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Abstract

Erdős and Szekeres showed that any permutation of length n ≥ k2 + 1 contains
a monotone subsequence of length k + 1. A simple example shows that there need
be no more than (n mod k)

(dn/ke
k+1

)
+ (k − (n mod k))

(bn/kc
k+1

)
such subsequences; we

conjecture that this is the minimum number of such subsequences. We prove this
for k = 2, with a complete characterisation of the extremal permutations. For
k > 2 and n ≥ k(2k − 1), we characterise the permutations containing the mini-
mum number of monotone subsequences of length k + 1 subject to the additional
constraint that all such subsequences go in the same direction (all ascending or
all descending); we show that there are 2

( k
n mod k

)
C2k−2

k such extremal permuta-
tions, where Ck = 1

k+1

(2k
k

)
is the kth Catalan number. We conjecture, with some

supporting computational evidence, that permutations with a minimum number
of monotone (k + 1)-subsequences must have all such subsequences in the same
direction if n ≥ k(2k − 1), except for the case of k = 3 and n = 16.

1 Introduction

A well-known result of Erdős and Szekeres [2] may be expressed as follows:

Theorem 1 (Erdős and Szekeres [2]) Let n and k be positive integers. If n ≥ k2 + 1,
then in any permutation of the integers {0, 1, . . . , n− 1} there is a monotone subsequence
of length k + 1.

∗Research supported by EPSRC studentship 99801140.
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This problem leads to many variations, a survey of which has been made by Steele [5].
Here we consider an extremal problem that arises as a variation; this problem was posed
by Mike Atkinson, Michael Albert and Derek Holton. If n ≥ k2 + 1, then we know there
is at least one monotone subsequence of length k + 1; how many such sequences must
there be? We write mk(S) for the number of monotone subsequences of length k + 1 in
the permutation S. This problem is related to a question of Erdős [1] in Ramsey theory
asking for the minimum number of monochromatic Kt subgraphs in a 2-coloured Kn;
Erdős’s conjecture about the answer to that question (that the minimum was given by
random colourings) was disproved by Thomason [6].

Some upper and lower bounds are obvious. For an upper bound, note that in a random
permutation, any given subsequence of length k+1 is monotone with probability 2/(k+1)!.
Thus some permutation has at most

2

(k + 1)!

(
n

k + 1

)

monotone subsequences of length k + 1. For a lower bound, note that any subsequence
of length k2 + 1 must have a monotone subsequence of length k + 1, and any sequence of
length k + 1 is in

(
n−k−1
k2−k

)
sequences of length k2 + 1. Thus there are at least

(
n

k2+1

)
(

n−k−1
k2−k

) =
1(

k2+1
k+1

)
(

n

k + 1

)

monotone subsequences of length k + 1.
A simple example will, in fact, give a better upper bound than a random permutation;

this bound is, for large k, half way (geometrically) between the upper and lower bounds
just given. Consider the permutation

bn/kc − 1, bn/kc − 2, . . . , 0,

b2n/kc − 1, b2n/kc − 2, . . . , bn/kc,
. . . ,

n − 1, n − 2, . . . , b(k − 1)n/kc.
(This permutation is illustrated in Figure 1 for n = 17 and k = 3.) This permutation is
made up of k monotone descending subsequences, each of length bn/kc or dn/ke; clearly
it has no monotone ascending subsequences of length k+1, and any monotone descending
subsequences it has of length k + 1 must lie entirely within just one of the k monotone
descending subsequences into which it is divided. Thus the number of monotone subse-
quences of length k + 1 is

(n mod k)

(dn/ke
k + 1

)
+ (k − (n mod k))

(bn/kc
k + 1

)
≈ 1

kk

(
n

k + 1

)
.

Let this number be known as Mk(n). I conjecture that this is in fact the minimum
number of monotone subsequences of length k + 1.
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Figure 1: Canonical extremal permutation for n = 17 and k = 3

Conjecture 2 Let n and k be positive integers. In any permutation of the integers
{0, 1, . . . , n − 1} there are at least Mk(n) monotone subsequences of length k + 1.

A natural weaker conjecture is that this is asymptotically correct.

Conjecture 3 Let k be a positive integer and let n → ∞. In any permutation of the
integers {0, 1, . . . , n − 1} there are at least (1 + o(1))

(
n

k+1

)
/kk monotone subsequences of

length k + 1.

It would also be interesting to know the extremal configurations. It appears from
computation that the behaviour for k = 2 is entirely different from that for k > 2 (although
I do not have a proof that Mk(n) is the correct extremum, or that the conjectured sets
of extremal configurations are complete, except for k = 2). For k = 2, n even, there are
2n/2 extremal configurations; for k = 2, n odd, there are 2n−1 extremal configurations.
These configurations are described in Section 2. Some of these configurations have both
ascending and descending monotone subsequences of length k+1. For k > 2, the extremal
configurations, provided n is sufficiently large in terms of k, appear to be more restricted;
it seems that no extremal configuration has both ascending and descending monotone
subsequences of length k + 1. These configurations are described in Section 3; it is shown

the electronic journal of combinatorics 9(2) (2002), #R4 3



that, if indeed no extremal configuration has both ascending and descending monotone
subsequences of length k+1, the characterisation is complete and correct for n ≥ k(2k−1).
(Computation suggests that—apart from the exceptional case of k = 3, n = 16, where
there are also some extremal configurations not as described—all extremal configurations
do indeed satisfy the given constraint.) The number of extremal configurations (under
this assumption) may be described in terms of the Catalan numbers.

The problem may be seen to be equivalent to a problem on directed graphs as follows.
Consider a permutation p0, p1, . . . , pn−1. Let A be a transitive tournament on n vertices,
v0, v1, . . . , vn−1, with an edge vi → vj for all i < j. Let B be a transitive tournament
on the same vertices, with an edge vi → vj if and only if pi < pj. Now a monotone
ascending subsequence of length k + 1 corresponds to a Kk+1 subgraph on some subset
of the same vertices, all of whose edges go in the same direction in both A and B; and
a monotone descending subsequence of length k + 1 corresponds to a Kk+1 subgraph on
some subset of the same vertices, all of whose edges go in opposite directions in A and B.
Thus the problem is equivalent to: given two transitive tournaments on the same set of
n vertices, what is the minimum number of Kk+1 subgraphs on which the edge directions
of the two tournaments entirely agree or entirely disagree? Furthermore, this formulation
of the problem is symmetrical in A and B. In general, the problem has the following
symmetries, which appear naturally in the formulation in terms of tournaments:

• The order of the permutation may be reversed (equivalent to reversing the order
on A); the new permutation is pn−1, pn−2, . . . , p0.

• The value of pi may be replaced by n − 1 − pi (equivalent to reversing the order
on B).

• The permutation may be replaced by the permutation q0, q1, . . . , qn−1, where qpi
= i

(equivalent to swapping A and B). This permutation is the inverse permutation to
p1, p2, . . . , pn.

Combinations of these operations may also be applied; the symmetry group is that of the
square, the dihedral group on 8 elements.

I would like to thank Andrew Thomason and an anonymous referee for their comments
on earlier versions of this paper.

2 The case k = 2

We will see that, for k = 2, all permutations with a minimum number of monotone
3-sequences have the following form:

Theorem 4 If n = 1, the extremal permutation is 0. If n = 2, the extremal permutations
are 0, 1 and 1, 0. If n > 2, all extremal sequences have the form L, 0, n − 1, R or L, n −
1, 0, R, where L and R have lengths bn/2c − 1 or dn/2e − 1 and L, R is an extremal
permutation of {1, 2, . . . , n − 2} (that is, the result of adding 1 to each element of an
extremal permutation of {0, 1, . . . , n − 3}). All such permutations are extremal.
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Table 1: Extremal permutations for n ≤ 6

n = 1 0
n = 2 0 1 1 0
n = 3 0 2 1 1 0 2 1 2 0 2 0 1
n = 4 1 0 3 2 1 3 0 2 2 0 3 1 2 3 0 1
n = 5 1 0 4 3 2 2 0 4 1 3 2 3 0 4 1 3 0 4 1 2

1 3 0 4 2 2 0 4 3 1 2 3 4 0 1 3 1 0 4 2
1 3 4 0 2 2 1 0 4 3 2 4 0 1 3 3 1 4 0 2
1 4 0 3 2 2 1 4 0 3 2 4 0 3 1 3 4 0 1 2

n = 6 2 1 0 5 4 3 2 4 0 5 1 3 3 1 0 5 4 2 3 4 0 5 1 2
2 1 5 0 4 3 2 4 5 0 1 3 3 1 5 0 4 2 3 4 5 0 1 2

It is clear that this yields 2n/2 extremal permutations for n even and 2n−1 extremal
permutations for n odd. For n even, there is a simple noninductive description: if the
permutation is p0, p1, . . . , pn−1, then, for 0 ≤ t < n/2, we have that pt and pn−1−t take the
values (n/2)−1−t and (n/2)+t, in some order. Table 1 shows the extremal permutations
for n ≤ 6.

The sequences in Theorem 4 all have 0 and n − 1 adjacent. It is easy to see that
Theorem 4 is a correct characterisation of extremal sequences with that property.

Lemma 5 Suppose n > 2 and that some extremal permutation has 0 and n− 1 adjacent.
Then all extremal permutations with 0 and n− 1 adjacent are as described in Theorem 4,
and all such permutations are extremal.

Proof Without loss of generality, suppose a permutation with 0 and n − 1 adjacent is
L, 0, n − 1, R; call this permutation S. Suppose that L has length ` and R has length r.
All monotone subsequences of length 3 in L, R are also such subsequences of S. There
are no monotone subsequences of S containing both 0 and n− 1. There are no monotone
subsequences of S of the form a, 0, b or a, n − 1, b, with a ∈ L and b ∈ R. If, however,
a precedes b in L, exactly one of a, b, 0 and a, b, n−1 is monotone; likewise, if a precedes b
in R, exactly one of 0, a, b and n−1, a, b is monotone. Thus m2(S) = m2(L, R)+

(
`
2

)
+
(

r
2

)
.

This is minimal when |` − r| ≤ 1. 2

Consider again the relation to tournaments described in Section 1. Suppose we colour
an edge red if the two tournaments agree on the direction of that edge, or blue if the
two tournaments disagree on the direction of that edge. The problem is then to minimise
the number of monochromatic triangles. (However, we cannot use any 2-colouring of Kn,
only one arising from two tournaments in this manner.) Goodman [3] and Lorden [4]
found that the number of monochromatic triangles depends only on the sequence of red
(or blue) degrees:

the electronic journal of combinatorics 9(2) (2002), #R4 5



Theorem 6 (Goodman [3] and Lorden [4]) Let Kn be coloured in red and blue. Let
dr(v) be the number of red edges from the vertex v. Then there are exactly

(
n

3

)
− 1

2

∑
v

dr(v)(n − 1 − dr(v))

monochromatic triangles.

This theorem allows us to prove correct our characterisation of extremal configurations.

Proof of Theorem 4 for n even The canonical extremum from Section 1 is of this
form, and has M2(n) = 2

(
n/2
3

)
monotone subsequences of length 3. In the coloured graph

corresponding to this permutation, each vertex has red degree equal to either d(n−1)/2e or
b(n−1)/2c, so the graph minimises the number of monochromatic triangles. Thus all the
permutations for n even described in Theorem 4 are indeed extremal. Also, in the coloured
graph corresponding to an extremal permutation p0, p1, . . . , pn−1, all vertices must have
red degree either d(n − 1)/2e or b(n − 1)/2c; in particular, the vertices corresponding to
the values 0 and n − 1 must have such red degrees. This means that 0 and n − 1 must
each be the value of one of p(n/2)−1 and pn/2, so they are adjacent, and the result follows
by Lemma 5. 2

This method does not apply quite so simply for n odd, where the graphs corresponding
to extremal permutations do not minimise the number of monochromatic triangles over all
colourings (that is, the colourings minimising the number of monochromatic triangles do
not correspond to pairs of transitive tournaments). However, the colourings are sufficiently
close to extremal that with a little more effort the method can be adapted.

Proof of Theorem 4 for n odd The canonical extremum from Section 1 is of this
form, so M2(n) monotone subsequences of length 3 can be attained. We will show that
this is indeed extremal, and that in all extremal permutations 0 and n − 1 are adjacent,
so that the result will then follow by Lemma 5.

Suppose we have some extremal permutation p1, p2, . . . , pn, and let `(v) be the location
of the value v; that is, p`(v) = v. Let the vertex corresponding to the position `(v) with
value v also be known as v. Let dr(v) and db(v) be the numbers of red and blue edges,
respectively, from the vertex v; put dd(v) = 1

2
|dr(v) − db(v)|. Observe that dr(v)(n − 1 −

dr(v)) = dr(v)db(v) = (n−1
2

)2 − dd(v)2, so, by Theorem 6, the number of monochromatic
triangles then is (

n

3

)
− n(n − 1)2

8
+
∑
v

dd(v)2.

Thus, we wish to minimise
∑

v dd(v)2. In the canonical extremum this takes the value n−1
2

.
Suppose 0 ≤ v ≤ (n − 1)/2. Let L = { u : `(u) < `(v) } be the set of values to

the left of v, and R = { u : `(u) > `(v) } be the set of values to the right of v. Put
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further Lr = { u ∈ L : u < v }, Lb = { u ∈ L : u > v }, Rr = { u ∈ R : u > v } and
Rb = { u ∈ R : u < v }. Then we have dr(v) = |Lr| + |Rr| and db(v) = |Lb| + |Rb|, so

dr(v) − db(v) = |Rr| − |Rb| − |Lb| + |Lr| = (|R| − |L|) + 2(|Lr| − |Rb|).
Now

|R| − |L| = (n − 1 − `(v)) − `(v) = 2
(

n−1
2

− `(v)
)
,

and ∣∣∣|Lr| − |Rb|
∣∣∣ ≤ |Lr ∪ Rb| = v,

so dd(v) ≥ max{0, |n−1
2

− `(v)| − v}. Likewise, for (n − 1)/2 ≤ v ≤ n − 1, we have
dd(v) ≥ max{0, |n−1

2
− `(v)| − (n− 1− v)}. Define r(j) by r(j) = j for 0 ≤ j ≤ (n− 1)/2

and r(j) = n − 1 − j for (n − 1)/2 ≤ j ≤ n − 1, so we have

dd(v) ≥ max
{
0,

∣∣∣∣n − 1

2
− `(v)

∣∣∣∣− r(v)
}

.

For 0 ≤ j ≤ (n − 1), put S(j) = { i : |n−1
2

− i| ≤ r(j) }. That is, S(j) is the set of
possible value of `(j) for which our lower bound on dd(j) would be 0. We then have

dd(v) ≥ |{ (n − 1)/2 ≥ j ≥ r(v) : `(v) 6∈ S(j) }| =
∑

(n−1)/2≥j≥r(v)
`(v)6∈S(j)

1.

Adding over all v and reversing the order of summation then gives

∑
v

dd(v) ≥ ∑
0≤j≤(n−1)/2

|{ v : r(v) ≤ j, `(v) 6∈ S(j) }|.

For 0 ≤ j < (n − 1)/2, observe that |S(j)| = 2j + 1, whereas |{ v : r(v) ≤ j }| = 2j + 2.
Thus

∑
v dd(v) ≥ n−1

2
, and equality requires that each |{ v : r(v) ≤ j, `(v) 6∈ S(j) }|

equals 1, for 0 ≤ j < n−1
2

. Now
∑

v dd(v)2 ≥ ∑
v dd(v), with equality only if all terms are

0 or 1. So any extremum must have `(0) and `(n− 1) both equal to n−1
2

or n−1
2

± 1, with
one of them equal to n−1

2
. So 0 and n − 1 are adjacent. 2

3 The case k > 2

For k > 2, it seems that, for n sufficiently large, the permutations with a minimum number
of monotone (k + 1)-subsequences have only descending, or only ascending, monotone
subsequences of that length; making this assumption, we can give a characterisation of
the extremal permutations for n ≥ k(2k − 1) (which appears to be sufficiently large,
except for k = 3, n = 16, where there are also some other extremal permutations). It is
easy to see that this condition is equivalent to the permutation being divisible into (at
most) k disjoint monotone descending subsequences, or k disjoint monotone ascending
subsequences. If it can be divided into k disjoint monotone descending subsequences,
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there cannot be a monotone ascending (k + 1)-subsequence, since such a sequence would
have to contain two elements from one of the k descending subsequences. Conversely, if it
contains only descending subsequences of length k+1, it can be divided into k descending
subsequences explicitly; similarly to one proof of Theorem 1, form these subsequences by
adding each element in turn to the first of the subsequences already present it can be added
to without making that subsequence nondescending, or start a new subsequence if the
element is greater than the last element of all existing subsequences. Any element added
is at the end of an ascending subsequence, containing one element from each sequence up
to the one to which the element was added, so having k + 1 subsequences would imply
the presence of a monotone ascending subsequence of length k + 1, a contradiction.

The form of the extremal permutations (subject to the supposition described) is some-
what more complicated than that for k = 2. We describe the form where all the monotone
(k + 1)-subsequences are descending; the sequences for which they are all ascending are
just the reverse of those we describe. If the k subsequences are of lengths `1, `2, . . . , `k

(where some of the `i may be 0 if there are less than k subsequences), there are at least

k∑
i=1

(
`i

k + 1

)

monotone subsequences of length k + 1. For this to be minimal, convexity implies that
bn/kc ≤ `i ≤ dn/ke for all i; in particular, there are k subsequences, and no `i is 0,
for n ≥ k. To make the ordering of the `i definite, order the k subsequences by the
position of their middle element (the leftmost of two middle elements, if the sequence is

of even length). There are
(

k
n mod k

)
choices of the `i satisfying these inequalities. If they

are satisfied, there are at least Mk(n) monotone (k + 1)-subsequences, and exactly that
number if and only if there is no monotone descending (k + 1)-subsequence that takes
values from more than one of the k subsequences. Put si =

∑
1≤j≤i `i. For each choice of

the `i, we have a canonical extremum similar to that given in Section 1:

s1 − 1, s1 − 2, . . . , 0,

s2 − 1, s2 − 2, . . . , s1,

. . . ,

sk − 1, sk − 2, . . . , sk−1.

(where 0 = s0 and sk = n).
We will describe the extrema with the given `i, supposing n ≥ k(2k− 1). To do so we

will need some more notation. Write Ck = 1
k+1

(
2k
k

)
for the kth Catalan number. It will then

turn out that there are exactly C2k−2
k extrema with the given `i. Thus, the total number

of extremal sequences, subject to the constraint that all monotone (k + 1)-subsequences
go in the same direction, and subject to n ≥ k(2k − 1), will be

2

(
k

n mod k

)
C2k−2

k .

the electronic journal of combinatorics 9(2) (2002), #R4 8



The extrema are closely related to the canonical extremum with the given `i. In
each extremum with those `i, the `i − (2k − 2) middle values of each of the k monotone
subsequences take the same values, in the same positions, as they do in the canonical
extremum; the k − 1 values at either end of each subsequence can vary, as can their
positions.

The variation is described in terms of sets C(k, p) of monotone descending sequences of
k−1 integers; |C(k, p)| = Ck. This set is defined as follows: C(k, p) is the set of monotone
descending sequences c1, c2, . . . , ck−1 of integers, p− 2k +3 ≤ ci ≤ p for all i, such that if
d1, d2, . . . , dk−1 is the monotone descending sequence of all integers in [p− 2k +3, p] that
are not one of the ci, then c1, c2, . . . , ck−1, d1, d2, . . . , dk−1 has no monotone descending
subsequence of length k + 1.

There are various equivalent characterisations of C(k, p):

Lemma 7 Define C1(k, p) to be the set of monotone descending sequences c1, c2, . . . ,
ck−1 of integers, such that p − k − i + 2 ≤ ci ≤ p − 2i + 2 for all 1 ≤ i ≤ k − 1. Define
C2(k, p) inductively as follows. Let C2(2, p) = {p − 1, p}. For k > 2, let C2(k, p) =
{ (c1, c2, . . . , ck−1) : p−k+1 ≤ c1 ≤ p, c2 < c1, (c2, c3, . . . , ck−1) ∈ C2(k−1, p−2) }. Then
C1(k, p) = C2(k, p) = C(k, p). Furthermore, |C(k, p)| = Ck.

Proof Of these definitions, C is the one that will be relevant later in proving the char-
acterisation of extremal permutations correct. C1 will be seen to be a direct description
of C, and C2 will be seen to be an inductive description of C1. C2 allows the number of
such sequences to be calculated through recurrence relations, which will yield the last part
of the lemma. Observe that all these definitions clearly have the property that C(k, p1)
is related to C(k, p2) simply by adding p1 − p2 to all elements of all sequences in C(k, p2).

We first show that C1(k, p) = C(k, p). First consider a sequence c1, c2, . . . , ck−1

in C1(k, p), letting d1, d2, . . . , dk−1 be the monotone descending sequence of all integers
in [p−2k+3, p] that are not one of the ci. If the sequence c1, c2, . . . , ck−1, d1, d2, . . . , dk−1

has a monotone descending subsequence of length k + 1, suppose that subsequence has
t values among the ci. The last of these is at most p− 2t + 2. The interval [p− 2k + 3, p]
contains 2k − 2t − 1 values smaller than p − 2t + 2; of these, at least k − 1 − t must be
among the ci (namely, ct+1, ct+2, . . . , ck−1), so at most k − t are among the di, so the
monotone subsequence has length at most k, a contradiction. Thus C1(k, p) ⊂ C(k, p).
Conversely, consider a sequence c1, c2, . . . , ck−1 in C(k, p), and let di be as above. Clearly
ci ≥ p−k−i+2 for all i; otherwise we would have ck−1 < p−2k+3. If we had ci > p−2i+2,
then there would be at least 2k − 2i lesser values in the interval [p − 2k + 3, p], of which
k − 1 − i are among the cj, so at least k − i + 1 are among the dj; together with c1, c2,
. . . , ci, this yields a monotone subsequence of length at least k +1, a contradiction. Thus
C(k, p) ⊂ C1(k, p).

We now show that C1(k, p) = C2(k, p). We do this by induction on k; it clearly
holds for k = 2 and all p. Suppose that C1(k − 1, q) = C2(k − 1, q) for all q. If c1, c2,
. . . , ck−1 is in C2(k, p), then p − k + 1 ≤ c1 ≤ p, and, since c1 > c2 and c2, c3, . . . ,
ck−1 is in C2(k − 1, p − 2) = C1(k − 1, p − 2), the sequence of the ci is descending and
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(p− 2)− (k− 1)− (i− 1) + 2 = p− k− i + 2 ≤ ci ≤ (p− 2)− 2(i− 1) + 2 = p− 2i + 2 for
all 2 ≤ i ≤ k−1, so the sequence is in C1(k, p). Conversely, if c1, c2, . . . , ck−1 is in C1(k, p),
then for 2 ≤ i ≤ k−1 we have p−k−i+2 = (p−2)−(k−1)−(i−1)+2 ≤ ci ≤ p−2i+2 =
(p− 2)− 2(i− 1) + 2, so that c2, c3, . . . , ck−1 is in C1(k − 1, p− 2) = C2(k − 1, p− 2), so
the sequence is in C2(k, p).

Finally we show that |C2(k, p)| = Ck. For 1 ≤ j ≤ k, put

ck,j = |{ (c1, c2, . . . , ck−1) ∈ C2(k, p) : c1 = p − k + j }|
(which as observed above does not depend on p). We then have

|C2(k, p)| =
k∑

j=1

ck,j

and the recurrence

ck,j =
min{j,k−1}∑

i=1

ck−1,i,

where c2,1 = c2,2 = 1. Observe that the recurrence implies that ck,k−1 = ck,k = |C2(k −
1, p)|.

Put

dk,j =

(
k + j − 3

j − 1

)
−

j−3∑
i=0

(
k + i − 1

i

)
,

with dk,1 = 1. We claim that ck,j = dk,j for all k ≥ j; we prove this by induction on j.
Clearly ck,1 = 1 and ck,2 = k − 1. Suppose that j > 2 and ck,j−1 = dk,j−1 for all k. For
k ≥ j we then have ck+1,j − ck,j = ck+1,j−1 = dk+1,j−1 and

dk+1,j − dk,j =

(
k + j − 3

j − 2

)
−

j−3∑
i=1

(
k + i − 1

i − 1

)
= dk+1,j−1.

Also, dj,j − cj,j = dj,j − cj,j−1 = dj,j − dj,j−1 =
(

2j−3
j−1

)
−
(

2j−4
j−2

)
−
(

2j−4
j−3

)
=
(

2j−3
j−1

)
−
(

2j−4
j−2

)
−(

2j−4
j−1

)
= 0. Thus, by induction on k, ck,j = dk,j for the given j and all k, and by induction

on j this holds for all j.
It now remains only to show that dk,k−1 = Ck−1 for all k. For this, observe that

Ck−1/
(

2k−4
k−2

)
=
(

2k−2
k−1

)
/k
(

2k−4
k−2

)
= 2(2k − 3)/k(k − 1). We have

dk,k−1 =

(
2k − 4

k − 2

)
−

k−4∑
i=0

(
k + i − 1

i

)

and
k−4∑
i=0

(
k + i − 1

i

)
=

(
2k − 4

k − 4

)

so that dk,k−1/
(

2k−4
k−2

)
= 1−

(
2k−4
k−4

)
/
(

2k−4
k−2

)
= 1−(k−2)(k−3)/k(k−1) = 2(2k−3)/k(k−1) =

Ck−1/
(

2k−4
k−2

)
. Thus dk,k−1 = Ck−1. 2
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Table 2: Structure of an example extremal permutation

n 17
k 3

Extremum 5 4 2 12 1 0 9 8 7 16 6 3 15 14 13 11 10
`1, `2, `3 5, 6, 6

s0, s1, s2, s3 0, 5, 11, 17
Canonical extremum 4 3 2 1 0 10 9 8 7 6 5 16 15 14 13 12 11

Fixed and variable values X X 2 X X X X 8 7 X X X X 14 13 X X
S0, S1, S2, S3 {0, 1}, {3, 4, 5, 6}, {9, 10, 11, 12}, {15, 16}

S {0, 1, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16}
A1, A2 {5, 4}, {12, 9}
B1, B2 {5, 4}, {11, 10}
A′

1, A′
2 {6, 3}, {11, 10}

B′
1, B′

2 {6, 3}, {12, 9}
L1, L2, L3 {1, 0}, {6, 3}, {11, 10}
R0, R1, R2 {5, 4}, {12, 9}, {16, 15}
T1, T2, T3 5 4 2 1 0, 12 9 8 7 6 3, 16 15 14 13 11 10

We now describe the conjectured extrema with given `i. We define sets Sj of integers:
put S0 = { i : 0 ≤ i ≤ k−2 }; put Sk = { i : n−k +1 ≤ i ≤ n−1 }; and for 1 ≤ j ≤ k−1,
put Sj = { i : sj − k + 1 ≤ i ≤ sj + k − 2 }. Put S = ∪k

j=0Sj. Then S is the union of
the sets of the k − 1 values (or positions) at either end of each of the subsequences in the
canonical extremum.

Write the canonical extremum as d0, d1, . . . , dn−1. We describe an extremum c0, c1,
. . . , cn−1. For i 6∈ S, we have ci = di; observe (as would be expected, given the symmetries
of the problem) that [0, n − 1] \ S = { di : i 6∈ S }.

For i ≤ i ≤ k − 1, let Ai and Bi be arbitrary elements of C(k, si + k − 2); let A′
i be

Si \Ai in descending order, and let B′
i be Si \Bi in descending order. Given this choice of

Ai and Bi (there being C2k−2
k possible such choices), we can now describe the extremum

associated with the Ai and Bi.
We will define sets Li for 1 ≤ i ≤ k and Ri for 0 ≤ i ≤ k − 1. Put L1 = S0 and

Rk−1 = Sk. For 1 ≤ i ≤ k − 1, put Ri−1 = Ai and Li+1 = A′
i. Now, the values of ci for

i ∈ S0 are the values of R0 in descending order; the values of ci for i ∈ Sk are the values
of Lk in descending order; the values of ci for i ∈ Bj are the values of Lj in descending
order; and the values of ci for i ∈ B′

j are the values of Rj in descending order. Observe
that this sequence can be divided into k disjoint monotone descending subsequences, of
the required lengths; the ith of them, for 1 ≤ i ≤ k, contains Ri−1, the fixed values cj for
si−1 + k − 1 ≤ j ≤ si − k, and Li. Call this subsequence Ti.

An example extremum with n = 17 and k = 3 is shown in Table 2, along with the
various parameters for its structure described above, and illustrated in Figure 2.
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Figure 2: Illustration of an example extremal permutation

It remains to prove that this sequence has the expected number of monotone subse-
quences of length k + 1, and that all extrema (subject to the sequence being divisible
into k disjoint monotone descending subsequences) have that form. The description of
the sequence makes sense for n ≥ k(2k − 2), and Theorem 8 applies for all such n, but if
n < k(2k − 1) there can be other extrema not of the form described.

Theorem 8 The sequences just described have exactly Mk(n) monotone subsequences of
length k + 1, all of them descending.

Proof By the division into k disjoint monotone descending subsequences, of lengths `i,
there are no monotone ascending subsequences of length k + 1, and there are at least
Mk(n) monotone descending subsequences of length k + 1 (that is, those subsequences
entirely within any one of the k subsequences into which the sequence is divided). Thus it
is only necessary to prove that there is no monotone descending subsequence of length k+1
containing values from more than one of the k subsequences.

If j ≥ i + 2, then the whole of Tj is to the right of the whole of Ti, and all the values
in Tj are greater than all the values in Ti. Thus any additional monotone subsequence
of length k + 1 can contain values from only two of the Tj, say Ti and Ti+1. If it con-
tains cp from Ti and cq from Ti+1, we still have p < q except possibly for cp from Li and
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cq from Ri, and cp < cq except possibly for cp from Ri−1 and cq from Li+1. Thus this
sequence contains no values from the fixed central regions of Ti and Ti+1; if it contains a
value from Ri−1, then it contains a value from Li+1, and all values are from Ri−1 and Li+1;
if it contains a value from Li, then all values are from Li and Ri. But a monotone descend-
ing subsequence of length k+1 in Ri−1 followed by Li+1 would be such a subsequence in Ai

followed by A′
i, contradicting the definition of C(k, p). Likewise, a monotone descending

sequence (of values, as the position goes up) in Li and Ri may be seen to be equivalent to
a monotone descending sequence of positions, as the value goes up, in the positions (going
down) of Li followed by those of Ri; that is, in Bi followed by B′

i, again a contradiction.
Thus there are no such monotone subsequences. 2

Theorem 9 For n ≥ k(2k − 1), the sequences which contain no monotone ascending
(k+1)-subsequences and a minimum number of monotone descending (k+1)-subsequences

are exactly the
(

k
n mod k

)
C2k−2

k sequences described above. The sequences which contain no

monotone descending (k+1)-subsequences and a minimum number of monotone ascending
(k + 1)-subsequences are those sequences, reversed.

Proof The derivation of extremal sequences with only ascending (k + 1)-subsequences
from those with only descending (k + 1)-subsequences is clear. As observed above, se-
quences with only descending (k + 1)-subsequences are just those divisible into at most
k disjoint monotone descending subsequences, and minimality requires that there be ex-
actly k such subsequences, and that their lengths by bn/kc or dn/ke. Thus the sequences
described above are extremal (from Theorem 8), and it is only necessary to show that
there are no more extremal sequences.

Suppose c0, c1, . . . , cn−1 is an extremal sequence. Suppose that one of the k monotone
descending subsequences into which it is divided occupies positions a0 < a1 < · · · < a`i−1

(so has values ca0 > ca1 > · · · > ca`i−1
), and another occupies positions b0 < b1 < · · · <

b`j−1, where a0 < b0. Then ca0 < cb0 (since otherwise ca0 , cb0, cb1 , . . . , cbk−1
would be

another monotone descending (k + 1)-subsequence), so cam ≤ ca0 < cb0 for all m. Thus
b0 > a`i−k, since otherwise cb0 , ca`i−k

, ca`i−k+1
, . . . , ca`i−1

would be a monotone descending
(k + 1)-subsequence; and a`i−1 > bk−1, since otherwise either cb0 , cb1 , . . . , cbk−1

, ca`i−1
or

ca0 , ca1 , . . . , cak−1
, cbk−1

would be a monotone descending (k +1)-subsequence (depending
on the order of ca`i−1

and cbk−1
).

Thus, if we order our k subsequences by the position of the first element, we have seen
that the only possible overlap in positions is between the last k−1 of one sequence and the
first k− 1 of a later sequence. Because n ≥ k(2k− 1), each sequence has `i − 2(k− 1) > 0
central elements that are not in the first or last k − 1; so the ordering by where the first
elements are is the same as the ordering by where the central elements are (which was
chosen previously as the ordering of the `i). In particular, we see that the only overlap
in positions is between the last k − 1 of one sequence and the first k − 1 of the very next
sequence in this order.

Likewise, we may consider the possible overlap in values. If as above we have i < j,
ap the positions of sequence i and bq the positions of sequence j, then suppose for some p, q
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we have cap > cbq . If p ≥ k−1, then ca0 , ca1 , . . . , cak−1
, cbq would be monotone descending;

if q ≤ `j − k, then cap, cb`j−k
, cb`j−k+1

, . . . , cb`j−1
would be monotone descending. Thus

the only possible overlap in values is between the first k − 1 of one sequence and the last
k − 1 of a later sequence, which again must be the very next sequence.

Given these restrictions on overlap of positions, the ith sequence must include the
positions from si−1 + k− 1 to si − k (with k− 1 positions to either side). The restrictions
on overlap of values imply that in these central `i − 2(k − 1) positions there must be
the canonical values di. Thus all extrema have those fixed values that were fixed in our
description of the extrema.

For 1 ≤ i ≤ k, let Ri−1 be the set of the first k−1 values in the ith sequence, and let Li

be the set of the last k − 1 values. Then the ith sequence contains the values Ri−1, the
fixed values cj for si−1 +k−1 ≤ j ≤ si−k, and Li, as in the above description of extrema.
Further, the restriction on the overlap of values implies that L1 = S0 and Rk−1 = Sk,
and that, for 1 ≤ i ≤ k − 1, Ri−1 and Li+1 are disjoint subsets of [si − k + 1, si + k − 2].
Put Ai = Ri−1 and A′

i = Li+1. Similarly, the positions in our sequence of the values in
Li and Ri are disjoint subsets of [si − k + 1, si + k − 2]; let Bi be the set of positions of
the values in Li, and let B′

i be the set of positions of the values in Ri.
If Ai and Bi are indeed elements of C(k, si + k − 2), then the sequence is of the given

form, with those Ai and Bi. However, if Ai is not an element of C(k, si + k− 2), then the
sequence of the values of Ai = Ri−1 in descending order, followed by those of A′

i = Li+1 in
descending order, has a monotone descending subsequence of length k + 1, which is such
a subsequence in our original sequence, contradicting minimality. Likewise, if Bi is not an
element of C(k, si + k− 2), then the sequence of the values of Bi in descending order (the
positions of Li, in ascending order of value), followed by those of B′

i in descending order
(the positions of Ri, in ascending order of value), has a monotone descending (k + 1)-
subsequence; that is, there is a monotone descending (k + 1)-sequence of positions, the
values in which are increasing, which gives a monotone descending sequence of values in
the original sequence. 2

If n < k(2k − 1), the above proof no longer works, since some of the k subsequences
have no fixed middle elements. However, for k(2k − 2) ≤ n < k(2k − 1), the construction
still gives sequences with Mk(n) monotone (k + 1)-subsequences—but there can be other
extrema (in which all monotone (k + 1)-subsequences go in the same direction) as well.

Computation shows that, for some n and k, such other extrema do indeed exist. In
particular, this applies for k = 3 and 12 ≤ n < 15: for each such n there are extrema,
in which all monotone (k + 1)-subsequences go in the same direction, that are not of the
form described above. Further, if we remove the constraint that all monotone (k + 1)-
subsequences go in the same direction, the extremal function is as conjectured for k =
3 and n ≤ 18, and for k = 4 and n ≤ 19 (that is, there are no sequences with fewer
than Mk(n) monotone (k + 1)-subsequences). For k = 3 and 15 ≤ n ≤ 18, the extrema
described above are found, but when n = 16 there are some additional extrema which
contain both ascending and descending monotone (k + 1)-subsequences. (The first such
extremum lexicographically is ‘4 3 9 2 1 0 13 8 7 6 5 15 14 12 11 10’.) Table 3 shows the
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Table 3: Number of extremal permutations for 3 ≤ k ≤ 4

k = 3 k = 4
n Total Both Total Both
1 1 0 1 0
2 2 0 2 0
3 6 0 6 0
4 22 0 24 0
5 86 0 118 0
6 306 0 668 0
7 882 0 4124 0
8 1764 0 26328 0
9 1764 0 165636 0
10 8738 0 985032 0
11 6892 0 5323032 0
12 1682 0 25038288 0
13 14706 10092 97173648 0
14 4182 0 288576288 0
15 1250 0 577152576 0
16 6250 2500 577152576 0
17 3750 0 2855608848 0
18 1250 0 2330017568 0
19 710429200 0
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number of extrema found in each case, in the columns headed ‘Total’, and the number of
those which contain both ascending and descending monotone (k + 1)-subsequences, in
the columns headed ‘Both’. The source code of the program that did the computations
for Table 3 is in the C source file distributed with this paper.

For larger n exhaustive search could not be done, but heuristic computation, taking
a random permutation and attempting to move from that to an apparent extremum, did
not find any other cases of apparent extrema (i.e., permutations with Mk(n) monotone
subsequences of length k + 1) not matching the form described above, nor any sequences
with fewer than Mk(n) monotone (k + 1)-subsequences, for n ≥ k(2k − 1).

The method for the heuristic computation started with a random permutation. Var-
ious operations were then applied to it: transposing a pair of values in the permutation;
reversing the order of a block of values in the permutation; rotating a block of values (in
consecutive positions) in the permutation left or right; and the dual operation of rotating a
block of positions (of consecutive values). All possible operations that reduced the number
of monotone (k + 1)-subsequences were considered, if there were any; if there were none,
operations that kept the number of monotone (k + 1)-subsequences the same were con-
sidered; in that case, a completely random move was occasionally chosen instead (to try
to avoid the problem of being stuck at a local minimum that was not a global minimum).
This process was stopped when the permutation had no more than Mk(n) monotone
(k + 1)-subsequences. In computations for various n and k with n ≥ k(2k − 1), no cases
were found with fewer than Mk(n) monotone (k + 1)-subsequences, and the only extrema
found in which not all monotone (k + 1)-subsequences went in the same direction were
with k = 3 and n = 16. These computations were done for k = 3 and 15 ≤ n ≤ 30, and
for k = 4 and 28 ≤ n ≤ 40.

References
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