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Abstract

The n-th Heilbronn number, Hn, is the largest value such that n points can be
placed in the unit square in such a way that all possible triangles defined by any
three of the points have area at least Hn. In this note we establish new bounds for
the first Heilbronn numbers. These new values have been found by using a simple
implementation of simulated annealing to obtain a first approximation and then
optimizing the results by finding the nearest exact local maximum.

1 Introduction

Let x1, x2, . . . , xn be n points in the unit square. Denote by A(x1, x2, . . . , xn) the smallest
area of all the possible triangles induced by the n points. H.A. Heilbronn (1908-1975)
asked for the exact value, or for an approximation of Hn = max

x1,x2,...,xn
A(x1, x2, . . . , xn) and

conjectured that Hn = O(1/n2). Roth published in 1951 [14] an upper bound Hn =
O(1/n

√
log log n) and a construction from P. Erdős which shows that Hn is not of lower

order than n−2, so that if the conjecture is true then it would be tight. The upper
bound was improved in 1972 by W.M. Schmidt [19] and by K.F. Roth, who studied the
problem extensively and published several paper between 1972 and 1976 [15, 16, 17, 18],
with refinements on the bound. Finally, and considering probabilistic arguments, the
conjecture was disproved by Kómlos, Pintz and Szemerédi [11, 12], by showing that, for

large n, n−2(log n)� Hn � n− 8
7
+ε.
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Recent approaches to the Heilbronn problem include an algorithm, provided in 1997
by C. Bertram-Kretzberg, T. Hofmeister, and H. Lefmann [3], which for a discretization of
the problem finds a triangle with area log n/n2 for every fixed n; lower bounds on higher
dimensional versions of the problem, produced in 1999 by G. Barequet [2] and the study
of the average size of the triangles by T. Jiang, M. Li, and P. Vitányi [8, 9].

In addition, Golberg [7] started in 1972 the determination of optimal values and lower
bounds for every Hn. Besides the trivial cases H3 and H4, Golberg showed constructions
providing lower bounds for n ≤ 15. A.W.M. Dress, Yang Lu, Zhang Jingzhong and Zeng
Zhenbing in a series of preprints and papers [20, 21, 22, 6] proved that the value of H6

given by Goldberg was optimal and provided also the optimal value for H5. They also
improved the lower bound for H7.

In this note, and by using a simple implementation of simulated annealing and a further
optimization procedure, we present new lower bounds for the first Heilbronn numbers for
which no optimal value is known, namely 7 ≤ n ≤ 12. We have no proof for the optimality
of the new bounds, but the optimization method used gives us confidence that very likely
these values are optimal.

2 The optimization method

The technique we use to obtain new constructions for the Heilbronn problem has two
steps. First we use a computer implementation of simulated annealing (SA) to find a good
configuration of points and then an analytical study to attain a close local maximum.

2.1 The simulated annealing approach

We use a standard implementation of simulated annealing [1, 10] based on the code de-
scribed in Scientific American [4]. The cost function f(i), for a given configuration i of
n points, is the area of the smallest triangle and we try to maximize it. A geometrical
cooling rate, Tk = 0.9 Tk−1, is used. Typical values for the main parameters are: ini-
tial temperature T0 = 0.01; number of temperature changes, Nmax, from 100 to 1000;
maximum number of iterations for a given temperature runLimit = 1000n; number of
succesful changes accepted before a new temperature (and cycle of iterations) is attempted
sucLimit = 100n.

Set T0, Nmax, runLimit, sucLimit;
Initialize n points randomly to obtain configuration i
For k from 1 to Nmax do

Repeat
Generate configuration j by changing one of the points of configuration i
f(j) = area of the smallest triangle of j
If f(j) ≥ f(i)

Then i← j
Else
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If e(f(i)−f(j))/Tk < random [0,1)
Then i← j

Until runLimit or sucLimit
T ← 0.9 T
End For

We run this implementation several hundred times for each number of points, saving the
best solutions. This leads to quasi-optimal configurations of points that are equivalent
under symmetries and such that there are several smallest triangles wich have almost the
same area, providing a first estimate of the corresponding Heilbronn number.

2.2 The local optimization procedure

The above algorithm produces good approximations to local maxima. In every particular
case we choose the best one and improve it to the closest local maximum. To verify that
we attain a local maximum we use the following result that can be found in [5].

Theorem Let f = min{f1, f2, . . . , fl} where f1, f2, . . . , fl are continuously differen-
tiable functions of t = (t1, t2, . . . , tm), and let t∗ be a point at which

f1(t
∗) = f2(t

∗) = · · · = fk+1(t
∗) < fk+2(t

∗) ≤ · · · ≤ fl(t
∗), 1 ≤ k ≤ m,

holds for some k. A necessary condition for t∗ to be a local maximum is that the k + 1
gradients ∇f1(t

∗), ∇f2(t
∗), . . . , ∇fk+1(t

∗), are linearly dependent through a combination
with nonnegative coefficients:

c1∇f1(t
∗) + c2∇f2(t

∗) + · · ·+ ck+1∇fk+1(t
∗) = 0, ci ≥ 0.

Remark A point here corresponds to a concrete configuration of the Heilbronn prob-
lem. The linearity dependence condition provides m − k equations that together with
the k equations f1(t

∗) = f2(t
∗) = · · · = fk+1(t

∗) leads to the points, among which the
local maxima are to be found. Asking for the linear combination to have strictly positive
coefficients (and not just nonnegative) assures that they are, in a certain sense, stationary
points of f , see [5] for more details. The fulfilment of this condition together with the
context of the situation serves to characterise the local maxima of f .

As an illustration of the local optimisation procedure, we detail here the H8 and H10

cases.
In the H8 case the SA algorithm leads to a near optimum point where the smallest

areas

S1 =
1

2
(1−x)y, S2 =

1

2
(1−2x)(1−y)−1

2
(1−x)z, S3 =

1

2
(1−z)x and S4 =

1

2
(z−x)

have very close values. Equating them and solving for x, y and z, we get the values

x =
5−√13

6
= 0.232408, y =

7−√13

18
= 0.18858, z =

7−√13

9
= 0.37761,
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for which

S1 = S2 = S3 = S4 =

√
13− 1

36
= 0.072376.

Thus, m = k = 3, and the linearity dependence condition, which trivially holds, is
not required in order to find the sensible points. Since at the selected point this linear
combination has positive coefficients:

(48
√

13− 126) ∇S1 + (19
√

13− 1) ∇S2 + (41
√

13 + 223) ∇S3 + 138 ∇S4 = 0,

it is a stationary point, and indeed it is a local maximum.

In the H10 case the SA algorithm leads to a near optimum point where the smallest
areas

S1 =
1

2
x(1− x− y), S2 =

1

2
y(1− 2z)(1− y), and S3 =

1

2
z(1− x + y)− y

have very close values (another one, S4 = y(2z − y), has a slightly larger value, but its
inclusion among the smallest areas does not lead to a stationary point, failing to satisfy
the positiveness condition on the linear dependence of the gradients.) Therefore, we have
m = 3 and k = 2. We obtain two equations by equating the areas and a third one from
the linear dependence of the gradients:

∇S1, ∇S2 and ∇S3 l.d. ⇒ (1− 2x)(1− 2z)− y = 0.

Solving the three equations for x, y and z we get the values

z =
3

4
− (63 + 8

√
62)1/3

12
− 1

12(63 + 8
√

62)1/3
= 0.315611,

x =
z

2
= 0.157806, y = (1− z)(1− 2z) = 0.252387

for which S1 = S2 = S3 = (5z2 − 4z3)/8 = 0.046537. Again, at this point we obtain a
linear combination with positive coefficients:

(12z2 − 15z + 4) ∇S1 + 2(1− z) ∇S2 + 2z ∇S3 = 0,

and the point is a local maximum.

the electronic journal of combinatorics 9 (2002), #R6 4



3 Results for H7 to H12

Below we list the coordinates of the points of the configurations obtained by applying our
method to find new bounds for Hn, 7 ≤ n ≤ 12.

Seven points

Let z be the root of z3 +5z2−5z +1 = 0, z = 0.287258. Then H7 ≥ 1−14z−2z2

38
= 0.083859

−50
19

z − 17
38

z2 + 37
38

0

1 0

0 z
9
19

+ 1
19

z2 + 7
19

z z
40
19

z2 + 223
19

z − 58
19

−1 + 6z + z2

58
19

z − 15
19

+ 11
19

z2 1

1 1

0
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Eight points

H8 ≥
√

13−1
36

= 0.072376

0 0
1+

√
13

6
0

1 7−√
13

18

5−√
13

6
7−√

13
9

1+
√

13
6

2+
√

13
9

0 11+
√

13
18

5−√
13

6
1

1 1

0
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Nine points

H9 ≥ 9
√

65−55
320

= 0.054876

10−√
65

10
0

25+
√

65
40

0

0 15−√
65

40

1 15−√
65

40

15−√
65

20
5+

√
65

20

0 35+3
√

65
80

1
√

65
10

45−3
√

65
80

1
25+

√
65

40
1 0
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Ten points

With z = − 1
12

(63 + 8
√

62)
1
3 − 1

12
(63 + 8

√
62)−

1
3 + 3

4
= 0.315611

and x = z
2

= 0.157806 and y = 1− 3z + 2z2 = 0.252387. H10 ≥ 5
8
z2 − 1

2
z3 = 0.046537

x 0

1-y 0

0 x

1 y

1-z z

z 1-z

0 1-y

1 1-x
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1-x 1 0
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Eleven points

H11 ≥ 1
27

= 0.037037 (this result was already known)

1/3 0
2/3 0
0 2/9
1 2/9

1/3 4/9
2/3 4/9
0 2/3
1 2/3

1/2 7/9
1/6 1
5/6 1
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Twelve points

With x = 1− 1
6

(27+3
√

57)
2/3

+6

(27+3
√

57)
1/3 = 0.115354 and y = 2x2 − 3x + 1/2 = 0.180552,

H12 ≥ 1
4
x + 1

2
xy − 1

2
x2 = 0.032599

x 0
1-x 0
0 x
1 x
1
2 y
y 1

2

1-y 1
2

1
2 1-y
0 1-x
1 1-x
x 1

1-x 1
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4 Conclusion

Combinatorial optimization techniques, like simulated annealing, can help to obtain first
approximations that may be further refined analytically. They can provide insights to
find unexpected configurations. In Figure 1 we present, as an example, the configuration
given by Goldberg in [7], which provided the lower bound H8 ≥ 2−√

3
4

= 0.066987 and
the configuration produced using simulated annealing and a further analytical refinement,
which leads to the new bound H8 ≥

√
13−1
36

= 0.072376.

0

0.2
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0.6

0.8

1

0.2 0.4 0.6 0.8 1 0

0.2

0.4
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0.8

1

0.2 0.4 0.6 0.8 1

Figure 1: A former configuration leading to H8 ≥ 2−√
3

4
= 0.066987 and a configuration

found with simulated annealing that gives the new lower bound H8 ≥
√

13−1
36

= 0.072376.

Finally, the new bounds obtained are summarized in Table 1.

former bound new bound
H5 0.192450
H6 0.125000
H7 0.083333 0.083859
H8 0.066987 0.072376
H9 0.047619 0.054876
H10 0.042791 0.046537
H11 0.037037
H12 0.030303 0.032599

Table 1: New Heilbronn numbers.
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