π) = 3/8.

Proof: In obtaining the form of a Π-maximiser σ we may confine our attention to
layered permutations which we describe simply by giving their layer sizes. First of all,
note that σ must begin with the symbol 1; for we can always move that symbol to first
place without destroying any 1243-subsequences, and unless all layers from the second
onwards are of size one (impossible as there would be no 1243-subsequences at all) this
results in new 1243-subsequences.

Since our aim is to prove that σ begins with k layers of size 1 followed by a single layer
of size n − k we suppose for a contradiction that the layer sizes are

1abc1c2 · · · cud

with a ≥ 1, b ≥ 2, and u ≥ 0. We will show that such a permutation does not have a
maximal number of 1243-subsequences.
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First consider the possibility of replacing the layer of size b by a further increasing
segment, giving layer sizes

1a+b c1 c2 · · · cu d

In making this transformation the only 1243-subsequences we destroy are those whose
first two elements come from among the initial a symbols, and whose final two come from
the next b symbols, that is we lose: (

a

2

)(
b

2

)

1243-subsequences. On the other hand we gain(
b

2

) ((
c1

2

)
+

(
c2

2

)
+ · · · +

(
cu

2

)
+

(
d

2

))

1243-subsequences. Since σ is a Π-maximiser the gain cannot exceed the loss and so it is
clear that a ≥ d.

Now suppose that u ≥ 1 and consider the possibility of adding the layer of size cu to
the final layer, giving layer sizes

1a b c1 c2 · · · cu−1 (cu + d).

The 1243-subsequences lost are those involving one element of the layer of size cu (match-
ing the ‘2’ symbol) and a pair of the final layer (matching the symbols ‘43’). There
are

(a + b + c1 + · · ·+ cu−1) cu

(
d

2

)

such. The 1243-subsequences gained are any involving a pair of elements (in increasing
order) from the layers up to the one of size cu−1 and a decreasing pair from the last layer,
one from the first cu elements, the other from the final d elements. There are((

a

2

)
+ a(b + c1 + · · · + cu−1)

)
cud

of these. If a ≥ d, an easy algebraic manipulation establishes that the gain is bigger than
the loss.

This leaves the case of layer sizes 1abd with a ≥ d. We can repeat the transformation
just used, with b in place of cu. If a > d this leads to a net increase in the number of
1243-subsequences so we must have a = d. When a = d the transformation neither gains
nor loses 1243-subsequences. But then the permutation with layer sizes 1a(a + b) would
also maximise the 1243-subsequences; but that permutation has fewer 1243-subsequences
than the permutation with layer sizes 1a+1(a + b − 1).

This contradiction has proved that the layers of σ have sizes 1ad. In this case the
number of 1243-subsequences is clearly (

a

2

)(
d

2

)
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But the maximum value of this expression occurs for the values of a, d claimed in the
statement of the proposition. The value of δ(1243) is now easily seen to be 3/8.

Our second application of Theorem 2.2 is to some sets Π containing two permutations.

Theorem 2.5 Let Π = {α, β} where α and β each have two layers with sizes k, l and l, k
respectively. Then every Π-maximiser of length at least k + l has exactly two layers.

Proof: Let σ be a Π-maximiser of length n ≥ k + l. Certainly, by Theorem 2.2, σ
will be layered. Suppose, for a contradiction, that σ has 3 layers or more. Interchanging
the sizes of two adjacent layers does not affect the number of Π-subsequences since it
simply trades subsequences isomorphic to α for subsequences isomorphic to β and vice
versa. Therefore we may assume that the layers of σ come in increasing order of size
a ≤ b ≤ . . . c.

We shall obtain our contradiction by showing that the permutation σ′ obtained from
σ by replacing the first two layers by a layer of size a + b has more Π-subsequences. In
comparing the number of Π-subsequences of σ′ with the number in σ we note that we
shall have lost Π-subsequences whose elements come from the first two layers of σ; there
are

L =

(
a

k

)(
b

l

)
+

(
a

l

)(
b

k

)

of these.
On the other hand σ′ has gained some additional Π-subsequences whose elements come

from the new first layer, but not entirely from among the first a or final b elements, and
from some other layer. There are at least

G =

((
a + b

k

)
−

(
a

k

)
−

(
b

k

)) (
c

l

)
+

((
a + b

l

)
−

(
a

l

)
−

(
b

l

)) (
c

k

)

of these. We have to prove that the latter expression is larger than the former, or that
G − L is positive.

We do this by considering two cases. In the first case we assume one of k and l equals
1 (k say). Then

G − L =

(
a + b

l

)
c − (a + c)

(
b

l

)
− (b + c)

(
a

l

)

But note that (
a + b

l

)
=

(a + b)(a + b − 1) . . . (a + b − l + 1)

l!

>
(a + b)(a − 1) . . . (a − l + 1)

l!

+
(a + b)(b − 1) . . . (b − l + 1)

l!

=
a + b

a

(
a

l

)
+

a + b

b

(
b

l

)
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Therefore G − L is larger than

(
c(a + b)

a
− (b + c)

) (
a

l

)
+

(
c(a + b)

b
− (a + c)

) (
b

l

)

which is non-negative.
In the second case we may assume that both k and l are larger than 1. We shall show

that the difference between the first term of G and the first term of L is positive (and
then by symmetry the same will be true of the second terms). This difference is (since
b ≤ c) at least ((

a + b

k

)
− 2

(
a

k

)
−

(
b

k

)) (
c

l

)

Considered as a function of b this expression is minimal (assuming that b ≥ a) when
b = a. So it is enough to prove that

(
2a

k

)
− 3

(
a

k

)
> 0

However, this follows easily as (
2a

k

)
≥ 2k

(
a

k

)

Remark 2.6 It is not in general true that the two layers in the Π-maximiser σ in the
above result differ in size by at most 1. However, for future use we note that when
k = 1, l = 2, the layer sizes of σ do indeed have this property; this is easily seen by
considering the maximal value of

ν({132, 213}, σ) = a

(
b

2

)
+ b

(
a

2

)

as a and b vary subject to a + b = n. It follows easily from this that

δ({132, 213}) =
3

4

In the remainder of this section we shall suppose that Π consists of a single layered
permutation π of length m with r layers of sizes m1, . . . , mr. We know that every π-
maximiser σ is layered and in Price’s investigations [4] two different situations emerged.
The number of layers of σ might grow without bound as n → ∞ (exemplified by the case
r = 2, m1 = 1, m2 = k − 1 and analysed thoroughly by Price). On the other hand it
might be possible to choose the permutations σ to have a bounded number of layers. In
the latter case the bound may be larger than the number of layers of π itself (Price gave
the example of r = 6 and all mi = 2 where the best upper bound is 7).
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We shall give some results which distinguish the bounded case from the unbounded
case. To do this it is necessary to adopt some of the machinery of [4]. We begin by
defining

ps(λ1, . . . , λs) =

(
m

m1 · · ·mr

) ∑
1≤e1<...<er≤s

λm1
e1

. . . λmr
er

This expression has a probabilistic interpretation. Suppose the unit interval is partitioned
into s subintervals of length λ1, . . . , λs (reading from left to right) and we choose m points
from the interval uniformly at random. Then ps(λ1, . . . , λs) is the probability that the
leftmost m1 of these points will all lie in one of the subintervals, the next m2 will all lie
in another of the subintervals, and so on.

This probabilistic interpretation leads one to expect a connection with packing density.
For suppose that n is large, and σ is a layered permutation with layer sizes close to
λ1n, λ2n, . . . , λsn. Then m distinct points randomly chosen from σ will form a subsequence
isomorphic to π exactly if the leftmost m1 of them lie in a single layer, the next m2 lie in
another layer, and so on. Thus the probability d(π, σ) of such an event will be close to
ps(λ1, . . . , λs)

1.
Let

ps = max ps(λ1, . . . , λs)

where the maximum is taken over the set

{(λ1, . . . , λs) | λi ≥ 0,
∑

λi = 1}

Notice that this set is compact and so the maximum is attained by a point (λ̄1, . . . , λ̄s)
in the set. Price did not discuss the uniqueness or otherwise of the maximising (λ̄1, . . . , λ̄s)
and this issue remains open. However, we do know that when this theory is generalised
to sets of permutations Π the maximising (λ̄1, . . . , λ̄s) is not unique.

Price showed that such a maximal point has an interpretation for packing density.
Suppose we consider permutations with at most s layers and ask which ones have the
greatest density τs(n) of π-subsequences. Then, in fact, τs(n) → ps as n → ∞. Further-
more, the permutations which achieve τs(n) may be chosen to have layer sizes which, as
n → ∞, approach the proportions λ̄1, . . . , λ̄s. Notice that if any of (λ̄1, . . . λ̄s) is zero then
ps−1 = ps; so, in this case, permutations with s− 1 layers are, asymptotically, as dense in
π-subsequences as those with s layers.

Clearly pr ≤ pr+1 ≤ . . . and, in fact, ps → δ(π). It is not difficult to verify that the
bounded case corresponds precisely to when ps = δ(π) for some index s (and hence for all
larger indices).

Theorem 2.7 A permutation π none of whose layers has size 1 is of the bounded type.
In particular, ps = δ(π) for all s ≥ 1

2
(m − 1)(pr + 1)/pr.

1These remarks are proven rigorously in [4] but their general tenor is a standard part of the probabilistic
method.
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Proof: We use the probabilistic machinery and notation summarised above. Consider
any value of s with s > r and maximising values λ̄1, . . . , λ̄s for ps = max ps(λ1, . . . , λs).
Then ps is the probability of success for the experiment described above. Let λ̄j be any
of λ̄1, . . . , λ̄s. A successful outcome can arise in two ways:

• None of the m random points lie in the subinterval of length λ̄j . The probability
that a success of this type happens is

(1 − λ̄j)
mps−1(λ

′
1, . . . , λ

′
s−1)

where λ′
1, . . . , λ

′
s−1 arise by omitting λ̄j from λ̄1, . . . , λ̄s and scaling by 1/(1 − λ̄j).

The probability that this occurs is therefore at most (1 − λ̄j)
mps−1.

• At least one, and therefore at least two, of the m points fall in the interval of length
λ̄j and the probability for this is at most

(
m
2

)
λ̄2

j .

Therefore we have

ps ≤ (1 − λ̄j)
mps−1 +

(
m

2

)
λ̄2

j

≤
(

1 − mλ̄j +

(
m

2

)
λ̄2

j

)
ps−1 +

(
m

2

)
λ̄2

j

= ps−1 + λ̄j

(
−mps−1 +

(
m

2

)
ps−1λ̄j +

(
m

2

)
λ̄j

)

and so

0 ≤ ps − ps−1 ≤ λ̄j

(
−mps−1 +

(
m

2

)
ps−1λ̄j +

(
m

2

)
λ̄j

)

Therefore λ̄j = 0 or −ps−1 + 1
2
(m−1)ps−1λ̄j + 1

2
(m−1)λ̄j ≥ 0. But the second alternative

gives

λ̄j ≥ 2ps−1

(m − 1)(ps−1 + 1)

≥ 2pr

(m − 1)(pr + 1)

and there are at most
(m − 1)(pr + 1)

2pr

λ̄j’s for which this can be true.

By a similar argument applied to adjacent pairs of layers we can prove

Proposition 2.8 Any permutation which has three layers of sizes a, 1, b with a, b > 1 is
of the bounded type.
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The last two results together with a great deal of computational evidence have led us
to make the

Conjecture 2.9 Suppose that π is a layered permutation whose first and last layers have
sizes greater than 1 and which has no adjacent layers of size 1. Then π is of the bounded
type.

In the other direction we have

Proposition 2.10 If π is a permutation whose first or last layer is of size 1 then π is of
the unbounded type.

Proof: Again we adopt all the notation given before the proof of Theorem 2.7. Sup-
pose that the first layer of π has size 1 (the other case is proved in the same way). Then,
as m1 = 1, the coefficient of λ1 in any ps(λ1, . . . , λs) occurs to the first power only and
it follows readily that every summand of ps−1(λ1 + λ2, λ3, . . . , λs) is also a summand of
ps(λ1, λ2, . . . , λs). Thus, for positive λ1, λ2, . . . , λs we have

ps−1(λ1 + λ2, λ3, . . . , λs) < ps(λ1, λ2, . . . , λs)

with strict inequality since the right hand side has terms of the form λ1λ
m2
2 . . . which are

not present on the left hand side.
We need to prove that ps−1 < ps for all s ≥ r. This is certainly true for s = r as pr >

pr−1 = 0. We make the inductive assumption that ps−2 < ps−1. Then a maximising point
(λ̄2, . . . , λ̄s) for ps−1(λ2, . . . , λs) must have all non-zero components (as a zero component
could be omitted to obtain a maximising point for ps−2(λ2, . . .)). But then

ps−1 = ps−1(λ̄2, . . . , λ̄s)

= ps−1(
1

2
λ̄2 +

1

2
λ̄2, . . . , λ̄s)

< ps(
1

2
λ̄2,

1

2
λ̄2, . . . , λ̄s)

≤ ps

as required.

3 Non-layered patterns

All patterns of length 3 are equivalent to either 123 or 132 and, as stated in the introduc-
tion, answers to the packing density questions for these permutations are already known.
Of the patterns of length 4 the only permutations not handled by the techniques of the
previous section are equivalent to either 1342 and 2413. We have the following two results.

Proposition 3.1 0.19657 ≤ δ(1342) ≤ 2/9.
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Proof: To prove the upper bound let fn denote the maximal value of ν(1342, σ) as σ
varies over permutations of length n. Consider a permutation σ attaining this bound and
write σ = αnβ. Occurrences of 1342 within σ are of two kinds: those contained entirely
within αβ, and those which contain the symbol n.

In the first kind, as αβ is a permutation of length n − 1, we shall have at most fn−1

1342-subsequences.
For the second type we need to give an upper bound for the number of subsequences

of length 3 which have two symbols a1, a2 ∈ α and a symbol b ∈ β with a1 < b < a2.
We consider how to choose α, β so as to maximise the number of such suitable (a1, a2, b)
triples. Clearly, if α contains a pair of symbols that are not in increasing order we cannot
decrease the number of suitable triples by interchanging them; therefore we may presume
that α is increasing. Similarly we may assume that β is increasing.

We now argue that the symbols of β may be taken to be consecutive. If that were
not the case we could write β = λµρτ where µ and ρ are each sequences of consecutive
symbols. In addition we would have α = γδε where γ < µ < δ < ρ < ε. Let γ, δ, ε, µ, ρ
have lengths g, d, e, m, r respectively. The number of triples a1, a2, b which have b ∈ µρ is
easily seen to be

g(d + e)m + (g + m)er = ge(m + r) + d(gm + er)

For fixed m + r this is greatest when either m = 0 or r = 0 (according to whether g ≤ e.
In other words we may take one of µ and ρ to be empty.

Now that we know that β consists of consecutive values we can put αβ = α1α2β with
α1 < β < α2 and compute the number of suitable triples as |α1||α2||β|. This expression
is maximal when all three factors are equal. So the number of suitable triples is at most
n3/27.

Therefore fn ≤ fn−1 + n3/27 and so

δn(1342) ≤
∑n

i=1 i3/27(
n
4

)
and the right hand side tends to 2/9 as n → ∞.

To get the lower bound we consider a sequence of permutations σn (with n = |σ|)
structured as αβ with the following conditions:

• α has length banc where a is a constant fraction to be chosen below,

• α < β,

• β maximises the number of 231 patterns,

• α is structured in the same way recursively; that is, α = σbanc.

We choose a to maximise the limiting value limn→∞ d(1342, σn).
Suppose that pn is the probability of picking 4 points from σn that define an occurrence

of 1342 (that is, pn = d(1342, σn)). Such an event occurs if either the 4 points chosen lie
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in α and define a 1342 subsequence, or one of them lies in α and the three others define
a 231-subsequence of β. Therefore

pn ≥ a4pbanc + 3a(1 − a)3qn−banc

where qk = d(231, β). Let p = limn→∞ pn and q = limn→∞ qn. Then q = δ({231}) =
3 − 2

√
(3) ([4]) and, taking limits in the above inequality and rearranging, we have

p ≥ 3a(1 − a)3

1 − a4
(2

√
(3) − 3)

The maximal value of the right hand side is 0.19657 . . . and since p is a lower bound on
δ(1342) this completes the proof.

Proposition 3.2 51/511 ≤ δ(2413) ≤ 2/9.

Proof: The upper bound is proved in the same way as in the previous proposition.
For the lower bound we consider permutations of the form σ = σ3σ5σ8σ2σ7σ1σ4σ6 where
σi < σi+1 and |σi| = |σi+1| for each i, and where each σi is recursively structured in the
same way. The reason behind this construction is that the permutation 35827146 contains
2413 a relatively large number of times (17). Consider the probability pn (where n = |σ|)
of selecting 4 points from σ which constitute a 2413 pattern. We can do this by picking
the 4 points from any one of the segments σi and, having done that we shall have a 2413
pattern with probability pn/8; or we can pick any of the 17× 24 ordered quadruples from
distinct σi which give a 2413 pattern. Thus

pn = (
1

8
)48pn/8 +

17 × 24

84

As n → ∞, pn approaches a limit p which satisfies the equation

p =
p

512
+

51

512

Since pn ≤ δn(2413) we have 51/511 = p ≤ δ(2413) as required.

For both 1342 and 2413 we believe that our lower bounds are closer to the packing
density than the upper bounds. In the case of δ(1342) our belief stems from computing
δn(1342) for n ≤ 16 and noting the form of the optimising permutations which are close
in form to the permutations we have used to derive the lower bounds. For δ(2413) we
have examined a large number of patterns on which to base a recursive lower bound
construction but have found none better than 35827146.

Finally we discuss δ(Π) for sets of permutations of length 3. By applying the usual
permutation symmetries the only cases we need to consider are

Π = {132}, {132, 213}, {132, 231}, {132, 213, 231}, {132, 213, 231, 312}
The first of these is handled in [4]. In the second case we can appeal to the remark
following Theorem 2.5.
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Proposition 3.3 If Π = {132, 231} then δ(Π) = 1/2.

Proof: Let σ = αnβ be any permutation of length n. The Π-subsequences in σ occur
either within αβ or have their middle symbol as n. The latter type arise for every anb with
a ∈ α, b ∈ β and so there are |α||β| of them. Hence if σ maximises the Π-subsequences
we must have |α| and |β| as equal as possible and also have αβ maximising the number
of Π-subsequences among permutations of length n − 1. This proves that the maximal
number fn of Π-subsequences satisfies

fn = fn−1 +
n2

4
+ o(n2)

from which the result easily follows.

Proposition 3.4 If Π = {132, 213, 231, 312} then δ(Π) = 3/4.

Proof: Given a permutation σ = s1s2 . . . sn we define an edge colouring of the com-
plete graph on vertices {1, 2, . . . , n} by the rules:

• The edge between si and sj is coloured red if i < j and si < sj ,

• All other edges are coloured blue.

Then every 123-subsequence si, sj, sk of σ corresponds to a red triangle (3 vertices joined
by red edges) and every 321-subsequence corresponds to a blue triangle.

It is known that any 2-colouring of the edges of the complete graph on an even number
of vertices must have at least 2

(
n/2
3

)
monochromatic triangles [3]. But, if n is even, the

permutation
n/2, n/2 − 1, . . . , 2, 1, n, n − 1, . . . , n/2 + 1

has exactly this number of 321-subsequences (and no 123-subsequences). So this permu-
tation has the least possible number of 123 and 321-subsequences. Therefore it has the
greatest number of Π-subsequences and the result now follows easily.

Proposition 3.5 If Π = {132, 213, 231} then δ(Π) = 3/4.

Proof: Clearly δ({132, 213}) ≤ δ(Π) ≤ δ({132, 213, 231, 312}). However, Remark 2.6
together with the previous result shows that equality holds throughout.

4 Open problems

We have seen that with respect to sets Π of layered patterns, the structure of Π-maximal
permutations is reasonably well understood. However, there still remain a number of open
problems which we have not addressed in this paper.

We stated earlier (Conjecture 2.9) a conjecture concerning a sufficient condition for
a layered pattern to have maximisers with a bounded number of layers. Obviously the
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first problem is to confirm or refute this conjecture. Next, in the cases already known
to be unbounded (beginning or ending with a singleton layer), there is the problem of
determining whether or not there is a limiting optimal layering. For the two layers of sizes
1 and t this was part of Price’s original analysis which established that in this situation
there is a geometric decrease in the layer sizes. However, even for such simple sequences
of layer sizes as [1, 2, 1] or [1, 3, 2] no such straightforward description is known.

A further interesting set of problems revolves around the situation where there are
consecutive layers of size 1. In Proposition 2.4 we were able to determine the optimal
layering for the pattern whose layers are of sizes 1, 1, and 2. Again, computational evi-
dence suggests that pairs (or longer segments) of consecutive layers of size 1 are generally
reflected in long sets of size 1 layers in the maximisers.

The question of determing the actual number of layers required in the bounded case,
or better limits on that number is also open. By way of illustration consider the case of
three layers, of sizes 2, 3, and 2. The bound given in Theorem 2.7 shows that at most
30 layers are required in a maximiser. The actual number of layers required seems to be
3, and if this is true, their relative lengths are clearly 2/7, 3/7, and 2/7. On the other
hand for layers in the pattern of sizes 2, 1, and 2, there is a similar bound on the number
of layers required by estimates like those of Theorem 2.7 but this time the actual answer
seems to be 4. If this is true, then the optimal layer proportions are a, 1/2 − a, 1/2 − a,
and a, where a is the real root of:

40x3 − 32x2 + 9x − 1 = 0

(equalling approximately 0.3829).
Finally, the reader will already have noticed that the unlayered case is still very much

terra incognita. Our lower bound in Proposition 3.1 goes a little beyond the most straight-
forward idea of structuring a permutation recursively in the same way as the pattern which
we are trying to maximise, but is still fundamentally based on it.
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