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Eötvös University, H-1117 Budapest

HUNGARY

E-mail: grolmusz@cs.elte.hu

Submitted: May 30, 2001; Accepted: February 20, 2002.
MR Subject Classifications: 05D05, 05C65, 05D10

Abstract

We give a generalization for the Deza-Frankl-Singhi Theorem in case of multiple
intersections. More exactly, we prove, that if H is a set-system, which satisfies that
for some k, the k-wise intersections occupy only ` residue-classes modulo a p prime,
while the sizes of the members of H are not in these residue classes, then the size
of H is at most

(k − 1)
∑̀
i=0

(
n

i

)

This result considerably strengthens an upper bound of Füredi (1983), and gives
partial answer to a question of T. Sós (1976).

As an application, we give a direct, explicit construction for coloring the k-
subsets of an n element set with t colors, such that no monochromatic complete
hypergraph on exp (c(log m)1/t(log log m)1/(t−1)) vertices exists.

Keywords: set-systems, algorithmic constructions, explicit Ramsey-graphs, explicit
Ramsey-hypergraphs

1 Introduction

We are interested in set-systems with restricted intersection-sizes. The famous Ray-
Chaudhuri–Wilson [RCW75] and Frankl–Wilson [FW81] theorems give strong upper
bounds for the size of set-systems with restricted pairwise intersection sizes. T. Sós
asked in 1976 [Sós76], what happens if not the pairwise intersections, but the k-wise
intersection-sizes are restricted.
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Füredi [Für83], [Für91] showed (actually proving a much more general structure the-
orem) that for d-uniform set-systems over an n element universe, for very small d’s,
(d = O(log log n)), the order of magnitude of the largest set-systems, satisfying k-wise or
just pairwise intersection restrictions are the same.

In the present paper we strengthen this result of Füredi [Für83]. More exactly, we
prove the following k-wise version of the Deza-Frankl-Singhi theorem [DFS83]. Note, that
no upper bounds for the sizes of sets in the set-system and no uniformity assumptions are
made.

Theorem 1 Let p be a prime, let L ⊂ {0, 1, . . . , p − 1}, and let k ≥ 2 be an integer. Let
H be a set-system over the n element universe, satisfying that

• (i) ∀H ∈ H : |H| mod p 6∈ L,

• (ii) ∀H1, H2, . . . , Hk ∈ H, where Hi 6= Hj for i 6= j:

|H1 ∩ H2 ∩ . . . ∩ Hk| mod p ∈ L,

Then

|H| ≤ (k − 1)
|L|∑
i=0

(
n

i

)
.

As well as in the original Deza-Frankl-Singhi theorem, the upper bound does not
depend on p, so we can choose a large enough p for proving the non-modular version,
p > n certainly suffices.

Our main tool is substituting set-systems into multi-variate polynomials [Gro01]. This
tool, together with the linear-algebraic proof of Theorem 9 implies our result.

In the seminal paper of Frankl and Wilson [FW81], the Frankl-Wilson upper bound
to the size of a set-system was used for an explicit Ramsey-graph construction. Similarly,
we can also use our Theorem 1 to an explicit construction of a t-coloring of the edges
of the k-uniform complete hypergraph, such that no color class will contain a complete,
monochromatic hypergraph on a vertex set of size exp(c(log n log log n)1/t). Our explicit
construction is similar to the explicit Ramsey-graph construction of [Gro00]. We note,
that much better explicit Ramsey hypergraphs can be constructed using the Stepping-
up Lemma of Erdős and Hajnal [GRS80]: from an explicit construction of k-uniform
hypergraphs a (much larger) explicit construction of k + 1-uniform hypergraphs follows,
where k ≥ 3. Another construction for 3-uniform hypergraphs from explicit Ramsey-
graphs is due to A. Hajnal [Gyá].

Our present Ramsey-hypergraph construction is the best known for 3-uniform hyper-
graphs with more than 2 colors, and while it is weaker than the (recursive) constructions
for k > 3 with the Stepping-up Lemma of Erdős and Hajnal [GRS80], it is at least direct:
does not use constructions for k − 1-uniform hypergraphs.
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2 Preliminaries

Definition 2 ([Gro01]) Let A = {aij} and B = {bij} two u× v matrices over a ring R.
Their Hadamard-product is an u× v matrix C = {cij}, denoted by A�B, and is defined
as cij = aijbij, for 1 ≤ i ≤ u, 1 ≤ j ≤ v.

Lemma 3 Suppose that R is commutative. Then the Hadamard-product is an associative,
commutative and distributive operation:

• (i) (A � B) � C = A � (B � C),

• (ii) A � B = B � A,

• (iii) (A + B) � C = A � C + B � C.

And, for all λ ∈ R :

• (iv) (λA) � B = λ(A � B).

2

We make difference between hypergraphs and set systems over a universe V . A hy-
pergraph is a collection of several subsets of V , where some subsets may be present with
a multiplicity, greater than 1 (called multi-edges). A set system may, however, contain
each subset of V at most once.

Definition 4 Let H = {H1, H2, . . . , Hm} be a hypergraph of m edges (sets) over an n
element universe V = {v1, v2, . . . , vn}, and let U = {uij} be the n × m 0-1 incidence-
matrix of hypergraph H, that is, the columns of U correspond to the sets (edges) of H,
the rows of U correspond to the elements of V , and uij = 1 if and only if vi ∈ Hj. The
n × 1 incidence-matrix of a single subset A ⊂ V is called the characteristic vector of A.

Note, that every member of a set system is different; so there are no identical columns
in an incidence matrix of a set system, but there may be identical columns in an incidence
matrix of a hypergraph in case of multi-edges. If U is a 0-1 matrix with no identical
columns, then U is an incidence matrix of a set system.

2.1 Arithmetic operations on set systems

Definition 5 Let f(x1, x2, . . . , xn) =
∑

I⊂{1,2,...,n} aIxI be a multi-linear polynomial, where
xI =

∏
i∈I xi. Let w(f) = |{aI : aI 6= 0}| and let L1(f) =

∑
I⊂{1,2,...,n} |aI |.

We need the following definition from [Gro01]:
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Definition 6 ([Gro01]) Let H be a set-system on the n element universe V =
{v1, v2, . . . , vn} and with n × m incidence-matrix U , and let f(x1, x2, . . . , xn) =∑

I⊂{1,2,...,n} aIxI be a multi-linear polynomial with non-negative integer coefficients. Then
f(HU) is a hypergraph on the L1(f)-element vertex-set, and its incidence-matrix is the
L1(f) × m matrix W . The rows of W correspond to xI ’s of f ; there are aI identical
rows of W , corresponding to the same xI . The row, corresponding to xI is defined as the
Hadamard-product of those rows of U , which correspond to vi, i ∈ I.

Let us remark, that W has rank at most w(f). Also note, that if the coefficients of
x1, x2, . . . , xn are all non-zero, then f(HU) is a set-system, since the rows of U is among
the rows of the incidence-matrix of f(HU).

The crucial property of this operation is given by the following Theorem (Theorem 11
of [Gro01]):

Theorem 7 ([Gro01]) Let H = {H1, H2, . . . , Hm} be a set-system, and let U be their
n × m incidence-matrix. Let f be a multi-linear polynomial with non-negative integer
coefficients, or from coefficients from Zr. Let f(H) = {Ĥ1, Ĥ2, . . . , Ĥm}. Then, for any
1 ≤ k ≤ m and for any 1 ≤ i1 < i2 < . . . < ik ≤ m:

f(Hi1 ∩ Hi2 ∩ . . . ∩ Hik) = |Ĥi1 ∩ Ĥi2 ∩ . . . ∩ Ĥik |. (1)

We remark, that in (1) on the left-hand side, f is applied to the characteristic vector
(a length-n 0-1 vector) of the set Hi1 ∩ Hi2 ∩ . . . ∩ Hik .

2.2 Multiple intersections

The proof of the original, pairwise version of the Deza-Frankl-Singhi theorem [DFS83] uses
tools from linear algebra: the sets of the set-system H are associated with independent
vectors in a vector space of known dimension; consequently, their number is bounded
above by that dimension. Here we also use this idea with some natural modifications.

In the following theorems, the universe of the set-system or the hypergraph is S =
{v1, v2, . . . , vn}. When we say hypergraph here, we allow hypergraphs with multi-edges
also; consequently, if F, G are two edges of the hypergraph, then we allow that F is the
same set, as G.

The first step is the following obvious theorem:

Theorem 8 Let H = {H1, H2, . . . , Hm} be a hypergraph on the n-element universe, sat-
isfying Hi 6= ∅ for i = 1, 2, . . .m. Suppose, that for some positive integer k ≥ 2, every
k-wise intersection is empty:

∀I ⊂ {1, 2, . . . , n}, |I| = k :
⋂
i∈I

Hi = ∅ (2)

Then
|H| ≤ (k − 1)n.
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Proof: Every element of the universe is in at most k − 1 sets of H. 2

We remark, that the above theorem is sharp, as it is shown by H =
{H1, H2, . . . , H(k−1)n}, where Hi = {vj}, for i = (j − 1)(k − 1) + 1, (j − 1)(k − 1) +
2, . . . , j(k − 1) and j = 1, 2, . . . , n.

We need the modular version of Theorem 8. The modular version is an easy exercise
for k = 2; for larger k’s, we need an additional idea.

Theorem 9 Let p be a prime, and let H = {H1, H2, . . . , Hm} be a hypergraph on the
n-element universe. Suppose, that |Hi| 6≡ 0 (mod p) for i = 1, 2, . . . , m, and for some
positive integer k ≥ 2, every k-wise intersection-size is zero modulo p:

∀I ⊂ {1, 2, . . . , m}, |I| = k :
⋂
i∈I

Hi ≡ 0 (mod p). (3)

Then
|H| ≤ (k − 1)n0 ≤ (k − 1)n,

if the incidence-vectors of the edges of the hypergraph H span an n0 ≤ n-dimensional
subspace of the n-dimensional vector-space over GF(p).

Proof: For i = 1 through m, let x(i) ∈ {0, 1}n denote the characteristic vector of set
Hi. In the case of k = 2, it is easy to see that their dot-product, x(i) · x(j), is zero modulo
p if i 6= j, and non-zero otherwise; thus vectors x(i), i = 1, 2, . . . , m are independent in an
n0-dimensional subspace, so m ≤ n0.

We generalize this proof for larger values of k. Obviously, |Hi ∩ Hj| = x(i) · x(j). This
can also be written as |Hi ∩ Hj| = (x(i) � x(j)) · 1, where 1 denotes the length-n all-1
vector, and x(i) � x(j) is the characteristic vector of Hi ∩ Hj. Now it is easy to see, that
the characteristic vector of ⋂

i∈I

Hi

is ⊙
i∈I

x(i),

consequently,
|⋂

i∈I

Hi| =
⊙
i∈I

x(i) · 1.

Let z(i), for i = 1, 2, . . . , k, n-dimensional vectors. Let us define

g(z(1), z(2), . . . , z(k)) =

(
k⊙

i=1

z(i)

)
· 1.

In particular,

g(x(i1), x(i2), . . . , x(ik)) = |
k⋂

j=1

Hij |.
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Consequently, from our assumptions, if is 6= it for s 6= t, then

g(x(i1), x(i2), . . . , x(ik)) ≡ 0 (mod p) (4)

while for all i = 1, 2, . . . , m:

g(x(i), x(i), . . . , x(i)) 6≡ 0 (mod p). (5)

From Lemma 3, g is a multi-linear function. We need the following Lemma to conclude
the proof:

Lemma 10 Let U ⊂ V , where V is a vector-space over the field F . Suppose, that vectors
in U generates an n0-dimensional subspace of V , also assume that |U | ≥ n0(k − 1) +
1. Then there exists an u ∈ U , such that u can be written k different ways as the
linear combinations of vectors from U such that no vector appears in two of these linear
combinations.

In other words, the Lemma states that there exist pairwise disjoint subsets
W1, W2, . . . , Wk ⊂ U , such that

u =
∑

v∈W1

avv =
∑

v∈W2

avv = · · · =
∑

v∈Wk

avv,

for av ∈ F .
Proof: Let W1 be a maximal linear independent vector-set from U , and for j =
2, 3, . . . , k − 1, let Wj be a maximal linear independent vector-set from U − (W1 ∪ W2 ∪
. . . ∪ Wj−1). Since |Wi| ≤ n0 for i = 1, 2, . . . , k − 1, there exists a u such that u ∈
U − (W1 ∪ W2 ∪ . . . ∪ Wk−1). Let us define Wk = {u}.

Now, for i = 1, 2, . . . , k − 1, set Wi ∪ {u} is dependent, while Wi is not, and we are
done. 2

Now we give an indirect proof for the theorem. Suppose, that |H| ≥ (k − 1)n0 + 1.
Apply Lemma 10 to U = {x(1), x(2), . . . , x((k−1)n0+1)}. Now, there exists a u ∈ U , such that
u can be given as k linear combinations of disjoint vector-subsets of U . Since u = x(i), for
some i, from (5),

g(u, u, . . . , u) 6≡ 0 (mod p). (6)

But, on the other hand, u can be given in k linear combinations, each containing
vectors from pairwise disjoint vector sets. Consequently, by the multi-linearity of
g, g(u, u, . . . , u) 6≡ 0 (mod p) can be written as a linear combination of numbers
g(x(i1), x(i2), . . . , x(ik)), where is 6= it for s 6= t. By (4), all of these numbers are 0 modulo
p, so their linear combination is also zero modulo p, and this contradicts to (6). 2

2.3 Proof of the main theorem

Now we have all the tools needed for the proof of Theorem 1. Certainly, L 6= ∅. Let

g(x) =
∏
a∈L

(x − a).
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Now let f be the unique multi-linear polynomial over GF(p), such that

f(x1, x2, . . . , xn) = g(x1 + x2 + · · · + xn).

The degree of f is at most |L|, so L1(f) ≤ (p − 1)
∑|L|

i=0

(
n
i

)
, and w(f) ≤ ∑|L|

i=0

(
n
i

)
.

Consider now hypergraph f(H). The vertex-set of this hypergraph is of size L1(f), and
the incidence-vectors of the edges span a w(f)-dimensional subspace U of the L1(f)-
dimensional vector space V . By Theorem 7, hypergraph f(H) satisfies the assumptions
of Theorem 9, so

|H| = |f(H)| ≤ (k − 1)


 |L|∑

i=0

(
n

i

)
 .

2

3 Set-systems with restricted k-wise intersections

In this section we give an explicit construction for a set-system with similar (but stronger)
properties described in [Gro00].

It was conjectured (see [BF92]), that if H is a set-system over an n element universe,
satisfying that ∀H ∈ H: |H| ≡ 0 (mod 6), but ∀G, H ∈ H, G 6= H : |G ∩ H| 6≡ 0
(mod 6) has size polynomial in n. The conjecture was motivated by theorems of Frankl
and Wilson, showing polynomial upper bounds for prime or prime-power moduli [FW81].
We have shown in [Gro00] that there exists an H with these properties and with super-
polynomial size in n. (see the details in [Gro00].) In [Gro01] we gave this construction
with the notions of Definition 6. Here we present a k-wise intersection-version, which will
be useful for a Ramsey hypergraph construction. On the other hand, this construction
will also show, that our Theorem 1 does not generalize to non-prime-power composite
moduli.

Theorem 11 Let n, t ≥ 2 integers, and let p1, p2, . . . , pt be pairwise different primes,
and let q = p1p2 · · ·pt. There exists an explicitly constructible set-system H =
{H1, H2, . . . , Hm} on the n-element universe, such that

(i) |H| = m ≥ exp
(

c(log n)t

(log log n)t−1

)

(ii) ∀H ∈ H, |H| ≡ 0 (mod q),

(iii) ∀I ⊂ {1, 2, . . . , m}, 2 ≤ |I|, |⋂i∈I Hi| 6≡ 0 (mod q).

Proof:
Let s be a positive integer, and for i = 1, 2, . . . , t let αi be the smallest integer that

s < pαi
i . By a result of Barrington, Beigel and Rudich [BBR94], for any ` ≥ s there

the electronic journal of combinatorics 9 (2002), #R8 7



exists an explicitly constructible `-variable, degree-O(s) polynomial f , satisfying over
x = (x1, x2, . . . , x`) ∈ {0, 1}`:

f(x) ≡ 0 (mod q) ⇐⇒ ∑̀
i=1

xi ≡ 0 (mod pα1
1 pα2

2 · · · pαt
t ).

Let r = pα1
1 pα2

2 · · ·pαt
t , and let G0 denote the set-system of all r − 1-element subsets

of the ` − 1-element universe. Let us take an additional element e outside this universe,
and let us define set-system G = {G ∪ {e} G ∈ G0}. Indeed, for any k ≥ 2, all k-wise
intersections in G are non-empty, and of size less than r, while the size of any element of
G is exactly r.

Then consider H = f(G). By Theorem 7, H satisfies (ii) and (iii), and since the f of
Barrington, Beigel and Rudich [BBR94] contains all variable xi with a non-zero coefficient,
then H is a set-system. The size of H is the same as the size of G:

(
` − 1

r − 1

)
.

Now set ` = r2, then

|H| = |G| =

(
r2

r − 1

)
≥ rr.

The size of the universe of H = f(G) is

n = L1(f) = `O(s) = rO(r1/t),

so

|H| = exp

(
c(log n)t

(log log n)t−1

)
,

for some positive constant c, depending only on q (or the primes p1, p2, . . . , pt).
2

4 An Explicit Ramsey-Hypergraph Construction

Theorem 12 Let m, k, t ≥ 2 integers. Let F denote the complete k-uniform set-system
on the m-element universe S. Then there exists an explicitly constructible t-coloring of
the sets of the k-uniform set-system F which does not contain monochromatic complete
sub-system on

exp (c(log m)1/t(log log m)1/(t−1))

vertices.
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Proof: First construct a set-system H with Theorem 11 with the first t primes: p1 =
2, p2 = 3, . . . , pt. Set S = H. (If m is not exactly the size of H, then generate the smallest
H with at least m elements, and let S ⊂ H.) Consequently, a member of our set-system
F ∈ F corresponds to k sets of H: F = {H1, H2, . . . , Hk}.

Next we define the coloring of F .
Color F to color cv, (1 ≤ v ≤ t) if v is the smallest number that pv does not divide

∣∣∣∣∣
k⋂

i=1

Hi

∣∣∣∣∣ .
Clearly, every F will have some color. If every k-set in S ′ ⊂ S is of color cv, then apply
Theorem 1 with p = pv, and get the upper bound.

2
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