A Dynamic Survey of Graph Labeling

Joseph A. Gallian
Department of Mathematics and Statistics
University of Minnesota Duluth
Duluth, Minnesota 55812, U.S.A.
jgallian@d.umn.edu

Submitted: September 1, 1996; Accepted: November 14, 1997
Mathematics Subject Classifications: 05C78

Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Graph labelings were first introduced in the mid 1960s. In the intervening 50 years over 200 graph labelings techniques have been studied in over 2000 papers. Finding out what has been done for any particular kind of labeling and keeping up with new discoveries is difficult because of the sheer number of papers and because many of the papers have appeared in journals that are not widely available. In this survey I have collected everything I could find on graph labeling. For the convenience of the reader the survey includes a detailed table of contents and index.
Contents

1 Introduction 5

2 Graceful and Harmonious Labelings 8
   2.1 Trees .................................................. 8
   2.2 Cycle-Related Graphs ................................. 12
   2.3 Product Related Graphs .............................. 18
   2.4 Complete Graphs ...................................... 20
   2.5 Disconnected Graphs .................................. 23
   2.6 Joins of Graphs ....................................... 25
   2.7 Miscellaneous Results ............................... 27
   2.8 Summary ............................................... 35
   Table 1: Summary of Graceful Results ............... 35
   Table 2: Summary of Harmonious Results .......... 39

3 Variations of Graceful Labelings 42
   3.1 $\alpha$-labelings .................................. 42
      Table 3: Summary of Results on $\alpha$-labelings  52
   3.2 $\gamma$-Labelings .................................. 53
   3.3 Graceful-like Labelings ............................. 53
      Table 4: Summary of Results on Graceful-like labelings 61
   3.4 $k$-graceful Labelings ............................... 61
   3.5 Skolem-Graceful Labelings ......................... 65
   3.6 Odd-Graceful Labelings ............................. 66
   3.7 Cordial Labelings ................................... 69
   3.8 The Friendly Index–Balance Index ............... 82
   3.9 $k$-equitable Labelings ............................. 87
   3.10 Hamming-graceful Labelings ...................... 91

4 Variations of Harmonious Labelings 92
   4.1 Sequential and Strongly $c$-harmonious Labelings .... 92
   4.2 $(k,d)$-arithmetic Labelings ...................... 97
   4.3 $(k,d)$-indexable Labelings ....................... 98
   4.4 Elegant Labelings ................................... 100
   4.5 Felicitous Labelings ................................ 102
   4.6 Odd Harmonious and Even Harmonious Labelings ... 104

5 Magic-type Labelings 109
   5.1 Magic Labelings ...................................... 109
      Table 5: Summary of Magic Labelings ............. 116
   5.2 Edge-magic Total and Super Edge-magic Total Labelings 117
      Table 6: Summary of Edge-magic Total Labelings ... 135
      Table 7: Summary of Super Edge-magic Labelings ... 136
5.3 Vertex-magic Total Labelings ........................................ 140
  Table 8: Summary of Vertex-magic Total Labelings ................. 148
  Table 9: Summary of Super Vertex-magic Total Labelings .......... 149
  Table 10: Summary of Totally Magic Labelings ........................ 150
5.4 $H$-Magic Labelings .................................................. 150
5.5 Magic Labelings of Type $(a, b, c)$ .................................. 153
  Table 11: Summary of Magic Labelings of Type $(a, b, c)$ ......... 155
5.6 Sigma Labelings/1-vertex magic labelings/Distance Magic .......... 156
5.7 Other Types of Magic Labelings ...................................... 158

6 Antimagic-type Labelings ................................................. 169
  6.1 Antimagic Labelings ................................................... 169
    Table 12: Summary of Antimagic Labelings ........................... 175
  6.2 $(a, d)$-Antimagic Labelings ........................................ 176
    Table 13: Summary of $(a, d)$-Antimagic Labelings ................. 179
  6.3 $(a, d)$-Antimagic Total Labelings .................................... 180
    Table 14: Summary of $(a, d)$-Vertex-Antimagic Total and Super $(a, d)$-Vertex-Antimagic Total Labelings ...................... 192
    Table 15: Summary of $(a, d)$-Edge-Antimagic Total Labelings .... 193
    Table 16: Summary of $(a, d)$-Edge-Antimagic Vertex Labelings ... 194
    Table 17: Summary of $(a, d)$-Super-Edge-Antimagic Total Labelings . 195
  6.4 Face Antimagic Labelings and $d$-antimagic Labeling of Type $(1,1,1)$ .............................. 196
    Table 18: Summary of Face Antimagic Labelings .................... 200
    Table 19: Summary of $d$-antimagic Labelings of Type $(1,1,1)$ .... 200
  6.5 Product Antimagic Labelings ......................................... 201

7 Miscellaneous Labelings ................................................. 203
  7.1 Sum Graphs .................................................................. 203
    Table 20: Summary of Sum Graph Labelings .......................... 211
  7.2 Prime and Vertex Prime Labelings .................................... 212
    Table 21: Summary of Prime Labelings ............................... 218
    Table 22: Summary of Vertex Prime Labelings ...................... 220
  7.3 Edge-graceful Labelings ............................................... 221
    Table 23: Summary of Edge-graceful Labelings ...................... 229
  7.4 Radio Labelings ......................................................... 231
  7.5 Line-graceful Labelings ................................................. 233
  7.6 Representations of Graphs modulo $n$ ................................ 234
  7.7 $k$-sequential Labelings ............................................... 235
  7.8 IC-colorings .................................................................. 236
  7.9 Product and Divisor Cordial Labelings ............................... 237
  7.10 Edge Product Cordial Labelings ...................................... 244
  7.11 Difference Cordial Labelings ......................................... 245
  7.12 Prime Cordial Labelings .............................................. 247
1 Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [1644] in 1967, or one given by Graham and Sloane [737] in 1980. Rosa [1644] called a function $f$ a $\beta$-valuation of a graph $G$ with $q$ edges if $f$ is an injection from the vertices of $G$ to the set $\{0, 1, \ldots, q\}$ such that, when each edge $xy$ is assigned the label $|f(x) - f(y)|$, the resulting edge labels are distinct. Golomb [725] subsequently called such labelings graceful and this is now the popular term. Alternatively, Buratti, Rinaldi, and Traetta [416] define a graph $G$ with $q$ edges to be graceful if there is an injection $f$ from the vertices of $G$ to the set $\{0, 1, \ldots, q\}$ such that every possible difference of the vertex labels of all the edges is the set $\{1, 2, \ldots, q\}$. Rosa introduced $\beta$-valuations as well as a number of other labelings as tools for decomposing the complete graph into isomorphic subgraphs. In particular, $\beta$-valuations originated as a means of attacking the conjecture of Ringel [1629] that $K_{2n+1}$ can be decomposed into $2n + 1$ subgraphs that are all isomorphic to a given tree with $n$ edges. Although an unpublished result of Erdős says that most graphs are not graceful (see [737]), most graphs that have some sort of regularity of structure are graceful. Sheppard [1792] has shown that there are exactly $q!$ gracefully labeled graphs with $q$ edges. Rosa [1644] has identified essentially three reasons why a graph fails to be graceful: (1) $G$ has “too many vertices” and “not enough edges,” (2) $G$ “has too many edges,” and (3) $G$ “has the wrong parity.” The disjoint union of trees is a case where there are too many vertices for the number of edges. An infinite class of graphs that are not graceful for the second reason is given in [364]. As an example of the third condition Rosa [1644] has shown that if every vertex has even degree and the number of edges is congruent to 1 or 2 (mod 4) then the graph is not graceful. In particular, the cycles $C_{4n+1}$ and $C_{4n+2}$ are not graceful.

Acharya [22] proved that every graph can be embedded as an induced subgraph of a graceful graph and a connected graph can be embedded as an induced subgraph of a graceful connected graph. Acharya, Rao, and Arumugam [41] proved: every triangle-free graph can be embedded as an induced subgraph of a triangle-free graceful graph; every planar graph can be embedded as an induced subgraph of a planar graceful graph; and every tree can be embedded as an induced subgraph of a graceful tree. Sethuraman, Ragukumar and Slater [1763] show that every tree can be embedded in a graceful tree and pose a related open problem toward settling the Graceful Tree Conjecture. Rao and Sahoo [1614] proved that every connected graph can be embedded as an induced subgraph of an Eulerian graceful graph thereby answering a question originally posed by Rao and mentioned by Acharya and Arumugum in [28]. As a consequence they deduce that the problems on deciding whether the chromatic of a graph number is less than or equal to $k$, for $k \geq 3$, and deciding whether the clique number of a graph is greater than or equal to $k$, for $k \geq 3$ are NP-complete even for Eulerian graceful graphs.

Sethuraman and Ragukumar [1762] provided an algorithm that generates a graceful tree from a given arbitrary tree by adding a sequence of new pendent edges to the given arbitrary tree thereby proving that every tree is a subtree of a graceful tree. They ask the question: If $G$ is a graceful tree and $v$ is any vertex of $G$ of degree 1, is it true that $G - v$ is graceful? If the answer is affirmative, then those additional edges of the input
arbitrary tree $T$ introduced for constructing the graceful tree $T$ by their algorithm could be deleted in some order so that the given arbitrary tree $T$ becomes graceful. This would imply that the Graceful Tree Conjecture is true. These results demonstrate that there is no forbidden subgraph characterization of these particular kinds of graceful graphs.

Harmonious graphs naturally arose in the study by Graham and Sloane [737] of modular versions of additive bases problems stemming from error-correcting codes. They defined a graph $G$ with $q$ edges to be harmonious if there is an injection $f$ from the vertices of $G$ to the group of integers modulo $q$ such that when each edge $xy$ is assigned the label $f(x) + f(y) \pmod{q}$, the resulting edge labels are distinct. When $G$ is a tree, exactly one label may be used on two vertices. They proved that almost all graphs are not harmonious. Analogous to the “parity” necessity condition for graceful graphs, Graham and Sloane proved that if a harmonious graph has an even number of edges $q$ and the degree of every vertex is divisible by $2^k$ then $q$ is divisible by $2^{k+1}$. Thus, for example, a book with seven pages (i.e., the cartesian product of the complete bipartite graph $K_{1,7}$ and a path of length 1) is not harmonious. Liu and Zhang [1288] have generalized this condition as follows: if a harmonious graph with $q$ edges has degree sequence $d_1, d_2, \ldots, d_p$ then $\gcd(d_1, d_2, \ldots, d_p, q)$ divides $q(q - 1)/2$. They have also proved that every graph is a subgraph of a harmonious graph. More generally, Sethuraman and Elumalai [1750] have shown that any given set of graphs $G_1, G_2, \ldots, G_t$ can be embedded in a graceful or harmonious graph. Determining whether a graph has a harmonious labeling was shown to be NP-complete by Auparajita, Dulawat, and Rathore in 2001 (see [1133]).

In the early 1980s Bloom and Hsu [376], [377], [353], [378], [431] extended graceful labelings to directed graphs by defining a graceful labeling on a directed graph $D(V, E)$ as a one-to-one map $\theta$ from $V$ to $\{0, 1, 2, \ldots, |E|\}$ such that $\theta(y) - \theta(x) \pmod{|E| + 1}$ is distinct for every edge $xy$ in $E$. Graceful labelings of directed graphs also arose in the characterization of finite neofields by Hsu and Keedwell [827], [828]. Graceful labelings of directed graphs was the subject of Marr’s 2007 Ph.D. dissertation [1361]. In [1361] and [1362] Marr presents results of graceful labelings of directed paths, stars, wheels, and umbrellas. Siqinbate and Feng [1865] proved that the disjoint union of three copies of a directed cycle of fixed even length is graceful.

Over the past five decades in excess of 2000 papers have spawned a bewildering array of graph labeling methods. Despite the unabated procession of papers, there are few general results on graph labelings. Indeed, the papers focus on particular classes of graphs and methods, and feature ad hoc arguments. In part because many of the papers have appeared in journals not widely available, frequently the same classes of graphs have been done by several authors and in some cases the same terminology is used for different concepts. In this article, we survey what is known about numerous graph labeling methods. The author requests that he be sent preprints and reprints as well as corrections for inclusion in the updated versions of the survey.

Earlier surveys, restricted to one or two labeling methods, include [347], [372], [1097], [653], and [655]. The book edited by Acharya, Arumugam, and Rosa [27] includes a variety of labeling methods that we do not discuss in this survey. The relationship between graceful digraphs and a variety of algebraic structures including cyclic difference
sets, sequenceable groups, generalized complete mappings, near-complete mappings, and neofields is discussed in [376] and [377]. The connection between graceful labelings and perfect systems of difference sets is given in [350]. Labeled graphs serve as useful models for a broad range of applications such as: coding theory, x-ray crystallography, radar, astronomy, circuit design, communication network addressing, data base management, secret sharing schemes, and models for constraint programming over finite domains—see [373], [374], [1960], [1881], [143], [142], [164], [1869] and [1383] for details. According to Wang, B. Yao, and M. Yao [2139], graph labelings are used for incorporating redundancy in disks, designing drilling machines, creating layouts for circuit boards, and configuring resistor networks.

Terms and notation not defined below follow that used in [456] and [653].
2 Graceful and Harmonious Labelings

2.1 Trees

The Ringel-Kotzig conjecture (GTC) that all trees are graceful has been the focus of many papers. Kotzig [832] has called the effort to prove it a “disease.” Among the trees known to be graceful are: caterpillars [1644] (a caterpillar is a tree with the property that the removal of its endpoints leaves a path); trees with at most 4 end-vertices [832], [2254] and [990]; trees with diameter at most 5 [2254] and [823]; symmetrical trees (i.e., a rooted tree in which every level contains vertices of the same degree) [351], [1502]; rooted trees where the roots have odd degree and the lengths of the paths from the root to the leaves differ by at most one and all the internal vertices have the same parity [430]; rooted trees with diameter $D$ where every vertex has even degree except for one root and the leaves in level $\lceil D/2 \rceil$ [261]; rooted trees with diameter $D$ where every vertex has even degree except for one root and the leaves, which are in level $\lfloor D/2 \rfloor$ [261]; rooted trees with diameter $D$ where every vertex has even degree except for one root, the vertices in level $\lfloor D/2 \rfloor − 1$, and the leaves which are in level $\lceil D/2 \rceil$ [261]; the graph obtained by identifying the endpoints any number of paths of a fixed length except for the case that the length has the form $4r + 1$, $r \geq 1$ and the number of paths is of the form $4m$ with $m > r$ [1689]; regular bamboo trees [1689] (a rooted tree consisting of branches of equal length the endpoints of which are identified with end points of stars of equal size); and olive trees [1481], [11] (a rooted tree consisting of $k$ branches, where the $i$th branch is a path of length $i$); Bahls, Lake, and Wertheim [249] proved that spiders for which the lengths of every path from the center to a leaf differ by at most one are graceful. (A spider is a tree that has at most one vertex (called the center) of degree greater than 2.) Jampachon, Nakprasit, and Poomsa-ard [873] provide graceful labelings for some classes of spiders. In [1469] Panda and Mishra give graceful labelings for some new classes of trees with diameter six. Pradhan and Kumar [1561] proved that all combs $P_n \circ K_1$ with perfect matching are graceful.

Motivated by Horton’s work [821], in 2010 Fang [601] used a deterministic backtracking algorithm to prove that all trees with at most 35 vertices are graceful. In 2011 Fang [602] used a hybrid algorithm that involved probabilistic backtracking, tabu searching, and constraint programming satisfaction to verify that every tree with at most 31 vertices is harmonious. In [1348] Mahmoudzadeh and Eshghi treat graceful labelings of graphs as an optimization problem and apply an algorithm based on ant colony optimization metaheuristic to different classes of graphs and compare the results with those produced by other methods.

Aldred, Širáň and Širáň [97] have proved that the number of graceful labelings of $P_n$ grows at least as fast as $(5/3)^n$. They mention that this fact has an application to topological graph theory. One such application was provided by Goddyn, Richter, and Širáň [723] who used graceful labelings of paths on $2s + 1$ vertices ($s \geq 2$) to obtain $2^{2s}$ cyclic oriented triangular embeddings of the complete graph on $12s + 7$ vertices. The Aldred, Širáň and Širáň bound was improved by Adamszek [47] to $(2.37)^n$ with the aid
of a computer. Cattell [441] has shown that when finding a graceful labeling of a path one has almost complete freedom to choose a particular label \( i \) for any given vertex \( v \). In particular, he shows that the only cases of \( P_n \) when this cannot be done are when \( n \equiv 3 \) (mod 4) or \( n \equiv 1 \) (mod 12), \( v \) is in the smaller of the two partite sets of vertices, and \( i = (n - 1)/2 \).

Using an algorithm to run through all \( n! \) graceful graphs on \( n + 1 \) vertices Anick [140] proves that the average number of graceful labelings grows superexponentially. He provides a simple criterion to predict which trees have an exceptionally large number of graceful labelings and gives evidence that trees with an exceptionally small number of graceful labelings fall into two already known families of caterpillar graphs. Over the full set of graceful labelings for a given \( n \), Anick shows that the distribution of vertex degrees associated with each label is very close to Poisson, with the exception of labels 0 and \( n \). A graph is said to be \( k \)-ubiquitously graceful (also called \( k \)-rotatable) if for every vertex there is a graceful labeling which assigns that vertex the label \( k \). He also gives two new families of trees that are not \( k \)-ubiquitously graceful and includes questions suggested by his results.

In [592] and [593] Eshghi and Azimi [592] discuss a programming model for finding graceful labelings of large graphs. The computational results show that the models can easily solve the graceful labeling problems for large graphs. They used this method to verify that all trees with 30, 35, or 40 vertices are graceful. Stanton and Zarnke [1914] and Koh, Rogers, and Tan [1098, 1099, 1102] gave methods for combining graceful trees to yield larger graceful trees. In [2156] Wang, Yang, Hsu, and Cheng generalized the constructions of Stanton and Zarnke and Koh, Rogers, and Tan for building graceful trees from two smaller given graceful trees. Rogers in [1640] and Koh, Tan, and Rogers in [1101] provide recursive constructions to create graceful trees. Burzio and Ferrarese [417] have shown that the graph obtained from any graceful tree by subdividing every edge is also graceful, and trees obtained from a graceful tree by replacing each edge with a path of fixed length is graceful.

It 1999 Broersma and Hoede [401] proved that an equivalent conjecture for the graceful tree conjecture is that all trees containing a perfect matching are strongly graceful (graceful with an extra condition also called an \( \alpha \)-labeling—see Section 3.1). Wang, Yang, Hsu, and Cheng [2156] showed that there exist infinitely many equivalent versions of the graceful tree conjecture (GTC). They verify these equivalent conjectures of the graceful tree conjecture are true for trees of diameter at most 7.

In 1979 Bermond [347] conjectured that lobsters are graceful (a lobster is a tree with the property that the removal of the endpoints leaves a caterpillar). Morgan [1416] has shown that all lobsters with perfect matchings are graceful. Krop [1134] proved that a lobster that has a perfect matching that covers all but one vertex (i.e., that has an almost perfect matching) is graceful. Ghosh [718] used adjacency matrices to prove that three classes of lobsters are graceful. Broersma and Hoede [401] proved that if \( T \) is a tree with a perfect matching \( M \) of \( T \) such that the tree obtained from \( T \) by contracting the edges in \( M \) is caterpillar, then \( T \) is graceful. Superdock [1958] used this result to prove that all lobsters with a perfect matching are graceful. Mishra and Panda [1403] have given
graceful labelings for certain lobsters.

A Skolem sequence of order \( n \) is a sequence \( s_1, s_2, \ldots, s_{2n} \) of \( 2n \) terms such that, for each \( k \in \{1, 2, \ldots, n\} \), there exist exactly two subscripts \( i(k) \) and \( j(k) \) with \( s_{i(k)} = s_{j(k)} = k \) and \( |i(k) - j(k)| = k \). A Skolem sequence of order \( n \) exists if and only if \( n \equiv 0 \) or \( 1 \) (mod 4). Morgan [1417] has used Skolem sequences to construct classes of graceful trees. Morgan and Rees [1418] used Skolem and Hooked-Skolem sequences to generate classes of graceful lobsters.

Mishra and Panigrahi [1404] and [1472] found classes of graceful lobsters of diameter at least five. They show other classes of lobsters are graceful in [1405] and [1406]. In [1753] Sethuraman and Jesintha [1753] explores how one can generate graceful lobsters from a graceful caterpillar while in [1757] and [1758] (see also [889]) they show how to generate graceful trees from a graceful star. More special cases of Bermond’s conjecture have been done by Ng [1444], by Wang, Jin, Lu, and Zhang [2130], Abhyanker [10], and by Mishra and Panigrahi [1405]. Renuka, Balaganesan, Selvaraju [1627] proved spider trees with \( n \) legs of even length \( t \) and odd \( n \geq 3 \) and lobsters for which each vertex of the spine is adjacent to a path of length two are harmonious.

Barrientos [281] defines a \( y \)-tree as a graph obtained from a path by appending an edge to a vertex of a path adjacent to an end point. He proves that graphs obtained from a \( y \)-tree \( T \) by replacing every edge \( e_i \) of \( T \) by a copy of \( K_{2,n_i} \) in such a way that the ends of \( e_i \) are merged with the two independent vertices of \( K_{2,n_i} \) after removing the edge \( e_i \) from \( T \) are graceful.

Sethuraman and Jesintha [1754], [1755] and [1756] (see also [889]) proved that rooted trees obtained by identifying one of the end vertices adjacent to either of the penultimate vertices of any number of caterpillars having equal diameter at least 3 with the property that all the degrees of internal vertices of all such caterpillars have the same parity are graceful. They also proved that rooted trees obtained by identifying either of the penultimate vertices of any number of caterpillars having equal diameter at least 3 with the property that all the degrees of internal vertices of all such caterpillars have the same parity are graceful. In [1754], [1755], and [1756] (see also [889] and [895]) Sethuraman and Jesintha prove that all rooted trees in which every level contains pendent vertices and the degrees of the internal vertices in the same level are equal are graceful. Kanetkar and Sane [1053] show that trees formed by identifying one end vertex of each of six or fewer paths whose lengths determine an arithmetic progression are graceful.

Chen, Lü, and Yeh [464] define a firecracker as a graph obtained from the concatenation of stars by linking one leaf from each. They also define a banana tree as a graph obtained by connecting a vertex \( v \) to one leaf of each of any number of stars (\( v \) is not in any of the stars). They proved that firecrackers are graceful and conjecture that banana trees are graceful. Before Sethuraman and Jesintha [1760] and [1759] (see also [889]) proved that all banana trees and extended banana trees (graphs obtained by joining a vertex to one leaf of each of any number of stars by a path of length of at least two) are graceful, various kinds of bananas trees had been shown to be graceful by Bhat-Nayak and Deshmukh [359], by Murugan and Arumugam [1432], [1430] and by Vilfred [2107].

Consider a set of caterpillars, having equal diameter, in which one of the penultimate
vertices has arbitrary degree and all the other internal vertices including the other penultimate vertex is of fixed even degree. Jesintha and Sethuraman [897] call the rooted tree obtained by merging an end-vertex adjacent to the penultimate vertex of fixed even degree of each caterpillar a *arbitrarily fixed generalized banana tree*. They prove that such trees are graceful. From this it follows that all banana trees are graceful and all generalized banana trees are graceful.

Zhenbin [2256] has shown that graphs obtained by starting with any number of identical stars, appending an edge to exactly one edge from each star, then joining the vertices at which the appended edges were attached to a new vertex are graceful. He also shows that graphs obtained by starting with any two stars, appending an edge to exactly one edge from each star, then joining the vertices at which the appended edges were attached to a new vertex are graceful. In [896] Jesintha and Sethuraman use a method of Hrnciar and Havzer [823] to generate graceful trees from a graceful star with $n$ edges.

Aldred and McKay [96] used a computer to show that all trees with at most 26 vertices are harmonious. That caterpillars are harmonious has been shown by Graham and Sloane [737]. In a paper published in 2004 Krishnaa [1130] claims to proved that all trees have both graceful and harmonious labelings. However, her proofs were flawed.

Vietri [2101] utilized a counting technique that generalizes Rosa’s graceful parity condition and provides constraints on possible graceful labelings of certain classes of trees. He expresses doubts about the validity of the graceful tree conjecture.

Using a variant of the Matrix Tree Theorem, Whitty [2172] specifies an $n \times n$ matrix of indeterminates whose determinant is a multivariate polynomial that enumerates the gracefully labeled $(n + 1)$-vertex trees. Whitty also gives a bijection between gracefully labelled graphs and rook placements on a chessboard on the Möbius strip. In [416] Buratti, Rinaldi, and Traetta use graceful labelings of paths to obtain a result on Hamiltonian cycle systems.

In [398] Brankovic and Wanless describe applications of graceful and graceful-like labelings of trees to several well known combinatorial problems including complete graph decompositions, the Oberwolfach problem, and coloring. They also discuss the connection between $\alpha$-labeling of paths and near transversals in Latin squares and show how spectral graph theory might be used to further the progress on the graceful tree conjecture.

Arkut, Arkut, and Basak [142] and Basak [164] proposed an efficient method for managing Internet Protocol (IP) networks by using graceful labelings of the nodes of the spanning caterpillars of the autonomous sub-networks to assign labels to the links in the sub-networks. Graceful labelings of trees also have been used in multi protocol label switching (MPLS) routing platforms in IP networks [143].

Despite the efforts of many, the graceful tree conjecture remains open even for trees with maximum degree 3. More specialized results about trees are contained in [347], [372], [1097], [1333], [424], [989], and [1645]. In [569] Edwards and Howard provide a lengthy survey paper on graceful trees. Robeva [1638] provides an extensive survey of graceful labelings of trees in her 2011 undergraduate honors thesis at Stanford University. Alfalayleh, Brankovic, Giggins, and Islam [98] survey results related to the graceful tree conjecture as of 2004 and conclude with five open problems. Alfalayleh et al.: say “The
faith in the [graceful tree] conjecture is so strong that if a tree without a graceful labeling were indeed found, then it probably would not be considered a tree.” In his Princeton University senior thesis Superdock [1958] provided an extensive survey of results and techniques about graceful trees. He also obtained some specialized results about the gracefulness of spiders and trees with diameter 6. Arumugam and Bagga [99] discuss computational efforts aimed at verifying the graceful tree conjecture and we survey recent results on generating all graceful labelings of certain families of unicyclic graphs.

2.2 Cycle-Related Graphs

Cycle-related graphs have been a major focus of attention. Rosa [1644] showed that the $n$-cycle $C_n$ is graceful if and only if $n \equiv 0$ or 3 (mod 4) and Graham and Sloane [737] proved that $C_n$ is harmonious if and only if $n$ is odd. Wheels $W_n = C_n + K_1$ are both graceful and harmonious – [638], [819] and [737]. As a consequence we have that a subgraph of a graceful (harmonious) graph need not be graceful (harmonious). The $n$-cone (also called the $n$-point suspension; the 1-cone is the wheel; the 2-cone is also called a double cone of $C_m$) $C_m + K_n$ has been shown to be graceful when $m \equiv 0$ or 3 (mod 12) by Bhat-Nayak and Selvam [365]. When $n$ is even and $m$ is 2, 6 or 10 (mod 12) $C_m + K_n$ violates the parity condition for a graceful graph. Bhat-Nayak and Selvam [365] also prove that the following cones are graceful: $C_4 + K_n$, $C_5 + K_2$, $C_7 + K_n$, $C_9 + K_2$, $C_{11} + K_n$ and $C_{19} + K_n$. The helm $H_n$ is the graph obtained from a wheel by attaching a pendent edge at each vertex of the $n$-cycle. Helms have been shown to be graceful [158] and harmonious [721], [1299], [1300] (see also [1288], [1742], [1286], [529] and [1586]). Koh, Rogers, Teo, and Yap, [1100] define a web graph as one obtained by joining the pendent points of a helm to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. They asked whether such graphs are graceful. This was proved by Kang, Liang, Gao, and Yang [1056]. Yang has extended the notion of a web by iterating the process of adding pendent points and joining them to form a cycle and then adding pendent points to the new cycle. In his notation, $W(2, n)$ is the web graph whereas $W(t, n)$ is the generalized web with $t$ $n$-cycles. Yang has shown that $W(3, n)$ and $W(4, n)$ are graceful (see [1056]), Abhyanker and Bhat-Nayak [12] have done $W(5, n)$ and Abhyanker [10] has done $W(t, 5)$ for $5 \leq t \leq 13$. Gnanajothi [721] has shown that webs with odd cycles are harmonious. Seoud and Youssef [1742] define a closed helm as the graph obtained from a helm by joining each pendent vertex to form a cycle and a flower as the graph obtained from a helm by joining each pendent vertex to the central vertex of the helm. They proved that closed helms and flowers are harmonious when the cycles are odd. A gear graph is obtained from the wheel $W_n$ by adding a vertex between every pair of adjacent vertices of the $n$-cycle. In 1984 Ma and Feng [1336] proved all gears are graceful while in a Master’s thesis in 2006 Chen [465] proved all gears are harmonious. Liu [1299] has shown that if two or more vertices are inserted between every pair of vertices of the $n$-cycle of the wheel $W_n$, the resulting graph is graceful. Liu [1297] has also proved that the graph obtained from a gear graph by attaching one or more pendent edges to each vertex between the vertices of the $n$-cycle is graceful. Pradhan and Kumar [1561] proved that graphs obtained
by adding a pendent edge to each pendent vertex of hairy cycle $C_n \circ K_1$ are graceful if $n \equiv 0 \pmod{4m}$. They further provide a rule for determining the missing numbers in the graceful labeling of $C_n \circ K_1$ and of the graph obtained by adding pendent edges to each pendent vertex of $C_n \circ K_1$.

Abhyanker [10] has investigated various unicyclic (that is, graphs with exactly one cycle) graphs. He proved that the unicyclic graphs obtained by identifying one vertex of $C_4$ with the root of the olive tree with $2n$ branches and identifying an adjacent vertex on $C_4$ with the end point of the path $P_{2n-2}$ are graceful. He showed that if one attaches any number of pendent edges to these unicyclic graphs at the vertex of $C_4$ that is adjacent to the root of the olive tree but not adjacent to the end vertex of the attached path, the resulting graphs are graceful. Likewise, Abhyanker proved that the graph obtained by deleting the branch of length 1 from an olive tree with $2n$ branches and identifying the root of the edge deleted tree with a vertex of a cycle of the form $C_{2n+3}$ is graceful. He also has a number of results similar to these.

Delorme, Maheo, Thuillier, Koh, and Teo [532] and Ma and Feng [1335] showed that any cycle with a chord is graceful. This was first conjectured by Bodendiek, Schumacher, and Wegner [381], who proved various special cases. In 1985 Koh and Yap [1103] generalized this by defining a cycle with a $P_k$-chord to be a cycle with the path $P_k$ joining two nonconsecutive vertices of the cycle. They proved that these graphs are graceful when $k = 3$ and conjectured that all cycles with a $P_k$-chord are graceful. This was proved for $k \geq 4$ by Punnim and Pabhapote in 1987 [1569]. Chen [470] obtained the same result except for three cases which were then handled by Gao [753]. In 2005, Sethuraman and Elumalai [1749] defined a cycle with parallel $P_k$-chords as a graph obtained from a cycle $C_n$ ($n \geq 6$) with consecutive vertices $v_0, v_1, \ldots, v_{n-1}$ by adding disjoint paths $P_k$, $(k \geq 3)$, between each pair of nonadjacent vertices $v_1, v_{n-1}, v_2, v_{n-2}, \ldots, v_{i}, v_{n-i}, \ldots, v_{\alpha}, v_{\beta}$ where $\alpha = \lfloor n/2 \rfloor - 1$ and $\beta = \lfloor n/2 \rfloor + 2$ if $n$ is odd or $\beta = \lfloor n/2 \rfloor + 1$ if $n$ is even. They proved that every cycle $C_n$ ($n \geq 6$) with parallel $P_k$-chords is graceful for $k = 3, 4, 6, 8$, and 10 and they conjecture that the cycle $C_n$ with parallel $P_k$-chords is graceful for all even $k$. Xu [2191] proved that all cycles with a chord are harmonious except for $C_6$ in the case where the distance in $C_6$ between the endpoints of the chord is 2. The gracefulness of cycles with consecutive chords has also been investigated. For $3 \leq p \leq n - r$, let $C_n(p, r)$ denote the $n$-cycle with consecutive vertices $v_1, v_2, \ldots, v_n$ to which the $r$ chords $v_1v_p, v_1v_{p+1}, \ldots, v_1v_{p+r-1}$ have been added. Koh and Punnim [1093] and Koh, Rogers, Teo, and Yap [1100] have handled the cases $r = 2, 3$ and $n - 3$ where $n$ is the length of the cycle. Goh and Lim [724] then proved that all remaining cases are graceful. Moreover, Ma [1338] has shown that $C_n(p, n-p)$ is graceful when $p \equiv 0, 3 \pmod{4}$ and Ma, Liu, and Liu [1339] have proved other special cases of these graphs are graceful. Ma also proved that if one adds to the graph $C_n(3, n-3)$ any number $k_i$ of paths of length 2 from the vertex $v_1$ to the vertex $v_i$ for $i = 2, \ldots, n$, the resulting graph is graceful. Chen [470] has shown that apart from four exceptional cases, a graph consisting of three independent paths joining two vertices of a cycle is graceful. This generalizes the result that a cycle plus a chord is graceful. Liu [1296] has shown that the $n$-cycle with consecutive vertices $v_1, v_2, \ldots, v_n$ to which the chords $v_1v_k$ and $v_1v_{k+2}$ $(2 \leq k \leq n-3)$ are adjoined is graceful.
In [530] Deb and Limaye use the notation $C(n, k)$ to denote the cycle $C_n$ with $k$ cords sharing a common endpoint called the apex. For certain choices of $n$ and $k$ there is a unique $C(n, k)$ graph and for other choices there is more than one graph possible. They call these shell-type graphs and they call the unique graph $C(n, n - 3)$ a shell. Notice that the shell $C(n, n - 3)$ is the same as the fan $F_{n-1} = P_{n-1} + K_1$. Deb and Limaye define a multiple shell to be a collection of edge disjoint shells that have their apex in common. A multiple shell is said to be balanced with width $w$ if every shell has order $w$ or every shell has order $w$ or $w + 1$. Deb and Limaye [530] have conjectured that all multiple shells are harmonious, and have shown that the conjecture is true for the balanced double shells and balanced triple shells. Yang, Xu, Xi, and Qiao [2213] proved the conjecture is true for balanced quadruple shells. Liang [1268] proved the conjecture is true when each shell has the same order and the number of copies is odd. Jeba Jesintha and Hilda [890] proved butterfly graphs with one shell of order $m$ and the other shell of order $2m + 1$ are graceful and double shells in which each shell has the same order are graceful. Jeba Jesintha and Hilda [893] define a bow graph as a double shell in which each shell has arbitrary order. A bow graph in which each shell has order 1 is called a graph. They prove that all uniform bow graphs are graceful.

Sethuraman and Dhavamani [1746] use $H(n, t)$ to denote the graph obtained from the cycle $C_n$ by adding $t$ consecutive chords incident with a common vertex. If the common vertex is $u$ and $v$ is adjacent to $u$, then for $k \geq 1$, $n \geq 4$, and $1 \leq t \leq n - 3$, Sethuraman and Dhavamani denote by $G(n, t, k)$ the graph obtained by taking the union of $k$ copies of $H(n, t)$ with the edge $uv$ identified. They conjecture that every graph $G(n, t, k)$ is graceful. They prove the conjecture for the case that $t = n - 3$.

For $i = 1, 2, \ldots, n$ let $v_{i,1}, v_{i,2}, \ldots, v_{i,2m}$ be the successive vertices of $n$ copies of $C_{2m}$. Sekar [1689] defines a chain of cycles $C_{2m,n}$ as the graph obtained by identifying $v_{i,m}$ and $v_{i+1,m}$ for $i = 1, 2, \ldots, n - 1$. He proves that $C_{6,2k}$ and $C_{8,n}$ are graceful for all $k$ and all $n$. Barrientos [284] proved that all $C_{8,n}$, $C_{12,n}$, and $C_{6,2k}$ are graceful.

Truszczyński [1995] studied unicyclic graphs and proved several classes of such graphs are graceful. Among these are what he calls dragons. A dragon is formed by joining the end point of a path to a cycle (Koh, et al. [1100] call these tadpoles; Kim and Park [1085] call them kites). This work led Truszczyński to conjecture that all unicyclic graphs except $C_n$, where $n \equiv 1$ or 2 (mod 4), are graceful. Guo [752] has shown that dragons are graceful when the length of the cycle is congruent to 1 or 2 (mod 4). Lu [1332] uses $C_n^{+, (m,t)}$ to denote the graph obtained by identifying one vertex of $C_n$ with one endpoint of $m$ paths each of length $t$. He proves that $C_n^{+, (1,t)}$ (a tadpole) is not harmonious when $a + t$ is odd and $C_n^{+, (2m,t)}$ is harmonious when $n = 3$ and when $n = 2k + 1$ and $t = k - 1, k + 1$ or $2k - 1$. In his Master’s thesis, Doma [552] investigates the gracefulfulness of various unicyclic graphs where the cycle has up to 9 vertices. Because of the immense diversity of unicyclic graphs, a proof of Truszczyński’s conjecture seems out of reach in the near future.

Cycles that share a common edge or a vertex have received some attention. Murugan and Arumugan [1431] have shown that books with $n$ pentagonal pages (i.e., $n$ copies of
$C_5$ with an edge in common) are graceful when $n$ is even and not graceful when $n$ is odd. Lu [1332] uses $\Theta(C_m)^n$ to denote the graph made from $n$ copies of $C_m$ that share an edge (an $n$ page book with $m$-polygonal pages). He proves $\Theta(C_{2m+1})^{2n+1}$ is harmonious for all $m$ and $n$; $\Theta(C_{4m+2})^{3n+1}$ and $\Theta(C_{4m})^{4n+3}$ are not harmonious for all $m$ and $n$. Xu [2191] proved that $\Theta(C_m)^2$ is harmonious except when $m = 3$. (\(\Theta(C_m)^2\) is isomorphic to $C_{2(m-1)}$ with a chord “in the middle.”)

A kayak paddle $KP(k, m, l)$ is the graph obtained by joining $C_k$ and $C_m$ by a path of length $l$. Litersky [1284] proves that kayak paddles have graceful labelings in the following cases: $k \equiv 0 \text{ mod } 4$, $m \equiv 0$ or $3$ (mod 4); $k \equiv m \equiv 2$ (mod 4) for $k \geq 3$; and $k \equiv 1$ (mod 4), $m \equiv 3$ (mod 4). She conjectures that $KP(4k + 4, 4m + 2, l)$ with $2k < m$ is graceful when $l \leq 2m$ if $l$ is even and when $l \leq 2m + 1$ if $l$ is odd; and $KP(10, 10, l)$ is graceful when $l \geq 12$. The cases are open: $KP(4k, 4m + 1, l); KP(4k, 4m + 2, l); KP(4k + 1, 4m + 1, l); KP(4k + 1, 4m + 2, l); KP(4k + 2, 4m + 3, l); KP(4k + 3, 4m + 3, l)$.

Let $C_n(t)$ denote the one-point union of $t$ cycles of length $n$. Bermond, Brouwer, and Germa [348] and Bermond, Kotzig, and Turgeon [350] proved that $C_3(t)$ (that is, the friendship graph or Dutch $t$-windmill) is graceful if and only if $t \equiv 0$ or 1 (mod 4) while Graham and Sloane [737] proved $C_3(t)$ is harmonious if and only if $t \neq 2$ (mod 4). Koh, Rogers, Lee, and Toh [1094] conjecture that $C_n(t)$ is graceful if and only if $nt \equiv 0$ or 3 (mod 4). Yang and Lin [2205] have proved the conjecture for the case $n = 5$ and Yang, Xu, Xi, Li, and Haque [2211] did the case $n = 7$. Xu, Yang, Li and Xi [2195] did the case $n = 11$. Xu, Yang, Han and Li [2196] did the case $n = 13$. Qian [1575] verifies this conjecture for the case that $t = 2$ and $n$ is even and Yang, Xu, Xi, and Li [2212] did the case $n = 9$. Figueroa-Centeno, Ichishima, and Muntaner-Batle [616] have shown that if $m \equiv 0$ (mod 4) then the one-point union of 2, 3, or 4 copies of $C_m$ admits a special kind of graceful labeling called an $\alpha$-labeling (see Section 3.1) and if $m \equiv 2$ (mod 4), then the one-point union of 2 or 4 copies of $C_m$ admits an $\alpha$-labeling. Bodendieck, Schumacher, and Wegner [387] proved that the one-point union of any two cycles is graceful when the number of edges is congruent to 0 or 3 modulo 4. (The other cases violate the necessary parity condition.) Shee [1787] has proved that $C_4(t)$ is graceful for all $t$. Seoud and Youssef [1740] have shown that the one-point union of a triangle and $C_n$ is harmonious if and only if $n \equiv 1$ (mod 4) and that if the one-point union of two cycles is harmonious then the number of edges is divisible by 4. The question of whether this latter condition is sufficient is open. Figueroa-Centeno, Ichishima, and Muntaner-Batle [616] have shown that if $G$ is harmonious then the one-point union of an odd number of copies of $G$ using the vertex labeled 0 as the shared point is harmonious. Sethuraman and Selvaraju [1770] have shown that for a variety of choices of points, the one-point union of any number of non-isomorphic complete bipartite graphs is graceful. They raise the question of whether this is true for all choices of the common point.

Another class of cycle-related graphs is that of triangular cacti. The block-cutpoint graph of a graph $G$ is a bipartite graph in which one partite set consists of the cut vertices of $G$, and the other has a vertex $b_i$ for each block $B_i$ of $G$. A block of a graph is a maximal connected subgraph that has no cut-vertex. A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose block-cutpoint-
A double triangular snake consists of two triangular snakes that have a common path. That is, a double triangular snake is obtained from a path \( v_1, v_2, \ldots, v_n \) by joining \( v_i \) and \( v_{i+1} \) to a new vertex \( w_i \) for \( i = 1, 2, \ldots, n-1 \). Xi, Yang, and Wang [2188] proved that all double triangular snakes are harmonious.

For any graph \( G \) defining \( G \)-snake analogous to triangular snakes, Sekar [1689] has shown that \( C_n \)-snakes are graceful when \( n \equiv 0 \) (mod 4) \( (n \geq 8) \) and when \( n \equiv 2 \) (mod 4) and the number of \( C_n \) is even. Gnanajothi [721, pp. 31-34] had earlier shown that quadrilateral snakes are graceful. Grace [735] has proved that \( K_4 \)-snakes are harmonious. Rosa [1646] has also considered analogously defined quadrilateral and pentagonal cacti and examined small cases. Yu, Lee, and Chin [2242] showed that \( Q_2 \)-snakes and \( Q_3 \)-snakes are graceful and, when the number of blocks is greater than 1, \( Q_2 \)-snakes, \( Q_3 \)-snakes and \( Q_4 \)-snakes are harmonious.

Barrientos [275] calls a graph a \( kC_n \)-snake if it is a connected graph with \( k \) blocks whose block-cutpoint graph is a path and each of the \( k \) blocks is isomorphic to \( C_n \). (When \( n > 3 \) and \( k > 3 \) there is more than one \( kC_n \)-snake.) If a \( kC_n \)-snake where the path of minimum length that contains all the cut-vertices of the graph has the property that the distance between any two consecutive cut-vertices is \( \lfloor n/2 \rfloor \) it is called linear. Barrientos proves that \( kC_4 \)-snakes are graceful and that the linear \( kC_4 \)-snakes are graceful when \( k \) is even. He further proves that \( kC_8 \)-snakes and \( kC_{12} \)-snakes are graceful in the cases where the distances between consecutive vertices of the path of minimum length that contains all the cut-vertices of the graph are all even and that certain cases of \( kC_4n \)-snakes and \( kC_5n \)-snakes are graceful (depending on the distances between consecutive vertices of the path of minimum length that contains all the cut-vertices of the graph).

Badr [159] defines a linear cyclic snake \((m,k)C_n\) as the graph consisting of \( k \) copies of \( C_n \) with two non-adjacent vertices in common where every copy has \( m \) copies of \( C_n \) and the block-cutpoint graph is not a path. He proves that the linear cyclic snakes \((m,k)C_4\)-snake and \((m,k)C_8\)-snake are graceful and conjectures that all the linear cyclic snakes \((m,k)C_n\)-snakes are graceful for \( n \equiv 0 \) (mod 4) or \( n \equiv 3 \) (mod 4).

Several people have studied cycles with pendant edges attached. Frucht [638] proved that any cycle with a pendant edge attached at each vertex (i.e., a crown) is graceful (see also [829]). If \( G \) has order \( n \), the corona of \( G \) with \( H \), \( G \odot H \) is the graph obtained by taking one copy of \( G \) and \( n \) copies of \( H \) and joining the \( i \)th vertex of \( G \) with an edge to every vertex in the \( i \)th copy of \( H \). Barrientos [280] also proved: if \( G \) is a graceful graph
of order $m$ and size $m-1$, then $G \odot nK_1$ and $G + nK_1$ are graceful; if $G$ is a graceful graph of order $p$ and size $q$ with $q > p$, then $(G \cup (q + 1 - p)K_1) \odot nK_1$ is graceful; and all unicyclic graphs, other than a cycle, for which the deletion of any edge from the cycle results in a caterpillar are graceful.

For a given cycle $C_n$ with $n \equiv 0$ or $3 \pmod{4}$ and a family of trees $T = \{T_1, T_2, \ldots, T_n\}$, let $u_i$ and $v_i$, $1 \leq i \leq n$, be fixed vertices of $C_n$ and $T_i$, respectively. Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima [621] provide two construction methods that generate a graceful labeling of the unicyclic graphs obtained from $C_n$ and $T$ by amalgamating them at each $u_i$ and $v_i$. Their results encompass all previously known results for unicyclic graphs whose cycle length is $0$ or $3 \pmod{4}$ and considerably extend the known classes of graceful unicyclic graphs.

In [277] Barrientos proved that helms (graphs obtained from a wheel by attaching one pendent edge to each vertex) are graceful. Grace [734] showed that an odd cycle with one or more pendent edges at each vertex is harmonious and conjectured that $C_{2n} \odot K_1$, an even cycle with one pendent edge attached at each vertex, is harmonious. This conjecture has been proved by Liu and Zhang [1287], Liu [1299] and [1300], Hegde [786], Huang [831], and Bu [404]. Sekar [1689] has shown that the graph $C_m \odot P_n$ obtained by attaching the path $P_n$ to each vertex of $C_m$ is graceful. For any $n \geq 3$ and any $t$ with $1 \leq t \leq n$, let $C_n^{+t}$ denote the class of graphs formed by adding a single pendent edge to $t$ vertices of a cycle of length $n$. Ropp [1643] proved that for every $n$ and $t$ the class $C_n^{+t}$ contains a graceful graph. Gallian and Ropp [653] conjectured that for all $n$ and $t$, all members of $C_n^{+t}$ are graceful. This was proved by Qian [1575] and by Kang, Liang, Gao, and Yang [1056]. Of course, such graphs are just a special case of the aforementioned conjecture of Truszczynski that all unicyclic graphs except $C_n$ for $n \equiv 1$ or $2 \pmod{4}$ are graceful. Sekar [1689] proved that the graph obtained by identifying an endpoint of a star with a vertex of a cycle is graceful. Lu [1332] shows that the graph obtained by identifying each vertex of an odd cycle with a vertex disjoint copy of $C_{2m+1}$ is harmonious if and only if $m$ is odd.

Sudha [1924] proved that the graphs obtained by starting with two or more copies of $C_4$ and identifying a vertex of the $i^{th}$ copy with a vertex of the $i + 1^{th}$ copy and the graphs obtained by starting with two or more cycles (not necessarily of the same size) and identifying an edge from the $i^{th}$ copy with an edge of the $i + 1^{th}$ copy are graceful. Sudha and Kanniga [1930] proved that the graphs obtained by identifying any vertex of $C_m$ with any vertex of degree $1$ of $S_n$ where $n = \lceil (m - 1)/2 \rceil$ are graceful.

For a given cycle $C_n$ with $n \equiv 0$ or $3 \pmod{4}$ and a family of trees $T = \{T_1, T_2, \ldots, T_n\}$, let $u_i$ and $v_i$, $1 \leq i \leq n$, be fixed vertices of $C_n$ and $T_i$, respectively. Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima [621] provide two construction methods that generate a graceful labeling of the unicyclic graphs obtained from $C_n$ and $T$ by amalgamating them at each $u_i$ and $v_i$. Their results encompass all previously known results for unicyclic graphs whose cycle length is $0$ or $3 \pmod{4}$ and considerably extend the known classes of graceful unicyclic graphs.

Solairaju and Chithra [1890] defined three classes of graphs obtained by connecting copies of $C_4$ in various ways. Denote the four consecutive vertices of $i^{th}$ copy of $C_4$...
by \(v_{i,1}, v_{i,2}, v_{i,3}, v_{i,4}\). They show that the graphs obtained by identifying \(v_{i,4}\) with \(v_{i+1,2}\) for \(i = 1, 2, \ldots, n - 1\) is graceful; the graphs obtained by joining \(v_{i,4}\) with \(v_{i+1,2}\) for \(i = 1, 2, \ldots, n - 1\) by an edge is graceful; and the graphs obtained by joining \(v_{i,4}\) with \(v_{i+1,2}\) for \(i = 1, 2, \ldots, n - 1\) with a path of length 2 is graceful.

Venkatesh [2097] showed that for positive integers \(m\) and \(n\) divisible by 4 the graphs obtained by appending a copy of \(C_n\) to each vertex of \(C_m\) by identifying one vertex of \(C_n\) with each vertex of \(C_m\) is graceful.

In a paper published in 1985, Bloom and Hsu [378] say a directed graph \(D\) with \(e\) edges has a graceful labeling \(\theta\) if for each vertex \(v\) there is a vertex labeling \(\theta\) that assigns each vertex a distinct integer from 0 to \(e\) such that for each directed edge \((u, v)\) the integers \(\theta(v) - \theta(u) \mod (e + 1)\) are distinct and nonzero. They conjectured that digraphs whose underlying graphs are wheels and that have all directed edges joining the hub and the rim in the same direction and all directed edges in the same direction are graceful. This conjecture was proved in 2009 by Hegde and Shivarajkumarn [808].

Yao, Yao, and Cheng [2216] investigated the gracefulness for many orientations of undirected trees with short diameters and proved some directed trees do not have graceful labelings.

### 2.3 Product Related Graphs

Graphs that are cartesian products and related graphs have been the subject of many papers. That planar grids, \(P_m \times P_n\) \((m, n \geq 2)\), (some authors use \(G \square H\) to denote the Cartesian product of \(G\) and \(H\)) are graceful was proved by Acharya and Gill [35] in 1978 although the much simpler labeling scheme given by Maheo [1345] in 1980 for \(P_m \times P_2\) readily extends to all grids. Liu, T. Zou, Y. Lu [1294] proved \(P_m \times P_n \times P_2\) is graceful. In 1980 Graham and Sloane [737] proved ladders, \(P_m \times P_2\), are harmonious when \(m > 2\) and in 1992 Jungreis and Reid [1003] showed that the grids \(P_m \times P_n\) are harmonious when \((m, n) \neq (2, 2)\). A few people have looked at graphs obtained from planar grids in various ways. Kathiresan [1061] has shown that graphs obtained from ladders by subdividing each step exactly once are graceful and that graphs obtained by appending an edge to each vertex of a ladder are graceful [1063]. Acharya [25] has shown that certain subgraphs of grid graphs are graceful. Lee [1173] defines a Mongolian tent as a graph obtained from \(P_m \times P_n\), \(n\) odd, by adding one extra vertex above the grid and joining every other vertex of the top row of \(P_m \times P_n\) to the new vertex. A Mongolian village is a graph formed by successively amalgamating copies of Mongolian tents with the same number of rows so that adjacent tents share a column. Lee proves that Mongolian tents and villages are graceful. A Young tableau is a subgraph of \(P_m \times P_n\) obtained by retaining the first two rows of \(P_m \times P_n\) and deleting vertices from the right hand end of other rows in such a way that the lengths of the successive rows form a nonincreasing sequence. Lee and Ng [1195] have proved that all Young tableaux are graceful. Lee [1173] has also defined a variation of Mongolian tents by adding an extra vertex above the top row of a Young tableau and joining every other vertex of that row to the extra vertex. He proves these graphs are graceful. In [1889] and [1888] Solairaju and Arockiasamy prove that various families of
subgraphs of grids $P_m \times P_n$ are graceful. Sudha [1924] proved that certain subgraphs of the grid $P_n \times P_2$ are graceful.

Prisms are graphs of the form $C_m \times P_n$. These can be viewed as grids on cylinders. In 1977 Bodendiek, Schumacher, and Wegner [381] proved that $C_m \times P_2$ is graceful when $m \equiv 0 \pmod{4}$. According to the survey by Bermond [347], Gangopadhyay and Rao Hebbare did the case that $m$ is even about the same time. In a 1979 paper, Frucht [638] stated without proof that he had done all $C_m \times P_2$. A complete proof of all cases and some related results were given by Frucht and Gallian [641] in 1988.

In 1992 Jungreis and Reid [1003] proved that all $C_m \times P_2$ are graceful when $m$ and $n$ are even or when $m \equiv 0 \pmod{4}$. They also investigated the existence of a stronger form of graceful labeling called an $\alpha$-labeling (see Section 3.1) for graphs of the form $P_m \times P_n$, $C_m \times P_n$, and $C_m \times C_n$ (see also [655]).

Yang and Wang have shown that the prisms $C_{4m+2} \times P_{4m+3}$ [2210], $C_m \times P_2$ [2208], and $C_6 \times P_m$ ($m \geq 2$) (see [2210]) are graceful. Singh [1845] proved that $C_S \times P_n$ is graceful for all $n$. In their 1980 paper Graham and Sloane [737] proved that $C_m \times P_n$ is harmonious when $n$ is odd and they used a computer to show $C_4 \times P_2$, the cube, is not harmonious. In 1992 Gallian, Prout, and Winters [658] proved that $C_m \times P_2$ is harmonious when $m \neq 4$.

In 1992, Jungreis and Reid [1003] showed that $C_4 \times P_n$ is harmonious when $n \geq 3$. Huang and Skiena [833] have shown that $C_m \times P_n$ is graceful for all $n$ when $m$ is even and for all $n$ with $3 \leq n \leq 12$ when $m$ is odd. Abhyanker [10] proved that the graphs obtained from $C_{2m+1} \times P_3$ by adding a pendent edge to each vertex of an outer cycle is graceful.

Torus grids are graphs of the form $C_m \times C_n$ ($m > 2$, $n > 2$). Very little success has been achieved with these graphs. The graceful parity condition is violated for $C_m \times C_n$ when $m$ and $n$ are odd and the harmonious parity condition [737, Theorem 11] is violated for $C_m \times C_n$ when $m \equiv 1, 2, 3 \pmod{4}$ and $n$ is odd. In 1992 Jungreis and Reid [1003] showed that $C_m \times C_n$ is graceful when $m \equiv 0 \pmod{4}$ and $n$ is even. A complete solution to both the graceful and harmonious torus grid problems will most likely involve a large number of cases.

There has been some work done on prism-related graphs. Gallian, Prout, and Winters [658] proved that all prisms $C_m \times P_2$ with a single vertex deleted or single edge deleted are graceful and harmonious. The Möbius ladder $M_n$ is the graph obtained from the ladder $P_n \times P_2$ by joining the opposite end points of the two copies of $P_n$. In 1989 Gallian [652] showed that all Möbius ladders are graceful and all but $M_3$ are harmonious. Ropp [1643] has examined two classes of prisms with pendent edges attached. He proved that all $C_m \times P_2$ with a single pendent edge at each vertex are graceful and all $C_m \times P_2$ with a single pendent edge at each vertex of one of the cycles are graceful. Ramachandran and Sekar [1596] proved that the graph obtained from the ladder $L_n$ ($P_n \times P_2$) by identifying one vertex of $L_n$ with any vertex of the star $S_m$ other than the center of $S_m$ is graceful.

Another class of cartesian products that has been studied is that of books and “stacked” books. The book $B_m$ is the graph $S_m \times P_2$ where $S_m$ is the star with $m$ edges. In 1980 Maheo [1345] proved that the books of the form $B_{2m}$ are graceful and conjectured that the books $B_{4m+1}$ were also graceful. (The books $B_{4m+3}$ do not satisfy the graceful parity condition.) This conjecture was verified by Delorme [531] in 1980. Maheo [1345]
also proved that $L_n \times P_2$ and $B_{2m} \times P_2$ are graceful. Both Grace [733] and Reid (see [657]) have given harmonious labelings for $B_{2m}$. The books $B_{4m+3}$ do not satisfy the harmonious parity condition [737, Theorem 11]. Gallian and Jungreis [657] conjectured that the books $B_{2m+1}$ are harmonious. Gnanajothi [721] has verified this conjecture by showing $B_{4m+1}$ has an even stronger form of labeling – see Section 4.1. Liang [1264] also proved the conjecture. In 1988 Gallian and Jungreis [657] defined a stacked book as a graph of the form $S_m \times P_n$. They proved that the stacked books of the form $S_{2m} \times P_n$ are graceful and posed the case $S_{2m+1} \times P_n$ as an open question. The $n$-cube $K_2 \times K_2 \times \cdots \times K_2$ ($n$ copies) was shown to be graceful by Kotzig [1118]—see also [1345]. Although Graham and Sloane [737] used a computer in 1980 to show that the 3-cube is not harmonious (see also [1473]), Ichishima and Oshima [848] proved that the $n$-cube $Q_n$ has a stronger form of harmonious labeling called an $\alpha$-labeling (see Section 3.1) for $n \geq 4$.

In 1986 Reid [1625] found a harmonious labeling for $K_4 \times P_n$. Petrie and Smith [1489] have investigated graceful labelings of graphs as an exercise in constraint programming satisfaction. They have shown that $K_6 \times P_n$ is graceful for $(m, n) = (4, 2), (4, 3), (4, 4), (4, 5)$, (see also [1624]) and (5, 2) but is not graceful for (3, 3) and (6, 2). Redl [1624] also proved that $K_4 \times P_n$ is graceful for $n = 1, 2, 3, 4$, and 5 using a constraint programming approach. Their labeling for $K_5 \times P_2$ is the unique graceful labeling. They also considered the graph obtained by identifying the hubs of two copies of $W_n$. The resulting graph is not graceful when $n = 3$ but is graceful when $n$ is 4 and 5. Smith and Puget [1881] has used a computer search to prove that $K_m \times P_3$ is not graceful for $m = 7, 8, 9$, and 10. He conjectures that $K_m \times P_2$ is not graceful for $m > 5$. Redl [1624] asks if all graphs of the form $K_4 \times P_n$ are graceful.

Vaidya, Kaneria, Srivastav, and Dani [2033] proved that $P_n \cup P_t \cup (P_r \times P_s)$ where $t < \min\{r, s\}$ and $P_n \cup P_t \cup K_{r,s}$ where $t \leq \min\{r, s\}$ and $r, s \geq 3$ are graceful. Kaneria, Vaidya, Ghodasara, and Srivastav [1005] proved $K_{mn} \cup (P_r \times P_s)$ where $m, n, r, s > 1$; $(P_r \times P_s) \cup P_t$ where $r, s > 1$ and $t \neq 2$; and $K_{mn} \cup (P_r \times P_s) \cup P_t$ where $m, n, r, s > 1$ and $t \neq 2$ are graceful.

The composition $G_1[G_2]$ is the graph having vertex set $V(G_1) \times V(G_2)$ and edge set \{(x_1, y_1), (x_2, y_2) | x_1x_2 \in E(G_1) or x_1 = x_2 and y_1y_2 \in E(G_2)\}. The symmetric product $G_1 \oplus G_2$ of graphs $G_1$ and $G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$ and edge set \{(x_1, y_1), (x_2, y_2) | x_1x_2 \in E(G_1) or y_1y_2 \in E(G_2) but not both\}. Seoud and Youssef [1741] have proved that $P_n \oplus K_2$ is graceful when $n > 1$ and $P_n[P_2]$ is harmonious for all $n$. They also observe that the graphs $C_m \oplus C_n$ and $C_m[C_n]$ violate the parity conditions for graceful and harmonious graphs when $m$ and $n$ are odd.

### 2.4 Complete Graphs

The questions of the gracefulfulness and harmoniousness of the complete graphs $K_n$ have been answered. In each case the answer is positive if and only if $n \leq 4$ ([725], [1842], [737], [353]). Both Rosa [1644] and Golomb [725] proved that the complete bipartite graphs $K_{m,n}$ are graceful while Graham and Sloane [737] showed they are harmonious if and only if $m$ or $n = 1$. Aravamudhan and Murugan [141] have shown that the complete tripartite graph

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 20
$K_{1,m,n}$ is both graceful and harmonious while Gnanajothi [721, pp. 25–31] has shown that $K_{1,1,m,n}$ is both graceful and harmonious and $K_{2,m,n}$ is graceful. Some of the same results have been obtained by Seoul and Yousuf [1736] who also observed that when $m$, $n$, and $p$ are congruent to $2 \pmod{4}$, $K_{m,n,p}$ violates the parity conditions for harmonious graphs. Beutner and Harborth [353] give graceful labelings for $K_{1,m,n}$, $K_{2,m,n}$, $K_{1,1,m,n}$ and conjecture that these and $K_{m,n}$ are the only complete multipartite graphs that are graceful. They have verified this conjecture for graphs with up to 23 vertices via computer.

Beutner and Harborth [353] also show that $K_n - e$ ($K_n$ with an edge deleted) is graceful only if $n \leq 5$; any $K_n - 2e$ ($K_n$ with two edges deleted) is graceful only if $n \leq 6$; and any $K_n - 3e$ is graceful only if $n \leq 6$. They also determine all graceful graphs of the form $K_n - G$ where $G$ is $K_{1,a}$ with $a \leq n - 2$ and where $G$ is a matching $M_a$ with $2a \leq n$.

The windmill graph $K_n^{(m)}$ ($n > 3$) consists of $m$ copies of $K_n$ with a vertex in common. A necessary condition for $K_n^{(m)}$ to be graceful is that $n \leq 5$ – see [1100]. Bermond [347] has conjectured that $K_4^{(m)}$ is graceful for all $m \geq 4$. The gracefulfulness of $K_n^{(m)}$ is equivalent to the existence of a $(12m + 1, 4, 1)$-perfect difference family, which are known to exist for $m \leq 1000$ (see [833], [5], [2159], and [697]). Bermond, Kotzig, and Turgeon [350] proved that $K_n^{(m)}$ is not graceful when $n = 4$ and $m = 2$ or 3, and when $m = 2$ and $n = 5$. In 1982 Hsu [826] proved that $K_4^{(m)}$ is harmonious for all $m$. Graham and Sloane [737] conjectured that $K_n^{(2)}$ is harmonious if and only if $n = 4$. They verified this conjecture for the cases that $n$ is odd or $n = 6$. Liu [1286] has shown that $K_n^{(2)}$ is not harmonious if $n = 2^a p_1^{a_1} \cdots p_s^{a_s}$, where $a, a_1, \ldots, a_s$ are positive integers and $p_1, \ldots, p_s$ are distinct odd primes and there is a $j$ for which $p_j \equiv 3 \pmod{4}$ and $a_j$ is odd. He also shows that $K_n^{(3)}$ is not harmonious when $n \equiv 0 \pmod{4}$ and $3n = 4^e(8k + 7)$ or $n \equiv 5 \pmod{8}$. Koh, Rogers, Lee, and Toh [1094] and Rajasingh and Pushpam [1587] have shown that $K_{m,n}^{(t)}$, the one-point union of $t$ copies of $K_{m,n}$, is graceful. Sethuraman and Selvaraju [1766] have proved that the one-point union of graphs of the form $K_{2,m_i}$ for $i = 1, 2, \ldots, n$, where the union is taken at a vertex from the partite set with exactly 2 vertices is graceful if at most two of the $m_i$ are equal. They conjecture that the restriction that at most two of the $m_i$ are equal is not necessary. Sudha [1925] proved that two or more complete bipartite graphs having one bipartite vertex set in common are graceful.

Koh, Rogers, Lee, and Toh [1100] introduced the notation $B(n, r, m)$ for the graph consisting of $m$ copies of $K_n$ with a $K_r$ in common ($n \geq r$). (We note that Guo [753] has used the notation $B(n, r, m)$ to denote the graph obtained by joining opposite endpoints of three disjoint paths of lengths $n$, $r$ and $m$.) Bermond [347] raised the question: “For which $m$, $n$, and $r$ is $B(n, r, m)$ graceful?” Of course, the case $r = 1$ is the same as $K_n^{(m)}$.

For $r > 1$, $B(n, r, m)$ is graceful in the following cases: $n = 3$, $r = 2$, $m \geq 1$ [1095]; $n = 4$, $r = 2$, $m \geq 1$ [531]; $n = 4$, $r = 3$, $m \geq 1$ (see [347]), [1095]. Seoul and Yousuf [1736] have proved $B(3, 2, m)$ and $B(4, 3, m)$ are harmonious. Liu [1285] has shown that if there is a prime $p$ such that $p \equiv 3 \pmod{4}$ and $p$ divides both $n$ and $n - 2$ and the highest power of $p$ that divides $n$ and $n - 2$ is odd, then $B(n, 2, 2)$ is not graceful. Smith and Puget [1881] has shown that up to symmetry, $B(5, 2, 2)$ has a unique graceful labeling; $B(n, 3, 2)$ is not graceful for $n = 6, 7, 8, 9$, and 10; $B(6, 3, 3)$ and $B(7, 3, 3)$ are
not graceful; and $B(5, 3, 3)$ is graceful. Combining results of Bermond and Farhi [349] and Smith and Puget [1881] show that $B(n, 2, 2)$ is not graceful for $n > 5$. Lu [1332] obtained the following results: $B(m, 2, 3)$ and $B(m, 3, 3)$ are not harmonious when $m \equiv 1 \pmod{8}$; $B(m, 4, 2)$ and $B(m, 5, 2)$ are not harmonious when $m$ satisfies certain special conditions; $B(m, 1, n)$ is not harmonious when $m \equiv 5 \pmod{8}$ and $n \equiv 1, 2, 3 \pmod{4}$; $B(2m + 1, 2m, 2n + 1) \equiv K_{2m} + K_{2n+1}$ is not harmonious when $m \equiv 2 \pmod{4}$.

More generally, Bermond and Farhi [349] have investigated the class of graphs consisting of $m$ copies of $K_n$ having exactly $k$ copies of $K_r$ in common. They proved such graphs are not graceful for $n$ sufficiently large compared to $r$. Barrientos [281] proved that the graph obtained by performing the one-point union of any collection of the complete bipartite graphs $K_{m_1,n_1}, K_{m_2,n_2}, \ldots, K_{m_t,n_t}$, where each $K_{m_i,n_i}$ appears at most twice and $\gcd(n_1, n_2, \ldots, n_t) = 1$, is graceful.

Sethuraman and Elumalai [1748] have shown that $K_{1,m,n}$ with a pendant edge attached to each vertex is graceful and Jirimutu [995] has shown that the graph obtained by attaching a pendant edge to every vertex of $K_{m,n}$ is graceful (see also [119]). In [1761] Sethuraman and Kishore determine the graceful graphs that are the union of $n$ copies of $K_4$ with $i$ edges deleted for $1 \leq i \leq 5$ and with one edge in common. The only cases that are not graceful are those graphs where the members of the union are $C_4$ for $n \equiv 3 \pmod{4}$ and where the members of the union are $P_2$. They conjecture that these two cases are the only instances of edge induced subgraphs of the union of $n$ copies of $K_4$ with one edge in common that are not graceful.

Renuka, Balaganesan, Selvaraju [1627] proved the graphs obtained by joining a vertex of $K_{1,m}$ to a vertex of $K_{1,n}$ by a path are harmonious. Sethuraman and Selvaraju [1772] have shown that union of any number of copies of $K_4$ with an edge deleted and one edge in common is harmonious.

Clemens, Coulibaly, Garvens, Gonnering, Lucas, and Winters [510] investigated the gracefulfulness of the one-point and two-point unions of graphs. They show the following graphs are graceful: the one-point union of an end vertex of $P_n$ and $K_4$; the graph obtained by taking the one-point union of $K_4$ with one end vertex of $P_n$ and the one-point union of the other end vertex of $P_n$ with the central vertex of $K_{1,r}$; the graph obtained by taking the one-point union of $K_4$ with one end vertex of $P_n$ and the one-point union of the other end of $P_n$ with a vertex from the partite set of order 2 of $K_{2,r}$; the graph obtained from the graph just described by appending any number of edges to the other vertex of the partite set of order 2; the two-point union of the two vertices of the partite set of order 2 in $K_{2,r}$ and two vertices from $K_4$; and the graph obtained from the graph just described by appending any number of edges to one of the vertices from the partite set of order 2.

A Golomb ruler is a marked straightedge such that the distances between different pairs of marks on the straightedge are distinct. If the set of distances between marks is every positive integer up to and including the length of the ruler, then ruler is a called a perfect Golomb ruler. Golomb [725] proved that perfect Golomb rulers exist only for rulers with at most 4 marks. Beavers [332] examines the relationship between Golomb rulers and graceful graphs through a correspondence between rulers and complete graphs. He proves that $K_n$ is graceful if and only if there is a perfect Golomb ruler with $n$ marks.
and Golomb rulers are equivalent to complete subgraphs of graceful graphs.

2.5 Disconnected Graphs

There have been many papers dealing with graphs that are not connected. For any graph $G$ the graph $mG$ denotes the disjoint union of $m$ copies of $G$. In 1975 Kotzig [1117] investigated the gracefulness of the graphs $rC_s$. When $rs \equiv 1$ or $2 \pmod{4}$, these graphs violate the gracefulness parity condition. Kotzig proved that when $r = 3$ and $4k > 4$, then $rC_{4k}$ has a stronger form of graceful labeling called $\alpha$-labeling (see §3.1) whereas when $r \geq 2$ and $s = 3$ or $5$, $rC_s$ is not graceful. In 1984 Kotzig [1119] once again investigated the gracefulness of $rC_s$ as well as graphs that are the disjoint union of odd cycles. For graphs of the latter kind he gives several necessary conditions. His paper concludes with an elaborate table that summarizes what was then known about the gracefulness of $rC_s$. M. He [775] has shown that graphs of the form $2C_{2m}$ and graphs obtained by connecting two copies of $C_{2m}$ with an edge are graceful. Cahit [427] has shown that $rC_s$ is harmonious when $r$ and $s$ are odd and Seoud, Abdel Maqsoud, and Sheehan [1705] noted that when $r$ or $s$ is even, $rC_s$ is not harmonious. Seoud, Abdel Maqsoud, and Sheehan [1705] proved that $C_n \cup C_{n+1}$ is harmonious if and only if $n \geq 4$. They conjecture that $C_3 \cup C_{2n}$ is harmonious when $n \geq 3$. This conjecture was proved when Yang, Lu, and Zeng [2206] showed that all graphs of the form $C_{2j+1} \cup C_{2n}$ are harmonious except for $(n, j) = (2, 1)$. As a consequence of their results about super edge-magic labelings (see §5.2) Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima [620] have that $C_n \cup C_3$ is harmonious if and only if $n \geq 6$ and $n$ is even. Renuka, Balaganesan, Selvaraju [1627] proved that for odd $n$ $C_n \cup P_3$ and $C_n \odot K_m \cup P_3$ are harmonious. Youssef [2225] has shown that if $G$ is harmonious then $mG$ is harmonious for all odd $m$.

In 1978 Kotzig and Turgeon [1122] proved that $mK_n$ is graceful if and only if $m = 1$ and $n \leq 4$. Liu and Zhang [1288] have shown that $mK_n$ is not harmonious for odd $m$ and $m \equiv 2 \pmod{4}$ and is harmonious for $n = 3$ and $m$ odd. They conjecture that $mK_3$ is not harmonious when $m \equiv 0 \pmod{4}$. Bu and Cao [405] give some sufficient conditions for the gracefulness of graphs of the form $K_{m,n} \cup G$ and they prove that $K_{m,n} \cup P_t$ and the disjoint union of complete bipartite graphs are graceful under some conditions.

Recall a Skolem sequence of order $n$ is a sequence $s_1, s_2, \ldots, s_{2n}$ of $2n$ terms such that, for each $k \in \{1, 2, \ldots, n\}$, there exist exactly two subscripts $i(k)$ and $j(k)$ with $s_{i(k)} = s_{j(k)} = k$ and $|i(k) - j(k)| = k$. (A Skolem sequence of order $n$ exists if and only if $n \equiv 0$ or $1 \pmod{4}$). Abraham [14] has proved that any graceful $2$-regular graph of order $n \equiv 0 \pmod{4}$ in which all the component cycles are even or of order $n \equiv 3 \pmod{4}$, with exactly one component an odd cycle, can be used to construct a Skolem sequence of order $n + 1$. Also, he showed that certain special Skolem sequences of order $n$ can be used to generate graceful labelings on certain $2$-regular graphs.

The graph $H_n$ obtained from the cycle with consecutive vertices $u_1, u_2, \ldots, u_n$ $(n \geq 6)$ by adding the chords $u_2u_n, u_3u_{n-1}, \ldots, u_au_\beta$, where $\alpha = (n - 1)/2$ for all $n$ and $\beta = (n - 1)/2 + 3$ if $n$ is odd or $\beta = n/2 + 2$ if $n$ is even is called the cycle with parallel chords. In Elumalai and Sethuraman [574] prove the following: for odd $n \geq 5$, $H_n \cup K_{p,q}$
is graceful; for even \( n \geq 6 \) and \( m = (n - 2)/2 \) or \( m = n/2 \) \( H_n \cup K_{1,m} \) is graceful; for \( n \geq 6 \), \( H_n \cup P_m \) is graceful, where \( m = n \) or \( n - 2 \) depending on \( n \equiv 1 \) or \( 3 \) (mod 4) or \( m \equiv n - 1 \) or \( n - 3 \) depending on \( n \equiv 0 \) or \( 2 \) (mod 4). Elumalii and Sethuraman [576] proved that every \( n \)-cycle \( (n \geq 6) \) with parallel chords is graceful and every \( n \)-cycle with parallel \( P_k \)-chords of increasing lengths is graceful for \( n = 2 \) (mod 4) with \( 1 \leq k \leq (\lfloor n/2 \rfloor - 1) \).

In 1985 Frucht and Salinas [642] conjectured that \( C_s \cup P_n \) is graceful if and only if \( s + n \geq 6 \) and proved the conjecture for the case that \( s = 4 \). The conjecture was proved by Traetta [1989] in 2012 who used his result to get a complete solution to the well known two-table Oberwolfach problem; that is, given odd number of people and two round tables when is it possible to arrange series of seatings so that each person sits next to each other person exactly once during the series. The \( t \)-table Oberwolfach problem \( \text{OP}(n_1, n_2, \ldots, n_t) \) asks to arrange a series of meals for an odd number \( n = \sum n_i \) of people around \( t \) tables of sizes \( n_1, n_2, \ldots, n_t \) so that each person sits next to each other exactly once. A solution to \( \text{OP}(n_1, n_2, \ldots, n_t) \) is a 2-factorization of \( K_n \) whose factors consists of \( t \) cycles of lengths \( n_1, n_2, \ldots, n_t \). The \( \lambda \)-fold Oberwolfach problem \( \text{OP}_\lambda(n_1, n_2, \ldots, n_t) \) refers to the case where \( K_n \) is replaced by \( \lambda K_n \). Traetta used his proof of the Frucht and Salinas conjecture to provide a complete solutions to both \( \text{OP}(2r + 1, 2s) \) and \( \text{OP}(2r + 1, s, s) \), except possibly for \( \text{OP}(3, s, s) \). He also gave a complete solution of the general \( \lambda \)-fold Oberwolfach problem \( \text{OP}_\lambda(r, s) \).

Seoud and Youssef [1743] have shown that \( K_5 \cup K_{m,n}, K_{m,n} \cup K_{p,q} \) \( (m, n, p, q \geq 2) \), \( K_{m,n} \cup K_{p,q} \cup K_{r,s} \) \( (m, n, p, q, r, s \geq 2, \ (p, q) \neq (2, 2)) \), and \( p K_{m,n} \) \( (m, n \geq 2, (m, n) \neq (2, 2)) \) are graceful. They also prove that \( C_4 \cup K_{1,n} \) \( (n \neq 2) \) is not graceful whereas Choudum and Kishore [490], [1089] have proved that \( C_s \cup K_{1,n} \) is graceful for \( s \geq 7 \) and \( n \geq 1 \). Lee, Quach, and Wang [1211] established the gracefulfulness of \( P_n \cup K_{1,n} \). Seoud and Wilson [1735] have shown that \( C_3 \cup K_4, C_3 \cup C_3 \cup K_4 \), and certain graphs of the form \( C_3 \cup P_n \) and \( C_3 \cup C_3 \cup P_n \) are not graceful. Abrahm and Kotzig [21] proved that \( C_p \cup C_q \) is graceful if and only if \( p + q \equiv 0 \) or 3 (mod 4). Zhou [2259] proved that \( K_m \cup K_n \) \( (n > 1, m > 1) \) is graceful if and only if \( \{m, n\} = \{4, 2\} \) or \( \{5, 2\} \). (C. Barrientos has called to my attention that \( K_1 \cup K_n \) is graceful if and only if \( n = 3 \) or 4.) Shee [1786] has shown that graphs of the form \( P_3 \cup C_{2k+1} \) \( (k > 1) \), \( P_3 \cup C_{2k+1}, P_n \cup C_3 \), and \( S_n \cup C_{2k+1} \) all satisfy a condition that is a bit weaker than harmonious. Bhat-Nayak and Deshmukh [360] have shown that \( C_4 \cup K_{1,4t-1} \) and \( C_{4t+3} \cup K_{1,4t+2} \) are graceful. Section 3.1 includes numerous families of disconnected graphs that have a stronger form of graceful labelings.

For \( m = 2p + 3 \) or \( 2p + 4 \), Wang, Liu, and Li [2149] proved the following graphs are graceful: \( W_m \cup K_{n,p} \) and \( W_{m,2m+1} \cup K_{n,p} \); for \( n \geq m \), \( W_{m,2m+1} \cup K_{1,n} \); for \( m = 2n + 5 \), \( W_{m,2m+1} \cup (C_3 + K_n) \). If \( G_p \) is a graceful graph with \( p \) edges, they proved \( W_{2p+3} \cup G_p \) is graceful.

In considering graceful labelings of the disjoint unions of two or three stars \( S_e \) with \( e \) edges Yang and Wang [2209] permitted the vertex labels to range from 0 to \( e + 1 \) and 0 to \( e + 2 \), respectively. With these definitions of graceful, they proved that \( S_m \cup S_n \) is graceful if and only if \( m \) or \( n \) is even and that \( S_m \cup S_n \cup S_k \) is graceful if and only if at least one of \( m, n, \) or \( k \) is even \( (m > 1, n > 1, k > 1) \).

Seoud and Youssef [1739] investigated the gracefulfulness of specific families of the form
They obtained the following results: $C_3 \cup K_{m,n}$ is graceful if and only if $m \geq 2$ and $n \geq 2$; $C_3 \cup K_{m,n}$ is graceful if and only if $(m,n) \neq (1,1)$; $C_7 \cup K_{m,n}$ and $C_8 \cup K_{m,n}$ are graceful for all $m$ and $n$; $mK_3 \cup nK_{1,r}$ is not graceful for all $m,n$ and $r$; $K_i \cup K_{m,n}$ is graceful for $i \leq 4$ and $m \geq 2, n \geq 2$ except for $i = 2$ and $(m,n) = (2,2)$; $K_5 \cup K_{1,n}$ is graceful for all $n$; $K_6 \cup K_{1,n}$ is graceful if and only if $n$ is not 1 or 3. Youssef [2227] completed the characterization of the graceful graphs of the form $C_n \cup K_{p,q}$ where $n \equiv 0$ or 3 (mod 4) by showing that for $n > 8$ and $n \equiv 0$ or 3 (mod 4), $C_n \cup K_{p,q}$ is graceful for all $p$ and $q$ (see also [279]). Note that when $n \equiv 1$ or 2 (mod 4) certain cases of $C_n \cup K_{p,q}$ violate the parity condition for graceful.

For $i = 1, 2, \ldots, m$ let $v_{i1}, v_{i2}, v_{i3}, v_{i4}$ be a 4-cycle. Yang and Pan [2004] define $F_{k,4}$ to be the graph obtained by identifying $v_{i3}$ and $v_{i+1,1}$ for $i = 1, 2, \ldots, k - 1$. They prove that $F_{m,1,4} \cup F_{m,2,4} \cup \cdots \cup F_{m,n,4}$ is graceful for all $n$. Pan and Lu [1468] have shown that $(P_2 + K_n) \cup K_{1,m}$ and $(P_2 + K_n) \cup T_n$ are graceful. Barrientos [279] has shown the following graphs are graceful: $C_6 \cup K_{1,2n+1}; \bigcup_{i=1}^{n} K_{m_i,n_i}$ for $2 \leq m_i < n_i$; and $C_m \cup \bigcup_{i=1}^{n} K_{m_i,n_i}$ for $2 \leq m_i < n_i, m \equiv 0$ or 3 (mod 4), $m \geq 11$. In [1036] Kaneria, Makadia, and Viradia proved that the union of three grid graphs, $\bigcup_{i=1}^{3} (P_{m_i} \times P_{n_i})$, is graceful; the union of finitely many copies of $P_m \times P_n$ is graceful, and provided two new graceful labeling for $P_m \times P_n$.

Wang and Li [2147] use $St(n)$ to denote the star $K_{n,1}$, $F_n$ to denote the fan $P_n \odot K_1$, and $F_{m,n}$ to denote the graph obtained by identifying the vertex of $F_m$ with degree $m$ and the vertex of $F_n$ with degree $n$. They showed: for all positive integers $n$ and $p$ and $m \geq 2p + 2$, $F_m \cup K_{n,p}$ and $F_{m,2m} \cup K_{n,p}$ are graceful; $F_m \cup St(n)$ is graceful; and $F_{m,2m} \cup St(n)$ and $F_{m,2m} \cup G_r$ are graceful. In [2153] Wang, Wang, and Li gave a sufficient condition for the gracefulness of graphs of the form $(P_3 + K_m) \cup G$ and $(C_3 + K_m) \cup G$. They proved the gracefulness of such graphs for a variety of cases when $G$ involves stars and paths. More technical results like these are given in [2155] and [2154].

### 2.6 Joins of Graphs

A number of classes of graphs that are the join of graphs have been shown to be graceful or harmonious. Acharya [22] proved that if $G$ is a connected graceful graph, then $G + \overline{K}_n$ is graceful. Redl [1624] showed that the double cone $C_n + \overline{K}_2$ is graceful for $n = 3, 4, 5, 7, 8, 9, 11$. That $C_n + \overline{K}_2$ is not graceful for $n \equiv 2$ (mod 4) follows from Rosa’s parity condition. Redl asks what other double cones are graceful. Bras, Gomes, and Selman [165] showed that double wheels $(C_n \cup C_n) + K_1$ are graceful. Reid [1625] proved that $P_n + \overline{K}_1$ is harmonious. Sethuraman and Selvaraju [1771] and [1693] have shown that $P_n + K_2$ is harmonious. They ask whether $S_n + P_n$ or $P_m + P_n$ is harmonious. Of course, wheels are of the form $C_n + K_1$ and are graceful and harmonious. In 2006 Chen [465] proved that multiple wheels $nC_m + K_1$ are harmonious for all $n \neq 0$ mod 4. She believes that the $n \not\equiv 0$ (mod 4) case is also harmonious. Chen also proved that if $H$ has at least one edge, $H + K_1$ is harmonious, and if $n$ is odd, then $nH + K$ is harmonious.

Shee [1786] has proved $K_{m,n} + K_1$ is harmonious and observed that various cases of $K_{m,n} + K_t$ violate the harmonious parity condition in [737]. Liu and Zhang [1288] have
proved that $K_2 + K_2 + \cdots + K_2$ is harmonious. Youssef [2225] has shown that if $G$ is harmonious then $G^m$ is harmonious for all odd $m$. He asks the question of whether $G$ is harmonious implies $G^m$ is harmonious when $m \equiv 0 \pmod{4}$. Yuan and Zhu [2244] proved that $K_{m,n} + K_2$ is graceful and harmonious. Gnanajothi [721, pp. 80–127] obtained the following: $C_n + K_2$ is harmonious when $n$ is odd and not harmonious when $n \equiv 2, 4, 6 \pmod{8}$; $S_n + K_1$ is harmonious; and $P_n + K_1$ is harmonious. Balakrishnan and Kumar [263] have proved that the join of $\overline{K}_n$ and two disjoint copies of $K_2$ is harmonious if and only if $n$ is even. Ramírez-Alfonsín [1600] has proved that if $G$ is graceful and $|V(G)| = |E(G)| = e$ and either 1 or $e$ is not a vertex label then $G + \overline{K}_t$ is graceful for all $t$. Sudha and Kanniga [1927] proved that the graph $P_m + \overline{K}_n$ is graceful.

Seoud and Youssef [1738] have proved: the join of any two stars is graceful and harmonious; the join of any path and any star is graceful; and $C_n + \overline{K}_t$ is harmonious for every $t$ when $n$ is odd. They also prove that if any edge is added to $K_{m,n}$ the resulting graph is harmonious if $m$ or $n$ is at least 2. Deng [533] has shown certain cases of $C_n + \overline{K}_t$ are harmonious. Seoud and Youssef [1738] proved: the graph obtained by appending any number of edges from the two vertices of degree $n \geq 2$ in $K_{2,n}$ is not harmonious; dragons $D_{m,n}$ (i.e., an endpoint of $P_m$ is appended to $C_n$) are not harmonious when $m + n$ is odd; and the disjoint union of any dragon and any number of cycles is not harmonious when the resulting graph has odd order. Youssef [2224] has shown that if $G$ is a graceful graph with $p$ vertices and $q$ edges with $p = q + 1$, then $G + S_n$ is graceful.

Sethuraman and Elumalai [1752] have proved that for every graph $G$ with $p$ vertices and $q$ edges the graph $G + K_1 + \overline{K}_m$ is graceful when $m \geq 2p - p - 1 - q$. As a corollary they deduce that every graph is a vertex induced subgraph of a graceful graph. Balakrishnan and Sampathkumar [264] ask for which $m \geq 3$ is the graph $mK_2 + \overline{K}_n$ graceful for all $n$. Bhat-Nayak and Gokhale [364] have proved that $2K_2 + \overline{K}_n$ is not graceful. Youssef [2224] has shown that $mK_2 + \overline{K}_n$ is graceful if $m \equiv 0$ or 1 (mod 4) and that $mK_2 + \overline{K}_n$ is not graceful if $n$ is odd and $m \equiv 2$ or 3 (mod 4). Ma [1337] proved that if $G$ is a graceful tree then, $G + K_{1,n}$ is graceful. Amutha and Kathiresan [119] proved that the graph obtained by attaching a pendent edge to each vertex of $2K_2 + \overline{K}_n$ is graceful.

Wu [2181] proves that if $G$ is a graceful graph with $n$ edges and $n + 1$ vertices then the join of $G$ and $\overline{K}_m$ and the join of $G_n$ and any star are graceful. Wei and Zhang [2165] proved that for $n \geq 3$ the disjoint union of $P_1 + P_n$ and a star, the disjoint union of $P_1 + P_n$ and $P_1 + P_{2n}$, and the disjoint union of $P_2 + \overline{K}_n$ and a graceful graph with $n$ edges are graceful. More technical results on disjoint unions and joins are given in [2164], [2165], [2166], [2163], and [433].

For $n \geq t + 2$ and $t \geq 1$, Koh, Phoon, and Soh [1092] use $P(n, t)$ to denote the graph of order $n$ consisting of a path of length $t$ and $n(t + 1)$ isolated vertices. For $n \geq 2t + 1$ and $t \geq 1$, they use $I(n, t)$ to denote the disjoint union of $tK_2$ and $\overline{K}_{n-2t}$. They proved: $\overline{K}_p + P(n, t)$ is graceful for all $p \geq 1, n \geq t + 2$ and $t \geq 1$; $\overline{K}_p + I(n, t)$ is graceful for all $p \geq 1, n \geq 2t + 1$ and $t \geq 1$; and for $s, t \in \{1, 2\}$, $P(m, s) + P(n, t)$ is graceful for all $m \geq s + 2$ and $n \geq t + 2$. They include a number of open problems. In [1091] Koh, Phoon, and Soh proved: $C_3 + P(n, t)$ is graceful for all $n \geq t + 2$, where $1 \leq t \leq 3$ and $C_5 + P(n, 1)$ is graceful for all $n \geq 3$.
2.7 Miscellaneous Results

It is easy to see that $P_n^2$ is harmonious [734] while a proof that $P_n^3$ is graceful has been given by Kang, Liang, Gao, and Yang [1056]. ($P_n^k$, the $k$th power of $P_n$, is the graph obtained from $P_n$ by adding edges that join all vertices $u$ and $v$ with $d(u, v) = k$.) This latter result proved a conjecture of Grace [734]. Seoud, Abdel Maqsoud, and Sheehan [1705] proved that $P_n^3$ is harmonious and conjecture that $P_n^k$ is not harmonious when $k > 3$. The same conjecture was made by Fu and Wu [645]. However, Youssef [2234] has proved that $P_n^4$ is harmonious and $P_n^k$ is harmonious when $k$ is odd. Yuan and Zhu [2244] proved that $P_n^{2k}$ is harmonious when $1 \leq k \leq (n-1)/2$. Selvaraju [1691] has shown that $P_n^3$ and the graphs obtained by joining the centers of any two stars with the end vertices of the path of length $n$ in $P_n^3$ are harmonious.

Cahit [427] proves that the graphs obtained by joining $p$ disjoint paths of a fixed length $k$ to single vertex are harmonious when $p$ is odd and when $k = 2$ and $p$ is even. Gnanajothi [721, p. 50] has shown that the graph that consists of $n$ copies of $C_6$ that have exactly $P_4$ in common is graceful if and only if $n$ is even. For a fixed $n$, let $v_{i1}, v_{i2}, v_{i3}$ and $v_{i4}$ ($1 \leq i \leq n$) be consecutive vertices of $n$ 4-cycles. Gnanajothi [721, p. 35] also proves that the graph obtained by joining each $v_{i1}$ to $v_{i+1,3}$ is graceful for all $n$ and the generalized Petersen graph $P(n, k)$ is harmonious in all cases (see also [1216]). Recall $P(n, k)$, where $n \geq 5$ and $1 \leq k \leq n$, has vertex set $\{a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1}\}$ and edge set $\{a_i a_{i+1} \mid i = 0, 1, \ldots, n-1\} \cup \{a_i b_i \mid i = 0, 1, \ldots, n-1\} \cup \{b_i b_{i+k} \mid i = 0, 1, \ldots, n-1\}$ where all subscripts are taken modulo $n$ [2162]. The standard Petersen graph is $P(5, 2)$.) Redl [1624] has used a constraint programming approach to show that $P(n, k)$ is graceful for $n = 5, 6, 7, 8, 9, 10$. In [2096] and [2099] Vietri proved that $P(8t, 3)$ and $P(8t+4, 3)$ are graceful for all $t$. He conjectures that the graphs $P(8t, 3)$ have a stronger form a graceful labeling called an $\alpha$-labeling (see §3.1). The gracefulness of the generalized Petersen graphs is an open problem. A conjecture in the graph theory book by Chartrand and Lesniak [456, p. 266] that graceful graphs with arbitrarily large chromatic numbers do not exist was shown to be false by Acharya, Rao, and Arumugam [41] (see also Mahmoody [1347]). Rao and Sahoo [1614] prove that every connected graph can be embedded as an induced subgraph in an Eulerian graceful graph. They also show that for an integer $k \geq 3$, the problems of deciding whether the chromatic number is less than or equal to $k$ and whether the clique number is greater than or equal to $k$ are NP-complete even for Eulerian graceful graphs.

Báča and Youssef [248] investigated the existence of harmonious labelings for the corona graphs of a cycle and a graph $G$. They proved that if $G + K_1$ is strongly harmonious with the 0 label on the vertex of $K_1$, then $C_n \circ G$ is harmonious for all odd $n \geq 3$. By combining this with existing results they have as corollaries that the following graphs are harmonious: $C_n \circ C_m$ for odd $n \geq 3$ and $m \not\equiv 2 \pmod{3}$; $C_n \circ K_{s,t}$ for odd $n \geq 3$; and $C_n \circ K_{1,s,t}$ for odd $n \geq 3$.

Sethuraman and Selvaraju [1765] define a graph $H$ to be a supersubdivision of a graph $G$, if every edge $uv$ of $G$ is replaced by $K_{2,m}$ ($m$ may vary for each edge) by identifying $u$ and $v$ with the two vertices in $K_{2,m}$ that form the partite set with exactly two mem-
bers. Sethuraman and Selvaraju prove that every supersubdivision of a path is graceful and every cycle has some supersubdivision that is graceful. They conjecture that every supersubdivision of a star is graceful and that paths and stars are the only graphs for which every supersubdivision is graceful. Barrientos [281] disproved this latter conjecture by proving that every supersubdivision of a $y$-trees is graceful (recall a $y$-tree is obtained from a path by appending an edge to a vertex of a path adjacent to an end point). Barrientos asks if paths and $y$-trees are the only graphs for which every supersubdivision is graceful. This seems unlikely to be the case. The conjecture that every supersubdivision of a star is graceful was proved by Kathiresan and Amutha [1065]. In [1769] Sethuraman and Selvaraju prove that every connected graph has some supersubdivision that is graceful. They pose the question as to whether this result is valid for disconnected graphs. Barrientos and Barrientos [288] answered this question by proving that any disconnected graph has a supersubdivision that admits an $\alpha$-labeling (see §3.1). They also proved that every supersubdivision of a connected graph admits an $\alpha$-labeling. Sekar and Ramachandren proved that an arbitrary supersubdivision of disconnected graph is graceful [1690] and supersubdivisions of ladders are graceful [1598]. Sethuraman and Selvaraju also asked if there is any graph other than $K_{2,m}$ that can be used to replace an edge of a connected graph to obtain a supersubdivision that is graceful.

Sethuraman and Selvaraju [1765] call superdivision graphs of $G$ where every edge $uv$ of $G$ is replaced by $K_{2,m}$ and $m$ is fixed an arbitrary supersubdivision of $G$. Barrientos and Barrientos [288] answered the question of Sethuraman and Selvaraju by proving that any graph obtained from $K_{2,m}$ by attaching $k$ pendent edges and $n$ pendent edges to the vertices of its 2-element stable set can be used instead of $K_{2,m}$ to produce an arbitrary supersubdivision that admits an $\alpha$-labeling. K. Kathiresan and R. Sumathi [1072] affirmatively answer the question posed by Sethuraman and Selvaraju in [1765] of whether there are graphs different from paths whose arbitrary supersubdivisions are graceful.

For a graph $G$ Ambili and Singh [118] call the graph $G^*$ a strong supersubdivision of $G$ if $G^*$ is obtained from $G$ by replacing every edge $e_i$ of $G$ by a complete bipartite graph $K_{r_i,s_i}$. A strong supersubdivision $G^*$ of $G$ is said to be an arbitrary strong supersubdivision if $G^*$ is obtained from $G$ by replacing every edge $e_i$ of $G$ by a complete bipartite graph $K_{r,s_i}$ ($r$ is fixed and $s_i$ may vary). They proved that arbitrary strong supersubdivisions of paths, cycles, and stars are graceful. They conjecture that every arbitrary strong supersubdivision of a tree is graceful and ask if it is true that for any non-trivial connected graph $G$, an arbitrary strong supersubdivision of $G$ is graceful?

In [1768] Sethuraman and Selvaraju present an algorithm that permits one to start with any non-trivial connected graph and successively form supersubdivisions that have a strong form of graceful labeling called an $\alpha$-labeling (see §3.1 for the definition).

Kathiresan [1062] uses the notation $P_{a,b}$ to denote the graph obtained by identifying the end points of $b$ internally disjoint paths each of length $a$. He conjectures that $P_{a,b}$ is graceful except when $a$ is odd and $b \equiv 2 \pmod{4}$ and proves the conjecture for the case that $a$ is even and $b$ is odd. Liang and Zuo [1270] proved that the graph $P_{a,b}$ is graceful when both $a$ and $b$ are even. Daii, Wang and Xie [526] provided an algorithm for finding
a graceful labeling of $P_{2r,2}$ and showed that a $P_{2r,2(2k+1)}$ is graceful for all positives $r$ and $k$. Sekar [1689] has shown that $P_{a,b}$ is graceful when $a \neq 4r+1$, $r > 1$, $b = 4m$, and $m > r$. Yang (see [2207]) proved that $P_{a,b}$ is graceful when $a = 3, 5, 7$, and $9$ and $b$ is odd and when $a = 2, 4, 6$, and $8$ and $b$ is even (see [2207]). Yang, Rong, and Xu [2207] proved that $P_{a,b}$ is graceful when $a = 10, 12$, and $14$ and $b$ is even. Yan [2200] proved $P_{2r,2m}$ is graceful when $r$ is odd. Yang showed that $P_{2r+1,2m+1}$ and $P_{2r,2m}$ ($r \leq 7$, and $r = 9$) are graceful (see [1642]). Rong and Xiong [1642] showed that $P_{2r,b}$ is graceful for all positive integers $r$ and $b$. Kathiresan also shows that the graph obtained by identifying a vertex of $K_n$ with any noncenter vertex of the star with $2^{n-1} - n(n-1)/2$ edges is graceful.

For a family of graphs $G_1(u_1, u_2), G_2(u_2, u_3), \ldots, G_m(u_m, u_{m+1})$ where $u_i$ and $u_{i+1}$ are vertices in $G_i$, Cheng, Yao, Chen, and Zhang [474] define a graph-block chain $H_m$ as the graph obtained by identifying $u_{i+1}$ of $G_i$ with $u_{i+1}$ of $G_{i+1}$ for $i = 1, 2, \ldots, m$. They denote this graph by $H_m = G_1(u_1, u_2) \oplus G_2(u_2, u_3) \oplus \cdots \oplus G_m(u_m, u_{m+1})$. The case where each $G_i$ has the form $P_{a,b}$, they call a path-block chain. The vertex $u_1$ is called the initial vertex of $H_m$. They define a generalized spider $S_{n,m}$ as a graph obtained by starting with an initial vertex $u_0$ and $m$ path-block graphs and join $u_0$ with each initial vertex of each of the path-block graphs. Similarly, they define a generalized caterpillar $C_{n,m}$ as a graph obtained by starting with $m$ path-block chains $H_1, H_2, \ldots, H_m$ and a caterpillar $T$ with $m$ isolated vertices $v_1, v_2, \ldots, v_m$ and join each $v_i$ with the initial vertex of each $H_i$. They prove several classes of path-block chains, generalized spiders, and generalized caterpillars are graceful.

The graph $T_n$ with $3n$ vertices and $6n - 3$ edges is defined as follows. Start with a triangle $T_1$ with vertices $v_{1,1}, v_{1,2}$ and $v_{1,3}$. Then $T_{i+1}$ consists of $T_i$ together with three new vertices $v_{i+1,1}, v_{i+1,2}, v_{i+1,3}$ and edges $v_{i+1,1}v_{i+1,2}, v_{i+1,1}v_{i,3}, v_{i+1,2}v_{i,1}, v_{i+1,2}v_{i,3}$, $v_{i+1,3}v_{i,1}, v_{i+1,3}v_{i,2}$. Gnanajothi [721] proved that $T_n$ is graceful if and only if $n$ is odd. Sekar [1689] proved $T_n$ is graceful when $n$ is odd and $T_n$ with a pendant edge attached to the starting triangle is graceful when $n$ is even.

In [335] and [1777] Begam, Palanivelrajan, Gunasekaran, and Hameed give graceful labelings for graphs constructed by combining theta graphs (that is, a collection of edge disjoint paths that have common endpoints) with paths and stars.

For a graph $G$, the splitting graph of $G$, $S'(G)$, is obtained from $G$ by adding for each vertex $v$ of $G$ a new vertex $v'$ so that $v'$ is adjacent to every vertex that is adjacent to $v$. Sekar [1689] has shown that $S'(P_n)$ is graceful for all $n$ and $S'(C_n)$ is graceful for $n \equiv 0, 1$ (mod 4). Vaidya and Shah [2056] proved that the square graph of a bistar, the splitting graph of a bistar, and the splitting graph of a star are graceful graphs.

In [1928] Sudha and Kanniga proved that fans and the splitting graph of a star are graceful. They also proved that tensor product of a star and $P_2$ is odd-even graceful. (The tensor product $G \otimes H$ of graphs $G$ and $H$, has the vertex set $V(G) \times V(H)$ and any two vertices $(u, u')$ and $(v, v')$ are adjacent in $G \otimes H$ if and only if $u'$ is adjacent with $v'$ and $u$ is adjacent with $v$.) Sudha and Kanniga [1929] proved that the following graphs are graceful: arbitrary supersubdivisions of wheels; combs $(P_n \odot K_1)$; double fans $(P_n \odot K_2)$; $(P_m \cup P_n) \odot K_1$; and graphs obtained by starting with two star graphs $S_m$ and $S_n$ and identifying some of the pendant vertices of each. Sudha and Kanniga [1930] proved that
the graphs obtained from $P_n \odot K_1$ by identifying the center of a $S_n$ with the endpoint of a pendent edge attached to the endpoint of $P_n$ are graceful; and the graphs obtained from a fan $P_n \odot K_1$ by deleting a pendent edge attached to an endpoint of $P_n$ are graceful. Sunda [1924] provided some results on graphs obtained by connecting copies of $K_{m,n}$ in certain ways. Sudha and Kanniga [1926] proved that the graphs obtained by joining the vertices of a path to any number isolated points are graceful. They also proved that the arbitrary supersubdivision of all the edges of helms, combs $(P_n \odot K_1)$ and ladders $(P_n \times P_2)$ with pendent edges at vertices of degree 2 by a complete bipartite graphs $K_{2,m}$ are graceful.

The duplication of an edge $e = uv$ of a graph $G$ is the graph $G'$ obtained from $G$ by adding an edge $e' = u'v'$ such that $N(u) = N(u')$ and $N(v) = N(v')$. The duplication of a vertex of a graph $G$ is the graph $G'$ obtained from $G$ by adding a new vertex $v'$ to $G$ such that $N(v') = N(v)$. Kaneria, Vaidya, Ghodasara, and Srivastav [1005] proved the duplication of a vertex of a cycle, the duplication of an edge of an even cycle, and the graph obtained by joining two copies of a fixed cycle by an edge are graceful.

Kaneria and Makadia [1021] [1022] proved the following graphs are graceful: $(P_m \times P_n) \cup (P_r \times P_s)$; $C_{2f+3} \cup (P_m \times P_n) \cup (P_r \times P_s)$, where $f = 2(mn + r) - (m + n + r + s)$; the tensor product of $P_n$ and $P_3$; the tensor product of $P_m$ and $P_n$ for odd $m$ and $n$; the star of $C_{4n}$ (the star of a graph $G$ is the graph obtained from $G$ by replacing each vertex of star $K_{1,n}$ by $G$); the $t$-supersubdivision of $P_m \times P_n$; and the graph obtained by joining $C_{4n}$ and a grid graph with a path.

The join sum of complete bipartite graphs $< K_{m_1,n_1}, \ldots, K_{m_t,n_t} >$ is the graph obtained by starting with $K_{m_1,n_1}, \ldots, K_{m_t,n_t}$ and joining a vertex of each pair $K_{m_i,n_i}$ and $K_{m_{i+1},n_{i+1}}$ to a new vertex $v_i$ where $1 \leq i \leq k - 1$. The path union of a graph $G$ is the graph obtained by adding an edge from $n$ copies $G_1, G_2, \ldots, G_n$ of $G$ from $G_i$ to $G_{i+1}$ for $i = 1, \ldots, n - 1$. We denote this graph by $P(n \cdot G)$. Kaneria, Makadia, and Meghpara [1032] proved the following graphs are graceful: the graph obtained by joining $C_{4m}$ and $C_{4n}$ by a path of arbitrary length; the path union of finite many copies of $C_{4m}$, and $C_{4n}$ with twin chords. Kaneria, Makadia, Jariya, and Meghpara [1031] proved that the join sum of complete bipartite graphs, the star of complete bipartite graphs, and the path union of a complete bipartite graphs are graceful.

Given connected graphs $G_1, G_2, \ldots, G_n$, Kaneria, Makadia, and Jariya [1030] define a cycle of graphs $C(G_1, G_2, \ldots, G_n)$ as the graph obtained by adding an edge joining $G_i$ to $G_{i+1}$ for $i = 1, \ldots, n - 1$ and an edge joining $G_n$ to $G_1$. (The resulting graph may vary depending on which vertices of the $G_i$s are chosen.) When the $n$ graphs are isomorphic to $G$ the notation $C(n \cdot G)$ is used. Kaneria et al. proved that $C(2t \cdot C_{4m})$ and $C(2t \cdot K_{n,n})$ are graceful. In [1033] and [1035] Kaneria, Makadia, and Meghpara prove that the following graphs are graceful: $C(2t \cdot K_{2,n})$; $C(C_{4n_1}, C_{4n_2}, \ldots, C_{4n_t})$ when $t$ is even and $\sum_{i=1}^{\frac{t}{2}} n_i = \sum_{i=\frac{t}{2}+1}^{t} n_i$; $C(2t \cdot P_m \times P_n)$; the star of $P_m \times P_n$, and the path union of $t$ copies of $P_m \times P_n$. Kaneria, Viradai, Jariya, and Makadia [1050] proved the cycle graph $C(t \cdot P_n)$ is graceful.

The star of graphs $G_1, G_2, \ldots, G_n$, denoted by $S(G_1, G_2, \ldots, G_n)$, is the graph obtained by identifying each vertex of $K_{1,n}$, except the center, with one vertex from each of $G_1, G_2, \ldots, G_n$. The case that $G_1 = G_2 = \cdots = G_n = G$ is denoted by $S(n \cdot G)$. In [1043] and [1044] Kaneria, Meghpara, and Makadia proved the following graphs are graceful:
$S(t \cdot K_{m,n})$; $S(t \cdot P_n \times P_n)$; the barycentric subdivision of $P_m \times P_n$ (that is, the graph obtained from $P_m \times P_n$ by inserting a new vertex in each edge); the graph obtained by replacing each edge of $K_{1,t}$ by $P_n$; the graph obtained by identifying each end point of $K_{1,n}$ with a vertex of $K_{n,n}$; and the graph obtained by identifying each end point of $K_{1,n}$ with a vertex of $P_m \times P_n$. In [1042] Kaneria, Meghpara, and Makadia proved that the star of $K_{1,n}$ is a graceful tree.

The graph $P^t_n$ is obtained by identifying one end point from each of $t$ copies of $P_n$. The graph $P^t_n(G_1, G_2, \ldots, G_{tn})$ obtained by replacing each edge of $P^t_n$, except those adjacent to the vertex of degree $t$, by the graphs $G_1, G_2, \ldots, G_{tn}$ is called the one point path union of $G_1, G_2, \ldots, G_{tn}$. The case where $G_1 = G_2 = \cdots = G_{tn} = H$ is denoted by $P^t_n(tn \cdot H)$. In [1043] and [1044] Kaneria, Meghpara, and Makadia proved $P^t_n$ and $P^t_n(tn \cdot K_{m,r})$ are graceful. In [1041] Kaneria and Meghpara proved $P^t_n(tn \cdot P_r \times P_s)$, $P^t_n(tn \cdot K_{1,m})$, $S(t \cdot C_{4n})$, and $P^t_n(tn \cdot C_{4m})$ are graceful.

Kaneria and Makadia [1023] define a step grid graph as the graph obtained by starting with paths $P_2, P_3, P_{n-1}, \ldots, P_2$ ($n \geq 3$) arranged vertically parallel with the vertices in the paths forming horizontal rows and edges joining the vertices of the rows. In [1023] and [1024] they prove the following graphs are graceful: step grid graphs; one point union for a path of step grid graphs; cycles of step grid graphs; stars of step grid graphs; $t$—super subdivisions of the step grid graphs; open stars of step grid graphs; one point unions of paths of step grid graphs; and graphs obtained by joining $C_{4m}$ and step grid graphs with a path of arbitrary length.

For $n$ even [1025] Kaneria and Makadia [1025] define a double step grid graph of size $n$ (denoted by $DSt_n$) as the graph obtained by starting with paths $P_n, P_n, P_{n-2}, P_{n-4}, \ldots, P_4, P_2$ arranged vertically parallel with the vertices in the paths forming horizontal rows and edges joining the vertices of the rows. They prove the following graphs are graceful: double step grid graphs; path unions of copies of $DSt_n$; cycles of $r \equiv 0, 3 \pmod{4}$ copies of double step grid graphs; and stars of double step grid graphs.

In [1037] Kaneria, Makadia and Viradia prove the following graphs are graceful: open stars of double step grid graphs; one point union of paths of double step grid graphs $P^t_n(tn \cdot DSt_m)$; graphs obtained by joining $C_{4m}$ and a double step grid graph with a path of arbitrary length; and graphs obtained by starting with a cycle $C^+_m (m \equiv 2 \pmod{4})$ with chords that form a triangle with an edge of the cycle and joining $C^+_m$ and a double step grid graph with a path of arbitrary length.

For even $n > 2$ Kaneria and Makadia [1026] define a plus graph of size $n$ (denoted by $Pl_n$) as the graph obtained by starting with paths $P_2, P_4, \ldots, P_{n-2}, P_n$, $P_n, P_{n-2}, \ldots, P_4, P_2$ arranged vertically parallel with the vertices in the paths forming horizontal rows and edges joining the vertices of the rows. They prove plus graphs, path unions of copies of $Pl_n$, cycles of $r \equiv 0, 3 \pmod{4}$ copies of $Pl_n$, and stars of plus graphs are graceful. In [1027] Kaneria and Makadia prove the following graphs are graceful: open stars of plus graphs; graphs obtained by joining $C_{4m}$ and a plus graph with a path of arbitrary length; graphs obtained from cycles $C^+_m (m \equiv 2 \pmod{4})$ with twin chords that form a triangle with an edge of the cycle by joining $C^+_m$ and a plus graph with a path of arbitrary length.

Kaneria and Makadia [1028] define a swastik graph as the graph obtained from four
copies of $C_{4n}$ ($n > 1$) with vertices $V_{i,j}$ ($\forall i = 1, 2, 3, 4, \forall j = 1, 2, \ldots, 4n$) and identifying $V_{1,4t}$ and $V_{2,1}$, $V_{2,4t}$ and $V_{3,1}$, $V_{3,4t}$ and $V_{4,1}$, and $V_{4,4t}$ and $V_{1,1}$. They proved that path unions of swastik graphs of the same size, cycles of $r \equiv 0, 3 \pmod{4}$ copies of swastik graphs of the same size, and the star of swastik graphs are graceful. In [1029] Kaneria and Makadia prove the following graphs are graceful: open stars of swastik graphs; one point unions for paths of swastik graphs; graphs obtain by joining $C_{4m}$ and a swastik graph with a path of arbitrary length; graphs obtained from cycles $C_m$ ($m \equiv 2 \pmod{4}$) with twin chords that form a triangle with an edge by joining $C_m^{+}$ and a swastik graph with a path of arbitrary length.

In [1016] and [1015] Kaneria and Jariya define a smooth graceful graph as a bipartite graph $G$ with $q$ edges with the property that for all positive integers $l$ there exists a map $g : V \rightarrow \{0, 1, \ldots, \lfloor \frac{q-1}{2} \rfloor, \lfloor \frac{q+1}{2} \rfloor + l, \lfloor \frac{q+3}{2} \rfloor + l, \ldots, q + l \}$ such that the induced edge labeling map $g^* : E \rightarrow \{1 + l, 2 + l, \ldots, q + l \}$ defined by $g^*(e) = |g(u) - g(v)|$ is a bijection. Note that by taking $l = 0$ a smooth graceful labeling is a graceful labeling. Kaneria and Jariya proved the following graphs are smooth graceful: $P_n$; $C_{4n}$; $K_{2,n}$; $P_m \times P_n$; and the graph obtained by joining a cycle $C_{4m+2}$ with twin chords to $C_{4n}$. They also proved that the graph obtained by joining $C_{4m}$ to $W_n$ with a path is graceful. They proved that $K_{1,n}$ is semi smooth graceful, the star of $K_{1,n}$ is graceful, the path union of a smooth graceful tree is graceful, and the star of a smooth graceful tree is a graceful tree.

Kaneria, Makadia and Viradia [1038] proved the following: the star of a semi smooth graceful graph is graceful; $K_{m,n}$, $P(t \cdot H)$ are semi smooth graceful where $H$ is a semi smooth graceful graph; step grid graphs; and the cycle graphs $C(t \cdot H)$ are smooth graceful, when $t \equiv (\text{mod } 4)$, $H$ is a semi smooth; $C^t(m \cdot C_n)$, $P^t(k \cdot T)$, $<C_{n_1}, P_{n_2}, C_{n_3}, \ldots, P_{n_{2t}}, C_{n_{2t+1}}>$, $<K_{m_1,n_1}, P_{r_1}, K_{m_2,n_2}, P_{r_2}, \ldots, P_{r_{t-1}}, K_{m_t,n_t}>$, $<P_{n_1} \times P_{m_1}, P_{r_1}, P_{n_2} \times P_{m_2}, \ldots, P_{r_{t-1}}, P_{n_t} \times P_{m_t}>$ are graceful when $T$ is semi smooth graceful tree.

Kaneria and Meghpara [1040] prove that $B_{m,n}$, the splitting graphs $S'(B_{m,n})$ and $S'(P_n)$ are semi smooth graceful and if graphs obtained by joining semi smooth graceful graph and $B^2_{m,n}$ by an arbitrary path is graceful.

A komodo dragon is formed by attaching a path to a vertex of degree 3 in a cycle with a chord and attaching star graphs to the end points of the path. A komodo dragon with many tails is formed by attaching many paths of length two to an endpoint of the path in a komodo dragon. In [1778] and [1780] Shahul Hameed, Palanivelrajan, Gunasekaran and Raziya Begam provide graceful labelings of various komodo dragon graphs and their extensions. In [1779] and [1781] Shahul Hameed et al. investigated the gracefulness of classes of graphs constructed by combining some subdivisions of certain theta graphs with stars.

For a bipartite graph $G$ with partite sets $X$ and $Y$ let $G'$ be a copy of $G$ and $X'$ and $Y'$ be copies of $X$ and $Y$. Lee and Liu [1189] define the mirror graph, $M(G)$, of $G$ as the disjoint union of $G$ and $G'$ with additional edges joining each vertex of $Y$ to its corresponding vertex in $Y'$. The case that $G = K_{m,n}$ is more simply denoted by $M(m, n)$. They proved that for many cases $M(m, n)$ has a stronger form of graceful labeling (see
§3.1 for details).

The total graph \( T(P_n) \) has vertex set \( V(P_n) \cup E(P_n) \) with two vertices adjacent whenever they are neighbors in \( P_n \). Balakrishnan, Selvam, and Yegnanarayanan [265] have proved that \( T(P_n) \) is harmonious.

For any graph \( G \) with vertices \( v_1, \ldots, v_n \) and a vector \( m = (m_1, \ldots, m_n) \) of positive integers the corresponding replicated graph, \( R_m(G) \), of \( G \) is defined as follows. For each \( v_i \) form a stable set \( S_i \) consisting of \( m_i \) new vertices \( i = 1, 2, \ldots, n \) (a stable set \( S \) consists of a set of vertices such that there is not an edge \( v_i v_j \) for all pairs \( v_i, v_j \) in \( S \); two stable sets \( S_i, S_j, i \neq j \) form a complete bipartite graph if each \( v_i v_j \) is an edge in \( G \) and otherwise there are no edges between \( S_i \) and \( S_j \). Ramirez-Alfonsin [1600] has proved that \( R_m(P_n) \) is graceful for all \( m \) and all \( n > 1 \) (see §3.4 for a stronger result) and that \( R_{(m,1,\ldots,1)}(C_{4n}), R_{(2,1,\ldots,1)}(C_n) (n \geq 8) \) and \( R_{(2,2,1,\ldots,1)}(C_{4n}) (n \geq 12) \) are graceful.

For any permutation \( f \) on \( 1, \ldots, n \), the \( f \)-permutation graph on a graph \( G \), \( P(G,f) \), consists of two disjoint copies of \( G \), \( G_1 \) and \( G_2 \), each of which has vertices labeled \( v_1, v_2, \ldots, v_n \) with \( n \) edges obtained by joining each \( v_i \) in \( G_1 \) to \( v_{f(i)} \) in \( G_2 \). In 1983 Lee (see [1254]) conjectured that for all \( n > 1 \) and all permutations on \( 1, 2, \ldots, n \), the permutation graph \( P(P_n,f) \) is graceful. Lee, Wang, and Kiang [1254] proved that \( P(P_{2k},f) \) is graceful if \( f = (12)(34) \cdots (k,k+1) \cdots (2k-1,2k) \). They conjectured that if \( G \) is a graceful nonbipartite graph with \( n \) vertices, then for any permutation \( f \) on \( 1, 2, \ldots, n \), the permutation graph \( P(G,f) \) is graceful. Fan and Liang [600] have shown that if \( f \) is a permutation in \( S_n \) where \( n \geq 2 \), and \( 2l \) then the permutation graph \( P(P_n,f) \) is graceful if the disjoint cycle form of \( f \) is \( \prod_{k=0}^{l-1}(m+2k, m+2k+1) \), and if \( n \geq 2 \), and \( 4l \) the permutation graph \( P(P_n,f) \) is graceful if the disjoint cycle form of \( f \) is \( \prod_{k=0}^{l-1}(m+4k, m+4k+2) \). For any integer \( n \geq 5 \) and some permutations \( f \) in \( S_n \), Liang and Y. Miao, [1272] discuss gracefulness of the permutation graphs \( P(P_n,f) \) if \( f = (m, m+1, m+2, m+3, m+4), (m, m+2)(m+1, m+3), (m, m+1, m+2, m+4, m+3), (m, m+1, m+4, m+3, m+2), (m, m+2, m+3, m+4, m+1), (m, m+3, m+4, m+2, m+1) \) and \( (m, m+4, m+3, m+2, m+1) \). Some families of graceful permutation graphs are given in [1182], [1266], and [759].

Gnanajothi [721, p. 51] calls a graph \( G \) bigraceful if both \( G \) and its line graph are graceful. She shows the following are bigraceful: \( P_m; P_m \times P_n; C_n \) if and only if \( n \equiv 0, 3 \pmod{4} \); \( S_n \); \( K_n \) if and only if \( n \leq 3 \); and \( B_n \) if and only if \( n \equiv 3 \pmod{4} \). She also shows that \( K_{m,n} \) is not bigraceful when \( n \equiv 3 \pmod{4} \). (Gangopadhyay and Hebbare [664] used the term “bigraceful” to mean a bipartite graceful graph.) Murugan and Arumugan [1429] have shown that graphs obtained from \( C_4 \) by attaching two disjoint paths of equal length to two adjacent vertices are bigraceful.

Several well-known isolated graphs have been examined. Graceful labelings have been found for the Petersen graph [638], the cube [675], the icosahedron and the dodecahedron. Graham and Sloane [737] showed that all of these except the cube are harmonious. Winters [2176] verified that the Grötzsch graph (see [390, p. 118]), the Heawood graph (see [390, p. 236]), and the Herschel graph (see [390, p. 53]) are graceful. Graham and Sloane [737] determined all harmonious graphs with at most five vertices. Seoud and Youssef [1740] did the same for graphs with six vertices.
A number of authors have investigated the gracefulness of the directed graphs obtained from copies of directed cycles \( \vec{C}_m \) that have a vertex in common or have an edge in common. A digraph \( D(V, E) \) is said to be graceful if there exists an injection \( f: V(G) \to \{0, 1, \ldots, |E|\} \) such that the induced function \( f': E(G) \to \{1, 2, \ldots, |E|\} \) that is defined by \( f'(u, v) = (f(v) - f(u)) \pmod{|E| + 1} \) for every directed edge \( uv \) is a bijection. The notations \( n \cdot \vec{C}_m \) and \( n - \vec{C}_m \) are used to denote the digraphs obtained from \( n \) copies of \( \vec{C}_m \) with exactly one point in common and the digraphs obtained from \( n \) copies of \( \vec{C}_m \) with exactly one edge in common. Du and Sun [563] proved that a necessary condition for \( n - \vec{C}_m \) to be graceful is that \( mn \) is even and that \( n \cdot \vec{C}_m \) is graceful when \( m \) is even. They conjectured that \( n \cdot \vec{C}_m \) is graceful for any odd \( m \) and even \( n \). This conjecture was proved by Jirimutu, Xu, Feng, and Bao in [1000]. Xu, Jirimutu, Wang, and Min [2193] proved that \( n - \vec{C}_m \) to be graceful is that \( mn \) is even and that \( n \cdot \vec{C}_m \) is graceful when \( m \) is even. Feng and Jirimutu (see [2252]) conjectured that \( n - \vec{C}_m \) is graceful for even \( n \) and asked about the situation for odd \( n \). The cases where \( m = 5, 7, 9, 11, \) and 13 and even \( n \) were proved Zhao and Jirimutu [2251], and [1866]. Zhao, Siqintuya, and Jirimutu [2253] proved that a necessary condition for \( n - \vec{C}_m \) to be graceful is that \( nm \) is even. Hegde and Kumudashi [794] show that the symmetric digraph on the double cycle constructed from an \( m \)-cycle by replacing each edge \( xy \) by a pair of arcs, \((x, y)\) and \((y, x)\), is graceful for all \( m \). A survey of results on graceful digraphs by Feng, Xu, and Jirimutu in given in [606].

Marr [1362] and [1361] summarizes previously known results on graceful directed graphs and presents some new results on directed paths, stars, wheels, and umbrellas.

In 2009 Zak [2247] defined the following generalization of harmonious labelings. For a graph \( G(V, E) \) and a positive integer \( t \geq |E| \) a function \( h \) from \( V(G) \) to \( Z_t \) (the additive group of integers modulo \( t \)) is called a \( t \)-harmonious labeling of \( G \) if \( h \) is injective for \( t \geq |V| \) or surjective for \( t < |V| \), and \( h(u) + h(v) \neq h(x) + h(y) \) for all distinct edges \( uv \) and \( xy \). The smallest such \( t \) for which \( G \) has a \( t \)-harmonious labeling is called the harmonious order of \( G \). Obviously, a graph \( G(V, E) \) with \( |E| \geq |V| \) is harmonious if and only if the harmonious order of \( G \) is \( |E| \). Zak determines the harmonious order of complete graphs, complete bipartite graphs, even cycles, some cases of \( P_n^k \), and \( 2nK_3 \). He presents some results about the harmonious order of the Cartesian products of graphs, the disjoint union of copies of a given graph, and gives an upper bound for the harmonious order of trees. He conjectures that the harmonious order of a tree of order \( n \) is \( n + o(n) \). Hegde and Murthy [796] proved Zak’s conjecture [2247] using the value sets of polynomials, which partially proves the cordial tree conjecture by Hovey [822] that all trees of order less than a prime \( p \) are \( p \)-cordial. (See Section 3.7.)

For a graph with \( e \) edges Vietri [2100] generalizes the notion of a graceful labeling by allowing the vertex labels to be real numbers in the interval \([0, e]\). For a simple graph \( G(V, E) \) he defines an injective map \( \gamma \) from \( V \) to \([0, e]\) to be a real-graceful labeling of \( G \) provided that \( \sum 2^{(u)} - \gamma(v) + 2^{(v)} - \gamma(u) = 2^e + 1 - 2^e - 1 \), where the sum is taken over all edges \( uv \). In the case that the labels are integers, he shows that a real-graceful labeling is equivalent to a graceful labeling. In contrast to the case for graceful labelings, he shows that the cycles \( C_{4t+1} \) and \( C_{4t+2} \) have real-graceful labelings. He also shows that the
non-graceful graphs $K_5$, $K_6$ and $K_7$ have real-graceful labelings. With one exception, his real-graceful labels are integers.

The gamma-number (or gracefulness) of a graph $G$, denoted by $\gamma(G)$, is the smallest positive integer $n$ for which there exists an injective function $f : V(G) \rightarrow \{0, 1, \ldots, n\}$ such that each $uv \in E(G)$ is labeled $|f(u) - f(v)|$ and the resulting edge labels are distinct. The strong gamma-number of a graph $G$, denoted by $\gamma_s(G)$, is defined to be the smallest positive integer $n$ such that $\gamma(G) = n$ with the additional property that there exists an integer $\lambda$ so that $\min\{f(u), f(v)\} \leq \lambda < \max\{f(u), f(v)\}$ for each $uv \in E(G)$. The strong gamma-number is defined to be $+\infty$, otherwise. Ichishima and Oshima [852] proved that if $G$ is a bipartite graph, then $\gamma(mG) \leq m\gamma(G) + m - 1$ for any positive integer $m$. They also show that $\gamma_s(G) < +\infty$ and $\gamma_s(G) \leq 2\gamma(G) + 1$ for any bipartite graph $G$. Moreover, they provide a sharp upper bound for $\gamma(G \cup H)$ in terms of $\gamma(G)$ and $\gamma_s(H)$ when $G$ and $H$ are graphs such that $H$ is bipartite, and give formulas for the gamma-number of certain forests. In addition to these, they present strong gamma-number analogues to the gamma-number results. Finally, we determine the exact values of the gamma-number and strong gamma-number for all cycles.

### 2.8 Summary

The results and conjectures discussed above are summarized in the tables following. The letter G after a class of graphs indicates that the graphs in that class are known to be graceful; a question mark indicates that the gracefulness of the graphs in the class is an open problem; we put a question mark after a “G” if the graphs have been conjectured to be graceful. The analogous notation with the letter H is used to indicate the status of the graphs with regard to being harmonious. The tables impart at a glimpse what has been done and what needs to be done to close out a particular class of graphs. Of course, there is an unlimited number of graphs one could consider. One wishes for some general results that would handle several broad classes at once but the experience of many people suggests that this is unlikely to occur soon. The Graceful Tree Conjecture alone has withstood the efforts of scores of people over the past four decades. Analogous sweeping conjectures are probably true but appear hopelessly difficult to prove.

#### Table 1: Summary of Graceful Results

<table>
<thead>
<tr>
<th>Graph</th>
<th>Graceful</th>
</tr>
</thead>
<tbody>
<tr>
<td>trees</td>
<td>G if $\leq 35$ vertices [601]</td>
</tr>
<tr>
<td></td>
<td>G if symmetrical [351]</td>
</tr>
<tr>
<td></td>
<td>G if at most 4 end-vertices [832]</td>
</tr>
<tr>
<td></td>
<td>G with diameter at most 5 [823]</td>
</tr>
<tr>
<td></td>
<td>G caterpillars [1644]</td>
</tr>
<tr>
<td></td>
<td>G firecrackers [464]</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Graceful</th>
</tr>
</thead>
<tbody>
<tr>
<td>G bananas [1760], [1759]</td>
<td></td>
</tr>
<tr>
<td>G? lobsters [347]</td>
<td></td>
</tr>
<tr>
<td>cycles $C_n$</td>
<td>G iff $n \equiv 0, 3 \pmod{4}$ [1644]</td>
</tr>
<tr>
<td>wheels $W_n$</td>
<td>G [638], [819]</td>
</tr>
<tr>
<td>helms (see §2.2)</td>
<td>G [158]</td>
</tr>
<tr>
<td>webs (see §2.2)</td>
<td>G [1056]</td>
</tr>
<tr>
<td>gears (see §2.2)</td>
<td>G [1336]</td>
</tr>
<tr>
<td>cycles with $P_k$-chord (see §2.2)</td>
<td>G [532], [1335], [1103], [1569]</td>
</tr>
<tr>
<td>$C_n$ with $k$ consecutive chords (see §2.2)</td>
<td>G if $k = 2, 3, n - 3$ [1093], [1100]</td>
</tr>
<tr>
<td>unicyclic graphs</td>
<td>G? iff $G \neq C_n, n \equiv 1, 2 \pmod{4}$ [1995]</td>
</tr>
<tr>
<td>$P^k_n$</td>
<td>G if $k = 2$ [1056]</td>
</tr>
<tr>
<td>$C_n^{(t)}$ (see §2.2)</td>
<td></td>
</tr>
<tr>
<td>$n = 3$ G iff $t \equiv 0, 1 \pmod{4}$</td>
<td></td>
</tr>
<tr>
<td>[348], [350]</td>
<td></td>
</tr>
<tr>
<td>G? if $nt \equiv 0, 3 \pmod{4}$ [1094]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 6, t$ even [1094]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 4, t &gt; 1$ [1787]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 5, t &gt; 1$ [2205]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 7$ and $t \equiv 0, 3 \pmod{4}$ [2211]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 9$ and $t \equiv 0, 3 \pmod{4}$ [2212]</td>
<td></td>
</tr>
<tr>
<td>G if $t = 2n \not\equiv 1 \pmod{4}$ [1575], [387]</td>
<td></td>
</tr>
<tr>
<td>G if $n = 11$ [2195]</td>
<td></td>
</tr>
<tr>
<td>triangular snakes (see §2.2)</td>
<td>G iff number of blocks $\equiv 0, 1 \pmod{4}$ [1424]</td>
</tr>
<tr>
<td>$K_4$-snakes (see §2.2)</td>
<td>?</td>
</tr>
<tr>
<td>quadrilateral snakes (see §2.2)</td>
<td>G [721], [1575]</td>
</tr>
<tr>
<td>crowns $C_n \odot K_1$</td>
<td>G [638]</td>
</tr>
<tr>
<td>$C_n \odot P_k$</td>
<td>G [1689]</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Graph</th>
<th>Graceful</th>
</tr>
</thead>
<tbody>
<tr>
<td>grids $P_m \times P_n$</td>
<td>G [35]</td>
</tr>
<tr>
<td>prisms $C_m \times P_n$</td>
<td>G if $n = 2$ [641], [2208]</td>
</tr>
<tr>
<td></td>
<td>G if $m$ even [833]</td>
</tr>
<tr>
<td></td>
<td>G if $m$ odd and $3 \leq n \leq 12$ [833]</td>
</tr>
<tr>
<td></td>
<td>G if $m = 3$ [1845]</td>
</tr>
<tr>
<td></td>
<td>G if $m = 6$ see [2210]</td>
</tr>
<tr>
<td></td>
<td>G if $m \equiv 2 \pmod{4}$ and $n \equiv 3 \pmod{4}$ [2210]</td>
</tr>
<tr>
<td>$K_m \times P_n$</td>
<td>G if $(m, n) = (4, 2), (4, 3), (4, 4), (4, 5), (5, 2)$</td>
</tr>
<tr>
<td></td>
<td>not G if $(m, n) = (3, 3), (6, 2), (7, 2), (8, 2), (9, 2), (10, 2)$</td>
</tr>
<tr>
<td></td>
<td>not G? for $(m, 2)$ with $m &gt; 5$ [1881]</td>
</tr>
<tr>
<td>$K_{m,n} \odot K_1$</td>
<td>G [995]</td>
</tr>
<tr>
<td>torus grids $C_m \times C_n$</td>
<td>G if $m \equiv 0 \pmod{4}$, $n$ even [1003]</td>
</tr>
<tr>
<td></td>
<td>not G if $m, n$ odd (parity condition)</td>
</tr>
<tr>
<td>vertex-deleted $C_m \times P_n$</td>
<td>G if $n = 2$ [658]</td>
</tr>
<tr>
<td>edge-deleted $C_m \times P_n$</td>
<td>G if $n = 2$ [658]</td>
</tr>
<tr>
<td>Möbius ladders $M_n$ (see §2.3)</td>
<td>G [652]</td>
</tr>
<tr>
<td>stacked books $S_m \times P_n$ (see §2.3)</td>
<td>$n = 2$, G iff $m \not\equiv 3 \pmod{4}$ [1345], [531], [657]</td>
</tr>
<tr>
<td>$n$-cube $K_2 \times K_2 \times \cdots \times K_2$</td>
<td>G [1118]</td>
</tr>
<tr>
<td>$K_4 \times P_n$</td>
<td>G if $n = 2, 3, 4, 5$ [1489]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>G iff $n \leq 4$ [725], [1842]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>G [1644], [725]</td>
</tr>
<tr>
<td>$K_{1,m,n}$</td>
<td>G [141]</td>
</tr>
<tr>
<td>$K_{1,1,m,n}$</td>
<td>G [721]</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Graph</th>
<th>Graceful</th>
</tr>
</thead>
<tbody>
<tr>
<td>windmills $K_n^{(m)} (n &gt; 3)$ (see §2.4)</td>
<td>G if $n = 4, m \leq 1000$ [833],[5],[2159],[697]</td>
</tr>
<tr>
<td></td>
<td>G? if $n = 4, m \geq 4$ [347]</td>
</tr>
<tr>
<td></td>
<td>not G if $n = 4, m = 2, 3$ [347]</td>
</tr>
<tr>
<td></td>
<td>not G if $(m, n) = (2, 5)$ [350]</td>
</tr>
<tr>
<td></td>
<td>not G if $n &gt; 5$ [1100]</td>
</tr>
<tr>
<td>$B(n, r, m)$ $r &gt; 1$ (see §2.4)</td>
<td>G if $(n, r) = (3, 2), (4, 3)$ [1095], $(4, 2)$ [531]</td>
</tr>
<tr>
<td></td>
<td>G $(n, r, m) = (5, 2, 2)$ [1881]</td>
</tr>
<tr>
<td></td>
<td>not G for $(n, 2, 2)$ for $n &gt; 5$ [349], [1881]</td>
</tr>
<tr>
<td>$mK_n$ (see §2.5)</td>
<td>G iff $m = 1, n \leq 4$ [1122]</td>
</tr>
<tr>
<td>$C_m \cup P_n$</td>
<td>G iff $m + n \geq 6$ [1989]</td>
</tr>
<tr>
<td>$C_m \cup C_n$</td>
<td>G iff $m + n \equiv 0, 3 \pmod{4}$ [21]</td>
</tr>
<tr>
<td>$C_n \cup K_{p,q}$</td>
<td>for $n &gt; 8$ G iff $n \equiv 0, 3 \pmod{4}$ [2227]</td>
</tr>
<tr>
<td></td>
<td>G $C_0 \times K_{1,2n+1}$ [279]</td>
</tr>
<tr>
<td></td>
<td>G $C_3 \times K_{m,n}$ if $m, n \geq 2$ [1739]</td>
</tr>
<tr>
<td></td>
<td>G $C_4 \times K_{m,n}$ iff $(m, n) \neq (1, 1)$ [1739]</td>
</tr>
<tr>
<td></td>
<td>G $C_7 \times K_{m,n}$ [1739]</td>
</tr>
<tr>
<td></td>
<td>G $C_8 \times K_{m,n}$ [1739]</td>
</tr>
<tr>
<td>$K_t \cup K_{m,n}$</td>
<td>G [279]</td>
</tr>
<tr>
<td>$\bigcup_{i=1}^t K_{m_i,n_i}$</td>
<td>G $2 \leq m_i &lt; n_i$ [279]</td>
</tr>
<tr>
<td>$C_m \cup \bigcup_{i=1}^t K_{m_i,n_i}$</td>
<td>G $2 \leq m_i &lt; n_i,$ $m \equiv 0 \pmod{4}$, $m \geq 11$ [279]</td>
</tr>
<tr>
<td>$G + \overline{K_t}$</td>
<td>G for connected graceful $G$ [22]</td>
</tr>
<tr>
<td>double cones $C_n + \overline{K_2}$</td>
<td>G for $n = 3, 4, 5, 7, 8, 9, 11, 12</td>
</tr>
<tr>
<td></td>
<td>not G for $n \equiv 2 \pmod{4}$ [1624]</td>
</tr>
<tr>
<td>$t$-point suspension $C_n + \overline{K_t}$</td>
<td>G if $n \equiv 0$ or $3 \pmod{12}$ [365]</td>
</tr>
<tr>
<td></td>
<td>not G if $t$ is even and $n \equiv 2, 6, 10 \pmod{12}$</td>
</tr>
<tr>
<td></td>
<td>G if $n = 4, 7, 11$ or $19$ [365]</td>
</tr>
<tr>
<td></td>
<td>G if $n = 5$ or $9$ and $t = 2$ [365]</td>
</tr>
<tr>
<td>$P_n^2$ (see §2.7)</td>
<td>G [1181]</td>
</tr>
</tbody>
</table>

*Continued on next page*
Table 1 – *Continued from previous page*

<table>
<thead>
<tr>
<th>Graph</th>
<th>Graceful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petersen $P(n, k)$ (see §2.7)</td>
<td>G for $n = 5, 6, 7, 8, 9, 10$ [1624], $(n, k) = (8t, 3)$ [2096]</td>
</tr>
</tbody>
</table>

Table 2: **Summary of Harmonious Results**

<table>
<thead>
<tr>
<th>Graph</th>
<th>Harmonious</th>
</tr>
</thead>
</table>
| trees | H if $\leq 31$ vertices [602]  
H? [737]  
H caterpillars [737]  
? lobsters |
| cycles $C_n$ | H iff $n$ is odd [737] |
| wheels $W_n$ | H [737] |
| helms (see §2.2) | H [721], [1300] |
| webs (see §2.2) | H if cycle is odd |
| gears (see §2.2) | H [465] |
| cycles with $P_k$-chord (see §2.2) | ? |
| $C_n$ with $k$ consecutive chords (see §2.2) | ? |
| unicyclic graphs | ? |
| $P^k_n$ | H if $k = 2$ [734], $k$ odd [1705], [2234]  
H if $k$ is even and $k/2 \leq (n-1)/2$ [2244] |
| $C^{(t)}_n$ (see §2.2) | $n = 3$ H iff $t \not\equiv 2 \pmod{4}$ [737]  
H if $n = 4$, $t > 1$ [1787] |
| triangular snakes (see §2.2) | H if number of blocks is odd [2192]  
not H if number of blocks $\equiv 2 \pmod{4}$ [2192] |

*Continued on next page*
<table>
<thead>
<tr>
<th>Graph</th>
<th>Harmonious</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_4$-snakes (see §2.2)</td>
<td>H [735]</td>
</tr>
<tr>
<td>quadrilateral snakes (see §2.2)</td>
<td>?</td>
</tr>
<tr>
<td>crowns $C_n \odot K_1$</td>
<td>H [734], [1287]</td>
</tr>
<tr>
<td>grids $P_m \times P_n$</td>
<td>H iff $(m, n) \neq (2, 2)$ [1003]</td>
</tr>
<tr>
<td>prisms $C_m \times P_n$</td>
<td>H if $n = 2, m \neq 4$ [658]</td>
</tr>
<tr>
<td></td>
<td>H if $n$ odd [737]</td>
</tr>
<tr>
<td></td>
<td>H if $m = 4$ and $n \geq 3$ [1003]</td>
</tr>
<tr>
<td>torus grids $C_m \times C_n$</td>
<td>H if $m = 4, n \geq 3$ [1003]</td>
</tr>
<tr>
<td></td>
<td>not H if $m \neq 0 \pmod{4}$ and $n$ odd [1003]</td>
</tr>
<tr>
<td>vertex-deleted $C_m \times P_n$</td>
<td>H if $n = 2$ [658]</td>
</tr>
<tr>
<td>edge-deleted $C_m \times P_n$</td>
<td>H if $n = 2$ [658]</td>
</tr>
<tr>
<td>Möbius ladders $M_n$ (see §2.3)</td>
<td>H iff $n \neq 3$ [652]</td>
</tr>
<tr>
<td>stacked books $S_m \times P_n$ (see §2.3)</td>
<td>$n = 2$, H if $m$ even [733], [1625]</td>
</tr>
<tr>
<td></td>
<td>not H $m \equiv 3 \pmod{4}$, $n = 2$, (parity condition)</td>
</tr>
<tr>
<td></td>
<td>H if $m \equiv 1 \pmod{4}$, $n = 2$ [721]</td>
</tr>
<tr>
<td>$n$-cube $K_2 \times K_2 \times \cdots \times K_2$</td>
<td>H if and only if $n \geq 4$ [848]</td>
</tr>
<tr>
<td>$K_4 \times P_n$</td>
<td>H [1625]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>H iff $n \leq 4$ [737]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>H iff $m$ or $n = 1$ [737]</td>
</tr>
<tr>
<td>$K_{1,m,n}$</td>
<td>H [141]</td>
</tr>
<tr>
<td>$K_{1,1,m,n}$</td>
<td>H [721]</td>
</tr>
<tr>
<td>windmills $K_n^{(m)}$ $(n &gt; 3)$ (see §2.4)</td>
<td>H if $n = 4$ [826]</td>
</tr>
<tr>
<td></td>
<td>$m = 2$, H? iff $n = 4$ [737]</td>
</tr>
</tbody>
</table>
Table 2 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Harmonious</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(n, r, m)$ $r &gt; 1$ (see §2.4)</td>
<td>not H if $m = 2, n$ odd or 6 [737]</td>
</tr>
<tr>
<td></td>
<td>not H for some cases $m = 3$ [1286]</td>
</tr>
<tr>
<td></td>
<td>$(n, r) = (3, 2), (4, 3)$ [1736]</td>
</tr>
<tr>
<td>$mK_n$ (see §2.5)</td>
<td>H $n = 3, m$ odd [1288]</td>
</tr>
<tr>
<td></td>
<td>not H for $n$ odd, $m \equiv 2 \pmod{4}$ [1288]</td>
</tr>
<tr>
<td>$nG$</td>
<td>H when $G$ is harmonious and $n$ odd [2225]</td>
</tr>
<tr>
<td>$G^n$</td>
<td>H when $G$ is harmonious and $n$ odd [2225]</td>
</tr>
<tr>
<td>$C_m \cup P_n$</td>
<td>?</td>
</tr>
<tr>
<td>$nC_m + K_1$ $n \not\equiv 0 \pmod{4}$</td>
<td>H [465]</td>
</tr>
<tr>
<td>double fans $P_n + \overline{K_2}$</td>
<td>H [737]</td>
</tr>
<tr>
<td>$t$-point suspension $P_n + \overline{K_t}$ of $P_n$</td>
<td>H [1625]</td>
</tr>
<tr>
<td>$S_m + K_1$</td>
<td>H [721], [446]</td>
</tr>
<tr>
<td>$t$-point suspension $C_n + \overline{K_t}$ of $C_n$</td>
<td>H if $n$ odd and $t = 2$ [1625], [721]</td>
</tr>
<tr>
<td></td>
<td>not H if $n \equiv 2, 4, 6 \pmod{8}$ and $t = 2$ [721]</td>
</tr>
<tr>
<td>Petersen $P(n, k)$ (see §2.7)</td>
<td>H [721], [1216]</td>
</tr>
</tbody>
</table>
3 Variations of Graceful Labelings

3.1 $\alpha$-labelings

In 1966 Rosa [1644] defined an $\alpha$-labeling (or $\alpha$-valuation) as a graceful labeling with the additional property that there exists an integer $k$ so that for each edge $xy$ either $f(x) \leq k < f(y)$ or $f(y) \leq k < f(x)$. (Other names for such labelings are balanced, interlaced, and strongly graceful.) It follows that such a $k$ must be the smaller of the two vertex labels that yield the edge labeled 1. Also, a graph with an $\alpha$-labeling is necessarily bipartite and therefore cannot contain a cycle of odd length. Wu [2184] has shown that a necessary condition for a bipartite graph with $n$ edges and degree sequence $d_1, d_2, \ldots, d_p$ to have an $\alpha$-labeling is that the gcd$(d_1, d_2, \ldots, d_p, n)$ divides $n(n-1)/2$.

A common theme in graph labeling papers is to build up graphs that have desired labelings from pieces with particular properties. In these situations, starting with a graph that possesses an $\alpha$-labeling is a typical approach. (See [446], [734], [464], and [1003].) Moreover, Jungreis and Reid [1003] showed how sequential labelings of graphs (see Section 4.1) can often be obtained by modifying $\alpha$-labelings of the graphs.

Graphs with $\alpha$-labelings have proved to be useful in the development of the theory of graph decompositions. Rosa [1644], for instance, has shown that if $G$ is a graph with $q$ edges and has an $\alpha$-labeling, then for every natural number $p$, the complete graph $K_{2pq+1}$ can be decomposed into copies of $G$ in such a way that the automorphism group of the decomposition itself contains the cyclic group of order $p$. In the same vein El-Zanati and Vanden Eynden [580] proved that if $G$ has $q$ edges and admits an $\alpha$-labeling then $K_{qm,qn}$ can be partitioned into subgraphs isomorphic to $G$ for all positive integers $m$ and $n$. Although a proof of Ringel’s conjecture that every tree has a graceful labeling has withstood many attempts, examples of trees that do not have $\alpha$-labelings are easy to construct (one example is the subdivision graph of $K_{1,3}$ — see [1644]). Kotzig [1116] has shown however that almost all trees have $\alpha$-labelings. Sethuraman and Ragukumar [1762] have proved that every tree is a subtree of a graph with an $\alpha$-labeling.

As to which graphs have $\alpha$-labelings, Rosa [1644] observed that the $n$-cycle has an $\alpha$-labeling if and only if $n \equiv 0 \pmod{4}$ whereas $P_n$ always has an $\alpha$-labeling. Other familiar graphs that have $\alpha$-labelings include caterpillars [1644], the $n$-cube [1115], Möbius ladders $M_n$ when $n$ is odd (see §2.3 for the definition) [1477], $B_{4n+1}$ (i.e., books with $4n+1$ pages) [657], $C_{2m} \cup C_{2m}$ and $C_{4m} \cup C_{4m} \cup C_{4m}$ for all $m > 1$ [1117], $C_{4m} \cup C_{4m} \cup C_{4m}$ for all $(m, n) \neq 1, 1$ [594], $P_n \times Q_n$ [1345], $K_{1,2k} \times Q_n$ [1345], $C_{4m} \cup C_{4m} \cup C_{4m} \cup C_{4m}$ [1155], $C_{4m} \cup C_{4n+2} \cup C_{4r+2}, C_{4m} \cup C_{4n} \cup C_{4r}$ when $m + n \leq r$ [21], $C_{4m} \cup C_{4n} \cup C_{4r} \cup C_{4s}$ when $m \geq n + r + s$ [15], $(m + 1)^2 + 1)C_4$ for all $m$ [2258], $k^2C_4$ for all $k$ [2258], and $(k^2 + k)C_4$ for all $k$ [2258]. Abram and Kotzig [17] have shown $kC_4$ has an $\alpha$-labeling for $4 \leq k \leq 10$ and that if $kC_4$ has an $\alpha$-labeling then so does $(4k + 1)C_4, (5k + 1)C_4,$ and $(9k + 1)C_4$. Eshghi [589] proved that $5C_{4k}$ has an $\alpha$-labeling for all $k$. In [594] Eshghi and Carter show several families of graphs of the form $C_{4m_1} \cup C_{4m_2} \cup \cdots \cup C_{4m_k}$ have $\alpha$-labelings. Pei-Shan Lee [1172] proved that $C_6 \times P_{2r+1}$ and gear graphs have $\alpha$-labelings. He raises the question of whether $C_{4m+2} \times P_{2r+1}$ has an
α-labeling for all $m$. Brankovic, Murch, Pond, and Rosa [396] conjectured that all trees with maximum degree three and a perfect matching have an α-labeling.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [616] have shown that if $m \equiv 0 \pmod{4}$ then the one-point union of 2, 3, or 4 copies of $C_m$ admits an α-labeling, and if $m \equiv 2 \pmod{4}$ then the one-point union of 2 or 4 copies of $C_m$ admits an α-labeling. They conjecture that the one-point union of $n$ copies of $C_m$ admits an α-labeling if and only if $mn \equiv 0 \pmod{4}$.

In his 2001 Ph. D. thesis Selvaraju [1691] investigated the one-point union of complete bipartite graphs. He proves that the one-point unions of the following forms have an α-labeling: $K_{m,n_1}$ and $K_{m,n_2}$, $K_{m_1,n_1}$, $K_{m_2,n_2}$, and $K_{m_3,n_3}$ where $m_1 \leq m_2 \leq m_3$ and $n_1 < n_2 < n_3$; $K_{m_1,n}$, $K_{m_2,n}$, and $K_{m_3,n}$ where $m_1 < m_2 < m_3 \leq 2n$.

Zhile [2258] uses $C_m(n)$ to denote the connected graph all of whose blocks are $C_m$ and whose block-cutpoint-graph is a path. He proves that for all positive integers $m$ and $n$, $C_{4m}(n)$ has an α-labeling but $C_m(n)$ does not have an α-labeling when $m$ is odd.

Abrham and Kotzig [21] have proved that $C_m \cup C_n$ has an α-labeling if and only if both $m$ and $n$ are even and $m + n \equiv 0 \pmod{4}$. Kotzig [1117] has also shown that $C_4 \cup C_4 \cup C_4$ does not have an α-labeling. He asked if $n = 3$ is the only integer such that the disjoint union of $n$ copies of $C_4$ does not have an α-labeling. This was confirmed by Abrham and Kotzig in [18]. Eshghi [588] proved that every 2-regular bipartite graph with 3 components has an α-labeling if and only if the number of edges is a multiple of four except for $C_4 \cup C_4 \cup C_4$. In [591] Eshghi gives more results on the existence of α-labelings for various families of disjoint union of cycles.

Jungrweis and Reid [1003] investigated the existence of α-labelings for graphs of the form $P_m \times P_n$, $C_m \times P_n$, and $C_m \times C_n$ (see also [655]). Of course, the cases involving $C_m$ with $m$ odd are not bipartite, so there is no α-labeling. The only unresolved cases among these three families are $C_{4m+2} \times P_{2n+1}$ and $C_{4m+2} \times C_{4m+2}$. All other cases result in α-labelings. Balakrishman [259] uses the notation $Q_n(G)$ to denote the graph $P_2 \times P_2 \times \cdots \times P_2 \times G$ where $P_2$ occurs $n - 1$ times. Snoevily [1884] has shown that the graphs $Q_n(C_{4m})$ and the cycles $C_{4m}$ with the path $P_n$ adjoined at each vertex have α-labelings. He [1885] also has shown that compositions of the form $G[K_n]$ (see §2.3 for the definition) have an α-labeling whenever $G$ does (see §2.3 for the definition of composition). Balakrishman and Kumar [262] have shown that all graphs of the form $Q_n(G)$ where $G$ is $K_{3,3}$, $K_{4,4}$, or $P_m$ have an α-labeling. Balakrishman [259] poses the following two problems. For which graphs $G$ does $Q_n(G)$ have an α-labeling? For which graphs $G$ does $Q_n(G)$ have a graceful labeling?

Rosa [1644] has shown that $K_{m,n}$ has an α-labeling (see also [276]). In [851] Ichishima and Oshima proved that if $m$, $s$ and $t$ are integers with $m \geq 1$, $s \geq 2$, and $t \geq 2$, then the graph $mK_{s,t}$ has an α-labeling if and only if $(m, s, t) \neq (3, 2, 2)$. Barrientos [276] has shown that for $n$ even the graph obtained from the wheel $W_n$ by attaching a pendent edge at each vertex has an α-labeling. In [283] Barrientos shows how to construct graceful graphs that are formed from the one-point union of a tree that has an α-labeling, $P_2$, and the cycle $C_n$. In some cases, $P_2$ is not needed. Qian [1575] has proved that quadrilateral snakes have α-labelings. Yu, Lee, and Chin [2242] showed that $Q_3$- and $Q_5$-snakes have α-labelings. Fu and Wu [645] showed that if $T$ is a tree that has an α-labeling with partite
sets $V_1$ and $V_2$ then the graph obtained from $T$ by joining new vertices $w_1, w_2, \ldots, w_k$ to every vertex of $V_1$ has an $\alpha$-labeling. Similarly, they prove that the graph obtained from $T$ by joining new vertices $w_1, w_2, \ldots, w_k$ to the vertices of $V_1$ and new vertices $u_1, u_2, \ldots, u_t$ to every vertex of $V_2$ has an $\alpha$-labeling. They also prove that if one of the new vertices of either of these two graphs is replaced by a star and every vertex of the star is joined to the vertices of $V_1$ or the vertices of both $V_1$ and $V_2$, the resulting graphs have $\alpha$-labelings. Fu and Wu [645] further show that if $T$ is a tree with an $\alpha$-labeling and the sizes of the two partite sets of $T$ differ at by at most 1, then $T \times P_m$ has an $\alpha$-labeling.

Selvaraju and G. Sethurman [1693] prove that the graphs obtained from a path $P_n$ by joining all the pairs of vertices $u, v$ of $P_n$ with $d(u, v) = 3$ and the graphs obtained by identifying one of vertices of degree 2 of such graphs with the center of a star and the other vertex the graph of degree 2 with the center of another star (the two stars needs not have the same size) have $\alpha$-labelings. They conjecture that the analogous graphs where 3 is replaced with any $t$ with $2 \leq t \leq n - 2$ have $\alpha$-labelings.

Makadia, Karavadiya, and Kanerian [1351] proved that the graph obtained by merging $t$ consecutive vertices of two cycle $C_{4r}$ and $C_{4s}$ has an $\alpha$-labeling when $t \leq 2 \min\{r,s\}$. They also proved that if $G_1$ has an $\alpha$-labeling and $G_2$ is graceful then there exists a graceful labeling of the graph obtained by joining $G_1$ and $G_2$ by any path. Moreover, if both $G_1$ and $G_2$ have $\alpha$-labelings then there exists an $\alpha$-labeling of the graph obtained by joining $G_1$ and $G_2$ by any path.

Lee and Liu [1189] investigated the mirror graph $M(m, n)$ of $K_{m,n}$ (see §2.3 for the definition) for $\alpha$-labelings. They proved: $M(m, n)$ has an $\alpha$-labeling when $n$ is odd or $m$ is even; $M(1, n)$ has an $\alpha$-labeling when $n \equiv 0 \pmod{4}$; $M(m, n)$ does not have an $\alpha$-labeling when $m$ is odd and $n \equiv 2 \pmod{4}$, or when $m \equiv 3 \pmod{4}$ and $n \equiv 4 \pmod{8}$.

Barrientos [277] defines a chain graph as one with blocks $B_1, B_2, \ldots, B_m$ such that for every $i$, $B_i$ and $B_{i+1}$ have a common vertex in such a way that the block-cutpoint graph is a path. He shows that if $B_1, B_2, \ldots, B_m$ are blocks that have $\alpha$-labelings then there exists a chain graph $G$ with blocks $B_1, B_2, \ldots, B_m$ that has an $\alpha$-labeling. He also shows that if $B_1, B_2, \ldots, B_m$ are complete bipartite graphs, then any chain graph $G$ obtained by concatenation of these blocks has an $\alpha$-labeling.

The symmetric product $G_1 \oplus G_2$ of $G_1$ and $G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$ and edge set $\{(u_1, v_1)(u_2, v_2)\}$ where $u_1u_2$ is an edge in $G_1$ or $v_1v_2$ is an edge in $G_2$ but not both $u_1u_2$ is an edge in $G_1$ and $v_1v_2$ is an edge in $G_2$. A snake of length $n > 1$ is a packing of $n$ congruent geometrical objects, called cells, such that the first and the last cell each has only one neighbor and all $n - 2$ cells in between have exactly two neighbors. In [293] Barrientos and Minion define a snake polyomino as a snake with square cells. They prove that given two graphs of sizes $m$ and $n$ with $\alpha$-labelings, the graph that results from the edge amalgamation (identification of two edges) of the edges of weight 1 and $n$, also has an $\alpha$-labeling. They use that result to prove the existence of $\alpha$-labelings of snake polyominos and hexagonal chains. The result about snake polyominos partially answers the question of Acharya. In [294], they prove that the third power of a caterpillar admits an $\alpha$-labeling and that the symmetric product $G \oplus 2K_1$ has an $\alpha$-labeling when $G$ does.
In addition they prove that \( G \cup P_m \) is graceful provided that \( G \) admits an \( \alpha \)-labeling that does not assign the integer \( \lambda + 2 \) as a label, where \( \lambda \) is its boundary value. They ask if all triangular chains are graceful.

Franček, Kingston, and Vezina [631] generalized snake polyomino graphs by introducing \textit{straight simple polyominal caterpillars} and proving that they also admit an alpha labeling. This implies that every full hexagonal caterpillar with \( n \) decomposes the complete graph \( K_n \) into straight simple polyominal caterpillars. This introduced a similar family of graphs called \textit{full hexagonal caterpillars} and proving that they admit an alpha labeling. This implies that every full hexagonal caterpillar with \( n \) decomposes the complete graph \( K_{2kn+1} \) for any positive integer \( k \).

Golomb [726] introduced polyominoes in 1953 in a talk to the Harvard Mathematics Club. Polyominoes are planar shapes made by connecting a certain number of equal-sized squares, each joined together with at least one other square along an edge.

Pasotti [1480] generalized the notion of graceful labelings for graphs \( G \) with \( e = d \cdot m \) edges by defining a \textit{d-graceful labeling} as an injective function \( f \) from \( V(G) \) to \( \{0, 1, 2, \ldots, d(m + 1) - 1\} \) such that \( \{|f(x) - f(y)| \mid xy \in E(G)\} = \{1, 2, \ldots, d(m + 1) - 1\} - \{m + 1, 2(m + 1), \ldots, (d - 1)(m + 1)\} \). The case \( d = 1 \) is a graceful labeling and the case that \( d = e \) is an odd-graceful labeling. A \textit{d-graceful} \( \alpha \)-labeling of a bipartite graph is a \( d \)-graceful labeling with the property that the maximum value in one of the two bipartite sets is less than the minimum value on the other bipartite set. Pasotti [1480] proved that paths and stars have \( d \)-graceful \( \alpha \)-labelings for all admissible \( d \), ladders \( P_n \times P_2 \) have a 2-graceful labeling if and only if \( n \) is even, and provided partial results about cycles of even length. He showed that the existence of \( d \)-graceful labelings can be used to prove that certain complete graphs have cyclic decompositions. Benini and Pasotti [337] used \( d \)-divisible \( \alpha \)-labelings to construct an infinite class of cyclic \( \Gamma \)-decompositions of the complete multipartite graphs, where \( \Gamma \) is a caterpillar, a hairy cycle or a cycle. Such labelings imply the existence of cyclic \( \Gamma \)-decompositions of certain complete multipartite graphs.

Wu ([2183] and [2185]) has given a number of methods for constructing larger graceful graphs from graceful graphs. Let \( G_1, G_2, \ldots, G_p \) be disjoint connected graphs. Let \( w_i \) be in \( G_i \) for \( 1 \leq i \leq p \). Let \( w \) be a new vertex not in any \( G_i \). Form a new graph \( \oplus_w(G_1, G_2, \ldots, G_p) \) by adjoining to the graph \( G_1 \cup G_2 \cup \cdots \cup G_p \) the edges \( ww_1, ww_2, \ldots, ww_p \). In the case where each of \( G_1, G_2, \ldots, G_p \) is isomorphic to a graph \( G \) that has an \( \alpha \)-labeling and each \( w_i \) is the isomorphic image of the same vertex in \( G_i \), Wu shows that the resulting graph is graceful. If \( f \) is an \( \alpha \)-labeling of a graph, the integer \( k \) with the property that for any edge \( uv \) either \( f(u) \leq k < f(v) \) or \( f(v) \leq k < f(u) \) is called the \textit{boundary value} or \textit{critical number} of \( f \). Wu [2183] has also shown that if \( G_1, G_2, \ldots, G_p \) are graphs of the same order and have \( \alpha \)-labelings where the labelings for each pair of graphs \( G_i \) and \( G_{p-i+1} \) have the same boundary value for \( 1 \leq i \leq n/2 \), then \( \oplus_w(G_1, G_2, \ldots, G_p) \) is graceful. In [2181] Wu proves that if \( G \) has \( n \) edges and \( n + 1 \) vertices and \( G \) has an \( \alpha \)-labeling with boundary value \( \lambda \), where \( |n - 2\lambda - 1| \leq 1 \), then \( G \times P_m \) is graceful for all \( m \).

Given graceful graphs \( H \) and \( G \) with at least one having an \( \alpha \)-labeling Wu and Lu
define four graph operations on $H$ and $G$ that when used repeatedly or in turns provide a large number of graceful graphs. In particular, if both $H$ and $G$ have $\alpha$-labelings, then each of the graphs obtained by the four operations on $H$ and $G$ has an $\alpha$-labeling.

Ajitha, Arumugan, and Germina [108] use a construction of Koh, Tan, and Rogers [1102] to create trees with $\alpha$-labelings from smaller trees with graceful labelings. These in turn allows them to generate large classes of trees that have a type of called edge-antimagic labelings (see §6.1). Shiu and Lu [1832] prove that the graph obtained from $K_{1,k}$ by replacing each edge with a path of length 3 has an $\alpha$-labeling if and only if $k \leq 4$.

Seoud and Helmi [1720] have shown that all gear graphs have an $\alpha$-labeling, all dragons with a cycle of order $n \equiv 0 \pmod{4}$ have an $\alpha$-labeling, and the graphs obtained by identifying an endpoint of a star $S_m$ ($m \geq 3$) with a vertex of $C_{4n}$ has an $\alpha$-labeling.

Mavonicolas and Michael [1370] say that trees $\langle T_1, \theta_1, w_1 \rangle$ and $\langle T_2, \theta_2, w_2 \rangle$ with roots $w_1$ and $w_2$ and $|V(T_1)| = |V(T_2)|$ are gracefully consistent if either they are identical or they have $\alpha$-labelings with the same boundary value and $\theta_1(w_1) = \theta_2(w_2)$. They use this concept to show that a number of known constructions of new graceful trees using several identical copies of a given graceful rooted tree can be extended to the case where the copies are replaced by a set of pairwise gracefully consistent trees. In particular, let $\langle T, \theta, w \rangle$ and $\langle T_0, \theta_0, w_0 \rangle$ be gracefully labeled trees rooted at $w$ and $w_0$ respectively. They show that the following four constructions are adaptable to the case when a set of copies of $\langle T, \theta, w \rangle$ is replaced by a set of pairwise gracefully consistent trees. When $\theta(w) = |E(T)|$ the garland construction due to Koh, Rogers, and Tan [1096] gracefully labels the tree consisting of $h$ copies of $\langle T, w \rangle$ with their roots connected to a new vertex $r$. In the case when $\theta(w) = |E(T)|$ and whenever $uw \in E(T)$ and $\theta(u) \neq 0$, then $vw \in E(T)$ where $\theta(u) + \theta(v) = |E(T)|$, the attachment construction of Koh, Tan and Rogers [1102] gracefully labels the tree formed by identifying the roots of $h$ copies of $\langle T, w \rangle$ with the root of a distinct copy of $\langle T, w \rangle$. A construction given by Koh, Tan and Rogers [1102] gracefully labels the tree formed by merging each vertex of $\langle T_0, w_0 \rangle$ with the root of a distinct copy of $\langle T, w \rangle$. When $\theta_0(w_0) = |E(T_0)|$, let $N$ be the set of neighbors of $w_0$ and let $x$ be the vertex of $T$ at even distance from $w$ with $\theta(x) = 0$ or $\theta(x) = |E(T)|$. Then a construction of Burzio and Ferrarrese [417] gracefully labels the tree formed by merging each non-root vertex of $T_0$ with the root of a distinct copy $\langle T, w \rangle$ so that for each $v \in N$ the edge $vw_0$ is replaced with a new edge $xw_0$ where $x$ is in the corresponding copy of $T$.

Snevily [1885] says that a graph $G$ eventually has an $\alpha$-labeling provided that there is a graph $H$, called a host of $G$, which has an $\alpha$-labeling and that the edge set of $H$ can be partitioned into subgraphs isomorphic to $G$. He defines the $\alpha$-labeling number of $G$ to be $G_\alpha = \min \{t : \text{there is a host $H$ of $G$ with $|E(H)| = t|G|$} \}$. Snevily proved that even cycles have $\alpha$-labeling number at most 2 and he conjectured that every bipartite graph has an $\alpha$-labeling number. This conjecture was proved by El-Zanati, Fu, and Shiu [577]. There are no known examples of a graph $G$ with $G_\alpha > 2$. In [1885] Snevily conjectured that the $\alpha$-labeling number for a tree with $n$ edges is at most $n$. Shiu and Fu [1830] proved that the $\alpha$-labeling number for a tree with $n$ edges and radius $r$ is at most $\lceil r/2 \rceil n$. They also prove that a tree with $n$ edges and radius $r$ decomposes $K_t$ for some $t \leq (r+1)n^2 + 1$.
α-labeling of $T$, or else there exists a graph $H_T$ with an α-labeling such that $H_T$ can be decomposed into two edge-disjoint copies of $T$. They proved this claim is true for the graphs $C_{m,k}$ obtained from $K_{1,m}$ by replacing each edge in $K_{1,m}$ with a path of length $k$.

For a tree $T$ with $m$ edges, the α-deficit $\alpha_{\text{def}}(T)$ equals $m - \alpha(T)$ where $\alpha(T)$ is defined as the maximum number of distinct edge labels over all bipartite labelings of $T$. Rosa and Siran [1647] showed that for every $m \geq 1$, $\alpha_{\text{def}}(C_{m,2}) = \lfloor m/3 \rfloor$, which implies that $(C_{m,2})_\alpha \geq 2$ for $m \geq 3$. Ahmed and Snevily [81] define the graph $C'_{m,j}$ as a comet-like tree with a central vertex of degree $m$ where each neighbor of the central vertex is attached to $j$ pendant vertices for $1 \leq j \leq (m - 1)$. For $m \geq 3$ and $1 \leq j \leq (m - 1)$ they prove: $(C'_{m,j})_\alpha \leq 2; (C'_{2k+1,j})_\alpha = 2$ for $1 \leq j \leq 2k$ and conjecture if $\Delta_T = (2k + 1)$, then $\alpha_{\text{def}}(T) \leq k$. Ahmed and Snevily [81] prove that for every comet $T$ (that is, graphs obtained from stars by replacing each edge by a path of some fixed length) there exists an α-labeling of $T$, or else there exists a graph $H_T$ with an α-labeling such that $H_T$ can be decomposed into two edge-disjoint copies of $T$. This is particularly noteworthy since comets are known to have arbitrarily large α-deficits.

Given two bipartite graphs $G_1$ and $G_2$ with partite sets $H_1$ and $L_1$ and $H_2$ and $L_2$, respectively, Snevily [1884] defines their weak tensor product $G_1 \boxtimes G_2$ as the bipartite graph with vertex set $(H_1 \times H_2, L_1 \times L_2)$ and with edge $(h_1, h_2)(l_1, l_2)$ if $h_1l_1 \in E(G_1)$ and $h_2l_2 \in E(G_2)$. He proves that if $G_1$ and $G_2$ have α-labelings then so does $G_1 \boxtimes G_2$. This result considerably enlarges the class of graphs known to have α-labelings. In [1308] López and Muntaner-Batle gave a generalization of Snevily’s weak tensor product that allows them to significantly enlarges the classes of graphs admitting α-labelings, near α-labelings (defined later in this section), and bigraceful graphs.

The sequential join of graphs $G_1, G_2, \ldots, G_n$ is formed from $G_1 \cup G_2 \cup \cdots \cup G_n$ by adding edges joining each vertex of $G_i$ with each vertex of $G_{i+1}$ for $1 \leq i \leq n - 1$. Lee and Wang [1242] have shown that for all $n \geq 2$ and any positive integers $a_1, a_2, \ldots, a_n$ the sequential join of the graphs $\overline{K}_{a_1}, \overline{K}_{a_2}, \ldots, \overline{K}_{a_n}$ has an α-labeling.

In [653] Gallian and Ropp conjectured that every graph obtained by adding a single pendent edge to one or more vertices of a cycle is graceful. Qian [1575] proved this conjecture and in the case that the cycle is even he shows the graphs have an α-labeling. He further proves that for $n$ even any graph obtained from an $n$-cycle by adding one or more pendent edges at some vertices has an α-labeling as long as at least one vertex has degree 3 and one vertex has degree 2.

In [1478] Pasotti introduced the following generalization of a graceful labeling. Given a graph $G$ with $e = d \cdot m$ edges, an injective function from $V(G)$ to the set $\{0, 1, 2, \ldots, d(m + 1) - 1\}$ such that $\{|f(x) - f(y)| \mid [x, y] \in E(G)\} = \{1, 2, 3, \ldots, d(m + 1) - 1\} - \{m + 1, 2(m + 1), \ldots, (d - 1)(m + 1)\}$ is called a d-divisible graceful labeling of $G$. Note that for $d = 1$ and of $d = e$ one obtains the classical notion of a graceful labeling and of an odd-graceful labeling (see §3.6 for the definition), respectively. A d-divisible graceful labeling of a bipartite graph $G$ with the property that the maximum value on one of the two partite sets is less than the minimum value on the other one is called a d-divisible α-labeling of $G$. Pasotti proved that these new concepts allow to obtain certain cyclic graph decompositions. In particular, if there exists a $d$-divisible graceful labeling of a
For trees with $\alpha$-size is at least $5(n+1)/7$ and that there exist trees whose $\alpha$-size is at most $(5n+9)/6$. They conjectured that minimum of the $\alpha$-sizes over all trees with $n$ edges is asymptotically $5n/6$. This conjecture has been proved for trees of maximum degree 3 by Bonnington and Sirán [418]. For trees with $n$ vertices and maximum degree 3 Brankovic, Rosa, and Sirán [397] have shown that the $\alpha$-size is at least $\lceil \frac{6n}{7} \rceil - 1$. In [396] Brankovic, Murch, Pond, and Rose provide a lower bound for the $\alpha$-size trees with maximum degree three and a perfect matching as a function of a lower bound for minimum order of such a tree that does not have an $\alpha$-labeling. Using a computer search they showed that all such trees with up to 30 vertices have an $\alpha$-labeling. This brought the lower bound for the $\alpha$-size to $14n/15$, for such trees of order $n$. They conjecture that all trees with maximum degree three and a perfect matching have an $\alpha$-labeling. Heinrich and Hell [812] defined the gracesize of a graph $G$ with $n$ vertices as the maximum, over all bijections $f: V(G) \to \{1, 2, \ldots, n\}$, of the number of distinct values $|f(u) - f(v)|$ over all edges $uv$ of $G$. So, from Rosa and Sirán’s result, the gracesize of any tree with $n$ edges is at least $5(n+1)/7$.

In [400] Brinkmann, Crevals, Mélot, Rylands, and Steffan define the parameter $\alpha_{\text{def}}$ which measures how far a tree is from having an $\alpha$-labeling as it counts the minimum number of errors, that is, the minimum number of edge labels that are missing from the set of all possible labels. Trees with an $\alpha$-labeling have deficit 0. For a tree $T = (V, E)$ with bipartition classes $V_1$ and $V_2$ and a bipartite labeling $f: V \to \{0, 1, \ldots, |V| - 1\}$ the edge parity of $T$ is $(\sum_{i=1}^{|E|} i) \mod 2 = \frac{1}{2}(|V| - 1)|V| \mod 2$. So if $f$ is an $\alpha$-labeling this is the sum of all edge labels modulo 2; it is 0 if $|V| \equiv 0, 1 \mod 4$ and 1 if $|V| \equiv 2, 3 \mod 4$. The vertex parity is the parity of the number of vertices of odd degree with odd label.

Brinkmann et al. [400] proved: in a tree $T$ with $\alpha$-deficit 0 the edge parity and the vertex parities are equal; and for all non-negative integers $k$ and $d$ and $n \geq k^2 + k$, the number of trees $T$ with $n$ vertices, $\alpha_{\text{def}}(T) = d$ and maximum degree $n - k$ is the same. Furthermore, they provide computer results on the $\alpha$-deficit of all trees with up to 26...
vertices; with maximum degree 3 and up to 36 vertices, with maximum degree 4 and up to 32 vertices, and with maximum degree 5 and up to 31 vertices.

In [658] Gallian weakened the condition for an \( \alpha \)-labeling somewhat by defining a weakly \( \alpha \)-labeling as a graceful labeling for which there is an integer \( k \) so that for each edge \( xy \) either \( f(x) \leq k \leq f(y) \) or \( f(y) \leq k \leq f(x) \). Unlike \( \alpha \)-labelings, this condition allows the graph to have an odd cycle, but still places a severe restriction on the structure of the graph; namely, that the vertex with the label \( k \) must be on every odd cycle. Gallian, Prout, and Winters [658] showed that the prisms \( C_n \times P_2 \) with a vertex deleted have \( \alpha \)-labelings. The same paper reveals that \( C_n \times P_2 \) with an edge deleted from a cycle has an \( \alpha \)-labeling when \( n \) is even and a weakly \( \alpha \)-labeling when \( n > 3 \).

In [295] and [296] Barrientos and Minion focused on the enumeration of graphs with graceful and \( \alpha \)-labelings, respectively. They used an extended version of the adjacency matrix of a graph to count the number of labeled graphs. In [295] they count the number of gracefully-labeled graphs of size \( n \) for all possible values of \( m \). In [779] they count the number of \( \alpha \)-labeled graphs of size \( n \) and order \( m \), for all possible values of \( m \), as well as those \( \alpha \)-labeled graphs of size \( n \) with boundary value \( \lambda \). They also count the number of \( \alpha \)-labeled graphs of size \( n \), order \( m \), and boundary value \( \lambda \) for all possible values of \( m \) and \( \lambda \).

A special case of \( \alpha \)-labeling called strongly graceful was introduced by Maheo [1345] in 1980. A graceful labeling \( f \) of a graph \( G \) is called strongly graceful if \( G \) is bipartite with two partite sets \( A \) and \( B \) of the same order \( s \), the number of edges is \( 2t + s \), there is an integer \( k \) with \( t - s \leq k \leq t + s - 1 \) such that if \( a \in A, f(a) \leq k \), and if \( b \in B, f(b) > k \), and there is an involution \( \pi \) that is an automorphism of \( G \) such that: \( \pi \) exchanges \( A \) and \( B \) and the \( s \) edges \( a\pi(a) \) where \( a \in A \) have as labels the integers between \( t + 1 \) and \( t + s \). Maheo’s main result is that if \( G \) is strongly graceful then so is \( G \times Q_n \). In particular, she proved that \( (P_n \times Q_n) \times K_2, B_{2n}, \) and \( B_{2n} \times Q_n \) have strongly graceful labelings.

In 1999 Broersma and Hoede [401] conjectured that every tree containing a perfect matching is strongly graceful. Yao, Cheng, Yao, and Zhao [2214] proved that this conjecture is true for every tree with diameter at most 5 and provided a method for constructing strongly graceful trees.

El-Zanati and Vanden Eynden [581] call a strongly graceful labeling a strong \( \alpha \)-labeling. They show that if \( G \) has a strong \( \alpha \)-labeling, then \( G \times P_n \) has an \( \alpha \)-labeling. They show that \( K_{m,2} \times K_2 \) has a strong \( \alpha \)-labeling and that \( K_{m,2} \times P_n \) has an \( \alpha \)-labeling. They also show that if \( G \) is a bipartite graph with one more vertex than the number of edges, and if \( G \) has an \( \alpha \)-labeling such that the cardinalities of the sets of the corresponding bipartition of the vertices differ by at most 1, then \( G \times K_2 \) has a strong \( \alpha \)-labeling and \( G \times P_n \) has an \( \alpha \)-labeling. El-Zanati and Vanden Eynden [581] also note that \( K_{3,3} \times K_2, K_{3,4} \times K_2, K_{4,4} \times K_2, \) and \( C_4 \times K_2 \) all have strong \( \alpha \)-labelings. El-Zanati and Vanden Eynden proved that \( K_{m,2} \times Q_n \) has a strong \( \alpha \)-labeling and that \( K_{m,2} \times P_n \) has an \( \alpha \)-labeling for all \( n \). They also prove that if \( G \) is a connected bipartite graph with partite sets of odd order such that in each partite set each vertex has the same degree, then \( G \times K_2 \) does not have a strong \( \alpha \)-labeling. As a corollary they have that \( K_{m,n} \times K_2 \) does not have a strong \( \alpha \)-labeling when \( m \) and \( n \) are odd.
An $\alpha$-labeling $f$ of a graph $G$ is called free by El-Zanati and Vanden Eynden in [582] if the critical number $k$ (in the definition of $\alpha$-labeling) is greater than 2 and if neither 1 nor $k - 1$ is used in the labeling. Their main result is that the union of graphs with free $\alpha$-labelings has an $\alpha$-labeling. In particular, they show that $K_{m,n}$, $m > 1$, $n > 2$, has a free $\alpha$-labeling. They also show that $Q_n$, $n \geq 3$, and $K_{m,2} \times Q_n$, $m > 1$, $n \geq 1$, have free $\alpha$-labelings. El-Zanati [personal communication] has shown that the Heawood graph has a free $\alpha$-labeling.

Wannasit and El-Zanati [2161] proved that if $G$ is a cubic bipartite graph each of whose components is either a prism, a Möbius ladder, or has order at most 14, then $G$ admits free -$\alpha$-labeling. They conjecture that every bipartite cubic graph admits a free $\alpha$-labeling.

For connected bipartite graphs Grannell, Griggs, and Holroyd [738] introduced a labeling that lies between $\alpha$-labelings and graceful labelings. They call a vertex labeling $f$ of a bipartite graph $G$ with $q$ edges and partite sets $D$ and $U$ gracious if $f$ is a bijection from the vertex set of $G$ to $\{0, 1, \ldots, q\}$ such that the set of edge labels induced by $f(u) - f(v)$ for every edge $uv$ with $u \in U$ and $v \in D$ is $\{1, 2, \ldots, q\}$. Thus a gracious labeling of $G$ with partite sets $D$ and $U$ is a graceful labeling in which every vertex in $D$ has a label lower than every adjacent vertex. They verified by computer that every tree of size up to 20 has a gracious labeling. This led them to conjecture that every tree has a gracious labeling. For any $k > 1$ and any tree $T$ Grannell et al. say that $T$ has a gracious $k$-labeling if the vertices of $T$ can be partitioned into sets $D$ and $U$ in such a way that there is a function $f$ from the vertices of $G$ to the integers modulo $k$ such that the edge labels induced by $f(u) - f(v)$ where $u \in U$ and $v \in D$ have the following properties: the number of edges labeled with 0 is one less than the number of vertices labeled with 0 and for each nonzero integer $t$ the number of edges labeled with $t$ is the same as the number of vertices labeled with $t$. They prove that every nontrivial tree has a $k$-gracious labeling for $k = 2, 3, 4$, and 5 and that caterpillars are $k$-gracious for all $k \geq 2$.

The same labeling that is called gracious by Grannell, Griggs, and Holroyd is called a near $\alpha$-labeling by El-Zanati, Kenig, and Vanden Eynden [579]. The latter prove that if $G$ is a graph with $n$ edges that has a near $\alpha$-labeling then there exists a cyclic $G$-decomposition of $K_{2nx+1}$ for all positive integers $x$ and a cyclic $G$-decomposition of $K_{n,n}$. They further prove that if $G$ and $H$ have near $\alpha$-labelings, then so does their weak tensor product (see earlier part of this section) with respect to the corresponding vertex partitions. They conjecture that every tree has a near $\alpha$-labeling.

Another kind of labelings for trees was introduced by Ringel, Llado, and Serra [1631] in an approach to proving their conjecture $K_{n,n}$ is edge-decomposable into $n$ copies of any given tree with $n$ edges. If $T$ is a tree with $n$ edges and partite sets $A$ and $B$, they define a labeling $f$ from the set of vertices to $\{1, 2, \ldots, n\}$ to be a bigraceful labeling of $T$ if $f$ restricted to $A$ is injective, $f$ restricted to $B$ is injective, and the edge labels given by $f(y) - f(x)$ where $yx$ is an edge with $y$ in $B$ and $x$ in $A$ is the set $\{0, 1, 2, \ldots, n - 1\}$. (Notice that this terminology conflicts with that given in Section 2.7 In particular, the Ringel, Llado, and Serra bigraceful does not imply the usual graceful.) Among the graphs that they show are bigraceful are: lobsters, trees of diameter at most 5, stars $S_{k,m}$ with
$k$ spokes of paths of length $m$, and complete $d$-ary trees for $d$ odd. They also prove that if $T$ is a tree then there is a vertex $v$ and a nonnegative integer $m$ such that the addition of $m$ leaves to $v$ results in a bigraceful tree. They conjecture that all trees are bigraceful.

Table 3 summarizes some of the main results about $\alpha$-labelings. $\alpha$ indicates that the graphs have an $\alpha$-labeling.
### Table 3: Summary of Results on $\alpha$-labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>$\alpha$-labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycles $C_n$</td>
<td>$\alpha$ iff $n \equiv 0 \pmod{4}$ [1644]</td>
</tr>
<tr>
<td>caterpillars</td>
<td>$\alpha$ [1644]</td>
</tr>
<tr>
<td>$n$-cube</td>
<td>$\alpha$ [1115]</td>
</tr>
<tr>
<td>books $B_{2n}$, $B_{4n+1}$</td>
<td>$\alpha$ [1345],[657]</td>
</tr>
<tr>
<td>Möbius ladders $M_{2k+1}$</td>
<td>$\alpha$ [1477]</td>
</tr>
<tr>
<td>$C_m \cup C_n$</td>
<td>$\alpha$ iff $m, n$ are even and $m + n \equiv 0 \pmod{4}$[21]</td>
</tr>
<tr>
<td>$C_{4m} \cup C_{4m} \cup C_{4m}$ ($m &gt; 1$)</td>
<td>$\alpha$ [1117]</td>
</tr>
<tr>
<td>$C_{4m} \cup C_{4m} \cup C_{4m}$</td>
<td>$\alpha$ [1117]</td>
</tr>
<tr>
<td>$mK_{s,t}$ ($m \geq 1$, $s, t \geq 2$)</td>
<td>iff $(m, s, t) \neq (3, 2, 2)$ [851]</td>
</tr>
<tr>
<td>$P_n \times Q_n$</td>
<td>$\alpha$ [1345]</td>
</tr>
<tr>
<td>$B_{2n} \times Q_n$</td>
<td>$\alpha$ [1345]</td>
</tr>
<tr>
<td>$K_{1,n} \times Q_n$</td>
<td>$\alpha$ [1345]</td>
</tr>
<tr>
<td>$K_{m,2} \times Q_n$</td>
<td>$\alpha$ [581]</td>
</tr>
<tr>
<td>$K_{m,2} \times P_n$</td>
<td>$\alpha$ [581]</td>
</tr>
<tr>
<td>$P_2 \times P_2 \times \cdots \times P_2 \times G$</td>
<td>$\alpha$ when $G = C_{4m}$, $P_m$, $K_{3,3}$, $K_{4,4}$ [1884]</td>
</tr>
<tr>
<td>$P_2 \times P_2 \times \cdots \times P_2 \times P_m$</td>
<td>$\alpha$ [1884]</td>
</tr>
<tr>
<td>$P_2 \times P_2 \times \cdots \times P_2 \times K_{m,m}$</td>
<td>$\alpha$ [1884] when $m = 3$ or $4$</td>
</tr>
<tr>
<td>$G[\overline{K_n}]$</td>
<td>$\alpha$ when $G$ is $\alpha$ [1885]</td>
</tr>
</tbody>
</table>
3.2 $\gamma$-Labelings

In 2004 Chartrand, Erwin, VanderJagt, and Zhang [448] define a $\gamma$-labeling of a graph $G$ of size $m$ as a 1-1 function $f$ from the vertices of $G$ to $\{0,1,2,\ldots,m\}$ that induces an edge labeling $f'$ defined by $f'(uv) = |f(u) - f(v)|$ for each edge $uv$. They define the following parameters of a $\gamma$-labeling: $\text{val}(f) = \Sigma f'(e)$ over all edges $e$ of $G$; $\text{val}_{\text{max}}(G) = \max\{\text{val}(f) : f \text{ is a } \gamma \text{-labeling of } G\}$, $\text{val}_{\text{min}}(G) = \min\{\text{val}(f) : f \text{ is a } \gamma \text{-labeling of } G\}$. Among their results are the following:

- $\text{val}_{\text{min}}(P_n) = \text{val}_{\text{max}}(P_n) = \lceil (n^2 - 2)/2 \rceil$; $\text{val}_{\text{min}}(C_n) = 2(n - 1)$; for even $n \geq 4$,
- $\text{val}_{\text{max}}(C_n) = n(n + 2)/2$; for odd $n \geq 3$, $\text{val}_{\text{max}}(C_n) = (n - 1)(n + 3)/2$; for odd $n$,
- $\text{val}_{\text{min}}(K_n) = \binom{n+1}{3}$; for odd $n$, $\text{val}_{\text{max}}(K_n) = (n^2 - 1)(3n^2 - 5n + 6)/24$; for even $n$,
- $\text{val}_{\text{max}}(K_n) = n(3n^3 - 5n^2 + 6n - 4)/24$; for every $n \geq 3$, $\text{val}_{\text{min}}(K_{n-1}) = \lceil \frac{n+1}{2} \rceil + \binom{n}{3}$ for a connected graph of order $n$ and size $m$, $\text{val}_{\text{min}}(G) = m$ if and only if $G$ is isomorphic to $P_n$; if $G$ is maximal outerplanar of order $n \geq 2$,
- $\text{val}_{\text{min}}(G) \geq 3n - 5$ and equality occurs if and only if $G = P_n$; if $G$ is a connected $r$-regular bipartite graph of order $n$ and size $m$ where $r \geq 2$, then $\text{val}_{\text{max}}(G) = rn(2m - n + 2)/4$.

In another paper on $\gamma$-labelings of trees Chartrand, Erwin, VanderJagt, and Zhang [449] prove for $p,q \geq 2$, $\text{val}_{\text{min}}(S_{p,q})$ (that is, the graph obtained by joining the centers of $K_{1,p}$ and $K_{1,q}$ by an edge) $= (\lceil p/2 \rceil + 1)^2 + (\lfloor q/2 \rfloor + 1)^2 - (n_p \lceil p/2 \rceil + 1)^2 + (n_q \lfloor q/2 \rfloor + 1)^2$; where $n_i$ is 1 if $i$ is even and $n_i$ is 0 if $n_i$ is odd; $\text{val}_{\text{min}}(S_{p,q}) = (p^2 + q^2 + 4pq - 3p - 3q + 2)/2$; for a connected graph $G$ of order $n$ at least 4, $\text{val}_{\text{min}}(G) = n$ if and only if $G$ is a caterpillar with maximum degree 3 and has a unique vertex of degree 3; for a tree $T$ of order $n$ at least 4, maximum degree $\Delta$, and diameter $d$, $\text{val}_{\text{min}}(T) \geq (8n + \Delta^2 - 6\Delta - 4d + \delta_\Delta)/4$ where $\delta_\Delta = 0$ if $\Delta$ is even and $\delta_\Delta = 0$ if $\Delta$ is odd. They also give a characterization of all trees of order $n$ at least 5 whose minimum value is $n + 1$.

In [1672] Sanaka determined $\text{val}_{\text{max}}(K_{m,n})$ and $\text{val}_{\text{min}}(K_{m,n})$. In [415] Bunge, Chantasrtraamee, El-Zanati, and Vanden Eynden generalized $\gamma$-labelings by introducing two labelings for tripartite graphs. Graphs $G$ that admit either of these labelings guarantee the existence of cyclic $G$-decompositions of $K_{2n+1}$ for all positive integers $x$. They also proved that, except for $C_3 \cup C_3$, the disjoint union of two cycles of odd length admits one of these labelings.

3.3 Graceful-like Labelings

As a means of attacking graph decomposition problems, Rosa [1644] invented another analogue of graceful labelings by permitting the vertices of a graph with $q$ edges to assume labels from the set $\{0,1,\ldots,q+1\}$, while the edge labels induced by the absolute value of the difference of the vertex labels are $\{1,2,\ldots,q-1\}$ or $\{1,2,\ldots,q-1,q+1\}$. He calls these $\rho$-labelings. Frucht [640] used the term nearly graceful labeling instead of $\rho$-labelings. Frucht [640] has shown that the following graphs have nearly graceful labelings with edge labels from $\{1,2,\ldots,q-1,q+1\}$: $P_m \cup P_n$; $S_m \cup S_n$; $S_m \cup P_n$; $G \cup K_2$ where $G$ is graceful; and $C_3 \cup K_2 \cup S_m$ where $m$ is even or $m \equiv 3$ (mod 14). Seoud and Elsakhawi [1714] have shown that all cycles are nearly graceful. Barrientos [275] proved that $C_n$
is nearly graceful with edge labels $1, 2, \ldots, n - 1, n + 1$ if and only if $n \equiv 1$ or 2 (mod 4). Gao [669] shows that a variation of banana trees is odd-graceful (see § 3.6 definition) and in some cases has a nearly graceful labeling. In 1988 Rosa [1646] conjectured that triangular snakes with $t \equiv 0$ or 1 (mod 4) blocks are graceful and those with $t \equiv 2$ or 3 (mod 4) blocks are nearly graceful (a parity condition ensures that the graphs in the latter case cannot be graceful). Moulton [1424] proved Rosa’s conjecture while introducing the slightly stronger concept of almost graceful by permitting the vertex labels to come from \{0, 1, 2, \ldots, q - 1, q + 1\} while the edge labels are $1, 2, \ldots, q - 1, q$, or $1, 2, \ldots, q - 1, q + 1$. More generally, Rosa [1646] conjectured that all triangular cacti are either graceful or near graceful and suggested the use of Skolem sequences to label some types of triangular cacti. Dyer, Payne, Shalaby, and Wicks [568] verified the conjecture for two families of triangular cacti using Langford sequences to obtain Skolem and hooked Skolem sequences with specific subsequences.

Seoud and Elsakhawi [1714] and [1715] have shown that the following graphs are almost graceful: $C_n; P_n + \overline{K_m}; P_n + K_{1,m}; \overline{K_{m,n}}; K_{1,m,n}; K_{2,2,m}; K_{1,1,m,n}; P_n \times P_3$ ($n \geq 3$); $K_5 \cup K_{1,n}; K_6 \cup K_{1,n}$, and ladders.

For a graph $G$ with $p$ vertices, $q$ edges, and $1 \leq k \leq q$, Eshghi [590] defines a holey $\alpha$-labeling with respect to $k$ as an injective vertex labeling $f$ for which $f(v) \in \{1, 2, \ldots, q + 1\}$ for all $v$, $\{|f(u) - f(v)| \text{ for all edges } uv\} = \{1, 2, \ldots, k - 1, k + 1, \ldots, q + 1\}$, and there exist an integer $\gamma$ with $0 \leq \gamma \leq q$ such that $\min\{f(u), f(v)\} \leq \gamma \leq \max\{f(u), f(v)\}$. He proves the following: $P_n$ has a holey $\alpha$-labeling with respect to all $k$; $C_n$ has a holey $\alpha$-labeling with respect to $k$ if and only if either $n \equiv 2$ (mod 4), $k$ is even, and $(n, k) \neq (10, 6)$, or $n \equiv 0$ (mod 4) and $k$ is odd.

Recall from Section 2.2 that a $kC_n$-snake is a connected graph with $k$ blocks whose block-cutpoint graph is a path and each of the $k$ blocks is isomorphic to $C_n$. In addition to his results on the graceful $kC_n$-snakes given in Section 2.2, Barrientos [279] proved that when $k$ is odd the linear $kC_n$-snake is nearly graceful and that $C_m \cup K_{1,n}$ is nearly graceful when $m = 3, 4, 5$, and 6.

Yet another kind of labeling introduced by Rosa in his 1967 paper [1644] is a $\rho$-labeling. (Sometimes called a rosy labeling). A $\rho$-labeling (or $\rho$-valuation) of a graph is an injection from the vertices of the graph with $q$ edges to the set $\{0, 1, \ldots, 2q\}$, where if the edge labels induced by the absolute value of the difference of the vertex labels are $a_1, a_2, \ldots, a_q$, then $a_i = i$ or $a_i = 2q + 1 - i$. Rosa [1644] proved that a cyclic decomposition of the edge set of the complete graph $K_{2q+1}$ into subgraphs isomorphic to a given graph $G$ with $q$ edges exists if and only if $G$ has a $\rho$-labeling. (A decomposition of $K_n$ into copies of $G$ is called cyclic if the automorphism group of the decomposition itself contains the cyclic group of order $n$.) It is known that every graph with at most 11 edges has a $\rho$-labeling and that all lobsters have a $\rho$-labeling (see [439]). Donovan, El-Zanati, Vanden Eyden, and Sutinumtopas [553] prove that $rC_m$ has a $\rho$-labeling (or a more restrictive labeling) when $r \leq 4$. They conjecture that every 2-regular graph has a $\rho$-labeling. Gannon and El-Zanati [665] proved that for any odd $n \geq 7$, $rC_n$ admits $\rho$- labelings. The cases $n = 3$ and $n = 5$ were done in [550] and [578]. Aguado, El-Zanati, Hake, Stob, and Yayla [53] give a $\rho$-labeling of $C_r \cup C_s \cup C_t$ for each of the cases where $r \equiv 0$, $s \equiv 1$, $t \equiv 1$ (mod 4);
Aguado and El-Zanati [52] have proved that the latter conjecture holds when the graph has a ρ-labeling. Vanden Eynden (see [52]) have conjectured that every 2-regular graph with n edges has a ρ-labeling. They call “Combinatorial Nullstellensatz” to prove that if 2k + 1 is prime, then every stunted tree with n edges has a ρ-labeling.

In [297] Barrientos and Minion prove that any forest whose k components admit α-labelings has a ρ-labeling if one of the components is a caterpillar of size at least k − 2. They use a special representation of a tree, as a rooted tree, to find a ρ-labeling of the given tree. This technique allows them to determine exactly the class of trees that needs to be proven to admit ρ-labelings to completely solve Kotzig’s conjecture about the cyclic decomposition of $K_{2n+1}$ into subgraphs isomorphic to a given tree of size n.

Recall a kayak paddle $KP(k,m,l)$ is the graph obtained by joining $C_k$ and $C_m$ by a path of length l. Fronček and Tollefeson [635], [636] proved that $KP(r,s,l)$ has a ρ-labeling for all cases. As a corollary they have that the complete graph $K_{2n+1}$ is decomposable into kayak paddles with n edges.

In [627] Fronček generalizes the notion of an α-labeling by showing that if a graph G on n edges allows a certain type of ρ-labeling, called αρ-labeling, then for any positive integer k the complete graph $K_{2nk+1}$ can be decomposed into copies of G.

In their investigation of cyclic decompositions of complete graphs El-Zanati, Vanden Eynden, and Punnim [584] introduced two kinds of labelings. They say a bipartite graph G with n edges and partite sets A and B has a θ-labeling h if h is a one-to-one function from V(G) to {0, 1, ..., 2n} such that {||h(b) − h(a)|| ab ∈ E(G), a ∈ A, b ∈ B} = {1, 2, ..., n}. They call h a ρ+ -labeling of G if h is a one-to-one function from V(G) to {0, 1, ..., 2n} and the integers h(x) − h(y) are distinct modulo 2n + 1 taken over all ordered pairs (x, y) where xy is an edge in G, and h(b) > h(a) whenever a ∈ A, b ∈ B and ab is an edge in G. Note that θ-labelings are ρ+ -labelings and ρ+ -labelings are ρ-labelings. They prove that if G is a bipartite graph with n edges and a ρ+ -labeling, then for every positive integer x there is a cyclic G-decomposition of $K_{2nx+1}$. They prove the following graphs have ρ+ -labelings: trees of diameter at most 5, $C_{2n}$, lobsters, and comets (that is, graphs obtained from stars by replacing each edge by a path of some fixed length). They also prove that the disjoint union of graphs with α-labelings have a θ-labeling and conjecture that all forests have ρ-labelings.

A σ-labeling of $G(V,E)$ is a one-to-one function f from V to {0, 1, ..., 2|E|} such that {||f(u) − f(v)|| | uv ∈ E(G)} = {1, 2, ..., |E|}. Such a labeling of G yields cyclic G-decompositions of $K_{2n+1}$ and of $K_{2n+2} − F$, where F is a 1-factor of $K_{2n+2}$. El-Zanati and Vanden Eynden (see [52]) have conjectured that every 2-regular graph with n edges has a ρ-labeling and, if n ≡ 0 or 3 (mod 4), then every 2-regular graph has a σ-labeling. Aguado and El-Zanati [52] have proved that the latter conjecture holds when the graph
has at most three components.

Given a bipartite graph $G$ with partite sets $X$ and $Y$ and graphs $H_1$ with $p$ vertices and $H_2$ with $q$ vertices, Fronček and Winters [637] define the bicomposition of $G$ and $H_1$ and $H_2$, $G[H_1, H_2]$, as the graph obtained from $G$ by replacing each vertex of $X$ by a copy of $H_1$, each vertex of $Y$ by a copy of $H_2$, and every edge $xy$ by a graph isomorphic to $K_{p,q}$ with the partite sets corresponding to the vertices $x$ and $y$. They prove that if $G$ is a bipartite graph with $n$ edges and $G$ has a $\theta$-labeling that maps the vertex set $V = X \cup Y$ into a subset of $\{0,1,2,\ldots,2n\}$, then the bicomposition $G[K_p, K_q]$ has a $\delta$-labeling for every $p, q \geq 1$. As corollaries they have: if a bipartite graph $G$ with $n$ edges and at most $n + 1$ vertices has a gracious labeling (see §3.1), then the bicomposition graph $G[K_p, K_q]$ has a gracious labeling for every $p, q \geq 1$, and if a bipartite graph $G$ with $n$ edges has a $\theta$-labeling, then for every $p, q \geq 1$, the bicomposition $G[K_p, K_q]$ decomposes the complete graph $K_{2npq+1}$.

In a paper published in 2009 [583] El-Zanati and Vanden Eynden survey “Rosa-type” labelings. That is, labelings of a graph $G$ that yield cyclic $G$-decompositions of $K_{2n+1}$ or $K_{2nx+1}$ for all natural numbers $x$. The 2009 survey by Fronček [626] includes generalizations of $\rho$- and $\alpha$-labelings that have been used for finding decompositions of complete graphs that are not covered in [583].

Blinco, El-Zanati, and Vanden Eynden [371] call a non-bipartite graph almost-bipartite if the removal of some edge results in a bipartite graph. For these kinds of graphs $G$ they call a labeling $f$ a $\gamma$-labeling of $G$ if the following conditions are met: $f$ is a $\rho$-labeling; $G$ is tripartite with vertex tripartition $A, B, C$ with $C = \{c\}$ and $b \in B$ such that $\{b, c\}$ is the unique edge joining an element of $B$ to $c$; if $av$ is an edge of $G$ with $a \in A$, then $f(a) < f(v)$; and $f(c) - f(b) = n$. (In §3.2 the term $\gamma$-labeling is used for a different kind of labeling.) They prove that if an almost-bipartite graph $G$ with $n$ edges has a $\gamma$-labeling then there is a cyclic $G$-decomposition of $K_{2nx+1}$ for all $x$. They prove that all odd cycles with more than 3 vertices have a $\gamma$-labeling and that $C_3 \cup C_{km}$ has a $\gamma$-labeling if and only if $m > 1$. In [414] Bunge, El-Zanati, and Vanden Eynden prove that every 2-regular almost bipartite graph other than $C_3$ and $C_3 \cup C_4$ have a $\gamma$-labeling.

In [371] Blinco, El-Zanati, and Vanden Eynden consider a slightly restricted $\rho^+$-labeling for a bipartite graph with partite sets $A$ and $B$ by requiring that there exists a number $\lambda$ with the property that $\rho^+(a) \leq \lambda$ for all $a \in A$ and $\rho^+(b) > \lambda$ for all $b \in B$. They denote such a labeling by $\rho^+$. They use this kind of labeling to show that if $G$ is a 2-regular graph of order $n$ in which each component has even order then there is a cyclic $G$-decomposition of $K_{2nx+1}$ for all $x$. They also conjecture that every bipartite graph has a $\rho$-labeling and every 2-regular graph has a $\rho$-labeling.

Dufour [565] and Eldergill [570] have some results on the decomposition of complete graphs using labeling methods. Balakrishnan and Sampathkumar [264] showed that for each positive integer $n$ the graph $K_n + 2K_2$ admits a $\rho$-labeling. Balakrishnan [259] asks if it is true that $K_n + mK_2$ admits a $\rho$-labeling for all $n$ and $m$. Fronček [625] and Fronček and Kubesa [634] have introduced several kinds of labelings for the purpose of proving the existence of special kinds of decompositions of complete graphs into spanning trees.

For $(p,q)$-graphs with $p = q + 1$, Frucht [640] has introduced a stronger version of
almost graceful graphs by permitting as vertex labels \{0, 1, \ldots, q - 1, q + 1\} and as edge labels \{1, 2, \ldots, q\}. He calls such a labeling pseudograceful. Frucht proved that \( P_n \) (\( n \geq 3 \)), combs, sparklers (i.e., graphs obtained by joining an end vertex of a path to the center of a star), \( C_3 \cup P_n \) (\( n \neq 3 \)), and \( C_4 \cup P_n \) (\( n \neq 1 \)) are pseudograceful whereas \( K_{1,n} \) (\( n \geq 3 \)) is not. Kishore [1089] proved that \( C_s \cup P_n \) is pseudograceful when \( s \geq 5 \) and \( n \geq (s + 7)/2 \) and that \( C_s \cup S_n \) is pseudograceful when \( s = 3 \), \( s = 4 \), and \( s \geq 7 \). Seoud and Youssef [1743] and [1739] extended the definition of pseudograceful to all graphs with \( p \leq q + 1 \). They proved that \( K_m \) is pseudograceful if and only if \( m = 1, 3 \), or 4 [1739]; \( K_{m,n} \) is pseudograceful when \( n \geq 2 \), and \( P_m + K_n \) (\( m \geq 2 \)) [1743] is pseudograceful. They also proved that if \( G \) is pseudograceful, then \( G \cup K_{m,n} \) is graceful for \( m \geq 2 \) and \( n \geq 2 \) and \( G \cup K_{m,n} \) is pseudograceful for \( m \geq 2, n \geq 2 \) and \( (m, n) \neq (2, 2) \) [1739]. They ask if \( G \cup K_{2,2} \) is pseudograceful whenever \( G \) is. Seoud and Youssef [1739] observed that if \( G \) is a pseudograceful Eulerian graph with \( q \) edges, then \( q \equiv 0 \) or 3 (mod 4). Youssef [2227] has shown that \( C_n \) is pseudograceful if and only if \( n \equiv 0 \) or 3 (mod 4), and for \( n > 8 \) and \( n \equiv 0 \) or 3 (mod 4), \( C_n \cup K_{p,q} \) is pseudograceful for all \( p, q \geq 2 \) except \( (p, q) = (2, 2) \). Youssef [2224] has shown that if \( H \) is pseudograceful and \( G \) has an \( \alpha \)-labeling with \( k \) being the smaller vertex label of the edge labeled with 1 and if either \( k + 2 \) or \( k - 1 \) is not a vertex label of \( G \), then \( G \cup H \) is graceful. In [2228] Youssef shows that if \( G \) is \( (p, q) \) pseudograceful graph with \( p = q + 1 \), then \( G \cup S_m \) is Skolem-graceful. As a corollary he obtains that for all \( n \geq 2 \), \( P_n \cup S_m \) is Skolem-graceful if and only if \( n \geq 3 \) or \( n = 2 \) and \( m \) is even.

In [2233] Youssef generalizes his results in [2224] and provides new families of disconnected graphs that have \( \alpha \)-labelings and pseudo \( \alpha \)-labelings. (A pseudo \( \alpha \)-labeling \( f \) is an \( \alpha \)-labeling for which there is an integer \( k_j \) with the property that for each edge \( xy \) of the graph either \( f(x) \leq k_j < f(y) \) or \( f(y) \leq k_j < f(x) \).

For a graph \( G \) without isolated vertices Ichishima, Muntaner-Batte, and Oshima [844] defined the beta-number of \( G \) to be either the smallest positive integer \( n \) for which there exists an injective function \( f \) from the vertices of \( G \) to \( \{1, 2, \ldots, n\} \) such that when each edge \( uv \) is labeled \( |f(u) - f(v)| \) the resulting set of edge labels is \( \{c, c+1, \ldots, c+|E(G)|-1\} \) for some positive integer \( c \) or \( +\infty \) if there exists no such integer \( n \). They defined the strong beta-number of \( G \) to be either the smallest positive integer \( n \) for which there exists an injective function \( f \) from the vertices of \( G \) to \( \{1, 2, \ldots, n\} \) such that when each edge \( uv \) is labeled \( |f(u) - f(v)| \) the resulting set of edge labels is \( \{1, 2, \ldots, |E(G)|\} \) or \( +\infty \) if there exists no such integer \( n \). They gave some necessary conditions for a graph to have a finite (strong) beta-number and some sufficient conditions for a graph to have a finite (strong) beta-number. They also determined formulas for the beta-numbers and strong beta-numbers of \( C_n \), \( 2C_n \), \( K_n \) (\( n \geq 2 \)), \( S_m \cup S_n \), \( P_m \cup S_n \), and prove that nontrivial trees and forests without isolated vertices have finite strong beta-numbers. In [840] Ichishima, López, Muntaner-Batte, and Oshima proved that if \( G \) is a bipartite graph and \( m \) is odd, then \( \beta m(G) \leq m|E(G)| + m - 1 \). If \( G \) has the additional property that \( G \) is a graceful nontrivial tree, then \( \beta m(G) = m|V(G)| + m - 1 \). They also investigate (strong) beta-number of forests whose components are isomorphic to either paths or stars.

McTavish [1380] has investigated labelings of graphs with \( q \) edges where the vertex
and edge labels are from \{0, \ldots, q, q + 1\}. She calls these $\tilde{\rho}$-labelings. Graphs that have $\tilde{\rho}$-labelings include cycles and the disjoint union of $P_n$ or $S_n$ with any graceful graph.

Frucht [640] has made an observation about graceful labelings that yields nearly graceful analogs of $\alpha$-labelings and weakly $\alpha$-labelings in a natural way. Suppose $G(V, E)$ is a graceful graph with the vertex labeling $f$. For each edge $xy$ in $E$, let $[f(x), f(y)]$ (where $f(x) \leq f(y)$) denote the interval of real numbers $r$ with $f(x) \leq r \leq f(y)$. Then the intersection $\bigcap [f(x), f(y)]$ over all edges $xy \in E$ is a unit interval, a single point, or empty. Indeed, if $f$ is an $\alpha$-labeling of $G$ then the intersection is a unit interval; if $f$ is a weakly $\alpha$-labeling, but not an $\alpha$-labeling, then the intersection is a point; and, if $f$ is a graceful but not a weakly $\alpha$-labeling, then the intersection is empty. For nearly graceful labelings, the intersection also gives three distinct classes.

A $(p, q)$-graph $G$ is said to be a super graceful graph if there is a a bijective function $f : V(G) \cup E(G) \longrightarrow \{1, 2, \ldots, p + q\}$ such that $f(uv) = |f(u) - f(v)|$ for every edge $uv \in E(G)$ labeling. Perumal, Navaneethakrishnan, Nagarajan, Arockiaraj [1487] and [1488] show that the graphs $P_n$, $C_n$, $P_m \odot nK_1$, $K_{m,n}$, and $P_n \odot K_1$ minus a pendent edge at an endpoint of $P_n$ are super graceful graphs. Lau, Shiu, and Ng [1158] study the super graceful of complete graphs, the disjoint union of certain star graphs, the complete tripartite graphs $K_{1,1,n}$, and certain families of trees. They also provide four methods of constructing new super graceful graphs. They prove all trees of order at most 7 are super graceful and conjecture that all trees are super graceful.

Singh and Devaraj [1852] call a graph $G$ with $p$ vertices and $q$ edges triangular graceful if there is an injection $f$ from $V(G)$ to \{0, 1, 2, \ldots, T_q\} where $T_q$ is the $q$th triangular number and the labels induced on each edge $uv$ by $|f(u) - f(v)|$ are the first $q$ triangular numbers. They prove the following graphs are triangular graceful: paths, level 2 rooted trees, olive trees (see §2.1 for the definition), complete $n$-ary trees, double stars, caterpillars, $C_{4n}, C_{4n}$ with pendent edges, the one-point union of $C_3$ and $P_n$, and unicyclic graphs that have $C_3$ as the unique cycle. They prove that wheels, helms, flowers (see §2.2 for the definition) and $K_n$ with $n \geq 3$ are not triangular graceful. They conjecture that all trees are triangular graceful. In [1774] Sethuraman and Venkatesh introduced a new method for combining graceful trees to obtain trees that have $\alpha$-labelings.

Van Bussel [2087] considered two kinds of relaxations of graceful labelings as applied to trees. He called a labeling range-relaxed graceful it is meets the same conditions as a graceful labeling except the range of possible vertex labels and edge labels are not restricted to the number of edges of the graph (the edges are distinctly labeled but not necessarily labeled 1 to $q$ where $q$ is the number of edges). Similarly, he calls a labeling vertex-relaxed graceful if it satisfies the conditions of a graceful labeling while permitting repeated vertex labels. He proves that every tree $T$ with $q$ edges has a range-relaxed graceful labeling with the vertex labels in the range $0, 1, \ldots, 2q - d$ where $d$ is the diameter of $T$ and that every tree on $n$ vertices has a vertex-relaxed graceful labeling such that the number of distinct vertex labels is strictly greater than $n/2$.

In [292], Barrientos and Krop introduce left- and right-layered trees as trees with a specific representation and define the excess of a tree. Applying these ideas, they show a range-relaxed graceful labeling which improves the upper bound for maximum vertex
label given by Van Bussel in [2087]. They also improve the bounds given by Rosa and Širáň in [1647] for the α-size and gracesize of lobsters.

Sekar [1689] calls an injective function \( \phi \) from the vertices of a graph with \( q \) edges to \( \{0, 1, 3, 4, 6, 7, \ldots, 3(q - 1), 3q - 2\} \) one modulo three graceful if the edge labels induced by labeling each edge \( uv \) with \( |\phi(u) - \phi(v)| \) is \( \{1, 4, 7, \ldots, 3q - 2\} \). He proves that the following graphs are one modulo three graceful: \( P_m; C_n \) if and only if \( n \equiv 0 \mod 4 \); \( K_{m,n}; C_{2n}^{(2)} \) (the one-point union of two copies of \( C_{2n} \)); \( C_n^{(t)} \) for \( n = 4 \) or \( 8 \) and \( t > 2 \); \( C_6^{(t)} \) and \( t \geq 4 \); caterpillars; stars; lobsters; banana trees; rooted trees of height 2; ladders; the graphs obtained by identifying the endpoints of any number of copies of \( P_n \); the graph obtained by attaching pendent edges to each endpoint of two identical stars and then identifying one endpoint from each of these graphs; the graph obtained by identifying a vertex of \( C_{4k+2} \) with an endpoint of a star; \( n \)-polygonal snakes (see §2.2) for \( n \equiv 0 \mod 4 \); \( n \)-polygonal snakes for \( n \equiv 2 \) (mod 4) where the number of polygons is even; crowns \( C_n \circ K_1 \) for \( n \) even; \( C_{2n} \circ P_m \) (\( C_{2n} \) with \( P_m \) attached at each vertex of the cycle) for \( m \geq 3 \); chains of cycles (see §2.2) of the form \( C_{4m}, C_{6,2m}, \) and \( C_{8,m} \). He conjectures that every one modulo three graceful graph is graceful.

Jeba Jesinha and Ezhilarasi Hilda [892] proved the disjoint union of two subdivided shell graphs are one modulo three graceful.

In [1593] Ramachandran and Sekar introduced the notion of one modulo \( N \) graceful as follows. For a positive integer \( N \) a graph \( G \) with \( q \) edges is said to be one modulo \( N \) graceful if there is an injective function \( \phi \) from the vertex set of \( G \) to \( \{0, 1, N, (N + 1), 2N, (2N + 1), \ldots, N(q), N(q) + 1\} \) such that \( \phi \) induces a bijection \( \phi^* \) from the edge set of \( G \) to \( \{1, N + 1, 2N + 1, \ldots, N(q) + 1\} \) where \( \phi^*(uv) = |\phi(u) - \phi(v)| \). They proved the following graph are one modulo \( N \) graceful for all positive integers \( N \): paths, caterpillars, and stars [1593]; \( n \)-polygonal snakes, \( C_n^{(t)} \), \( P_{a,b} \) [1604]; the splitting graphs \( S'(P_{2n}), S'(P_{2n+1}), S'(K_{1,n}) \), all subdivision graphs of double triangular snakes, and all subdivision graphs of \( 2m \)-triangular snakes [1594]; the graph \( L_n \circ S_m \) obtained from the ladder \( L_n \) (\( P_n \times P_2 \)) by identifying one vertex of \( L_n \) with any vertex of the star \( S_m \) other than the center of \( S_m \) [1596]; arbitrary supersubdivisions of paths, disconnected paths, cycles, and stars [1595]; and regular bamboo trees and coconut trees [1597]. Ramachandran and Sekar [1598] prove the supersubdivisions of ladders are one modulo \( N \) graceful for all positive integers \( N \).

Deviating from the standard definition of Fibonacci numbers, Kathiresan and Amutha [1066] define \( F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots \). They call a function \( f : V(G) \rightarrow \{0, 1, 2, \ldots, F_q\} \) where \( F_q \) is their \( q \)th Fibonacci number, to be Fibonacci graceful labeling if the induced edge labeling \( \overline{f}(uv) = |f(u) - f(v)| \) is a bijection onto the set \( \{F_1, F_2, \ldots, F_q\} \). If a graph admits a Fibonacci graceful labeling, it is is called a Fibonacci graceful graph. They prove the following: \( K_n \) is Fibonacci graceful if and only if \( n \leq 3 \); if an Eulerian graph with \( q \) edges is Fibonacci graceful then \( q \equiv 0 \mod 3 \); paths are Fibonacci graceful; fans \( P_n \circ K_1 \) are Fibonacci graceful; squares of paths \( P_n^2 \) are Fibonacci graceful; and caterpillars are Fibonacci graceful. They define a function \( f : V(G) \rightarrow \{0, F_1, F_2, \ldots, F_q\} \) where \( F_i \) is the \( i \)th Fibonacci number, to be super Fibonacci graceful labeling if the induced labeling \( \overline{f}(uv) = |f(u) - f(v)| \) is a bijection onto the set \( \{F_1, F_2, \ldots, F_q\} \). They show that
bistars $B_{n,n}$ are Fibonacci graceful but not super Fibonacci graceful for $n \geq 5$; cycles $C_n$ are super Fibonacci graceful if and only if $n \equiv 0 \pmod{3}$; if $G$ is Fibonacci or super Fibonacci graceful then $G \circ K_1$ is Fibonacci graceful; if $G_1$ and $G_2$ are super Fibonacci graceful in which no two adjacent vertices have the labeling 1 and 2 then $G_1 \cup G_2$ is Fibonacci graceful; and if $G_1, G_2, \ldots, G_n$ are super Fibonacci graceful graphs in which no two adjacent vertices are labeled with 1 and 2 then the amalgamation of $G_1, G_2, \ldots, G_n$ obtained by identifying the vertices having labels 0 is also a super Fibonacci graceful.

Vaidya and Prajapati [2048] proved: the graphs obtained joining a vertex of $C_{3m}$ and a vertex of $C_{3n}$ by a path $P_k$ are Fibonacci graceful; the graphs obtained by starting with any number of copies of $C_{3m}$ and joining each copy with a copy of the next by identifying the end points of a path with a vertex of each successive pair of $C_{3m}$ (the paths need not be the same length) are Fibonacci graceful; the one point union of $C_{3m}$ and $C_{3n}$ is Fibonacci graceful; the one point union of $k$ cycles $C_{3m}$ is super Fibonacci graceful; every cycle $C_n$ with $n \equiv 0 \pmod{3}$ or $n \equiv 1 \pmod{3}$ is an induced subgraph of a super Fibonacci graceful graph; and every cycle $C_n$ with $n \equiv 2 \pmod{3}$ can be embedded as a subgraph of a Fibonacci graceful graph.

For a graph $G$ with $q$ edges an injective function $f$ from the vertices of $G$ to
\{ $F_0, F_1, F_2, \ldots, F_{q-1}, F_{q+1}$\}, where $F_i$ is the $i$th Fibonacci number (as defined by Kathiresan and Amuth above), is said to be almost super Fibonacci graceful if the induced edge labeling $f \ast (uv) = |f(u) - f(v)|$ is a bijection onto the set $\{F_1, F_2, \ldots, F_q\}$ or $\{F_0, F_1, F_2, \ldots, F_{q-1}, F_{q+1}\}$. Sridevi, Navaneethakrishnan and Nagarajan [1909] proved that paths, combs, graphs obtained by subdividing each edge of a star, and some special types of extension of cycle related graphs are almost super Fibonacci graceful labeling.

For a graph $G$ and a vertex $v$ of $G$, a vertex switching $G_v$ is the graph obtained from $G$ by removing all edges incident to $v$ and adding edges joining $v$ to every vertex not adjacent to $v$ in $G$. Vaidya and Vihol [2073] prove the following: trees are Fibonacci graceful; the graph obtained by switching a vertex in cycle is Fibonacci graceful; wheels and helms are not Fibonacci graceful; the graph obtained by switching of a vertex in a cycle is super Fibonacci graceful except $n \geq 6$; the graph obtained by switching of a vertex in cycle $C_n$ for $n \geq 6$ can be embedded as an induced subgraph of a super Fibonacci graceful graph; and the graph obtained by joining two copies of a fixed fan with an edge is Fibonacci graceful.

In [399] Brešar and Klavžar define a natural extension of graceful labelings of certain tree subgraphs of hypercubes. A subgraph $H$ of a graph $G$ is called isometric if for every two vertices $u, v$ of $H$, there exists a shortest $u-v$ path that lies in $H$. The isometric subgraphs of hypercubes are called partial cubes. Two edges $xy, uv$ of $G$ are in $\Theta$-relation if $d_G(x, u) + d_G(y, v) \neq d_G(x, v) + d_G(y, u)$. A $\Theta$-relation is an equivalence relation that partitions $E(G)$ into $\Theta$-classes. A $\Theta$-graceful labeling of a partial cube $G$ on $n$ vertices is a bijection $f: V(G) \to \{0, 1, \ldots, n-1\}$ such that, under the induced edge labeling, all edges in each $\Theta$-class of $G$ have the same label and distinct $\Theta$-classes get distinct labels. They prove that several classes of partial cubes are $\Theta$-graceful and the Cartesian product of $\Theta$-graceful partial cubes is $\Theta$-graceful. They also show that if there exists a class of partial cubes that contains all trees and every member of the class admits a $\Theta$-graceful
labeling then all trees are graceful.

Table 4 provides a summary results about graceful-like labelings adapted from [398].

"Y" indicates that all graphs in that class have the labeling; "N" indicates that not all graphs in that class have the labeling; "?" means unknown; "C" means conjectured.

<table>
<thead>
<tr>
<th>Graph</th>
<th>α-labeling</th>
<th>β-labeling</th>
<th>σ-labeling</th>
<th>ρ-labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle $C_n$, $n \equiv 0 \mod 4$</td>
<td>Y [1644]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Cycle $C_n$, $n \equiv 3 \mod 4$</td>
<td>N [1644]</td>
<td>Y [1644]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Wheels</td>
<td>N</td>
<td>Y [638], [819]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, if order ≤ 5</td>
<td>5</td>
<td>35 [601]</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Paths</td>
<td>Y [1644]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Caterpillars</td>
<td>Y [1644]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firecrackers</td>
<td>Y [464]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bananas</td>
<td>?</td>
<td>Y [1760], [1759]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Diameter &lt; 8</td>
<td>N [2156]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>&lt; 5 end vertices</td>
<td>N [372]</td>
<td>Y [1644]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Max degree 3</td>
<td>N [1647]</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Max degree 3 and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfect matching</td>
<td>C [396]</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

3.4 $k$-graceful Labelings

A natural generalization of graceful graphs is the notion of $k$-graceful graphs introduced independently by Slater [1875] in 1982 and by Maheo and Thuillier [1346] in 1982. A graph $G$ with $q$ edges is $k$-graceful if there is labeling $f$ from the vertices of $G$ to $\{0, 1, 2, \ldots, q + k - 1\}$ such that the set of edge labels induced by the absolute value of the difference of the labels of adjacent vertices is $\{k, k + 1, \ldots, q + k - 1\}$. Obviously, 1-graceful is graceful and it is readily shown that any graph that has an $\alpha$-labeling is $k$-graceful for all $k$. Graphs that are $k$-graceful for all $k$ are sometimes called arbitrarily graceful. The result of Barrientos and Minion [293] that all snake polyominoes are $\alpha$-graphs partially answers a question of Acharyya [25] and supports his conjecture that if the length of every cycle of a graph is a multiple of 4, then the graph is arbitrarily graceful. In [1715] Seoud and Elsakhawi show that $P_2 \oplus K_2$ $(n \geq 2)$ is arbitrarily graceful. Ng [1443] has shown that there are graphs that are $k$-graceful for all $k$ but do not have an $\alpha$-labeling.

Results of Maheo and Thuillier [1346] together with those of Slater [1875] show that:
$C_n$ is $k$-graceful if and only if either $n \equiv 0 \text{ or } 1 \pmod{4}$ with $k$ even and $k \leq (n-1)/2$, or $n \equiv 3 \pmod{4}$ with $k$ odd and $k \leq (n^2-1)/2$. Maheo and Thuillier [1346] also proved that the wheel $W_{2k+1}$ is $k$-graceful and conjectured that $W_{2k}$ is $k$-graceful when $k \neq 3$ or $k \neq 4$. This conjecture was proved by Liang, Sun, and Xu [1273]. Kang [1054] proved that $P_m \times C_4$ is $k$-graceful for all $k$. Lee and Wang [1240] showed that the graphs obtained from a nontrivial path of even length by joining every other vertex to one isolated vertex (a lotus), the graphs obtained from a nontrivial path of even length by joining every other vertex to two isolated vertices (a diamond), and the graphs obtained by arranging vertices into a finite number of rows with $i$ vertices in the $i$th row and in every row the $j$th vertex in that row is joined to the $j$th vertex of the next row (a pyramid) are $k$-graceful. Liang and Liu [1260] have shown that $K_{m,n}$ is $k$-graceful. Bu, Gao, and Zhang [408] have proved that $P_n \times P_2$ and $(P_n \times P_2) \cup (P_n \times P_2)$ are $k$-graceful for all $k$. Acharya (see [25]) has shown that a $k$-graceful Eulerian graph with $q$ edges must satisfy one of the following conditions: $q \equiv 0 \pmod{4}$, $q \equiv 1 \pmod{4}$ if $k$ is even, or $q \equiv 3 \pmod{4}$ if $k$ is odd. Bu, Zhang, and He [413] have shown that an even cycle with a fixed number of pendant edges adjoined to each vertex is $k$-graceful. Li, Li, and Yan [1258] proved that the graphs obtained from $K_{2,n}$ ($n \geq 2$) and $K_{3,n}$ ($n \geq 3$) by attaching $r \geq 2$ edges at each vertex is $k$-graceful for all $k \geq 2$. Seoud and Elsakhawi [1715] proved: paths and ladders are arbitrarily graceful; and for $n \geq 3$, $K_n$ is $k$-graceful if and only if $k = 1$ and $n = 3$ or $4$. Li, Li, and Yan [1258] proved that $K_{m,n}$ is $k$-graceful graph. Pradhan and Kamesh [1560] showed that the hairy cycle $C_n \cdot rK_1$ ($n \equiv 3 \pmod{4}$), the graph obtained by adding a pendant edge to each pendant vertex of hairy cycle $C_n \cdot K_1$; $n \equiv 0 \pmod{4}$, double graphs of path $P_n$, and double graphs of combs $P_n \cdot K_1$ are $k$-graceful.

Yao, Cheng, Zhongfu, and Yao [2215] have shown: a tree of order $p$ with maximum degree at least $p/2$ is $k$-graceful for some $k$; if a tree $T$ has an edge $u_1u_2$ such that the two components $T_1$ and $T_2$ of $T - u_1u_2$ have the properties that $d_{T_1}(u_1) \geq |T_1|/2$ and $d_{T_2}(u_2) \geq |T_2|/2$, then $T$ is $k$-graceful for some positive $k$; if a tree $T$ has two edges $u_1u_2$ and $u_3u_4$ such that the three components $T_1$, $T_2$, and $T_3$ of $T - \{u_1u_2, u_3u_4\}$ have the properties that $d_{T_1}(u_1) \geq |T_1|/2$, $d_{T_2}(u_2) \geq |T_2|/2$, and $d_{T_3}(u_3) \geq |T_3|/2$, then $T$ is $k$-graceful for some $k > 1$; and every Skolem-graceful (see 3.5 for the definition) tree is $k$-graceful for all $k \geq 1$. They conjecture that every tree is $k$-graceful for some $k > 1$.

Several authors have investigated the $k$-gracefulness of various classes of subgraphs of grid graphs. Acharya [23] proved that all 2-dimensional polyominoes that are convex and Eulerian are $k$-graceful for all $k$; Lee [1173] showed that Mongolian tents and Mongolian villages are $k$-graceful for all $k$ (see §2.3 for the definitions); Lee and K. C. Ng [1195] proved that all Young tableaus (see §2.3 for the definitions) are $k$-graceful for all $k$. (A special case of this is $P_n \times P_2$.) Lee and H. K. Ng [1195] subsequently generalized these results on Young tableaus to a wider class of planar graphs.

Duan and Qi [564] use $G_t(m_1, n_1; m_2, n_2; \ldots; m_s, n_s)$ to denote the graph composed of the $s$ complete bipartite graphs $K_{m_1,n_1}, K_{m_2,n_2}, \ldots, K_{m_s,n_s}$ that have only $t$ common vertices but no common edge and
Let \( G(m_1, n_1; m_2, n_2) \) denote the graph composed of the complete bipartite graphs \( K_{m_1,n_1}, K_{m_2,n_2} \) with exactly one common edge. They prove that these graphs are \( k \)-graceful graphs for all \( k \).

Let \( c, m, p_1, p_2, \ldots, p_m \) be positive integers. For \( i = 1, 2, \ldots, m \), let \( S_i \) be a set of \( p_i + 1 \) integers and let \( D_i \) be the set of positive differences of the pairs of elements of \( S_i \). If all these differences are distinct then the system \( D_1, D_2, \ldots, D_m \) is called a perfect system of difference sets starting at \( c \) if the union of all the sets \( D_i \) is \( c, c+1, \ldots, c-1 + \sum_{i=1}^{m} (p_i+1) \).

There is a relationship between \( k \)-graceful graphs and perfect systems of difference sets. A perfect system of difference sets starting with \( c \) describes a \( c \)-graceful labeling of a graph that is decomposable into complete subgraphs. A survey of perfect systems of difference sets is given in [13].

Acharya and Hegde [38] generalized \( k \)-graceful labelings to \((k,d)\)-graceful labelings by permitting the vertex labels to belong to \( \{0,1,2,\ldots,k+(q-1)d\} \) and requiring the set of edge labels induced by the absolute value of the difference of labels of adjacent vertices to be \( \{k,k+d,k+2d,\ldots,k+(q-1)d\} \). They also introduce an analog of \( \alpha \)-labelings in the obvious way. Notice that a \((1,1)\)-graceful labeling is a graceful labeling and a \((1,1)\)-graceful labeling is a \( k \)-graceful labeling. Bu and Zhang [412] have shown: \( K_{m,n} \) is \((k,d)\)-graceful for all \( k \) and \( d \); for \( n > 2 \), \( K_n \) is \((k,d)\)-graceful if and only if \( k = d \) and \( n \leq 4 \); if \( m_i, n_i \geq 2 \) and \( \max\{m_i,n_i\} \geq 3 \), then \( K_{m_1,n_1} \cup K_{m_2,n_2} \cup \cdots \cup K_{m_r,n_r} \) is \((k,d)\)-graceful for all \( k \) and \( d \); and \( G \) has an \( \alpha \)-labeling, then \( G \) is \((k,d)\)-graceful for all \( k \) and \( d \); a \( k \)-graceful graph is a \((kd,d)\)-graceful graph; a \((kd,d)\)-graceful connected graph is \( k \)-graceful; and a \((k,d)\)-graceful graph with \( q \) edges that is not bipartite must have \( k \leq (q-2)d \).

Let \( T \) be a tree with adjacent vertices \( u_0 \) and \( v_0 \) and pendent vertices \( u \) and \( v \) such that the length of the path \( u_0 - u \) is the same as the length of the path \( v_0 - v \). Hegde and Shetty [803] call the graph obtained from \( T \) by deleting \( u_0v_0 \) and joining \( u \) and \( v \) an elementary parallel transformation of \( T \). They say that a tree \( T \) is a \( T_p \)-tree if it can be transformed into a path by a sequence of elementary parallel transformations. They prove that every \( T_p \)-tree is \((k,d)\)-graceful for all \( k \) and \( d \) and every graph obtained from a \( T_p \)-tree by subdividing each edge of the tree is \((k,d)\)-graceful for all \( k \) and \( d \).

Yao, Cheng, Zhongfu, and Yao [2215] have shown: a tree of order \( p \) with maximum degree at least \( p/2 \) is \((k,d)\)-graceful for some \( k \) and \( d \); if a tree \( T \) has an edge \( u_1u_2 \) such that the two components \( T_1 \) and \( T_2 \) of \( T - u_1u_2 \) have the properties that \( d_{T_1}(u_1) \geq |T_1|/2 \) and \( T_2 \) is a caterpillar, then \( T \) is Skolem-graceful (see 3.5 for the definition); if a tree \( T \) has an edge \( u_1u_2 \) such that the two components \( T_1 \) and \( T_2 \) of \( T - u_1u_2 \) have the properties that \( d_{T_1}(u_1) \geq |T_1|/2 \) and \( d_{T_2}(u_2) \geq |T_2|/2 \), then \( T \) is \((k,d)\)-graceful for some \( k > 1 \) and \( d > 1 \); if a tree \( T \) has two edges \( u_1u_2 \) and \( u_2u_3 \) such that the three components \( T_1, T_2, \) and \( T_3 \) of \( T - \{u_1u_2, u_2u_3\} \) have the properties that \( d_{T_1}(u_1) \geq |T_1|/2, d_{T_2}(u_2) \geq |T_2|/2, \) and \( d_{T_3}(u_3) \geq |T_3|/2 \), then \( T \) is \((k,d)\)-graceful for some \( k > 1 \) and \( d > 1 \); and every Skolem-graceful tree is \((k,d)\)-graceful for \( k \geq 1 \) and \( d > 0 \). They conjecture that every tree is \((k,d)\)-graceful for some \( k > 1 \) and \( d > 1 \).

Hegde [789] has proved the following: if a graph is \((k,d)\)-graceful for odd \( k \) and even \( d \), then the graph is bipartite; if a graph is \((k,d)\)-graceful and contains \( C_{2j+1} \) as a subgraph,
then \( k \leq jd(q - j - 1) \); \( K_n \) is \((k,d)\)-graceful if and only if \( n \leq 4 \); \( C_{4t} \) is \((k,d)\)-graceful for all \( k \) and \( d \); \( C_{4t+1} \) is \((2t,1)\)-graceful; \( C_{4t+2} \) is \((2t - 1, 2)\)-graceful; and \( C_{4t+3} \) is \((2t + 1, 1)\)-graceful.

A semismooth graceful graph is a bipartite graph \( G \) with the property that for some fixed positive integer \( t \leq q \) and all positive integers \( l \) there is an injective map \( g : V \rightarrow \{0, 1, \ldots, t - l, t + l + 1, \ldots, q + l\} \) such that the induced edge labeling map \( g^*: E \rightarrow \{1 + l, 2 + l, \ldots, q + l\} \) defined by \( g^*(e) = |g(u) - g(v)| \) is a bijection. Kaneria, Gohil, and Makadia \[1014\] prove every semismooth graceful graph is a \((k,d)\)-graceful; graphs obtained by joining two semismooth graceful graphs with an arbitrary path is a semismooth graceful graph; and the notions of graceful labeling and odd-even graceful labelings are equivalent.

Kaneria, Meghpara and Khoda \[1020\] prove: a smooth graceful labeling for a graph is also an \( \alpha \)-labeling for the graph; a graph that has an \( \alpha \)-labeling is a semismooth graceful graph; graphs that admit an \( \alpha \)-labeling are semismooth graceful graphs; if \( m \) is even and \( H \) has an \( \alpha \)-labeling, then the path union \( P(m \cdot H) \) is a smooth graceful graph; and the path union \( P(m \cdot H) \) has an \( \alpha \)-labeling.

For a graph \( G \) let \( G^{(1)}, G^{(2)}, \ldots, G^{(n)} \) be \( n \geq 2 \) copies of \( G \). The graph obtained by joining vertices \( u, v \) of \( G^{(i)} \) with same vertices of the graph \( G^{(i+1)} \) by two edges, for all \( i = 1, 2, \ldots, n - 1 \) is called the double path union of \( n \) copies of the graph \( G \). Such graphs can obtained in \( \frac{p(p-1)}{2} \) different ways, where \( p = |V(G)| \) and are denoted by \( D(n \cdot G) \). Kaneria, Teraiya and Meghpara \[1047\] prove the double path unions of \( C_{4m}, K_{m,n}, \) and \( P_{2m} \) have \( \alpha \)-labelings.

Hegde \[787\] calls a \((k,d)\)-graceful graph \((k,d)\)-balanced if it has a \((k,d)\)-graceful labeling \( f \) with the property that there is some integer \( m \) such that for every edge \( uv \) either \( f(u) \leq m \) and \( f(v) > m \), or \( f(u) > m \) and \( f(v) \leq m \). He proves that if a graph is \((1,1)\)-balanced then it is \((k,d)\)-graceful for all \( k \) and \( d \) and that a graph is \((1,1)\)-balanced graph if and only if it is \((k,k)\)-balanced for all \( k \). He conjectures that all trees are \((k,d)\)-balanced for some values of \( k \) and \( d \).

Slater \[1878\] has extended the definition of \( k \)-graceful graphs to countable infinite graphs in a natural way. He proved that all countably infinite trees, the complete graph with countably many vertices, and the countably infinite Dutch windmill is \( k \)-graceful for all \( k \).

In \[809\] Hegde and Shiavarajkumar extend the idea of \( k \)-graceful labeling of undirected graphs to directed graphs as follows. A simple directed graph \( D \) with \( n \) vertices and \( e \) edges is labeled by assigning each vertex a distinct element from the set \( \mathbb{Z}_{e+k} \) and assigning the edge \( xy \) from vertex \( x \) to vertex \( y \) the label \( \theta(x, y) = \theta(y) \theta(x) \mod(e + k) \), where \( \theta(y) \) and \( \theta(x) \) are the values assigned to the vertices \( y \) and \( x \) respectively. A labeling is a \( k \)-graceful labeling if all \( \theta(x, y) \) are distinct and belong to \( \{k, k+1, \ldots, k+e-1\} \). If a digraph \( D \) admits a \( k \)-graceful labeling then \( D \) is called a \( k \)-graceful digraph. They provide some values of \( k \) for which the unidirectional cycles admit a \( k \)-graceful labeling; give a necessary and sufficient condition for the outspoken unicyclic wheel to be \( k \)-graceful; and prove that to provide a list of values of \( k \) for which the unicyclic wheel is \( k \)-graceful is NP-complete.
More specialized results on $k$-graceful labelings can be found in [1173], [1195], [1199], [1875], [407], [409], [408], and [462].

### 3.5 Skolem-Graceful Labelings

A number of authors have invented analogues of graceful graphs by modifying the permissible vertex labels. For instance, Lee (see [1225]) calls a graph $G$ with $p$ vertices and $q$ edges Skolem-graceful if there is an injection from the set of vertices of $G$ to $\{1, 2, \ldots, p\}$ such that the edge labels induced by $|f(x) - f(y)|$ for each edge $xy$ are $1, 2, \ldots, q$. A necessary condition for a graph to be Skolem-graceful is that $p \geq q+1$. Lee and Wui [1255] have shown that a connected graph is Skolem-graceful if and only if it is a graceful tree. Yao, Cheng, Zhongfu, and Yao [2215] have shown that a tree of order $p$ with maximum degree at least $p/2$ is Skolem-graceful. Although the disjoint union of trees cannot be graceful, they can be Skolem-graceful. Lee and Wui [1255] prove that the disjoint union of 2 or 3 stars is Skolem-graceful if and only if at least one star has even size. In [489] Choudum and Kishore show that the disjoint union of $k$ copies of the star $K_{1,2p}$ is Skolem graceful if $k \leq 4p+1$ and the disjoint union of any number of copies of $K_{1,2}$ is Skolem graceful. For $k \geq 2$, let $St(n_1, n_2, \ldots, n_k)$ denote the disjoint union of $k$ stars with $n_1, n_2, \ldots, n_k$ edges. Lee, Wang, and Wui [1248] showed that the 4-star $St(n_1, n_2, n_3, n_4)$ is Skolem-graceful for some special cases and conjectured that all 4-stars are Skolem-graceful. Denham, Leu, and Liu [534] proved this conjecture. Kishore [1089] has shown that a necessary condition for $St(n_1, n_2, \ldots, n_k)$ to be Skolem graceful is that some $n_i$ is even or $k \equiv 0 \text{ or } 1 \pmod{4}$ (see also [2243]). He conjectures that each one of these conditions is sufficient. Yue, Yuan-sheng, and Xin-hong [2243] show that for $k \geq 5$, a $k$-star is Skolem-graceful if at one star has even size or $k \equiv 0 \text{ or } 1 \pmod{4}$. Choudum and Kishore [487] proved that all 5-stars are Skolem graceful.

Lee, Quach, and Wang [1211] showed that the disjoint union of the path $P_n$ and the star of size $m$ is Skolem-graceful if and only if $n = 2$ and $m$ is even or $n \geq 3$ and $m \geq 1$. It follows from the work of Skolem [1867] that $nP_2$, the disjoint union of $n$ copies of $P_2$, is Skolem-graceful if and only if $n \equiv 0 \text{ or } 1 \pmod{4}$. Harary and Hsu [769] studied Skolem-graceful graphs under the name node-graceful. Frucht [640] has shown that $P_m \cup P_n$ is Skolem-graceful when $m + n \geq 5$. Bhat-Nayak and Deshmukh [361] have shown that $P_{n_1} \cup P_{n_2} \cup P_{n_3}$ is Skolem-graceful when $n_1 < n_2 \leq n_3$, $n_2 = t(n_1 + 2) + 1$ and $n_1$ is even and when $n_1 < n_2 \leq n_3$, $n_2 = t(n_1 + 3) + 1$ and $n_1$ is odd. They also prove that the graphs of the form $P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_i}$ where $i \geq 4$ are Skolem-graceful under certain conditions. In [538] Deshmukh states the following results: the sum of all the edges on any cycle in a Skolem graceful graph is even; $C_5 \cup K_{1,n}$ if and only if $n = 1$ or 2; $C_6 \cup K_{1,n}$ if and only if $n = 2$ or 4.

Youssef [2224] proved that if $G$ is Skolem-graceful, then $G + \overline{K_n}$ is graceful. In [2228] Youssef shows that that for all $n \geq 2$, $P_n \cup S_m$ is Skolem-graceful if and only if $n \geq 3$ or $n = 2$ and $m$ is even. Yao, Cheng, Zhongfu, and Yao [2215] have shown that if a tree $T$ has an edge $u_1u_2$ such that the two components $T_1$ and $T_2$ of $T - u_1u_2$ have the properties that $d_{T_1}(u_1) \geq |T_1|/2$ and $T_2$ is a caterpillar or have the properties that $d_{T_1}(u_1) \geq |T_1|/2$
and $d_{T_2}(u_2) \geq |T_2|/2$, then $T$ is Skolem-graceful.

Mendelsohn and Shalaby [1386] defined a Skolem labeled graph $G(V, E)$ as one for which there is a positive integer $d$ and a function $L: V \to \{d, d+1, \ldots, d+m\}$, satisfying (a) there are exactly two vertices in $V$ such that $L(v) = d+i$, $0 \leq i \leq m$; (b) the distance in $G$ between any two vertices with the same label is the value of the label; and (c) if $G'$ is a proper spanning subgraph of $G$, then $L$ restricted to $G'$ is not a Skolem labeled graph. Note that this definition is different from the Skolem-graceful labeling of Lee, Quach, and Wang. A hooked Skolem sequence of order $n$ is a sequence $s_1, s_2, \ldots, s_{2n+1}$ such that $s_{2n} = 0$ and for each $j \in \{1, 2, \ldots, n\}$, there exists a unique $i \in \{1, 2, \ldots, 2n - 1, 2n + 1\}$ such that $s_i = s_{i+j} = j$. Mendelsohn [1385] established the following: any tree can be embedded in a Skolem labeled tree with $O(v)$ vertices; any graph can be embedded as an induced subgraph in a Skolem labeled graph on $O(v^3)$ vertices; for $d = 1$, there is a Skolem labeling or the minimum hooked Skolem (with as few unlabeled vertices as possible) labeling for paths and cycles; for $d = 1$, there is a minimum Skolem labeled graph containing a path or a cycle of length $n$ as induced subgraph. In [1385] Mendelsohn and Shalaby prove that the necessary conditions in [1386] are sufficient for a Skolem or minimum hooked Skolem labeling of all trees consisting of edge-disjoint paths of the same length from some fixed vertex. Graham, Pike, and Shalaby [736] obtained various Skolem labeling results for grid graphs. Among them are $P_1 \times P_n$ and $P_2 \times P_n$ have Skolem labelings if and only if $n \equiv 0$ or $1 \mod 4$; and $P_m \times P_n$ has a Skolem labeling for all $m$ and $n$ at least 3.

In [1497] Pike, Sanaei, and Shalaby introduce pseudo-Skolem sequences, which are similar to Skolem-type sequences in their structures and applications. They use known Skolem-type sequences to constructions of such sequences and discuss applications of these sequences to Skolem labelings for graphs such that $H$ is bipartite, and give formulas for the gamma-number of rail-siding graphs and caterpillars.

In [509] Clark and Sanaei present (hooked) vertex Skolem labelings for generalized Dutch windmills whenever such labelings exist. They present a novel technique for showing that generalized Dutch windmills with more than two cycles cannot be Skolem labelled and that those composed of two cycles of lengths $m$ and $n$, $n \geq m$ cannot be Skolem labelled if and only if $n - m \equiv 3$ or $5 \mod 8$ and $m$ is odd.

### 3.6 Odd-Graceful Labelings

Gnanajothi [721, p. 182] defined a graph $G$ with $q$ edges to be odd-graceful if there is an injection $f$ from $V(G)$ to $\{0, 1, 2, \ldots, 2q - 1\}$ such that, when each edge $xy$ is assigned the label $|f(x) - f(y)|$, the resulting edge labels are $\{1, 3, 5, \ldots, 2q - 1\}$. She proved that the class of odd-graceful graphs lies between the class of graphs with $\alpha$-labelings and the class of bipartite graphs by showing that every graph with an $\alpha$-labeling has an odd-graceful labeling and every graph with an odd cycle is not odd-graceful. She also proved the following graphs are odd-graceful: $P_n$; $C_n$ if and only if $n$ is even; $K_{m,n}$; combs $P_n \circ K_1$ (graphs obtained by joining a single pendent edge to each vertex of $P_n$); books; crowns $C_n \circ K_1$ (graphs obtained by joining a single pendent edge to each vertex of $C_n$).
if and only if \( n \) is even; the disjoint union of copies of \( C_4 \); the one-point union of copies of \( C_4 \); \( C_n \times K_2 \) if and only if \( n \) is even; caterpillars; rooted trees of height 2; the graphs obtained from \( P_n \) \((n \geq 3)\) by adding exactly two leaves at each vertex of degree 2 of \( P_n \); the graphs obtained from \( P_n \times P_2 \) by deleting an edge that joins to end points of the \( P_n \) paths; the graphs obtained from a star by adjoining to each end vertex the path \( P_3 \) or by adjoining to each end vertex the path \( P_4 \). She conjectures that all trees are odd-graceful and proves the conjecture for all trees with order up to 10. Barrientos [282] has extended this to trees of order up to 12. Eldergill [570] generalized Gnanajothi’s result on stars by showing that the graphs obtained by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.

Yan [2201] proved that \( P_m \times P_n \) is odd-graceful for the graph obtained from \( C_6 \) by joining one end point from each of any odd number of paths of equal length is odd-graceful. He also proved that the one-point union of any number of copies of \( C_6 \) is odd-graceful. Kathiresan [1064] has shown that ladders and graphs obtained from them by subdividing each step exactly once are odd-graceful. Barrientos [285] and [282] has proved the following graphs are odd-graceful:

- Every forest whose components are caterpillars; every tree with diameter at most five is odd-graceful;
- All disjoint unions of caterpillars. He conjectures that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1712] have shown that a connected complete \( r \)-partite graph is odd-graceful if and only if \( r = 2 \) and that the join of any two connected graphs is not odd-graceful.
then joining the vertices at which the appended edges were attached to a new vertex are odd-graceful.

Gao [671] has proved the following graphs are odd-graceful: the union of any number of paths; the union of any number of stars; the union of any number of stars and paths; $C_m \cup P_n$; $C_m \cup C_n$; and the union of any number of cycles each of which has order divisible by 4.

If $f$ is an odd-graceful labeling of a bipartite graph $G$ with bipartition $(V_1, V_2)$ such that $\max\{f(u) : u \in V_1\} < \min\{f(v) : v \in V_2\}$, Zhou, Yao, Chen, and Tao [2263] say that $f$ is a set-ordered odd-graceful labeling of $G$. They proved that every lobster is odd-graceful and adding leaves to a connected set-ordered odd-graceful graph is an odd-graceful graph.

In [1701] Seoud and Abdel-Aal determined all odd-graceful graphs of order at most 6 and proved that if $G$ is odd-graceful then $G \cup K_{m,n}$ is odd-graceful. In [1720] Seoud and Helmi proved: if $G$ has an odd-graceful labeling $f$ with bipartition $(V_1, V_2)$ such that $\max\{f(x) : x \in V_1\} < \min\{f(x) : x \in V_2\}$, then $G$ has an $\alpha$-labeling; if $G$ has an $\alpha$-labeling, then $G \odot K_n$ is odd-graceful; and if $G_1$ has an $\alpha$-labeling and $G_2$ is odd-graceful, then $G_1 \cup G_2$ is odd-graceful. They also proved the following graphs have odd-graceful labelings: dragons obtained from an even cycle; graphs obtained from the gear graph by attaching a fixed number of pendant edges to each vertex of degree 2 on rim of the wheel of the graph; $C_{2m} \odot K_n$; graphs obtained from an even cycle by attaching a fixed number of pendant edges to every other vertex; graphs obtained by identifying an endpoint of a star $S_n$ ($n \geq 3$) with a vertex of an even cycle; the graphs consisting of two even cycles of the same order that share a common vertex with any number of pendant edges attached at the common vertex; and the graphs obtained by joining two even cycles of the same order by an edge. Seoud, El Sonbaty, and Abd El Rehim [1713] proved that the conjunction $P_m \land P_n$ for all $n, m \geq 2$ and the conjunction $K_2 \land F_n$ for $n$ even are odd-graceful. Jeba Jesintha and Ezhilarasi Hilda [892] proved the disjoint union of two subdivided shell graphs is odd-graceful and the one vertex union of three subdivided shells are odd-graceful.

In [1421] and [1422] Moussa proved that $C_m \cup P_n$ is odd-graceful in some cases and gave algorithms to prove that for all $m \geq 2$ the graphs $P_{4r-1,m}$, $r = 1, 2, 3$ and $P_{4r+1,m}$, $r = 1, 2$ are odd-graceful. ($P_{n,m}$ is the graph obtained by identifying the endpoints of $m$ paths each of length $n$). He also presented an algorithm that showed that closed spider graphs and the graphs obtained by joining one or two copies of $P_m$ to each vertex of the path $P_n$ are odd-graceful. Moussa and Badr [1420] proved that $C_m \odot P_n$ is odd-graceful if and only if $m$ is even (see also [160]). Badr, Moussa, and Kathiresan [160] proved ladders are odd graceful.

Moussa [1423] defines the tensor product, $P_m \land P_n$, of $P_m$ and $P_n$ as the graph with vertices $v^j_i$, $i = 1, \ldots, n$; $j = 1, \ldots, m$ and edges $v^j_1 v^{j+1}_2, v^{j+1}_3, \ldots, v^{j}_n v^{j+1}_n$ for $j$ odd and $v^{j-1}_1 v^j_2, v^{j-2}_3, \ldots, v^{j}_n v^{j-1}_n$ for $j$ even. He proves that $P_m \land P_n$ is odd-graceful.

In [2] Abdel-Aal generalized the notions of shadow graphs and splitting graphs are follows. The $m$-shadow graph $D_m(G)$ of a connected graph $G$ is constructed by taking $m$
copies of $G_1, G_2, \ldots, G_m$ of $G$, and joining each vertex $u$ in $G_i$ to the neighbors of the corresponding vertex $v$ in $G_j$ for $1 \leq i, j \leq m$. The $m$-splitting graph $Spl_m(G)$ of a graph $G$ is obtained by adding to each vertex $v$ of $G$ $m$ new vertices, $v^1, v^2, \ldots, v^m$, such that $v^i$, $1 \leq i \leq m$ is adjacent to every vertex that is adjacent to $v$ in $G_j$. Thus the 2-shadow graph is the shadow graph $D_2(G)$ and the 1-splitting graph of $G$ is the splitting graph of $G$. Abdel-Aal proved the following graphs are odd graceful: $D_m(P_n), D_m(P_n \oplus K_2)$ (the symmetric product of $P_n$ and $K_2$), $D_m(K_{r,s})$, $Spl_m(P_n)$, $Spl_m(K_{1,n})$, and $Spl_m(P_n \oplus K_2)$.

Vaidya and Bijukumar [2013] proved the following are odd-graceful: graphs obtained by joining two copies of $C_n$ by a path; graphs that are two copies of an even cycle that share a common edge; graphs that are the splitting graph of a star; and graphs that are the tensor product of a star and $P_2$.

Acharya, Germina, Princy, and Rao [34] proved that every bipartite graph $G$ can be embedded in an odd-graceful graph $H$. The construction is done in such a way that if $G$ is planar and odd-graceful, then so is $H$.

In [459] Chawathe and Krishna extend the definition of odd-gracefulness to countably infinite graphs and show that all countably infinite bipartite graphs that are connected and locally finite have odd-graceful labelings.

Solairaju and Chithra [1891] defined a graph $G$ with $q$ edges to be edge-odd graceful if there is a bijection $f$ from the edges of the graph to $\{1, 3, 5, \ldots, 2q - 1\}$ such that, when each vertex is assigned the sum of all the edges incident to it mod $2q$, the resulting vertex labels are distinct. They prove the following graphs are odd-graceful: paths with at least 3 vertices; odd cycles; ladders $P_n \times P_2$ ($n \geq 3$); stars with an even number of edges; and crowns $C_n \odot K_1$. In [1892] they prove the following graphs have edge-odd graceful labelings: $P_n$ ($n > 1$) with a pendent edge attached to each vertex (combs); the graph obtained by appending $2n + 1$ pendent edges to each endpoint of $P_2$ or $P_3$; and the graph obtained by subdividing each edge of the star $K_{1,2n}$.

Singhun [1858] proved the following graphs have edge-odd graceful labelings: $W_{2n}$; $W_n \odot K_1$; and $W_n \odot K_m$, when $n$ is odd, $m$ is even, and $n$ divides $m$. Seoud and Salim [1733] present edge-odd graceful labelings for the following families of graphs: $W_n$ for $n \equiv 1, 2$ and 3 (mod 4); $C_n \odot K_{2m-1}$; even helms; $P_n \odot K_{2m}$; and $K_{2,s}$. They also provide two theorems about non edge-odd graceful graphs.

In [1910] Sridevi, Navaeethakrishnan, Nagarajan, and Nagarajan call a graph $G$ with $q$ edges odd-even graceful if there is an injection $f$ from the vertices of $G$ to $\{1, 3, 5, \ldots, 2q + 1\}$ such that, when each edge $uv$ is assigned the label $|f(u) - f(v)|$, the resulting edge labels are $\{2, 4, 6, \ldots, 2q\}$. They proved that $P_n$, combs $P_n \odot K_1$, stars $K_{1,n}, K_{1,2,n}, K_{m,n}$, and bistars $B_{m,n}$ are odd-even graceful.

### 3.7 Cordial Labelings

Cahit [422] has introduced a variation of both graceful and harmonious labelings. Let $f$ be a function from the vertices of $G$ to $\{0, 1\}$ and for each edge $xy$ assign the label $|f(x) - f(y)|$. Call $f$ a cordial labeling of $G$ if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and
the number of edges labeled 1 differ at most by 1. Cahit [423] proved the following: every tree is cordial; $K_n$ is cordial if and only if $n \leq 3$; $K_{m,n}$ is cordial for all $m$ and $n$; the friendship graph $C_3(t)$ (i.e., the one-point union of $t$ 3-cycles) is cordial if and only if $t \not\equiv 2 \pmod{4}$; all fans are cordial; the wheel $W_n$ is cordial if and only if $n \not\equiv 3 \pmod{4}$ (see also [561]); maximal outerplanar graphs are cordial; and an Eulerian graph is not cordial if its size is congruent to 2 (mod 4). Kuo, Chang, and Kwong [1142] determine all $m$ and $n$ for which $mK_n$ is cordial. Youssef [2228] proved that every Skolem-graceful graph (see 3.5 for the definition) is cordial. Liu and Zhu [1304] proved that a 3-regular graph of order $n$ is cordial if and only if $n \not\equiv 4 \pmod{8}$.

A $k$-angular cactus is a connected graph all of whose blocks are cycles with $k$ vertices. In [423] Cahit proved that a $k$-angular cactus with $t$ cycles is cordial if and only if $kt \not\equiv 2 \pmod{4}$. This was improved by Kirchherr [1087] who showed any cactus whose blocks are cycles is cordial if and only if the size of the graph is not congruent to 2 (mod 4). Kirchherr [1088] also gave a characterization of cordial graphs in terms of their adjacency matrices. Ho, Lee, and Shee [818] proved: $P_n \times C_4m$ is cordial for all $m$ and all odd $n$; the composition $G$ and $H$ is cordial if $G$ is cordial and $H$ is cordial and has odd order and even size (see §2.3 for definition of composition); for $n \geq 4$ the composition $C_n[K_2]$ is cordial if and only if $n \not\equiv 2 \pmod{4}$; the Cartesian product of two cordial graphs of even size is cordial. Ho, Lee, and Shee [817] showed that a unicyclic graph is cordial unless it is $C_{4t+2}$ and that the generalized Petersen graph (see §2.7 for the definition) $P(n, k)$ is cordial if and only if $n \not\equiv 2 \pmod{4}$. Khan [1075] proved that a graph that consisting of a finite number of cycles of finite length joined at a common cut vertex is cordial if and only if the number of edges is not congruent to 2 mod 4.

Du [561] determines the maximal number of edges in a cordial graph of order $n$ and gives a necessary condition for a $k$-regular graph to be cordial. Riskin [1632] proved that Möbius ladders $M_n$ (see §2.3 for the definition) are cordial if and only if $n \geq 3$ and $n \not\equiv 2 \pmod{4}$. (See also [1715].)

Seoud and Abdel Maqusoud [1703] proved that if $G$ is a graph with $n$ vertices and $m$ edges and every vertex has odd degree, then $G$ is not cordial when $m + n \equiv 2 \pmod{4}$. They also prove the following: for $m \geq 2$, $C_n \times P_m$ is cordial except for the case $C_{4t+2} \times P_2$; $P_n^2$ is cordial for all $n$; $P_n^3$ is cordial if and only if $n \not\equiv 4 \pmod{4}$; and $P_n^4$ is cordial if and only if $n \not\equiv 4, 5, 6$. Seoud, Diab, and Elsakhawi [1712] have proved the following graphs are cordial: $P_n + P_m$ for all $m$ and $n$ except $(m, n) = (2, 2)$; $C_m + C_n$ if $m \not\equiv 0 \pmod{4}$ and $n \not\equiv 2 \pmod{4}$; $C_n + K_{1,m}$ for $n \not\equiv 3 \pmod{4}$ and odd $m$ except $(n, m) = (3, 1)$; $C_n + \overline{K}_m$ when $n$ is odd, and when $n$ is even and $m$ is odd; $K_{1,m,n}$; $K_{2,2,m}$; the $n$-cube; books $B_n$ if and only if $n \not\equiv 3 \pmod{4}$; $B(3, 2, m)$ for all $m$; $B(4, 3, m)$ if and only if $m$ is even; and $B(5, 3, m)$ if and only if $m \not\equiv 1 \pmod{4}$ (see §2.4 for the notation $B(n, r, m)$). In [1887] Solairaju and Arockiasamy prove that various families of subgraphs of grids $P_m \times P_n$ are cordial.

Diab [542], [543], and [545] proved the following graphs are cordial: $C_m + P_n$ if and only if $(m, n) \not\equiv (3, 3), (3, 2), (3, 1)$; $P_m + K_{1,n}$ if and only if $(m, n) \not\equiv (1, 2)$; $P_m \cup K_{1,n}$ if and only if $(m, n) \not\equiv (1, 2)$; $C_m \cup K_{1,n}$; $C_m + \overline{K}_n$ for all $m$ and $n$ except $m \equiv 3 \pmod{4}$ and $n$ odd, and $m \equiv 2 \pmod{4}$ and $n$ even; $C_m \cup \overline{K}_n$ for all $m$ and $n$ except $m \equiv 2$...
(mod 4); \( P_n + K_n \); \( P_m \cup K_n \); \( P_n^2 \cup P_m^2 \) except for \((m, n) = (2, 2)\) or \((3, 3)\); \( P_n^2 + P_m \) except
for \((m, n) = (3, 1), (3, 2), (2, 2), (3, 3),\) and \((4, 2)\); \( P_n^2 \cup P_m \) except for \((n, m) = (2, 2), (3, 3),\) and \((4, 2)\); \( P_n^2 + C_m \) if and only if \((n, m) \neq (1, 3), (2, 3),\) and \((3, 3)\). \( P_n + K_m \); \( C_n + K_{1,m} \) for all \(n > 3\) and all \(m\) except \(n \equiv 3 \pmod{4}; C_n + K_{1,m} \) for \(n \equiv 3 \pmod{4} \) \((n \neq 3)\) and even \(m \geq 2\); and \(C_m \times C_n \) if and only if \(2mn\) is not congruent to \(2 \pmod{4}\).

In [544] Diab proved the graphs \( W_n + W_m \) are cordial if and only if one of the following conditions is not satisfied: (i) \((n, m) = (3, 3)\), (ii) \(n = 3\) and \(m = 1 \pmod{4}\), (iii) \(n = 1 \pmod{4}\) and \(m = 3 \pmod{4}\); the graphs \( W_n \cup W_m \) are cordial if and only if one of the following conditions is not satisfied: (i) \(n = 3\) and \(m = 1 \pmod{4}\), (ii) \(n = 1 \pmod{4}\) and \(m = 3 \pmod{4}\); the graphs \( W_n + P_m \) are cordial if and only if one of the following conditions is not satisfied: (i) \((n, m) = (3, 1), (3, 2)\) and \((3, 3)\), (ii) \(n = 3 \pmod{4}\) and \(m = 1\). They also prove that \( W_n \cup P_m \) and \( W_n \cup C_m \) are cordial for all \(m\) and \(n\) and \(W_n + C_m\) is cordial if and only if \((m, n) \neq (3, 3)\) and \((3, 4)\). In [546] Diab showed that the second power of \(C_n\) is cordial if and only if \(n = 3\) or \(n\) is even and greater than \(4\). He also investigated the cordiality of the join and union of pairs of second power of cycles and graphs consisting of one second power of cycle with one cycle and one path.

Youssef [2230] has proved the following: If \(G\) and \(H\) are cordial and one has even size, then \(G \cup H\) is cordial; if \(G\) and \(H\) are cordial and both have even size, then \(G + H\) is cordial; if \(G\) and \(H\) are cordial and one has even size and either one has even order, then \(G + H\) is cordial; \(C_m \cup C_n\) is cordial if and only if \(m + n \neq 2 \pmod{4}\); \(mC_n\) is cordial if and only if \(mn \neq 2 \pmod{4}\); \(C_m + C_n\) is cordial if and only if \((m, n) \neq (3, 3)\) and \(\{m \pmod{4}, n \pmod{4}\} \neq \{0, 2\}\); and if \(P_n^k\) is cordial, then \(n \geq k + 1 + \sqrt{k - 2}\). He conjectures that this latter condition is also sufficient. He confirms the conjecture for \(k = 5, 6, 7, 8,\) and \(9\).

Lee and Liu [1190] have shown that the complete \(n\)-partite graph is cordial if and only if at most three of its \(n\)-partite sets have odd cardinality (see also [561]). Lee, Lee, and Chang [1166] prove the following graphs are cordial: the Cartesian product of an arbitrary number of paths; the Cartesian product of two cycles if and only if at least one of them is even; and the Cartesian product of an arbitrary number of cycles if at least one of them has length a multiple of \(4\) or at least two of them are even.

Shee and Ho [1788] have investigated the cordiality of the one-point union of \(n\) copies of various graphs. For \(C_{m}^{(n)}\), the one-point union of \(n\) copies of \(C_m\), they prove:

(i) If \(m \equiv 0 \pmod{4}\), then \(C_{m}^{(n)}\) is cordial for all \(n\);
(ii) If \(m \equiv 1\) or \(3 \pmod{4}\), then \(C_{m}^{(n)}\) is cordial if and only if \(n \neq 2 \pmod{4}\);
(iii) If \(m \equiv 2 \pmod{4}\), then \(C_{m}^{(n)}\) is cordial if and only if \(n\) is even.

For \(K_{m}^{(n)}\), the one-point union of \(n\) copies of \(K_m\), Shee and Ho [1788] prove:

(i) If \(m \equiv 0 \pmod{8}\), then \(K_{m}^{(n)}\) is not cordial for \(n \equiv 3 \pmod{4}\);
(ii) If \(m \equiv 4 \pmod{8}\), then \(K_{m}^{(n)}\) is not cordial for \(n \equiv 1 \pmod{4}\);
(iii) If \(m \equiv 5 \pmod{8}\), then \(K_{m}^{(n)}\) is not cordial for all odd \(n\);
(iv) \(K_{4}^{(n)}\) is cordial if and only if \(n \neq 1 \pmod{4}\);
(v) \(K_{5}^{(n)}\) is cordial if and only if \(n\) is even;
(vi) \(K_{6}^{(n)}\) is cordial if and only if \(n > 2\).
(vii) $K_{7}^{(n)}$ is cordial if and only if $n \not\equiv 2 \pmod{4}$;
(viii) $K_{n}^{(2)}$ is cordial if and only if $n$ has the form $p^2$ or $p^2 + 1$.

For $W_{m}^{(n)}$, the one-point union of $n$ copies of the wheel $W_{m}$ with the common vertex being the center, Shee and Ho [1788] show:

(i) If $m \equiv 0$ or 2 (mod 4), then $W_{m}^{(n)}$ is cordial for all $n$;
(ii) If $m \equiv 3$ (mod 4), then $W_{m}^{(n)}$ is cordial if $n \not\equiv 1 \pmod{4}$;
(iii) If $m \equiv 1$ (mod 4), then $W_{m}^{(n)}$ is cordial if $n \not\equiv 3 \pmod{4}$. For all $n$ and all $m > 1$

Shee and Ho [1788] prove $F_{m}^{(n)}$, the one-point union of $n$ copies of the fan $F_{m} = P_{m} + K_{1}$ with the common point of the fans being the center, is cordial (see also [1276]). The flag $Fl_{m}$ is obtained by joining one vertex of $C_{m}$ to an extra vertex called the root. Shee and Ho [1788] show all $Fl_{m}^{(n)}$, the one-point union of $n$ copies of $Fl_{m}$ with the common point being the root, are cordial. In his 2001 Ph. D. thesis Selvaraju [1691] proves that the one-point union of any number of copies of a complete bipartite graph is cordial. Benson and Lee [340] have investigated the regular windmill graphs $K_{m}^{(n)}$ and determined precisely which ones are cordial for $m < 14$.

Diab and Mohammedn [548] proved the following: the join of two fans $F_{n} + F_{m}$ is cordial if and only if $n, m \geq 4$; $F_{n} \cup F_{m}$ is cordial if and only if $(n, m) \not\equiv (1,1)$ or $(2,2)$; $F_{n} + P_{m}$ is cordial if and only if $(n, m) \not\equiv (1,2), (2,1), (2,2), (2,3), (3,2)$; $F_{n} \cup P_{m}$ is cordial if and only if $(n, m) \not\equiv (1,2)$; $F_{n} + C_{m}$ is cordial if and only if $(n, m) \not\equiv (1,3), (2,3)$ or $(3,3)$; and $F_{n} \cup C_{m}$ is cordial if and only if $(n, m) \not\equiv (2,3)$.

Andar, Boxwala, and Limaye [121], [122], and [125] have proved the following graphs are cordial: helms; closed helms; generalized helms obtained by taking a web (see 2.2 for the definitions) and attaching pendant vertices to all the vertices of the outermost cycle in the case that the number cycles is even; flowers (graphs obtained by joining the vertices of degree one of a helm to the central vertex); sunflower graphs (that is, graphs obtained by taking a wheel with the central vertex $v_{0}$ and the n-cycle $v_{1}, v_{2}, \ldots, v_{n}$ and additional vertices $w_{1}, w_{2}, \ldots, w_{n}$ where $w_{i}$ is joined by edges to $v_{i}, v_{i+1}$, where $i + 1$ is taken modulo $n$); multiple shells (see §2.2); and the one point unions of helms, closed helms, flowers, gears, and sunflower graphs, where in each case the central vertex is the common vertex.

Du [562] proved that the disjoint union of $n \geq 2$ wheels is cordial if and only if $n$ is even or $n$ is odd and the number of vertices of in each cycle is not 0 (mod 4) or $n$ is odd and the number of vertices of in each cycle is not 3 (mod 4). Prajapati and Gajjar [1565] prove $W_{n}$ is not cordial if $n \not\equiv 4, 7 \pmod{8}$ and $C_{n}$ is not cordial if $n \not\equiv 4, 7 \pmod{8}$.

In [298] Barrientos and Minion provide necessary conditions for the cordiality of coronas of cordial graphs, prove the cordiality of a family of circulant graphs, prove that any splitting graph of a cordial graph of even order and even size is cordial, determine a condition that a graph must satisfy in order that any super subdivision of it is cordial, prove the cordiality of the joint of two cordial graphs, and determine when a one-point union of a cordial graph is cordial.

For positive integers $m$ and $n$ divisible by 4 Venkatesh [2097] constructs graphs obtained by appending a copy of $C_{n}$ to each vertex of $C_{m}$ by identifying one vertex of $C_{n}$ with each vertex of $C_{m}$ and iterating by appending a copy of $C_{n}$ to each vertex of degree
In the previous step, he proves that the graphs obtained by successive iterations are cordial.

Elumalai and Sethurman [573] proved: cycles with parallel cords are cordial and \( n \)-cycles with parallel \( P_k \)-chords (see §2.2 for the definition) are cordial for any odd positive integer \( k \) at least 3 and any \( n \neq 2 \pmod{4} \) of length at least 4. They call a graph \( H \) an even-multiple subdivision graph of a graph \( G \) if it is obtained from \( G \) by replacing every edge \( uv \) of \( G \) by a pair of paths of even length starting at \( u \) and ending at \( v \). They prove that every even-multiple subdivision graph is cordial and that every graph is a subgraph of a cordial graph. In [2168] Wen proves that generalized wheels \( C_n + mK_1 \) are cordial when \( m \) is even and \( n \neq 2 \pmod{4} \) and when \( m \) is odd and \( n \neq 3 \pmod{4} \).

Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained by joining two identical graphs by a path. They prove: graphs obtained by joining two copies of the same cycle by a path are cordial [2024]; graphs obtained by joining two copies of the same cycle that has two chords with a common vertex with opposite ends of the chords joining two consecutive vertices of the cycle by a path are cordial [2024]; graphs obtained by joining two rim vertices of two copies of the same wheel by a path are cordial [2026]; and graphs obtained by joining two copies of the same Petersen graph by a path are cordial [2026]. They also prove that graphs obtained by replacing one vertex of a star by a fixed wheel or by replacing each vertex of a star by a fixed Petersen graph are cordial [2026]. In [2064] Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained by joining two identical cycles that have a chord are cordial and the graphs obtained by starting with copies \( G_1, G_2, \ldots, G_n \) of a fixed cycle with a chord that forms a triangle with two consecutive edges of the cycle and joining each \( G_i \) to \( G_{i+1} \) \((i = 1, 2, \ldots, n - 1)\) by an edge that is incident with the endpoints of the chords in \( G_i \) and \( G_{i+1} \) are cordial. Vaidya, Dani, Kanani, and Vihol [2019] proved that the graphs obtained by starting with copies \( G_1, G_2, \ldots, G_n \) of a fixed star and joining each center of \( G_i \) to the center of \( G_{i+1} \) \((i = 1, 2, \ldots, n - 1)\) by an edge are cordial.

Ghodasara, Rokad, and Jadav [710] prove that the path union of \( P_n \times P_n \) is cordial. They also prove that the graph obtained by joining two copies of \( P_n \times P_n \) by a path is cordial. Ghodasara and Jadav [708] prove: the graph obtained by joining a finite number of copies of \( P_n \times P_n \) by path is cordial; the star of \( P_n \times P_n \) is cordial; and the path union of the star of \( P_n \times P_n \) is cordial.

Ghodasara and Rokad prove [711] the star of \( K_{n,n} \) \((n \geq 2)\) is cordial, the path union of \( K_{n,n} \) \((n \geq 2)\) is cordial, and the graph obtained by joining two copies of \( K_{n,n} \) \((n \geq 2)\) by a path is cordial [711]. In [712] the same authors prove that a vertex switching of any non-apex vertex of a wheel graph, a vertex switching of any internal vertex of a flower graph, a vertex switching of any non-apex vertex of a gear graph, and a vertex switching of any non-apex vertex of a shell graph are cordial graphs. In [713] they proved that a barycentric subdivision of a shell graph, a barycentric subdivision of \( K_{n,n} \), and a barycentric subdivision of a wheel are cordial. Ghodasara and Sonchhatra [714] prove that the graph obtained by joining two copies of the same fan by a path is cordial. They also prove that the star of a fan is cordial and the graph obtained by joining two copies of the star of the same fan by a path is cordial [714].
Vaidya, Kanani, Srivastav, and Ghodasara [2034] proved: graphs obtained by subdividing every edge of a cycle with exactly two extra edges that are chords with a common endpoint and whose other end points are joined by an edge of the cycle are cordial; graphs obtained by subdividing every edge of the graph obtained by starting with $C_n$ and adding exactly three chords that result in two 3-cycles and a cycle of length $n - 3$ are cordial; graphs obtained by subdividing every edge of a Petersen graph are cordial.

Recall the shell $C(n, n - 3)$ is the cycle $C_n$ with $n - 3$ cords sharing a common endpoint. Vaidya, Dani, Kanani, and Vihol [2020] proved that the graphs obtained by starting with copies $G_1, G_2, \ldots, G_n$ of a fixed shell and joining common endpoint of the chords of $G_i$ to the common endpoint of the chords of $G_{i+1}$ $(i = 1, 2, \ldots, n - 1)$ by an edge are cordial. Vaidya, Dani, Kanani and Vihol [2035] define $C_n(C_n)$ as the graph obtained by subdividing each edge of $C_n$ and connecting the new $n$ vertices to form a copy of $C_n$ inscribed the original $C_n$. They prove that $C_n(C_n)$ is cordial if $n \not\equiv 2 \pmod{4}$; the graphs obtained by starting with copies $G_1, G_2, \ldots, G_k$ of $C_n(C_n)$ the graph obtained by joining a vertex of degree 2 in $G_i$ to a vertex of degree 2 in $G_{i+1}$ $(i = 1, 2, \ldots, n - 1)$ by an edge are cordial; and the graphs obtained by joining vertex of degree 2 from one copy of $C_n(C_n)$ to a vertex of degree 2 to another copy of $C_n(C_n)$ by any finite path are cordial. Vaidya and Shah [2061] and [2062] proved that following graphs are cordial: the shadow graph of the bistar $B_{n,n}$, the splitting graph of $B_{n,n}$, the degree splitting graph of $B_{n,n}$, alternate triangular snakes, alternate quadrilateral snakes, double alternate triangular snakes, and double alternate quadrilateral snakes.

A graph $C(2n, n - 2)$ is called an alternate shell if $C(2n, n - 2)$ is obtained from the cycle $C_{2n}$ $(v_0, v_1, v_2, \ldots, v_{2n-1})$ by adding $n - 2$ chords between the vertex $v_0$ and the vertices $v_{2i+1}$, for $1 \leq i \leq n - 2$. Sethuraman and Sankar [1764] proved that some graphs obtained by merging alternate shells and joining certain vertices by a path have $\alpha$-labelings.

Vaidya, Srivastav, Kaneria, and Ghodasara [2065] proved that a cycle with two chords that share a common vertex and the opposite ends of which join two consecutive vertices of the cycle is cordial. For a graph $G$ Vaidya, Ghodasara, Srivastav, and Kaneria [2025] introduced the graph $G^*$ called the star of $G$ as the graph obtained by replacing each vertex of the star $K_{1,n}$ by a copy of $G$ and prove that $C_n^*$ admits cordial labeling. Vaidya and Dani [2015] proved that the graphs obtained by starting with $n$ copies $G_1, G_2, \ldots, G_n$ of a fixed star and joining each center of $G_i$ to the center of $G_{i+1}$ by an edge as well as each of the centers to a new vertex $x_i$ $(1 \leq i \leq n - 1)$ by an edge admit cordial labelings. An arbitrary supersubdivision $H$ of a graph $G$ is the graph obtained from $G$ by replacing every edge of $G$ by $K_{2,m}$, where $m$ may vary for each edge arbitrarily. Vaidya and Kanani [2027] proved that arbitrary supersubdivisions of paths and stars admit cordial labelings. Vaidya and Dani [2016] prove that arbitrary supersubdivisions of trees, $K_{m,n}$, and $P_m \times P_n$ are cordial. They also prove that an arbitrary supersubdivision of the graph obtained by identifying an end vertex of a path with every vertex of a cycle $C_n$ is cordial except when $n$ is odd, $m_i$ $(1 \leq i \leq n)$ are odd, and $m_i$ $(n + 1 \leq i \leq mn)$ of the $K_{2,m}$ are even. Recall for a graph $G$ and a vertex $v$ of $G$ Vaidya, Srivastav, Kaneria, and Kanani [2066] define a vertex switching $G_v$ as the graph obtained from $G$ by removing all edges incident to
and adding edges joining \( v \) to every vertex not adjacent to \( v \) in \( G \). They proved that the graphs obtained by the switching of a vertex in \( C_n \) admit cordial labelings. They also show that the graphs obtained by the switching of any arbitrary vertex of cycle \( C_n \) with one chord that forms a triangle with two consecutive edges of the cycle are cordial. Moreover they prove that the graphs obtained by the switching of any arbitrary vertex in cycle with two chords that share a common vertex the opposite ends of which join two consecutive vertices of the cycle are cordial.

The middle graph \( M(G) \) of a graph \( G \) is the graph whose vertex set is \( V(G) \cup E(G) \) and in which two vertices are adjacent if and only if either they are adjacent edges of \( G \) or one is a vertex of \( G \) and the other is an edge incident with it. Vaidya and Vihol [2068] prove that the middle graph \( M(G) \) of an Eulerian graph is Eulerian with \( |E(M(G))| = \sum_{i=1}^{n}(d(v_i)^2 + 2e)/2 \). They prove that middle graphs of paths, crowns \( C_n \odot K_1 \), stars, and tadpoles (that is, graphs obtained by appending a path to a cycle) admit cordial labelings.

Vaidya and Dani [2018] define the duplication of an edge \( e = uv \) of a graph \( G \) by a new vertex \( w \) as the graph \( G' \) obtained from \( G \) by adding a new vertex \( w \) and the edges \( uw \) and \( wv \). They prove that the graphs obtained by duplication of an arbitrary edge of a cycle and a wheel admit a cordial labeling. Starting with \( k \) copies of fixed wheel \( W_n \), \( W_n^{(1)} \), \( W_n^{(2)} \), \ldots, \( W_n^{(k)} \), Vaidya, Dani, Kanani, and Vihol [2022] define \( G = < W_n^{(1)} : W_n^{(2)} : \ldots : W_n^{(k)} > \) as the graph obtained by joining the center vertices of each of \( W_n^{(i)} \) and \( W_n^{(i+1)} \) to a new vertex \( x_i \), where \( 1 \leq i \leq k-1 \). They prove that \( < W_n^{(1)} : W_n^{(2)} : \ldots : W_n^{(k)} > \) are chordal graphs. Kaneria and Vaidya [1004] define the index of cordiality of \( G \) as \( n \) if the disjoint union of \( n \) copies of \( G \) is cordial but the disjoint union of fewer than \( n \) copies of \( G \) is not cordial. They obtain several results on index of cordiality of \( K_n \). In the same paper they investigate cordial labelings of graphs obtained by replacing each vertex of \( K_{1,n} \) by a graph \( G \).

In [125] Andar et al. define a \( t \)-ply graph \( P_t(u,v) \) as a graph consisting of \( t \) internally disjoint paths joining vertices \( u \) and \( v \). They prove that \( P_t(u,v) \) is cordial except when it is Eulerian and the number of edges is congruent to 2 (mod 4). In [126] Andar, Boxwala, and Limaye prove that the one-point union of any number of plys with an endpoint as the common vertex is cordial if and only if it is not Eulerian and the number of edges is congruent to 2 (mod 4). They further prove that the path union of shells obtained by joining any point of one shell to any point of the next shell is cordial; graphs obtained by attaching a pendant edge to the common vertex of the cords of a shell are cordial; and cycles with one pendant edge are cordial.

For a graph \( G \) and a positive integer \( t \), Andar, Boxwala, and Limaye [125] define the \( t \)-uniform homeomorph \( P_t(G) \) of \( G \) as the graph obtained from \( G \) by replacing every edge of \( G \) by vertex disjoint paths of length \( t \). They prove that if \( G \) is cordial and \( t \) is odd, then \( P_t(G) \) is cordial; if \( t \equiv 2 \) (mod 4) a cordial labeling of \( G \) can be extended to a cordial labeling of \( P_t(G) \) if and only if the number of edges labeled 0 in \( G \) is even; and when \( t \equiv 0 \) (mod 4) a cordial labeling of \( G \) can be extended to a cordial labeling of \( P_t(G) \) if and only if the number of edges labeled 1 in \( G \) is even. In [124] Ander et al. prove that \( P_t(K_{2n}) \) is cordial for all \( t \geq 2 \) and that \( P_t(K_{2n+1}) \) is cordial if and only if \( t \equiv 0 \) (mod 4) or \( t \) is odd and \( n \not\equiv 2 \) (mod 4), or \( t \equiv 2 \) (mod 4) and \( n \) is even.
In [126] Andar, Boxwala, and Limaya show that a cordial labeling of $G$ can be extended to a cordial labeling of the graph obtained from $G$ by attaching $2m$ pendent edges at each vertex of $G$. For a binary labeling $g$ of the vertices of a graph $G$ and the induced edge labels given by $g(e) = |g(u) - g(v)|$, let $v_g(j)$ denote the number of vertices labeled with $j$ and $e_g(j)$ denote the number edges labeled with $j$. Let $i(G) = \min\{|e_g(0) - e_g(1)|\}$ taken over all binary labelings $g$ of $G$ with $|v_g(0) - v_g(1)| \leq 1$. Andar et al. also prove that a cordial labeling $g$ of a graph $G$ with $p$ vertices can be extended to a cordial labeling of the graph obtained from $G$ by attaching $2m + 1$ pendent edges at each vertex of $G$ if and only if $G$ does not satisfy either of the conditions: (1) $G$ has an even number of edges and $p \equiv 2 \pmod{4}$; (2) $G$ has an odd number of edges and either $p \equiv 1 \pmod{4}$ with $e_g(1) = e_g(0) + i(G)$ or $n \equiv 3 \pmod{4}$ and $e_g(0) = e_g(1) + i(G)$. Andar, Boxwala, and Limaye [127] also prove: if $g$ is a binary labeling of the $n$ vertices of graph $G$ with induced edge labels given by $g(e) = |g(u) - g(v)|$, then $g$ can be extended to a cordial labeling of $G \circ \overline{K_{2m}}$ if and only if $n$ is odd and $i(G) \equiv 2 \pmod{4}$; $K_n \circ \overline{K_{2m}}$ is cordial if and only if $n \not\equiv 4 \pmod{8}$; $K_n \circ \overline{K_{2m+1}}$ is cordial if and only if $n \not\equiv 7 \pmod{8}$; if $g$ is a binary labeling of the $n$ vertices of graph $G$ with induced edge labels given by $g(e) = |g(u) - g(v)|$, then $g$ can be extended to a cordial labeling of $G \circ C_t$ if $t \not\equiv 3 \pmod{4}$, $n$ is odd and $e_g(0) = e_g(1)$. For any binary labeling $g$ of a graph $G$ with induced edge labels given by $g(e) = |g(u) - g(v)|$, they also characterize in terms of $i(G)$ when $g$ can be extended to graphs of the form $G \circ \overline{K_{2m+1}}$.

For graphs $G_1, G_2, \ldots, G_n$ ($n \geq 2$) that are all copies of a fixed graph $G$, Shee and Ho [1789] call a graph obtained by adding an edge from $G_i$ to $G_{i+1}$ for $i = 1, \ldots, n-1$ a path-union of $G$ (the resulting graph may depend on how the edges are chosen). Among their results they show the following graphs are cordial: path-unions of cycles; path-unions of any number of copies of $K_m$ when $m = 4, 6, 7$; path-unions of three or more copies of $K_5$; and path-unions of two copies of $K_m$ if and only if $m - 2, m$, or $m + 2$ is a perfect square. They also show that there exist cordial path-unions of wheels, fans, unicyclic graphs, Petersen graphs, trees, and various compositions.

Lee and Liu [1190] give the following general construction for the forming of cordial graphs from smaller cordial graphs. Let $H$ be a graph with an even number of edges and a cordial labeling such that the vertices of $H$ can be divided into $t$ parts $H_1, H_2, \ldots, H_t$ each consisting of an equal number of vertices labeled 0 and vertices labeled 1. Let $G$ be any graph and $G_1, G_2, \ldots, G_t$ be any $t$ subsets of the vertices of $G$. Let $(G, H)$ be the graph that is the disjoint union of $G$ and $H$ augmented by edges joining every vertex in $G_i$ to every vertex in $H_i$ for all $i$. Then $G$ is cordial if and only if $(G, H)$ is. From this it follows that: all generalized fans $F_{m,n} = \overline{K_m} + P_n$ are cordial; the generalized bundle $B_{m,n}$ is cordial if and only if $m$ is even or $n \not\equiv 2 \pmod{4}$ ($B_{m,n}$ consists of $2n$ vertices $v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$ with an edge from $v_i$ to $u_i$ and $2m$ vertices $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m$ with $x_i$ joined to $v_i$ and $y_i$ joined to $u_i$); if $m$ is odd the generalized wheel $W_{m,n} = \overline{K_m} + C_n$ is cordial if and only if $n \not\equiv 3 \pmod{4}$. If $m$ is even, $W_{m,n}$ is cordial if and only if $n \not\equiv 2 \pmod{4}$; a complete $k$-partite graph is cordial if and only if the number of parts with an odd number of vertices is at most 3.

Sethuraman and Selvaraju [1772] have shown that certain cases of the union of any
number of copies of $K_4$ with one or more edges deleted and one edge in common are cordial. Youssef [2234] has shown that the $k$th power of $C_n$ is cordial for all $n$ when $k \equiv 2 \pmod{4}$ and for all even $n$ when $k \equiv 0 \pmod{4}$. Ramanjaneyulu, Venkaiah, and Kothapalli [1599] give cordial labelings for a family of planar graphs for which each face is a 3-cycle and a family for which each face is a 4-cycle. Acharya, Germina, Princy, and Rao [34] prove that every graph $G$ can be embedded in a cordial graph $H$. The construction is done in such a way that if $G$ is planar or connected, then so is $H$.

Recall from §2.7 that a graph $H$ is a supersubdivision of a graph $G$, if every edge $uv$ of $G$ is replaced by $K_{2,m}$ ($m$ may vary for each edge) by identifying $u$ and $v$ with the two vertices in $K_{2,m}$ that form the partite set with exactly two members. Vaidya and Kanani [2027] prove that supersubdivisions of paths and stars are cordial. They also prove that supersubdivisions of $C_m$ are cordial provided that $n$ and the various values for $m$ are odd.

Raj and Koilraj [1584] proved that the splitting graphs of $P_n, C_n, K_m, W_n, nK_2$, and the graphs obtained by starting with $k$ copies of stars $K^{(1)}_{1,n}, K^{(2)}_{1,n}, \ldots, K^{(k)}_{1,n}$ and joining the central vertex of $K^{(p-1)}_{1,n}$ and $K^{(p)}_{1,n}$ to a new vertex $x_{p-1}$ for each $2 \leq p \leq k$ are cordial.

Seoud, El Sonbaty, and Abd El Rehim [1713] proved the following graphs are cordial: $K_{1,1,m,n}$ when $mn$ is even; $P_m + K_{1,n}$ if $n$ is even or $n$ is odd and $(m \neq 2)$; the conjunction graph $P_4 \land C_n$ is cordial if $n$ is even; and the join of the one-point union of two copies of $C_n$ and $K_1$.

Recall $\langle K_{1,n_1}, \ldots, K_{1,n_t} \rangle$ is the graph obtained by starting with the stars $K_{1,n_1}, \ldots, K_{1,n_t}$ and joining the center vertices of $K_{1,n_i}$ and $K_{1,n_{i+1}}$ to a new vertex $v_i$ where $1 \leq i \leq k-1$. Kaneria, Jariya, and Meghpara [1018] proved that $\langle K_{1,n_1}, \ldots, K_{1,n_t} \rangle$ is cordial and every graceful graph with $|v_{f}(\text{odd}) - v_{f}(\text{even})| \leq 1$ is cordial. Kaneria, Meghpara, and Makadia [1045] proved that the cycle of complete graphs $C(t \cdot K_{m,n})$ and the cycle of wheels $C(t \cdot W_n)$ are cordial. Kaneria, Makadia, and Meghpara [1033] proved that the cycle of cycles $C(t \cdot C_n)$ is cordial for $t \geq 3$. Kaneria, Makadia, and Meghpara [1034] proved that a star of $K_n$ and a cycle of $n$ copies of $K_n$ are cordial. Kaneria, Viradia, Jariya, and Makadia [1050] proved that the cycle of paths $C(t \cdot P_n)$ is cordial, product cordial, and total edge product cordial.

Cahit [428] calls a graph $H$-cordial if it is possible to label the edges with the numbers from the set $\{1, -1\}$ in such a way that, for some $k$, at each vertex $v$ the sum of the labels on the edges incident with $v$ is either $k$ or $-k$ and the inequalities $|v(k) - v(-k)| \leq 1$ and $|e(1) - e(-1)| \leq 1$ are also satisfied, where $v(i)$ and $e(j)$ are, respectively, the number of vertices labeled with $i$ and the number of edges labeled with $j$. He calls a graph $H_n$-cordial if it is possible to label the edges with the numbers from the set $\{\pm 1, \pm 2, \ldots, \pm n\}$ in such a way that, at each vertex $v$ the sum of the labels on the edges incident with $v$ is in the set $\{\pm 1, \pm 2, \ldots, \pm n\}$ and the inequalities $|v(i) - v(-i)| \leq 1$ and $|e(i) - e(-i)| \leq 1$ are also satisfied for each $i$ with $1 \leq i \leq n$. Among Cahit’s results are: $K_{n,n}$ is $H$-cordial if and only if $n > 2$ and $n$ is even; and $K_{m,n}, m \neq n$, is $H$-cordial if and only if $n \equiv 0 \pmod{4}$, $m$ is even and $m > 2, n > 2$. Unfortunately, Ghebleh and Khoeilar [707] have shown that other statements in Cahit’s paper are incorrect. In particular, Cahit states that $K_n$ is $H$-cordial if and only if $n \equiv 0 \pmod{4}$; $W_n$ is $H$-cordial if and only if $n \equiv 1 \pmod{4}$; and $K_n$ is $H_2$-cordial if and only if $n \equiv 0 \pmod{4}$ whereas Ghebleh and Khoeilar
instead prove that \( K_n \) is \( H \)-cordial if and only if \( n \equiv 0 \) or \( 3 \) (mod 4) and \( n \neq 3; W_n \) is \( H \)-cordial if and only if \( n \) is odd; \( K_n \) is \( H_2 \)-cordial if \( n \equiv 0 \) or \( 3 \) (mod 4); and \( K_n \) is not \( H_2 \)-cordial if \( n \equiv 1 \) (mod 4). Gebel and Khoelar also prove every wheel has an \( H_2 \)-cordial labeling. In [624] Freeda and Chellathurai prove that the following graphs are \( H_2 \)-cordial: the join of two paths, the join of two cycles, ladders, and the tensor product \( P_n \otimes P_2 \). They also prove that the join of \( W_n \) and \( W_m \) where \( n + m \equiv 0 \) (mod 4) is \( H \)-cordial. Cahit generalizes the notion of \( H \)-cordial labelings in [428].

Cahit and Yilmaz [432] call a graph \( E_k \)-cordial if it is possible to label the edges with the numbers from the set \( \{0, 1, 2, \ldots, k - 1\} \) in such a way that, at each vertex \( v \), the sum of the labels on the edges incident with \( v \) modulo \( k \) satisfies the inequalities \(|v(i) - v(j)| \leq 1\) and \(|e(i) - e(j)| \leq 1\), where \( v(s) \) and \( e(t) \) are, respectively, the number of vertices labeled with \( s \) and the number of edges labeled with \( t \). Cahit and Yilmaz prove the following graphs are \( E_3 \)-cordial: \( P_n \) (\( n \geq 3 \)); stars \( S_n \) if and only if \( n \neq 1 \) (mod 3); \( K_n \) (\( n \geq 3 \)); \( C_n \) (\( n \geq 3 \)); friendship graphs; and fans \( F_n \) (\( n \geq 3 \)). They also prove that \( S_n \) (\( n \geq 2 \)) is \( E_k \)-cordial if and only if \( n \neq 1 \) (mod \( k \)) when \( k \) is odd or \( n \neq 1 \) (mod \( 2k \)) when \( k \) is even and \( k \neq 2 \). Bapat and Limaye [272] provide \( E_3 \)-cordial labelings for: \( K_n \) (\( n \geq 3 \)); snakes whose blocks are all isomorphic to \( K_n \) where \( n \equiv 0 \) or \( 2 \) (mod 3); the one-point union of any number of copies of \( K_n \) where \( n \equiv 0 \) or \( 2 \) (mod 3); graphs obtained by attaching a copy of \( K_n \) where \( n \equiv 0 \) or \( 3 \) (mod 3) at each vertex of a path; and \( K_m \otimes K_n \). Rani and Sridharan [1612] proved: for odd \( n > 1 \) and \( k \geq 2 \), \( P_n \otimes K_1 \) is \( E_k \)-cordial; for \( n \) even and \( n \neq k/2 \); \( P_n \otimes K_1 \) is \( E_k \)-cordial; and certain cases of fans are \( E_k \)-cordial. Youssef [2231] gives a necessary condition for a graph to be \( E_k \)-cordial for certain \( k \). He also gives some new families of \( E_k \)-cordial graphs and proves Lee’s [1221] conjecture about the edge-gracefulness of the disjoint union of two cycles. Venkatesh, Salah, and Sethuraman [2098] proved that \( C_{2n+1} \) snakes and \( C_{2t}^{2n+1} \) are \( E_2 \)-cordial. Liu, Liu, and Wu [1303] provide two necessary conditions for a graph \( G \) to be \( E_k \)-cordial and prove that every \( P_n \) (\( n \geq 3 \)) is \( E_p \)-cordial if \( p \) is odd. They also discuss the \( E_2 \)-cordiality of a graph \( G \) under the condition that some subgraph of \( G \) has a 1-factor. Liu and Liu [1302] proved that a graph with no isolated vertex is \( E_2 \)-cordial if and only if it does not have order \( 4n + 2 \). Bapat and Limaye [273] prove that helms, one point unions of helms, and path unions of helms are \( E_3 \)-cordial. Jinnah and Beena [991] prove the graphs \( P_n \) (\( n \geq 3 \)), \( C_n \) where \( n \neq 4 \) mod 8, and \( K_n \) (\( n \geq 3 \)) are \( E_4 \)-cordial graphs. They also prove that every graph of order at least 3 is a subgraph of an \( E_4 \)-cordial graph.

Hovey [822] has introduced a simultaneous generalization of harmonious and cordial labelings. For any Abelian group \( A \) (under addition) and graph \( G(V, E) \) he defines \( G \) to be \( A \)-cordial if there is a labeling of \( V \) with elements of \( A \) such that for all \( a \) and \( b \) in \( A \) when the edge \( ab \) is labeled with \( f(a) + f(b) \), the number of vertices labeled with \( a \) and the number of vertices labeled \( b \) differ by at most one and the number of edges labeled with \( a \) and the number labeled with \( b \) differ by at most one. In the case where \( A \) is the cyclic group of order \( k \), the labeling is called \( k \)-cordial. With this definition we have: if \( G(V, E) \) is a graph with \(|E| \geq |V| - 1 \) then \( G(V, E) \) is harmonious if and only if \( G \) is \(|E| \)-cordial; \( G \) is cordial if and only if \( G \) is \( 2 \)-cordial.
Hovey has obtained the following: caterpillars are $k$-cordial for all $k$; all trees are $k$-cordial for $k = 3, 4$, and $5$; odd cycles with pendent edges attached are $k$-cordial for all $k$; cycles are $k$-cordial for all odd $k$; for $k$ even, $C_{2mk+j}$ is $k$-cordial when $0 \leq j \leq \frac{k}{2} + 2$ and when $k < j < 2k$; $C_{(2m+1)k}$ is not $k$-cordial; $K_m$ is 3-cordial; and, for $k$ even, $K_{mk}$ is $k$-cordial if and only if $m = 1$.

Hovey advances the following conjectures: all trees are $k$-cordial for all $k$; all connected graphs are 3-cordial; and $C_{2mk+j}$ is $k$-cordial if and only if $j \neq k$, where $k$ and $j$ are even and $0 \leq j < 2k$. The last conjecture was verified by Tao [1975]. Tao’s result combined with those of Hovey show that for all positive integers $k$ the $n$-cycle is $k$-cordial with the exception that $k$ is even and $n = 2mk + k$. Tao also proved that the crown with $2mk + j$ vertices is $k$-cordial unless $j = k$ is even, and for $4 \leq n \leq k$ the wheel $W_n$ is $k$-cordial unless $k \equiv 5 \pmod{8}$ and $n = (k + 1)/2$.

In [2236] Youssef and Al-Kuleab proved the following: if $G$ is a $(p_1, q_1)$ $k$-cordial graph and $G$ is a $(p_2, q_2)$ $k$-cordial graph with $p_1$ or $p_2 \equiv 0 \pmod{m}$ and $q_1$ or $q_2 \equiv 0 \pmod{m}$, then $G + H$ is $k$-cordial; if $G$ is a $(p_1, q_1)$ 4-cordial graph and $G$ is a $(p_2, q_2)$ 4-cordial graph with $p_1$ or $p_2 \not\equiv 2 \pmod{4}$ and $q_1$ or $q_2 \equiv 0 \pmod{m}$, then $G + H$ is 4-cordial; and $K_{m,n,p}$ is 4-cordial if and only if $(m, n, p) \mod{4} \neq (0, 2, 2)$ or $(2, 2, 2)$.

In [2229] Youssef obtained the following results: $C_{2k}$ with one pendent edge is not $(2k + 1)$-cordial for $k > 1$; $K_n$ is 4-cordial if and only if $n \leq 6$; $C_n^2$ is 4-cordial if and only if $n \not\equiv 2 \pmod{4}$; and $K_{m,n}$ is 4-cordial if and only if $n \not\equiv 2 \pmod{4}$; He also provides some necessary conditions for a graph to be $k$-cordial.

In [1408] Modha and Kanani proved prisms, webs, flowers, and closed helms admit 5-cordial labelings. In [1409] they proved that fans are $k$-cordial for all $k$ and double fans are $k$-cordial for all odd $k$ and $n = (k + 1)/2$. In [1411] they proved that the following graphs are $k$-cordial: $W_n$ for odd $k$, $n = mk + j, m \geq 0, 1 \leq j \leq k − 1$ except for $j = (k − 1)/2$; the total graphs of paths (recall $T(P_n)$ has vertex set $V(P_n) \cup E(P_n)$ with two vertices adjacent whenever they are neighbors in $P_n$); the square $C_n^2$ for odd $k \leq n$; the path union of $n$ copies of $C_k$ where $k$ is odd; and $C_n$ with one pendent edge for odd $k \leq n$. Rathod and Kanani [1621] proved $P_n^2$ is $k$-cordial for all $k$ and cycles with a single pendent edge are $k$-cordial for all even $k$. In [1617] Rathod and Kanani proved the middle graph, total graph, and splitting graph of a path are 4-cordial and $P_n^2$ and triangular snakes are 4-cordial. Modha and Kanani [1620] proved: $W_n$ is $k$-cordial for all odd $k$ and for all $n = mk + j, m \geq 0, 1 \leq j \leq k − 1$ except for $j = k − 1$; the path union of copies of $C_k$ is $k$-cordial for odd $k$; the total graph of $P_n$ is $k$-cordial for all $k$; the square $C_n^2$ is $k$-cordial for odd $k$ odd and $n \geq k$; and the graphs obtained by appending an edge to $C_n$ is $k$-cordial for odd $k$ and $n \geq k$. Rathod and Kanani [1621] [1623] prove that following graphs are 4-cordial: the splitting graph of $K_{1,n}$; triangular books; and the one point union any number of copies of the fan $f_3$; braid graphs; triangular ladders; and irregular quadrilateral snakes obtained from the path $P_n$ with consecutive vertices $u_1, u_2, \ldots, u_n$ and new vertices $v_1, v_2, \ldots, v_{n−2}, w_1, w_2$, and edges $u_i v_i, w_i u_{i+2}, v_i w_{i+1}$ for all $1 \leq i \leq n−2$. Rathod and Kanani [1622] prove wheels, fans, friendship graphs, double fans, and helms are 5-cordial. Driscoll, Krop, and Nguyen [551] proved that all trees are 6-cordial. In [1012] and [1013] Kanani and Modha prove that fans, friendship graphs, ladders, double
fans, double wheels are 7-cordial graphs and wheels, fans and friendship graphs, gears, double fans, and helms are 4-cordial graphs.

Cichacz, Görlich and Tuza [506] extended the definition of $k$-cordial labeling for hypergraphs. They presented various sufficient conditions on a hypertree $H$ (a connected hypergraph without cycles) to be $k$-cordial. From their theorems it follows that every $k$-uniform hypertree is $k$-cordial, and every hypertree with odd order or size is 2-cordial. Modha and Kanani [1412] prove the following graphs are $k$-cordial for all $k$: bistars, restricted square graphs $B_{n,n}^2$, the one-point union of $C_3$ and $K_{1,n}$, and $P_n \odot K_1$.

In [1768] Sethuraman and Selvaraju present an algorithm that permits one to start with any non-trivial connected graph $G$ and successively form supersubdivisions (see §2.7 for the definition) that are cordial in the case that every edge in $G$ is replaced by $K_{2,m}$ where $m$ is even. Sethuraman and Selvaraju [1767] also show that the one-vertex union of any number of copies of $K_{m,n}$ is cordial and that the one-edge union of $k$ copies of shell graphs $C(n, n - 3)$ (see §2.2) is cordial for all $n \geq 4$ and all $k$. They conjectured that the one-point union of any number of copies of graphs of the form $C(n_i, n_i - 3)$ for various $n_i \geq 4$ is cordial. This was proved by Yue, Yuansheng, and Liping in [2246]. Riskin [1634] claimed that $K_n$ is $Z_2 \times Z_2$-cordial if and only if $n$ is at most 3 and $K_{m,n}$ is $Z_2 \times Z_2$ cordial if and only if $(m, n) \neq (2, 2)$. However, Pechenik and Wise [1485] report that the correct statement for $K_{m,n}$ is $K_{m,n}$ is $Z_2 \times Z_2$ cordial if and only if $mv$ and $n$ are not both congruent to 2 mod 4. Seoud and Salim [1729] gave an upper bound on the number of edges of a graph that admits a $Z_2 \odot Z_2$-cordial labeling in terms the number of vertices. Rathod and Kanani [1619] prove the following graphs are $(Z_2 \times Z_2)$-cordial for all $n$ and $m$: $C_n \cdot mK_1$, $C_n \odot K_2$, and graphs obtained by appending a single edge to one vertex of $C_n$. Rathod and Kanani [1618] prove quadrilateral snakes, alternate quadrilateral snakes, double quadrilateral snakes, and double alternate quadrilateral snakes are $(Z_2 \times Z_2)$-cordial.

In [1485] Pechenik and Wise investigate $Z_2 \times Z_2$-cordiality of complete bipartite graphs, paths, cycles, ladders, prisms, and hypercubes. They proved that all complete bipartite graphs are $Z_2 \times Z_2$-cordial except $K_{m,n}$ where $m, n \equiv 2 \text{ mod } 4$; all paths are $Z_2 \times Z_2$-cordial except $P_4$ and $P_5$; all cycles are $Z_2 \times Z_2$-cordial except $C_4, C_5, C_k$, where $k \equiv 2 \text{ mod } 4$; and all ladders $P_2 \times P_k$ are $Z_2 \times Z_2$-cordial except $C_4$. They also introduce a generalization of $A$-cordiality involving digraphs and quasigroups, and show that there are infinitely many $Q$-cordial digraphs for every quasigroup $Q$. Jinnah and Nair [992] proved that all trees except $P_4$ and $P_5$ are $Z_2 \times Z_2$-cordial and the graphs obtained by subdividing the pendant edges of $C_n \odot K_1$ are $Z_2 \times Z_2$-cordial for all $n$.

Cairnie and Edwards [435] have determined the computational complexity of cordial and $k$-cordial labelings. They prove the conjecture of Kirchherr [1088] that deciding whether a graph admits a cordial labeling is NP-complete. As a corollary, this result implies that the same problem for $k$-cordial labelings is NP-complete. They remark that even the restricted problem of deciding whether connected graphs of diameter 2 have a cordial labeling is also NP-complete.

In [455] Chartrand, Lee, and Zhang introduced the notion of uniform cordiality as follows. Let $f$ be a labeling from $V(G)$ to $\{0, 1\}$ and for each edge $xy$ define $f^*(xy) =
\(|f(x) - f(y)|\). For \(i = 0\) and \(1\), let \(v_i(f)\) denote the number of vertices \(v\) with \(f(v) = i\) and \(e_i(f)\) denote the number of edges \(e\) with \(f^*(e) = i\). They call a such a labeling \(f\) friendly if \(|v_0(f) - v_1(f)| \leq 1\). A graph \(G\) for which every friendly labeling is cordial is called uniformly cordial. They prove that a connected graph of order \(n \geq 2\) is uniformly cordial if and only if \(n = 3\) and \(G = K_3\), or \(n\) is even and \(G = K_{1,n-1}\).

In [1632] Riskin introduced two measures of the noncordiality of a graph. He defines the cordial edge deficiency of a graph \(G\) as the minimum number of edges, taken over all friendly labelings of \(G\), needed to be added to \(G\) such that the resulting graph is cordial. If a graph \(G\) has a vertex labeling \(f\) using \(0\) and \(1\) such that the edge labeling \(f_e\) given by \(f_e(xy) = |f(x) - f(y)|\) has the property that the number of edges labeled \(0\) and the number of edges labeled \(1\) differ by at most \(1\), the cordial vertex deficiency of \(G\) is \(\delta_f(G) = j - 1\) if \(n = j^2 + \delta\), when \(\delta\) is \(-2\), \(0\) or \(2\), and \(\infty\) otherwise. In [1632] Riskin determines the cordial edge deficiency and cordial vertex deficiency for the cases when the M"obius ladders and wheels are not cordial. In [1633] Riskin determines the cordial edge deficiencies for complete multipartite graphs that are not cordial and obtains an upper bound for their cordial vertex deficiencies.

Recall a graph \(G\) the graph \(G^*\), called the star of \(G\), is the graph obtained by replacing each vertex \(G\) with the star \(K_{1,n}\). In [1046] Kaneria, Patadiya and Teraiya introduced a balanced cordial labeling for a graph by saying that a cordial labeling \(f\) is a vertex balanced cordial if it satisfies the condition \(\nu_f(0) = \nu_f(1)\); \(f\) is a balanced cordial if it satisfies the conditions \(e_f(0) = e_f(1)\) and \(v_f(0) = v_f(1)\). Kaneria, Teraiya, and Patadiya [1049] proved the path union \(P(t \cdot C_{4n})\) is a balanced cordial if \(t\) is odd and it is vertex balanced cordial if \(t\) is even; \(C(t \cdot C_{4n})\) is a balanced cordial if \(t \equiv 0\) \((\text{mod } 4)\) and it is a vertex balanced cordial if \(t \equiv 1, 3\) \((\text{mod } 4)\); and \(C_{4n}^*\) is balanced cordial. They proved \(P_n \times C_{4t}\) is balanced cordial; \(C_{2n} \times C_{4t}\) is balanced cordial; and \(G_1 \circ G_2\) is cordial when \(G_1\) is cordial and \(G_2\) is a balanced cordial. Kaneria and Teraiya [1048] prove if \(G\) is a balanced cordial, then so is \(G^*\); if \(G\) is a balanced cordial, then so is \(P_{2n+1} \times G\); and if \(G\) is a balanced cordial, then so is \(\overline{G^*}\).

If \(f\) is a binary vertex labeling of a graph \(G\), Lee, Liu, and Tan [1191] defined a partial edge labeling of the edges of \(G\) by \(f^*(uv) = 0\) if \(f(u) = f(v) = 0\) and \(f^*(uv) = 1\) if \(f(u) = f(v) = 1\). They let \(e_0(G)\) denote the number of edges \(uv\) for which \(f^*(uv) = 0\) and \(e_1(G)\) denote the number of edges \(uv\) for which \(f^*(uv) = 1\). They say \(G\) is balanced if it has a friendly labeling \(f\) such that \(|e_0(f) - e_1(f)| \leq 1\). In the case that the number of vertices labeled \(0\) and the number of vertices labeled \(1\) are equal and the number of edges labeled \(0\) and the number of edges labeled \(1\) are equal they say the labeling is strongly balanced. They prove: \(P_n\) is balanced for all \(n\) and is strongly balanced if \(n\) is even; \(K_{m,n}\) is balanced if and only if \(m\) and \(n\) are even, \(m\) and \(n\) are odd and differ by at most \(2\), or exactly one of \(m\) or \(n\) is even (say \(n = 2t\)) and \(t \equiv -1, 0, 1\) \((\text{mod } |m - n|)\); a \(k\)-regular graph with \(p\) vertices is strongly balanced if and only if \(p\) is even and is balanced if and only if \(p\) is odd and \(k = 2\); and if \(G\) is any graph and \(H\) is strongly balanced, the composition \(G[H]\) (see §2.3 for the definition) is strongly balanced. In [1113] Kong, Lee, Seah, and Tang show: \(C_m \times P_n\) is balanced if \(m\) and \(n\) are odd and is strongly balanced if...
either \( m \) or \( n \) is even; and \( C_m \odot K_1 \) is balanced for all \( m \geq 3 \) and strongly balanced if \( m \) is even. They also provide necessary and sufficient conditions for a graph to be balanced or strongly balanced. Lee, Lee, and Ng [1164] show that stars are balanced if and only if the number of edges of the star is at most 4. Kwong, Lee, Lo, and Wang [1148] define a graph \( G \) to be \textit{uniformly balanced} if \( |e_0(f) - e_1(f)| \leq 1 \) for every vertex labeling \( f \) that satisfies \( |v_0(f) - v_1(f)| \leq 1 \). They present several ways to construct families of uniformly balanced graphs. Kim, Lee, and Ng [1083] prove the following: for any graph \( G \), \( mG \) is balanced for all \( m \); for any graph \( G \), \( mG \) is strongly balanced for all even \( m \); if \( G \) is strongly balanced and \( H \) is balanced, then \( G \cup H \) is balanced; \( mK_n \) is balanced for all \( m \) and strongly balanced if and only if \( n = 3 \) or \( mn \) is even; if \( H \) is balanced and \( G \) is any graph, the \( G \times H \) is strongly balanced; if one of \( m \) or \( n \) is even, then \( P_m[P_n] \) is balanced; if both \( m \) and \( n \) are even, then \( P_m[P_n] \) is balanced; and if \( G \) is any graph and \( H \) is strongly balanced, then the tensor product \( G \otimes H \) is strongly balanced. (The \textit{tensor product} \( G \otimes H \) of graphs \( G \) and \( H \), has the vertex set \( V(G) \times V(H) \) and any two vertices \((u, u')\) and \((v, v')\) are adjacent in \( G \otimes H \) if and only if \( u' \) is adjacent with \( v' \) and \( u \) is adjacent with \( v \).)

A graph \( G \) is \( k\)-\textit{balanced} if there is a function \( f \) from the vertices of \( G \) to \( \{0, 1, 2, \ldots, k-1\} \) such that for the induced function \( f^* \) from the edges of \( G \) to \( \{0, 1, 2, \ldots, k-1\} \) defined by \( f^*(uv) = |f(u) - f(v)| \) the number of vertices labeled \( i \) and the number of edges labeled \( j \) differ by at most 1 for each \( i \) and \( j \). Seoud, El Sonbaty, and Abd El Rehim [1713] proved the following: if \( |E| \geq 2k + 1 \) and \( |V| \leq k \) then \( G(V, E) \) is not \( k \)-balanced; if \( |E| \geq 3k + 1 \), \( (k \geq 2) \) and \( 3k - 1 \geq |V| \geq 2k + 1 \) then \( G(V, E) \) is not \( k \)-balanced; \( r \)-regular graphs with \( 3 \leq r \leq n - 1 \) are not \( r \)-balanced; if \( G_1 \) has \( m \) vertices and \( G_2 \) has \( n \) vertices then \( G_1 + G_2 \) is not \( (m+n) \)-balanced for \( m,n \geq 5 \); \( P_3 \times P_3 \) with edge set \( E \) is \( 3n \)-balanced and \( |E| \)-balanced; \( L_n \times P_2 \) \((L_n = P_3 \times P_2)\) with vertex set \( V \) and edge set \( E \) is \( n \)-balanced and \( k \)-balanced for \( k \geq |E| \) but not \( n \)-balanced for \( n \geq 2 \); the one-point union of two copies of \( K_{2,n} \) is \( 2n \)-balanced, \( |V| \)-balanced, and \( |E| \)-balanced not is \( 3 \)-balanced when \( n \geq 4 \). They also proved that the composition graph \( P_n[P_2] \) is not \( n \)-balanced for \( n \geq 3 \), is not \( 2n \)-balanced for \( n \geq 5 \), and is not \( |E| \)-balanced.

A graph whose edges are labeled with 0 and 1 so that the absolute difference in the number of edges labeled 1 and 0 is no more than one is called \textit{edge-friendly}. We say an edge-friendly labeling induces a \textit{partial vertex labeling} if vertices which are incident to more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges of both labels are called \textit{unlabeled}. Call a procedure on a labeled graph a label switching algorithm if it consists of pairwise switches of labels. Krop, Lee, and Raridan [1135] prove that given an \textit{edge-friendly labeling} of \( K_n \), we show a label switching algorithm producing an edge-friendly relabeling of \( K_n \) such that all the vertices are labeled.

### 3.8 The Friendly Index–Balance Index

Recall a function \( f \) from \( V(G) \) to \( \{0, 1\} \) where for each edge \( xy \), \( f^*(xy) = |f(x) - f(y)| \), \( v_i(f) \) is the number of vertices \( v \) with \( f(v) = i \), and \( e_i(f) \) is the num-

---

**THE ELECTRONIC JOURNAL OF COMBINATORICS** (2016), #DS6

82
ber of edges $e$ with $f^*(e) = i$ is called friendly if $|v_0(f) - v_1(f)| \leq 1$. Lee and Ng [1198] define the friendly index set of a graph $G$ as $\text{FI}(G) = \{|e_0(f) - e_1(f)| : f \text{ runs over all friendly labelings of } G\}$. They proved: for any graph $G$ with $q$ edges $\text{FI}(G) \subseteq \{0, 2, 4, \ldots, q\}$ if $q$ is even and $\text{FI}(G) \subseteq \{1, 3, \ldots, q\}$ if $q$ is odd; for $1 \leq m \leq n$, $\text{FI}(K_{m,n}) = \{(m - 2i)^2 : 0 \leq i \leq [m/2]\}$ if $m + n$ is even; and $\text{FI}(K_{m,n}) = \{i(i + 1) : 0 \leq i \leq m\}$ if $m + n$ is odd. In [1201] Lee and Ng prove the following: $\text{FI}(C_{2n}) = \{0, 4, 8, \ldots, 2n\}$ when $n$ is even; $\text{FI}(C_{2n}) = \{2, 6, 10, \ldots, 2n\}$ when $n$ is odd; and $\text{FI}(C_{2n+1}) = \{1, 3, 5, \ldots, 2n - 1\}$. Elumalai [572] defines a cycle with a full set of chords as the graph $PC_n$ obtained from $C_n = v_0, v_1, v_2, \ldots, v_{n-1}$ by adding the cords $v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-2)/2}v_{(n+2)/2}$ when $n$ is even and $v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-3)/2}v_{(n+3)/2}$ when $n$ is odd. Lee and Ng [1200] prove: $\text{FI}(PC_{2m+1}) = \{3m - 2, 3m - 4, 3m - 6, \ldots, 0\}$ when $m$ is even and $\text{FI}(PC_{2m+1}) = \{3m - 2, 3m - 4, 3m - 6, \ldots, 1\}$ when $m$ is odd; $\text{FI}(PC_4) = \{1, 3\}$; for $m \geq 3$, $\text{FI}(PC_{2m}) = \{3m - 5, 3m - 7, 3m - 9, \ldots, 1\}$ when $m$ is even; $\text{FI}(PC_{2m}) = \{3m - 5, 3m - 7, 3m - 9, \ldots, 0\}$ when $m$ is odd.

Salehi and Lee [1664] determined the friendly index for various classes of trees. Among their results are: for a tree with $q$ edges that has a perfect matching, the friendly index is the odd integers from 1 to $q$ and for $n \geq 2$, $\text{FI}(P_n) = \{n - 1 - 2i : 0 \leq i \lfloor (n - 1)/2 \rfloor \}$. Law [1161] determined the full friendly index sets of spiders and disproved a conjecture by Salehi and Lee [1664] that the friendly index set of a tree forms an arithmetic progression. In [1204] Lee, Ng, and Lau determine the friendly index sets of several classes of spiders.

Lee and Ng [1200] define $PC(n, p)$ as the graph obtained from the cycle $C_n$ with consecutive vertices $v_0, v_1, v_2, \ldots, v_{n-1}$ by adding the $p$ cords joining $v_i$ to $v_{n-i}$ for $1 \leq p \lfloor n/2 \rfloor - 1$. They prove $\text{FI}(PC(2m + 1, p)) = \{2m + p - 1, 2m + p - 3, 2m + p - 5, \ldots, 1\}$ if $p$ is even and $\text{FI}(PC(2m + 1, p)) = \{2m + p - 1, 2m + p - 3, 2m + p - 5, \ldots, 0\}$ if $p$ is odd; $\text{FI}(PC(2m, 1)) = \{2m - 1, 2m - 3, 2m - 5, \ldots, 1\}$; for $m \geq 3$, and $p \geq 2$, $\text{FI}(PC(2m, p)) = \{2m + p - 4, 2m + p - 6, 2m + p - 8, \ldots, 0\}$ when $p$ is even, and $\text{FI}(PC(2m, p)) = \{2m + p - 4, 2m + p - 6, 2m + p - 8, \ldots, 1\}$ when $p$ is odd. More generally, they show that the integers in the friendly index of a cycle with an arbitrary nonempty set of parallel chords form an arithmetic progression with a common difference $2$. Shiu and Kwong [1801] determine the friendly index of the grids $P_n \times P_2$. The maximum and minimum friendly indices for $C_m \times P_n$ were given by Shiu and Wong in [1827].

In [1202] Lee and Ng prove: for $n \geq 2$, $\text{FI}(C_{2n} \times P_2) = \{0, 4, 8, \ldots, 6n - 8, 6n\}$ if $n$ is even and $\text{FI}(C_{2n} \times P_2) = \{2, 6, 10, \ldots, 6n - 8, 6n\}$ if $n$ is odd; $\text{FI}(C_3 \times P_2) = \{1, 3, 5\}$; for $n \geq 2$, $\text{FI}(C_{2m+1} \times P_2) = \{6n - 1\} \cup \{6n - 5 - 2k | k \geq 0 \text{ and } 6n - 5 - 2k \geq 0\}$; $\text{FI}(M_{4n})$ (here $M_{4n}$ is the Möbius ladder with $4n$ steps) = \{6n - 4 - 4k | k \geq 0 \text{ and } 6n - 4 - 4k \geq 0\}; $\text{FI}(M_{4n+2}) = \{6n + 3\} \cup \{6n - 5 - 2k | k \geq 0 \text{ and } 6n - 5 - 2k > 0\}$. In [1149] Kwong, Lee, and Ng completely determine the friendly index of all 2-regular graphs. As a corollary, they show that $C_m \cup C_n$ is cordial if and only if $m + n = 0, 1$ or 3 (mod 4). Ho, Lee, and Ng [815] determine the friendly index sets of stars and various regular windmills. In [2168] Wen determines the friendly index of generalized wheels $C_n + mK_1$ for all $m > 1$. In [1663] Salehi and De determine the friendly index sets of certain caterpillars of diameter 4 and disprove a conjecture of Lee and Ng [1201] that the friendly index sets of trees form an arithmetic progression. The maximum and minimum friendly indices for for $C_m \times P_n$
were given by Shiu and Wong in [1827]. Salehi and Bayot [1660] have determined the friendly index set of \( P_m \times P_n \). In [1202] Lee and Ng determine the friendly index sets for two classes of cubic graphs, prisms and Möbius ladders.

For positive integers \( a \leq b \leq c \), Lee, Ng, and Tong [1207] define the broken wheel \( W(a, b, c) \) with three spokes as the graph obtained from \( K_4 \) with vertices \( u_1, u_2, u_3, c \) by inserting vertices \( x_{1,1}, x_{1,2}, \ldots, x_{1,a-1} \) along the edge \( u_1u_2 \), \( x_{2,1}, x_{2,2}, \ldots, x_{2,b-1} \) along the edge \( u_2u_3 \), \( x_{3,1}, x_{3,2}, \ldots, x_{3,c-1} \) along the edge \( u_3u_1 \). They determine the friendly index set for broken wheels with three spokes.

Lee and Ng [1200] define a parallel chord of \( C_n \) as an edge of the form \( v_iv_{n-i} \) (\( i < n - 1 \)) that is not an edge of \( C_n \). For \( n \geq 6 \), they call the cycle \( C_n \) with consecutive vertices \( v_1, v_2, \ldots, v_n \) and the edges \( v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-2)/2}v_{(n+2)/2} \) for \( n \) even and \( v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-1)/2}v_{(n+3)/2} \) for \( n \) odd, \( C_n \) with a full set of parallel chords. They determine the friendly index set of these graphs and show that for any cycle with an arbitrary non-empty set of parallel chords the numbers in its friendly index set form an arithmetic progression with common difference 2.

For a graph \( G(V, E) \) and a graph \( H \) rooted at one of its vertices \( v \), Ho, Lee, and Ng [814] define a root-union of \( (H, v) \) by \( G \) as the graph obtained from \( G \) by replacing each vertex of \( G \) with a copy of the root vertex \( v \) of \( H \) to which is appended the rest of the structure of \( H \). They investigate the friendly index set of the root-union of stars by cycles.

For a graph \( G(V, E) \) and edge set \( E \), the total graph \( T(G) \) of \( G \), is the graph with vertex set \( V \cup E \) and edge set \( E \cup \{ (v, uv) | v \in V, uv \in E \} \). Note that the total graph of the \( n \)-star is the friendship graph and the total graph of \( P_n \) is a triangular snake. Lee and Ng [1197] use \( SP(1^n, m) \) to denote the spider with one central vertex joining \( n \) isolated vertices and a path of length \( m \). They show: FI(\( K_1 + 2nK_2 \)) (friendship graph with \( 2n \) triangles) = \{2n, 2n - 4, 2n - 8, \ldots, 0\} if \( n \) is even; \{2n, 2n - 4, 2n - 8, \ldots, 2\} if \( n \) is odd; FI(\( K_1 + (2n+1)K_2 \)) = \{2n+1, 2n+1, 2n-3, \ldots, 1\}; for \( n \) odd, FI(\( T(P_n) \)) = \{3n-7, 3n-11, 3n-15, \ldots, z\} where \( z = 0 \) if \( n \equiv 1 \) (mod 4) and \( z = 2 \) if \( n \equiv 3 \) (mod 4); for \( n \) even, FI(\( T(P_n) \)) = \{3n-7, 3n-11, 3n-15, \ldots, n+1\} \cup \{|n-1, n-3, n-5, \ldots, 1\}; for \( m \leq n-1 \) and \( m+n \) even, FI(\( T(SP(1^n, m)) \)) = \{3(m+n)-4, 3(m+n)-8, 3(m+n)-12, \ldots, (m+n) \} (mod 4); for \( m+n \) odd, FI(\( T(SP(1^n, m)) \)) = \{3(m+n)-4, 3(m+n)-8, 3(m+n)-12, \ldots, m+n+2\} \cup \{|m+n, m+n-2, m+n-4, \ldots, 1\}; for \( n \geq m \) and \( m+n \) even, FI(\( T(SP(1^n, m)) \)) = \{|4k-3(m+n)| (n-m+2)/2 \leq k \leq m+n\}; for \( n \geq m \) and \( m+n \) odd, FI(\( T(SP(1^n, m)) \)) = \{|4k-3(m+n)| (n-m+3)/2 \leq k \leq m+n\}.

Kwong and Lee [1145] determine the friendly index any number of copies of \( C_3 \) that share an edge in common and the friendly index any number of copies of \( C_4 \) that share an edge in common.

For a planar graph \( G(V, E) \) Sinha and Kaur [1863] extended the notion of an index set of a friendly labeling to regions of a planar graph and determined the full region index sets of friendly labeling of cycles, wheels fans, and grids \( P_n \times P_2 \).

An edge-friendly labeling \( f \) of a graph \( G \) induces a function \( f^* \) from \( V(G) \) to \( \{0, 1\} \) defined as the sum of all edge labels mod 2. The edge-friendly index set, \( IF(G) \), of \( f \) is the number of vertices of \( f \) labeled 1 minus the number of vertices labeled 0. The edge-friendly index set of a graph \( G \), \( EFI(G) \), is \{\(|IF(G)|\)\} taken over all edge-friendly
labelings $f$ of $G$. The full edge-friendly index set of a graph $G$, FEFI($G$), is \{IF($G$)\} taken over all edge-friendly labelings $f$ of $G$. Sinha and Kaur [1862] determined the full edge-friendly index sets of stars, 2-regular graphs, wheels, and $mP_n$. In [1864] Sinha and Kaur extended the notion of index set of an edge-friendly labeling to regions of a planar graph and determined the full region index set of edge-friendly labelings of cycles, wheels, fans $P_n + K_1$, double fans $P_n + K_2$, and grids $P_m \times P_n$ ($m \geq 2, n \geq 3$). Sinha and Kaur [1843] investigate the full edge-friendly index sets of double stars, fans generalized fans, and $P_n \times P_2$. In [1798] Shiu determined the extreme values of edge-friendly indices of complete bipartite graphs.

In [1084] Kim, Lee, and Ng define the balance index set of a graph $G$ as \{|e_0(f) - e_1(f)|\} where $f$ runs over all friendly labelings $f$ of $G$. Zhang, Lee, and Wen [1164] investigate the balance index sets for the disjoint union of up to four stars and Zhang, Ho, Lee, and Wen [2248] investigate the balance index sets for trees with diameter at most four.

Kwong, Lee, and Sarvate [1153] determine the balance index sets for cycles with one pendant edge, flowers, and regular windmills. Lee, Ng, and Tong [1206] determine the balance index set of certain graphs obtained by starting with copies of a given cycle and successively identifying one particular vertex of one copy with a particular vertex of the next. For graphs $G$ and $H$ and a bijection $\pi$ from $G$ to $H$, Lee and Su [1227] define $\text{Perm}(G, \pi, H)$ as the graph obtained from the disjoint union of $G$ and $H$ by joining each $v$ in $G$ to $\pi(v)$ with an edge. They determine the balanced index sets of the disjoint union of cycles and the balanced index sets for graphs of the form $\text{Perm}(G, \pi, H)$ where $G$ and $H$ are regular graphs, stars, paths, and cycles with a chord. They conjecture that the balanced index set for every graph of the form $\text{Perm}(G, \pi, H)$ is an arithmetic progression.

Wen [2167] determines the balance index set of the graph that is constructed by identifying the center of a star with one vertex from each of two copies of $C_n$ and provides a necessary and sufficient for such graphs to be balanced. In [1229] Lee, Su, and Wang determine the balance index sets of the disjoint union of a variety of regular graphs of the same order. Kwong [1143] determines the balanced index sets of rooted trees of height at most 2, thereby settling the problem for trees with diameter at most 4. His method can be used to determine the balance index set of any tree. The homeomorph $\text{Hom}(G, p)$ of a graph $G$ is the collection of graphs obtained from $G$ by adding $p$ ($p \geq 0$) additional degree 2 vertices to its edges. For any regular graph $G$, Kong, Lee, and Lee [1106] studied the changes of the balance index sets of $\text{Hom}(G, p)$ with respect to the parameter $p$. They derived explicit formulas for their balance index sets provided new examples of uniformly balanced graphs. In [392] Bouchard, Clark, Lee, Lo, and Su investigate the balance index sets of generalized books and ear expansion graphs. In [1648] Rose and Su provided an algorithm to calculate the balance index sets of a graph. Hua and Raridan [830] determine the balanced index sets of all complete bipartite graphs with a larger part of odd cardinality and a smaller part of even cardinality.

In [1802] Shiu and Kwong made a major advance by introducing an easier approach to find the balance index sets of a large number of families of graphs in a unified and uniform manner. They use this method to determine the balance index sets for $r$-regular graphs, amalgamations of $r$-regular graphs, complete bipartite graphs, wheels, one point
there exist two distinct positive integers $r$ and $s$ such that every vertex has degree $r$ or $s$).

In [1801] Shiu and Kwong define the full friendly index set of a graph $G$ as $\{e_0(f) - e_1(f)\}$ where $f$ runs over all friendly labelings of $G$. The full friendly index for $P_2 \times P_n$ is given by Shiu and Kwong in [1801]. The full friendly index of $C_m \times C_n$ is given by Shiu and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816]. In [1860] and [1861] Sinha and Kaur investigated the full friendly index sets complete graphs, cycles, fans, double fans, wheels, double stars, and Ling in [1816].
Chopra, Lee, and Su [486] prove that the edge-balance index of the fan $P_3 + K_1$ is $\{0, 1, 2\}$ and edge-balance index of the fan $P_n + K_1$, $n \geq 4$, is $\{0, 1, 2, \ldots, n - 2\}$. They define the broken fan graphs $BF(a, b)$ as the graph with $V(BF(a, b)) = \{c\} \cup \{v_1, \ldots, v_a\} \cup \{u_1, \ldots, u_b\}$ and $E(BF(a, b)) = \{(c, v_i)| i = 1, \ldots, a\} \cup \{(c, u_i)| 1, \ldots, b\} \cup E(P_a) \cup E(P_b)$ ($a \geq 2$ and $b \geq 2$). They prove the edge-balance index set of $BF(a, b)$ is $\{0, 1, 2, \ldots, a + b - 4\}$. In [1233] Lee, Su, and Todt give the edge-balance index sets of broken wheels. See also [1917] and [1986]. In [1165] Lee, Lee, and Su present a technique that determines the balance index sets of a graph from its degree sequence. In addition, they give an explicit formula giving the exact values of the balance indices of generalized friendship graphs, envelope graphs of cycles, and envelope graphs of cubic trees.

### 3.9 $k$-equitable Labelings

In 1990 Cahit [424] proposed the idea of distributing the vertex and edge labels among $\{0, 1, \ldots, k - 1\}$ as evenly as possible to obtain a generalization of graceful labelings as follows. For any graph $G(V,E)$ and any positive integer $k$, assign vertex labels from $\{0, 1, \ldots, k - 1\}$ so that when the edge labels induced by the absolute value of the difference of the vertex labels, the number of vertices labeled with $i$ and the number of vertices labeled with $j$ differ by at most one and the number of edges labeled with $i$ and the number of edges labeled with $j$ differ by at most one. Cahit has called a graph with such an assignment of labels $k$-equitable. Note that $G(V,E)$ is graceful if and only if it is $|E| + 1$-equitable and $G(V,E)$ is cordial if and only if it is 2-equitable. Cahit [423] has shown the following: $C_n$ is 3-equitable if and only if $n \not\equiv 3 (\text{mod } 6)$; the triangular snake with $n$ blocks is 3-equitable if and only if $n$ is even; the friendship graph $C_3^{(n)}$ is 3-equitable if and only if $n$ is even; an Eulerian graph with $q \equiv 3 (\text{mod } 6)$ edges is not 3-equitable; and all caterpillars are 3-equitable [423]. Cahit [423] claimed to prove that $W_n$ is 3-equitable if and only if $n \not\equiv 3 (\text{mod } 6)$ but Youssef [2226] proved that $W_n$ is 3-equitable for all $n \geq 4$. Youssef [2224] also proved that if $G$ is a $k$-equitable Eulerian graph with $q$ edges and $k \equiv 2\ or\ 3\ \text{(mod}\ 4)$ then $q \not\equiv k\ \text{(mod } 2k)$. Cahit conjectures [423] that a triangular cactus with $n$ blocks is 3-equitable if and only if $n$ is even. In [424] Cahit proves that every tree with fewer than five end vertices has a 3-equitable labeling. He conjectures that all trees are $k$-equitable [425]. In 1999 Speyer and Szaniszlo [1908] proved Cahit’s conjecture for $k = 3$. Coles, Huszar, Miller, and Szaniszlo [511] proved caterpillars, symmetric generalized $n$-stars (or symmetric spiders), and complete $n$-ary trees are 4-equitable. Vaidya and Shah [2055] proved that the splitting graphs of $K_{1,n}$ and the bistar $B_{n,n}$ and the shadow graph of $B_{n,n}$ are 3-equitable. Rokad [1641] found 3-equitable labelings of the ring sum of different graphs.

Vaidya, Dani, Kanani, and Vihol [2019] proved that the graphs obtained by starting with copies $G_1, G_2, \ldots, G_n$ of a fixed star and joining each center of $G_i$ to the center of $G_{i+1}$ ($i = 1, 2, \ldots, n - 1$) by an edge are 3-equitable. Recall the shell $C(n, n - 3)$ is the cycle $C_n$ with $n - 3$ cords sharing a common endpoint called the apex. Vaidya, Dani, Kanani, and Vihol [2020] proved that the graphs obtained by starting with copies $G_1, G_2, \ldots, G_n$ of a fixed shell and joining each apex of $G_i$ to the apex of $G_{i+1}$ ($i = 1, 2, \ldots, n - 1$) by an
edge are 3-equitable. For a graph $G$ and vertex $v$ of $G$, Vaidya, Dani, Kanani, and Vihol [2021] prove that the graphs obtained from the wheel $W_n$, $n \geq 5$, by duplicating (see 3.7 for the definition) any rim vertex is 3-equitable and the graphs obtained from the wheel $W_n$ by duplicating the center is 3-equitable when $n$ is even and not 3-equitable when $n$ is odd and at least 5. They also show that the graphs obtained from the wheel $W_n$, $n \neq 5$, by duplicating every vertex is 3-equitable.

Vaidya, Srivastav, Kaneria, and Ghodasara [2005] prove that cycle with two chords that share a common vertex with opposite ends that are incident to two consecutive vertices of the cycle is 3-equitable. Vaidya, Ghodasara, Srivastav, and Kaneria [2025] prove that star of cycle $C_n^*$ is 3-equitable for all $n$. Vaidya and Dani [2015] proved that the graphs obtained by starting with $n$ copies $G_1, G_2, \ldots, G_n$ of a fixed star and joining the center of $G_i$ to the center of $G_{i+1}$ by an edge and each center to a new vertex $x_i$ ($1 \leq i \leq n-1$) by an edge have 3-equitable labeling. Vaidya and Dani [2018] prove that the graphs obtained by duplication of an arbitrary edge of a cycle or a wheel have 3-equitable labelings.

Recall $G = \langle W_n^{(1)} : W_n^{(2)} : \ldots : W_n^{(k)} \rangle$ is the graph obtained by joining the center vertices of each of $W_n^{(i)}$ and $W_n^{(i+1)}$ to a new vertex $x_i$ where $1 \leq i \leq k-1$. Vaidya, Dani, Kanani, and Vihol [2022] prove that $\langle W_n^{(1)} : W_n^{(2)} : \ldots : W_n^{(k)} \rangle$ is 3-equitable. Vaidya and Vihol [2069] prove that any graph $G$ can be embedded as an induced subgraph of a 3-equitable graph thereby ruling out any possibility of obtaining any forbidden subgraph characterization for 3-equitable graphs.

The shadow graph $D_2(G)$ of a connected graph $G$ is constructed by taking two copies of $G$, $G'$ and $G''$ and joining each vertex $u'$ in $G'$ to the neighbors of the corresponding vertex $u''$ in $G''$. Vaidya, Vihol, and Barasara [2072] prove that the shadow graph of $C_n$ is 3-equitable except for $n = 3$ and 5 while the shadow graph of $P_n$ is 3-equitable except for $n = 3$. They also prove that the middle graph of $P_n$ is 3-equitable and the middle graph of $C_n$ is 3-equitable for $n$ even and not 3-equitable for $n$ odd.

Bhut-Nayak and Telang have shown that crowns $C_n \odot K_1$, are $k$-equitable for $k = 1, \ldots, 2n-1$ [366] and $C_n \odot K_1$ is $k$-equitable for all $n$ when $k = 2, 3, 4, 5, \text{ and } 6$ [367].

In [1702] Seoud and Abdel Maqsoud prove: a graph with $n$ vertices and $q$ edges in which every vertex has odd degree is not 3-equitable if $n \equiv 0 \pmod{3}$ and $q \equiv 3 \pmod{6}$; all fans except $P_2 + K_1$ are 3-equitable; all double fans $P_n + K_2$ except $P_4 + K_2$ are 3-equitable; $P_n^2$ is 3-equitable for all $n$ except 3; $K_{1,1,n}$ is 3-equitable if and only if if $n \equiv 0$ or 2 (mod 3); $K_{1,2,n}$; $n \geq 2$, is 3-equitable if and only if if $n \equiv 2$ (mod 3); $K_{m,n}$, $3 \leq m \leq n$, is 3-equitable if and only if if $(m,n) = (4,4)$; and $K_{1,m,n}$, $3 \leq m \leq n$, is 3-equitable if and only if if $(m,n) = (3,4)$. They conjectured that $C_n^2$ is not 3-equitable for all $n \geq 3$.

However, Youssef [2232] proved that $C_n^2$ is 3-equitable if and only if if $n$ is at least 8. Youssef [2232] also proved that $C_n + K_2$ is 3-equitable if and only if if $n$ is even and at least 6 and determined the maximum number of edges in a 3-equitable graph as a function of the number of its vertices. For a graph with $n$ vertices to admit a $k$-equitable labeling, Seoud and Salim [1729] proved that the number of edges is at most $k[(n/k)^2/2] + k - 1$.

Bapat and Limaye [270] have shown the following graphs are 3-equitable: helms $H_n$, $n \geq 4$; flowers (see §2.2 for the definition); the one-point union of any number
of helms; the one-point union of any number of copies of $K_4$; $K_4$-snakes (see §2.2 for the definition); $C_t$-snakes where $t = 4$ or 6; $C_5$-snakes where the number of blocks is not congruent to 3 modulo 6. A multiple shell $MS(n_1^3, \ldots , n_r^3)$ is a graph formed by $t_i$ shells of helms; the one-point union of any number of copies of $K_4$-snakes where the number of blocks is not congruent to 3 modulo 6. A multiple shell is $3$-equitable and Chitre and Limaye [475] show that every multiple shell is $5$-equitable. In [476] Chitre and Limaye define the $H$-union of a family of graphs $G_1, G_2, \ldots , G_t$, each having a graph $H$ as an induced subgraph, as the graph obtained by starting with $G_1 \cup G_2 \cup \cdots \cup G_t$ and identifying all the corresponding vertices and edges of $H$ in each of $G_1, \ldots , G_t$. In [476] and [477] they proved that the $K_n$-union of gears and helms $H_n (n \geq 6)$ are edge-3-equitable.

Szaniszlo [1973] has proved the following: $P_n$ is $k$-equitable for all $k$; $K_n$ is $2$-equitable if and only if $n = 1, 2, 3$; $K_n$ is not $k$-equitable for $3 \leq k < n$; $S_n$ is $k$-equitable for all $k$; $K_{2,n}$ is $k$-equitable if and only if $n \equiv k - 1 \pmod{k}$, or $n \equiv 0, 1, 2, \ldots , [k/2] - 1 \pmod{k}$, or $n = [k/2]$ and $k$ is odd. She also proves that $C_n$ is $k$-equitable if and only if $k$ meets all of the following conditions: $n \neq k$; if $k \equiv 2, 3 \pmod{4}$, then $n \neq k - 1$ and $n \neq k \pmod{2k}$.

Vickrey [2095] has determined the $k$-equitability of complete multipartite graphs. He shows that for $m \geq 3$ and $k \geq 3$, $K_{m,n}$ is $k$-equitable if and only if $K_{m,n}$ is one of the following graphs: $K_{4,4}$ for $k = 3$; $K_{3,k-1}$ for all $k$; or $K_{m,n}$ for $k > mn$. He also shows that when $k$ is less than or equal to the number of edges in the graph and at least 3, the only complete multipartite graphs that are $k$-equitable are $K_{kn+k-1,2,1}$ and $K_{kn+k-1,1,1}$. Partial results on the $k$-equitability of $K_{m,n}$ were obtained by Krussel [1140].

In [2238] Youssef and Al-Kuleab proved the following: $C^3_n$ is $3$-equitable if and only if $n$ is even and $n \geq 12$; gear graphs are $k$-equitable for $k = 3, 4, 5, 6$; ladders $P_n \times P_2$ are $3$-equitable for all $n \geq 2$; $C_n \times P_2$ is $3$-equitable if and only if $n \equiv \not 0 \pmod{6}$; Möbius ladders $M_n$ are $3$-equitable if and only if $n \equiv \not 0 \pmod{6}$; and the graphs obtained from $P_n \times P_2 (n \geq 2)$ where by adding the edges $u_i v_{i+1} (1 \leq i \leq n - 1)$ to the path vertices $u_1, u_2, \ldots , u_n$ and $v_1, v_2, \ldots , v_n$.

In [1314] López, Muntaner-Batle, and Rius-Font prove that if $n$ is an odd integer and $F$ is optimal $k$-equitable for all proper divisors $k$ of $|E(F)|$, then $nF$ is optimal $k$-equitable for all proper divisors $k$ of $|E(F)|$. They also prove that if $m - 1$ and $n$ are odd, then $nC_m$ is optimal $k$-equitable for all proper divisors $k$ of $|E(F)|$.

As a corollary of the result of Cairnie and Edwards [435] on the computational complexity of cordially labeling graphs it follows that the problem of finding $k$-equitable labelings of graphs is NP-complete as well.

Seoud and Abdel Maqsoud [1703] call a graph $k$-balanced if the vertices can be labeled from $\{0, 1, \ldots , k - 1\}$ so that the number of edges labeled $i$ and the number of edges labeled $j$ induced by the absolute value of the differences of the vertex labels differ by at most 1. They prove that $P^2_n$ is $3$-balanced if and only if $n = 2, 3, 4, 6$; for $k \geq 4$, $P^2_n$ is $k$-balanced if and only if $k \leq n - 2$ or $n + 1 \leq k \leq 2n - 3$; for $k \geq 4$, $P^2_n$ is $k$-balanced if $k \geq 2n - 2$; for $k, m, n \geq 3$, $K_{m,n}$ is $k$-balanced if and only if $k \geq mn$; for $m \leq n$, $K_{1,m,n}$ is $k$-balanced if and only if $(i) m = 1, n = 1$ or 2, and $k = 3$; $(ii) m = 1$ and $k = n + 1$ or $n + 2$; or $(iii) k \geq (m + 1)(n + 1)$.

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 89
In [2232] Youssef gave some necessary conditions for a graph to be $k$-balanced and some relations between $k$-equitable labelings and $k$-balanced labelings. Among his results are: $C_n$ is 3-balanced for all $n \geq 3$; $K_n$ is 3-balanced if and only if $n \leq 3$; and all trees are 2-balanced and 3-balanced. He conjectures that all trees are $k$-balanced ($k \geq 2$).

Bloom has used the term $k$-equitable to describe another kind of labeling (see [2177] and [2178]). He calls a graph $k$-equitable if the edge labels induced by the absolute value of the difference of the vertex labels have the property that every edge label occurs exactly $k$ times. Bloom calls a graph of order $n$ minimally $k$-equitable if the vertex labels are 1, 2, ..., $n$ and it is $k$-equitable. Both Bloom and Wojciechowski [2177], [2178] proved that $C_n$ is minimally $k$-equitable if and only if $k$ is a proper divisor of $n$. Barrientos and Hevia [290] proved that if $G$ is $k$-equitable of size $q = kw$ (in the sense of Bloom), then $\delta(G) \leq w$ and $\Delta(G) \leq 2w$. Barrientos, Dejter, and Hevia [289] have shown that forests of even size are 2-equitable. They also prove that for $k = 3$ or $k = 4$ a forest of size $kw$ is $k$-equitable if and only if its maximum degree is at most $2w$ and that if 3 divides $mn + 1$, then the double star $S_{m,n}$ is 3-equitable if and only if $q/3 \leq m \leq [(q - 1)/2]$. ($S_{m,n}$ is $P_m$ with $m$ pendent edges attached at one end and $n$ pendent edges attached at the other end.)

They discuss the $k$-equitability of forests for $k \geq 5$ and characterize all caterpillars of diameter 2 that are $k$-equitable for all possible values of $k$. Acharya and Bhat-Nayak [44] have shown that coronas of the form $C_{2n} \odot K_1$ are minimally 4-equitable. In [274] Barrientos proves that the one-point union of a cycle and a path (dragon) and the disjoint union of a cycle and a path are $k$-equitable for all $k$ that divide the size of the graph. Barrientos and Havia [290] have shown the following: $C_n \times K_2$ is 2-equitable when $n$ is even; books $B_n$ ($n \geq 3$) are 2-equitable when $n$ is odd; the vertex union of $k$-equitable graphs is $k$-equitable; and wheels $W_n$ are 2-equitable when $n \neq 3$ (mod 4). They conjecture that $W_n$ is 2-equitable when $n \equiv 3$ (mod 4) except when $n = 3$. Their 2-equitable labelings of $C_n \times K_2$ and the $n$-cube utilized graceful labelings of those graphs.

M. Acharya and Bhat-Nayak [45] have proved the following: the crowns $C_{2n} \odot K_1$ are minimally 2-equitable, minimally 2$n$-equitable, minimally 4-equitable, and minimally $n$-equitable; the crowns $C_{3n} \odot K_1$ are minimally 3-equitable, minimally 3$n$-equitable, minimally $n$-equitable, and minimally 6-equitable; the crowns $C_{5n} \odot K_1$ are minimally 5-equitable, minimally 5$n$-equitable, minimally $n$-equitable, and minimally 10-equitable; the crowns $C_{2n+1} \odot K_1$ are minimally $(2n + 1)$-equitable; and the graphs $P_{kn+1}$ are $k$-equitable.

In [276] Barrientos calls a $k$-equitable labeling optimal if the vertex labels are consecutive integers and complete if the induced edge labels are 1, 2, ..., $w$ where $w$ is the number of distinct edge labels. Note that a graceful labeling is a complete 1-equitable labeling. Barrientos proves that $C_m \odot nK_1$ (that is, an $m$-cycle with $n$ pendent edges attached at each vertex) is optimal 2-equitable when $m$ is even; $C_3 \odot nK_1$ is complete 2-equitable when $n$ is odd; and $C_3 \odot nK_1$ is complete 3-equitable for all $n$. He also shows that $C_n \odot K_1$ is $k$-equitable for every proper divisor $k$ of the size 2$n$. Barrientos and Havia [290] have shown that the $n$-cube ($n \geq 2$) has a complete 2-equitable labeling and that $K_{m,n}$ has a complete 2-equitable labeling when $m$ or $n$ is even. They conjecture that every tree of even size has an optimal 2-equitable labeling.

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 90
3.10 Hamming-graceful Labelings

Mollard, Payan, and Shixin [1414] introduced a generalization of graceful graphs called Hamming-graceful. A graph \( G = (V, E) \) is called Hamming-graceful if there exists an injective labeling \( g \) from \( V \) to the set of binary \( |E| \)-tuples such that \( \{d(g(v), g(u))| \ uv \in E\} = \{1, 2, \ldots, |E|\} \) where \( d \) is the Hamming distance. Shixin and Yu [1833] have shown that all graceful graphs are Hamming-graceful; all trees are Hamming-graceful; \( C_n \) is Hamming-graceful if and only if \( n \equiv 0 \) or \( 3 \) (mod \( 4 \)); if \( K_n \) is Hamming-graceful, then \( n \) has the form \( k^2 \) or \( k^2 + 2 \); and \( K_n \) is Hamming-graceful for \( n = 2, 3, 6, 9, 11, 16, \) and \( 18 \). They conjecture that \( K_n \) is Hamming-graceful for \( n \) of the forms \( k^2 \) and \( k^2 + 2 \) for \( k \geq 5 \).
4 Variations of Harmonious Labelings

4.1 Sequential and Strongly $c$-harmonious Labelings

Chang, Hsu, and Rogers [446] and Grace [733], [734] have investigated subclasses of harmonious graphs. Chang et al. define an injective labeling $f$ of a graph $G$ with $q$ vertices to be strongly $c$-harmonious if the vertex labels are from $\{0, 1, \ldots, q - 1\}$ and the edge labels induced by $f(x) + f(y)$ for each edge $xy$ are $c, \ldots, c + q - 1$. Grace called such a labeling sequential. In the case of a tree, Chang et al. modify the definition to permit exactly one vertex label to be assigned to two vertices whereas Grace allows the vertex labels to range from 0 to $q$ with no vertex label being used twice. For graphs other than trees, we use the term $c$-sequential labelings interchangeably with strongly $c$-harmonious labelings. By taking the edge labels of a sequentially labeled graph with $q$ edges modulo $q$, we obviously obtain a harmoniously labeled graph. It is not known if there is a graph that can be harmoniously labeled but not sequentially labeled. Grace [734] proved that caterpillars, caterpillars with a pendent edge, odd cycles with zero or more pendent edges, trees with $\alpha$-labelings, wheels $W_{2n+1}$, and $P_n^2$ are sequential. Liu and Zhang [1287] finished off the crowns $C_{2n} \circ K_1$. (The case $C_{2n+1} \circ K_1$ was a special case of Grace’s results. Liu [1299] proved crowns are harmonious.)

Bača and Youssef [248] investigated the existence of harmonious labelings for the corona graphs of a cycle and a graph $G$. They proved that if $G + K_1$ is strongly harmonious with the 0 label on the vertex of $K_1$, then $C_n \circ G$ is harmonious for all odd $n \geq 3$. By combining this with existing results they have as corollaries that the following graphs are harmonious: $C_n \circ C_m$ for odd $n \geq 3$ and $m \not\equiv 2 \pmod{3}$; $C_n \circ K_{s,t}$ for odd $n \geq 3$; and $C_n \circ K_{1,s,t}$ for odd $n \geq 3$.

Bu [404] also proved that crowns are sequential as are all even cycles with $m$ pendent edges attached at each vertex. Figueroa-Centeno, Ichishima, and Muntaner-Batle [615] proved that all cycles with $m$ pendent edges attached at each vertex are sequential. Wu [2182] has shown that caterpillars with $m$ pendent edges attached at each vertex are sequential.

Singh has proved the following: $C_n \circ K_2$ is sequential for all odd $n > 1$ [1847]; $C_n \circ P_3$ is sequential for all odd $n$ [1848]; $K_2 \circ C_n$ (each vertex of the cycle is joined by edges to the end points of a copy of $K_2$) is sequential for all odd $n$ [1848]; helms $H_n$ are sequential when $n$ is even [1848]; and $K_{1,n} + K_2$, $K_{1,n} + \overline{K}_2$, and ladders are sequential [1850]. Santhosh [1676] has shown that $C_n \circ P_4$ is sequential for all odd $n \geq 3$. Both Grace [733] and Reid (see [657]) have found sequential labelings for the books $B_{2n}$. Jungreis and Reid [1003] have shown the following graphs are sequential: $P_m \times P_n$ $(m,n) \neq (2,2)$; $C_{4m} \times P_n$ $(m,n) \neq (1,2)$; $C_{4m+2} \times P_{2n}$; $C_{2m+1} \times P_n$; and $C_4 \times C_{2n}$ $(n > 1)$. The graphs $C_{4m+2} \times C_{2n+1}$ and $C_{2m+1} \times C_{2n+1}$ fail to satisfy a necessary parity condition given by Graham and Sloane [737]. The remaining cases of $C_m \times P_n$ and $C_m \times C_n$ are open. Gallian, Prout, and Winters [658] proved that all graphs $C_n \times P_2$ with a vertex or an edge deleted are sequential. Zhu and Liu [2264] give necessary and sufficient conditions for sequential graphs, provide a characterization of non-tree sequential graphs by way of
by vertex closure, and obtain characterizations of sequential trees.

Gnanajothi [721] [pp. 68-78] has shown the following graphs are sequential: $K_{1,m,n}$; $mC_n$, the disjoint union of $m$ copies of $C_n$ if and only if $m$ and $n$ are odd; books with triangular pages or pentagonal pages; and books of the form $B_{n+1}$, thereby answering a question and proving a conjecture of Gallian and Jungreis [657]. Sun [1944] has also proved that $B_n$ is sequential if and only if $n \not\equiv 3 \pmod{4}$. Ichishima and Oshima [851] pose determining whether or not $mK_{s,t}$ is sequential as a problem.

Yuan and Zhu [2244] have shown that $mC_n$ is sequential when $m$ and $n$ are odd. Although Graham and Sloane [737] proved that the Möbius ladder $M_3$ is not harmonious, Gallian [652] established that all other Möbius ladders are sequential (see §2.3 for the definition of Möbius ladder). Chung, Hsu, and Rogers [446] have shown that $K_{m,n}+K_1$, which includes $S_m + K_1$, is sequential. Seoud and Youssef [1738] proved that if $G$ is sequential and has the same number of edges as vertices, then $G+K_n$ is sequential for all $n$. Recall that $\Theta(C_m)^n$ denotes the book with $n$ $m$-polygonal pages. Lu [1332] proved that $\Theta(C_{2m+1})^{2n}$ is $2mn$-sequential for all $n$ and $m = 1, 2, 3, 4$, and $\Theta(C_m)^2$ is $(m-2)$-sequential if $m \geq 3$ and $m \equiv 2, 3, 4, 7 \pmod{8}$.

Zhou and Yuan [2261] have shown that for every $c$-sequential graph $G$ with $p$ vertices and $q$ edges and any positive integer $m$ the graph $(G+K_m)+K_n$ is also $k$-sequential when $q-p+1 \leq m \leq q-p+c$. Zhou [2260] has shown that the analogous results hold for strongly $c$-harmonious graphs. Zhou and Yuan [2261] have shown that for every $c$-sequential graph $G$ with $p$ vertices and $q$ edges and any positive integer $m$ the graph $(G+K_m)+K_n$ is $c$-sequential when $q-p+1 \leq m \leq q-p+c$.

Shee [1216] proved that every graph is a subgraph of a sequential graph. Acharya, Germina, Princy, and Rao [34] prove that every connected graph can be embedded in a strongly $c$-harmonious graph for some $c$. Miao and Liang [1387] use $C_n(d; i, j; P_k)$ to denote a cycle $C_n$ with path $P_k$ joining two nonconsecutive vertices $x_i$ and $x_j$ of the cycle, where $d$ is the distance between $x_i$ and $x_j$ on $C_n$. They proved that the graph $C_n(d; i, j; P_k)$ is strongly $c$-harmonious when $k = 2, 3$ and integer $n \geq 6$. Lu [1331] provides three techniques for constructing larger sequential graphs from some smaller ones: an attaching construction, an adjoining construction, and the join of two graphs. Using these, he obtains various families of sequential or strongly $c$-indexable graphs.

For $1 \leq s \leq n$, let $C_n(i: i_1, i_2, \ldots, i_s)$ denote an $n$-cycle with consecutive vertices $x_1, x_2, \ldots, x_n$ to which the $s$ chords $x_i x_{i_1}, x_i x_{i_2}, \ldots, x_i x_{i_s}$ have been added. Liang [1268] proved various techniques for constructing graphs of the form $C_n(i: i_1, i_2, \ldots, i_s)$ are strongly $c$-harmonious.

Youssef [2229] observed that a strongly $c$-harmonious graph with $q$ edges is $c$-cordial for all $c \geq q$ and a strongly $k$-indexable graph is $k$-cordial for every $k$. The converse of this latter result is not true.

In [848] Ichishima and Oshima show that the hypercube $Q_n$ ($n \geq 2$) is sequential if and only if $n \geq 4$. They also introduce a special kind of sequential labeling of a graph $G$ with size $2t+s$ by defining a sequential labeling $f$ to be a partitional labeling if $G$ is bipartite with partite sets $X$ and $Y$ of the same cardinality $s$ such that $f(x) \leq t+s-1$ for all $x \in X$ and $f(y) \geq t-s$ for all $y \in Y$, and there is a positive integer $m$ such that the induced edge labels are partitioned into three sets $[m, m+t-1], [m+t, m+t+s-1]$, [93]
and $[m + t + s, m + 2t + s - 1]$ with the properties that there is an involution $\pi$, which is an automorphism of $G$ such that $\pi$ exchanges $X$ and $Y$, $x\pi(x) \in E(G)$ for all $x \in X$, and $\{f(x) + f(\pi(x))| x \in X\} = [m + t, m + t + s - 1]$. They prove if $G$ has a partitional labeling, then $G \times Q_n$ has a partitional labeling for every nonnegative integer $n$. Using this together with existing results and the fact that every graph that has a partitional labeling is sequential, harmonic, and felicitous (see §4.5) they show that the following graphs are partitional, sequential, harmonic, and felicitous: for $n \geq 4$, hypercubes $Q_n$; generalized books $S_{2m} \times Q_n$; and generalized ladders $P_{2m+1} \times Q_n$.

In [849] Ichishma and Oshima proved the following: if $G$ is a partitional graph, then $G \times K_2$ is partitional, sequential, harmonic and felicitous; if $G$ is a connected bipartite graph with partite sets of distinct odd order such that in each partite set each vertex has the same degree, then $G \times K_2$ is not partitional; for every positive integer $m$, the book $B_m$ is partitional if and only if $m$ is even; the graph $B_{2m} \times Q_n$ is partitional if and only if $(m, n) \neq (1, 1)$; the graph $K_{m,2} \times Q_n$ is partitional if and only if $(m, n) \neq (2, 1)$; for every positive integer $n$, the graph $K_{m,3} \times Q_n$ is partitional when $m = 4, 8, 12, 16$. As open problems they ask which $m$ and $n$ is $K_{m,n} \times K_2$ partitional and for which $l, m$ and $n$ is $K_{l,m} \times Q_n$ partitional?

Ichishma and Oshima [849] also investigated the relationship between partitional graphs and strongly graceful graphs (see §3.1 for the definition) and partitional graphs and strongly felicitous graphs (see §4.5 for the definition). They proved the following. If $G$ is a partitional graph, then $G \times K_2$ is partitional, sequential, harmonic and felicitous. Assume that $G$ is a partitional graph of size $2t + s$ with partite sets $X$ and $Y$ of the same cardinality $s$, and let $f$ be a partitional labeling of $G$ such that $\lambda_1 = \max\{f(x) : x \in X\}$ and $\lambda_2 = \max\{f(y) : y \in Y\}$. If $\lambda_1 + 1 = m + 2t + s - \lambda_2$, where $m = \min\{f(x) + f(y) : xy \in E(G)\} = \min\{f(y) : y \in Y\}$, then $G$ has a strong $\alpha$-valuation. Assume that $G$ is a partitional graph of size $2t + s$ with partite sets $X$ and $Y$ of the same cardinality $s$, and let $f$ be a partitional labeling of $G$ such that $\lambda_1 = \max\{f(x) : x \in X\}$ and $\lambda_2 = \max\{f(y) : y \in Y\}$. If $\lambda_1 + 1 = m + 2t + s - \lambda_2$, where $m = \min\{f(x) + f(y) : xy \in E(G)\} = \min\{f(y) : y \in Y\}$, then $G$ is strongly felicitous. Assume that $G$ is a partitional graph of size $2t + s$ with partite sets $X$ and $Y$ of the same cardinality $s$, and let $f$ be a partitional labeling of $G$ such that $\mu_1 = f(x_1) = \min\{f(x) : x \in X\}$ and $\mu_2 = f(y_1) = \min\{f(y) : y \in Y\}$. If $t + s = m + 1$ and $\mu_1 + \mu_2 = m$, where $m = \min\{f(x) + f(y) : xy \in E(G)\}$ and $x_1y_1 \in E(G)$, then $G$ has a strong $\alpha$-valuation and strongly felicitous labeling.

Singh and Varkey [1854] call a graph with $q$ edges odd sequential if the vertices can be labeled with distinct integers from the set $\{0, 1, 2, \ldots, q\}$ or, in the case of a tree, from the set $\{0, 1, 2, \ldots, 2q - 1\}$, such that the edge labels induced by addition of the labels of the endpoints take on the values $\{1, 3, 5, \ldots, 2q - 1\}$. They prove that combs, grids, stars, and rooted trees of level 2 are odd sequential whereas odd cycles are not. Singh and Varkey call a graph $G$ bisequential if both $G$ and its line graph have a sequential labeling. They prove paths and cycles are bisequential.

Vaidya and Lekha [2044] proved the following graphs are odd sequential: $P_n$, $C_n$ for $n \equiv 0 \mod 4$, crowns $C_n \odot K_1$ for even $n$, the graph obtained by duplication of
arbitrary vertex in even cycles, path unions of stars, arbitrary super subdivisions in $P_n$, and shadows of stars. They also introduced the concept of a bi-odd sequential labeling of a graph $G$ as one for which both $G$ and its line graph $L(G)$ admit odd sequential labeling. They proved $P_n$ and $C_n$ for $n \equiv (\mod 4)$ are bi-odd sequential graphs and trees are bi-odd sequential if and only if they are paths. They also prove that $P_4$ is the only graph with the property that it and its complement are odd sequential.

Arockiaraj, Mahalakshmi, and Namasivayam [146] proved that the subdivision graphs of the following graphs have odd sequential labelings (they call them odd sum labelings): triangular snakes; quadrilateral snakes; slanting ladders $SL_n (n > 1)$ (the graphs obtained from two paths $u_1u_2\ldots u_n$ and $v_1v_2\ldots v_n$ by joining each $u_i$ with $v_{i+1}$); $C_p \circ K_1$, $H_n \circ K_1$, $C_m@C_n$; $P_m \times P_n$, and graphs obtained by the duplication of a vertex of a path and the duplication of a vertex of a cycle. Arockiaraj, Mahalakshmi, and Namasivayam [148] investigate the odd sum labeling behavior of paths, combs, cycles, crowns, and ladders under duplication of an edge.

Arockiaraj and Mahalakshmi [145] proved the following graphs have odd sequential labelings (odd sum labelings): $P_n (n > 1)$, $C_n$ if and only if $n \equiv 0 (\mod 4)$; $C_{2n} \circ K_1$; $P_n \times P_2 (n > 1)$; $P_m \circ K_1$ if $m$ is even or $m$ is odd and $n = 1$ or 2; the balloon graph $P_m(C_n)$ obtained by identifying an end point of $P_m$ with a vertex of $C_n$ if either $n \equiv 0 (\mod 4)$ or $n \equiv 2 (\mod 4)$ and $m \not\equiv 1 (\mod 3)$; quadrilateral snakes $Q_n$; $P_m \circ C_n$ if $m > 1$ and $n \equiv 0 (\mod 4)$; $P_m \circ Q_3$; bistars; $C_{2n} \times P_2$; the trees $T_n$ obtained from $n$ copies of $T_p$ by joining an edge $uu'$ between every pair of consecutive paths where $u$ is a vertex in $i$-th copy of the path and $u'$ is the corresponding vertex in the $(i+1)$th copy of the path; $H_n$-graphs obtained by starting with two copies of $P_n$ with vertices $v_1, v_2, \ldots, v_n$ and $u_1, u_2, \ldots, u_n$ and joining the vertices $v_{n+1}/2$ and $u_{n+1}/2$ if $n$ is odd and the vertices $v_{n/2+1}$ and $u_{n/2}$ if $n$; and $H_n \circ mK_1$.

Arockiaraj and Mahalakshmi [147] proved the splitting graphs of following graphs have odd sequential labelings (odd sum labelings): $P_n$; $C_n$ if and only if $n \equiv 0 (\mod 4)$; $P_n \circ K_1$; $C_{2n} \circ K_1$; $K_{1,n}$ if and only if $n \leq 2$; $P_n \times P_2 (n > 1)$; slanting ladders $SL_n (n > 1)$; the quadrilateral snake $Q_n$; and $H_n$-graphs.

Among the strongly 1-harmonious (also called strongly harmonious) graphs are: fans $F_n$ with $n \geq 2$ [446]; wheels $W_n$ with $n \not\equiv 2 (\mod 3)$ [446]; $K_{m,n} + K_1$ [446]; French windmills $K_4^{(t)}$ [826], [1057]; the friendship graphs $G_3^{(n)}$ if and only if $n \equiv 0$ or 1 (mod 4) [826], [1057], [2199]; $C_4^{(t)}$ [1945]; and helms [1586].

Seoud, Diab, and Elsakhawi [1712] have shown that the following graphs are strongly harmonious: $K_{m,n}$ with an edge joining two vertices in the same partite set; $K_{1,m,n}$; the composition $P_n[P_2]$ (see §2.3 for the definition); $B(3,2,m)$ and $B(4,3,m)$ for all $m$ (see §2.4 for the notation); $P_2^m (n \geq 3)$; and $P_n^p (n \geq 3)$. Seoud et al. [1712] have also proved: $B_{2n}$ is strongly 2n-harmonious; $P_n$ is strongly $[n/2]$-harmonious; ladders $L_{2k+1}$ are strongly $(k+1)$-harmonious; and that if $G$ is strongly c-harmonious and has an equal number of vertices and edges, then $G + \overline{K_n}$ is also strongly c-harmonious.

Bača and Youssef [248] investigated the existence of harmonious labelings for the corona graphs of a cycle and a graph $G$, and for the corona graph of $K_2$ and a tree. They prove: if join of a graph $G$ of order $p$ and $K_1$, $G + K_1$, is strongly harmonious with the 0
On the vertex of $K_1$, then the corona of $C_n$ with $G$, $C_n \odot G$, is harmonious for all odd $n \geq 3$; if $T$ is a strongly $c$-harmonious tree of odd size $q$ and $c = \frac{q+1}{2}$ then the corona of $K_2$ with $T$, $K_2 \odot T$, is also strongly $c$-harmonious; if a unicyclic graph $G$ of odd size $q$ is a strongly $c$-harmonious and $c = \frac{q-1}{2}$ then the corona of $K_2$ with $G$, $K_2 \odot G$, is also strongly $c$-harmonious.

Sethuraman and Selvaraju [1771] have proved that the graph obtained by joining two complete bipartite graphs at one edge is graceful and strongly harmonious. They ask whether these results extend to any number of complete bipartite graphs.

For a graph $G(V, E)$ Gayathri and Hemalatha [693] define an even sequential harmonious labeling $f$ of $G$ as an injection from $V$ to $\{0, 1, 2, \ldots, 2|E|\}$ with the property that the induced mapping $f^+$ from $E$ to $\{2, 4, 6, \ldots, 2|E|\}$ defined by $f^+(uv) = f(u) + f(v)$ when $f(u) + f(v)$ is even, and $f^+(uv) = f(u) + f(v) + 1$ when $f(u) + f(v)$ is odd, is an injection. They prove the following have even sequential harmonious labelings (all cases are the nontrivial ones): $P_n, P_n^+, C_n (n \geq 3)$, triangular snakes, quadrilateral snakes, Möbius ladders, $P_m \times P_n (m \geq 2, n \geq 2)$, $K_{m,n}$; crowns $C_n \odot K_1$, graphs obtained by joining the centers of two copies of $K_{1,n}$ by a path; banana trees (see §2.1), $P_n^2$, closed helms (see §2.2), $C_3 \odot nK_1 (n \geq 2)$; $D \odot K_{1,n}$ where $D$ is a dragon (see §2.2); $(K_{1,n} : m) (m, n \geq 2)$ (see §4.5); the wreath product $P_n \ast K_2 (n \geq 2)$ (see §4.5); combs $P_n \odot K_1$; the one-point union of the end point of a path to a vertex of a cycle (tadpole); the one-point union of the end point of a tadpole and the center of a star; the graphs $PC_n$ obtained from $C_n = v_0, v_1, v_2, \ldots, v_{n-1}$ by adding the cords $v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-2)/2}v_{(n+2)/2}$ when $n$ is even and $v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{(n-3)/2}v_{(n+3)/2}$ when $n$ is odd (that is, cycles with a full set of cords); $P_m \cdot nK_1$; the one-point union of a vertex of a cycle and the center of a star; graphs obtained by joining the centers of two stars with an edge; graphs obtained by joining two disjoint cycles with an edge (dumbbells); graphs consisting of two even cycles of the same order sharing a common vertex with an arbitrary number of pendent edges attached at the common vertex (butterflies).

In her PhD thesis [1436] (see also [694]) Muthuramakrishnan defined a labeling $f$ of a graph $G(V, E)$ to be $k$-even sequential harmonious if $f$ is an injection from $V$ to $\{k - 1, k + 1, \ldots, k + 2q - 1\}$ such that the induced mapping $f^+$ from $E$ to $\{2k, 2k + 2, 2k + 4, \ldots, 2k + 2q - 2\}$ defined by $f^+(uv) = f(u) + f(v)$ if $f(u) + f(v)$ is even and $f^+(uv) = f(u) + f(v) + 1$ if $f(u) + f(v)$ is odd are distinct. A graph $G$ is called a $k$-even sequential harmonious graph if it admits a $k$-even sequential harmonious labeling. Among the numerous graphs that she proved to be $k$-even sequential harmonious are: paths, cycles, $K_{m,n}$, $P_n^2 (n \geq 3)$, crowns $C_n \odot K_1$, $C_n \odot P_n$ (the graph obtained by identifying an endpoint of $P_n$ with a vertex of $C_m$), double triangular snakes, double quadrilateral snakes, bistars, grids $P_m \times P_n (m, n \geq 2)$, $P_n[P_2]$, $C_3 \odot nK_1 (n \geq 2)$, flags $F_l_m$ (the cycle $C_m$ with one pendent edge), dumbbell graphs (two disjoint cycles joined by an edge) butterfly graphs $B_n$ (two even cycles of the same order sharing a common vertex with an arbitrary number of pendent edges attached at the common vertex), $K_2 + nK_1, K_n + 2K_2$, banana trees, sparklers $P_n \odot K_{1,n}$ (m, n \geq 2), sparklers (graphs obtained by identifying an endpoint of $P_m$ with the center of a star), twigs (graphs obtained from $P_n (n \geq 3)$ by attaching exactly two pendent edges at each internal vertex of $P_n$), festoon graphs.
proved that if $P_m \odot nK_1$ ($m \geq 2$), the graphs $T_{m,n,t}$ obtained from a path $P_t$ by appending $m$ edges at one endpoint of $P_t$ and $n$ edges at the other endpoint of $P_t$, $L_n \odot K_1$ ($L_n$ is the ladder $P_n \times P_2$), shadow graphs of paths, stars and bistars, and split graphs of paths and stars. Muthuramakrishnan also defines $k$-odd sequential harmonious labeling of graphs in the natural way and obtains a handful of results.

4.2 $(k,d)$-arithmetic Labelings

Acharya and Hegde [38] have generalized sequential labelings as follows. Let $G$ be a graph with $q$ edges and let $k$ and $d$ be positive integers. A labeling $f$ of $G$ is said to be $(k,d)$-arithmetic if the vertex labels are distinct nonnegative integers and the edge labels induced by $f(x) + f(y)$ for each edge $xy$ are $k, k + d, k + 2d, \ldots, k + (q-1)d$. They obtained a number of necessary conditions for various kinds of graphs to have a $(k,d)$-arithmetic labeling. The case where $k = 1$ and $d = 1$ was called additively graceful by Hegde [783]. Hegde [783] showed: $K_n$ is additively graceful if and only if $n = 2, 3, 4$; every additively graceful graph except $K_2$ or $K_{1,2}$ contains a triangle; and a unicyclic graph is additively graceful if and only if it is a 3-cycle or a 3-cycle with a single pendant edge attached. Jinnah and Singh [993] noted that $P_n^a$ is additively graceful. Hegde [784] proved that if $G$ is strongly $k$-indexable, then $G$ and $G + K_n$ are $(kd,d)$-arithmetic.

Acharya and Hegde [40] proved that $K_n$ is $(k,d)$-arithmetic if and only if $n \geq 5$ (see also [410]). They also proved that a graph with an $\alpha$-labeling is a $(k,d)$-arithmetic for all $k$ and $d$. Bu and Shi [410] proved that $K_{m,n}$ is $(k,d)$-arithmetic when $k$ is not of the form $id$ for $1 \leq i \leq n - 1$. For all $d \geq 1$ and all $r \geq 0$, Acharya and Hegde [38] showed the following: $K_{m,n,1}$ is $(d + 2r,d)$-arithmetic; $C_{4t+1}$ is $(2dt + 2r,d)$-arithmetic; $C_{4t+2}$ is not $(k,d)$-arithmetic for any values of $k$ and $d$; $C_{4t+3}$ is $((2t + 1)d + 2r,d)$-arithmetic; $W_{4t+2}$ is $(2dt + 2r,d)$-arithmetic; and $W_{4t}$ is $(2(t+1)d + 2r,d)$-arithmetic. They conjecture that $C_{4t+1}$ is $(2dt + 2r,d)$-arithmetic for some $r$ and that $C_{4t+3}$ is $(2dt + 2r,d)$-arithmetic for some $r$. Hegde and Shetty [801] proved the following: the generalized web $W(t,n)$ (see §2.2 for the definition) is $((n-1)d/2,d)$-arithmetic and $((3n-1)d/2,d)$-arithmetic for odd $n$; the join of the generalized web $W(t,n)$ with the center removed and $K_p$ where $n$ is odd is $((n-1)d/2,d)$-arithmetic; every $T_p$-tree (see §3.2 for the definition) with $q$ edges and every tree obtained by subdividing every edge of a $T_p$-tree exactly once is $(k+(q-1)d,d)$-arithmetic for all $k$ and $d$. Lu, Pan, and Li [1334] proved that $K_{1,m} \cup K_{p,q}$ is $(k,d)$-arithmetic when $k > (q-1)d + 1$ and $d > 1$.

Yu [2240] proved that a necessary condition for $C_{4t+1}$ to be $(k,d)$-arithmetic is that $k = 2dt + r$ for some $r \geq 0$ and a necessary condition for $C_{4t+3}$ to be $(k,d)$-arithmetic is that $k = (2t+1)d + 2r$ for some $r \geq 0$. These conditions were conjectured by Acharya and Hegde [38]. Singh proved that the graph obtained by subdividing every edge of the ladder $L_n$ is $(5,2)$-arithmetic [1846] and that the ladder $L_n$ is $(n,1)$-arithmetic [1849]. He also proves that $P_m \times C_n$ is $((n-1)/2,1)$-arithmetic when $n$ is odd [1849]. Acharya, Germina, and Anandavally [32] proved that the subdivision graph of the ladder $L_n$ is $(k,d)$-arithmetic if either $d$ does not divide $k$ or $k = rd$ for some $r \geq 2n$ and that $P_m \times P_n$ and the subdivision graph of the ladder $L_n$ are $(k,k)$-arithmetic if and only if $k$ is at least

\[ P_n \odot nK_1 \ (m \geq 2), \ \text{the graphs} \ \ T_{m,n,t} \ \text{obtained from a path} \ \ P_t \ \text{by appending} \ m \ \text{edges at one endpoint of} \ \ P_t \ \text{and} \ n \ \text{edges at the other endpoint of} \ \ P_t, \ \text{shadow graphs of paths, stars and bistars, and split graphs of paths and stars. Muthuramakrishnan also defines} \ k\text{-odd sequential harmonious labeling of graphs in the natural way and obtains a handful of results.} \]
3. Lu, Pan, and Li [1334] proved that $S_m \cup K_{p,q}$ is $(k, d)$-arithmetic when $k > (q - 1)d + 1$ and $d > 1$.

A graph is called arithmetic if it is $(k, d)$-arithmetic for some $k$ and $d$. Singh and Vilfred [1856] showed that various classes of trees are arithmetic. Singh [1849] has proved that the union of an arithmetic graph and an arithmetic bipartite graph is arithmetic. He conjectures that the union of arithmetic graphs is arithmetic. He provides an example to show that the converse is not true.

Germina and Anandavally [703] investigated embedding of graphs in arithmetic graphs. They proved: every graph can be embedded as an induced subgraph of an arithmetic graph; every bipartite graph can be embedded in a $(k, d)$-arithmetic graph for all $k$ and $d$ such that $d$ does not divide $k$; and any graph containing an odd cycle cannot be embedded as an induced subgraph of a connected $(k, d)$-arithmetic with $k < d$.

4.3 $(k, d)$-indexable Labelings

Acharya and Hegde [38] call a graph with $p$ vertices and $q$ edges $(k, d)$-indexable if there is an injective function from $V$ to $\{0, 1, 2, \ldots, p-1\}$ such that the set of edge labels induced by adding the vertex labels is a subset of $\{k, k+d, k+2d, \ldots, k+q(d-1)\}$. When the set of edges is $\{k, k+d, k+2d, \ldots, k+q(d-1)\}$ the graph is said to be strongly $(k, d)$-indexable. A $(k, 1)$-graph is more simply called $k$-indexable and strongly 1-indexable graphs are simply called strongly indexable. Notice that strongly indexable graphs are a stronger form of sequential graphs and for trees and unicyclic graphs the notions of sequential labelings and strongly $k$-indexable labelings coincide. Hegde and Shetty [806] have shown that the notions of $(1, 1)$-strongly indexable graphs and super edge-magic total labelings (see §5.2) are equivalent.

Zhou [2260] has shown that for every $k$-indexable graph $G$ with $p$ vertices and $q$ edges the graph $(G + K_{q-p+k}) + K_1$ is strongly $k$-indexable. Acharaya and Hegde prove that the only nontrivial regular graphs that are strongly indexable are $K_2, K_3$, and $K_2 \times K_3$, and that every strongly indexable graph has exactly one nontrivial component that is either a star or has a triangle. Acharaya and Hegde [38] call a graph with $p$ vertices indexable if there is an injective labeling of the vertices with labels from $\{0, 1, 2, \ldots, p-1\}$ such that the edge labels induced by addition of the vertex labels are distinct. They conjecture that all unicyclic graphs are indexable. This conjecture was proved by Arumugam and Germina [150] who also proved that all trees are indexable. Bu and Shi [411] also proved that all trees are indexable and that all unicyclic graphs with the cycle $C_3$ are indexable. Hegde [784] has shown the following: every graph can be embedded as an induced subgraph of an indexable graph; if a connected graph with $p$ vertices and $q$ edges $(q \geq 2)$ is $(k, d)$-indexable, then $d \leq 2$; $P_m \times P_n$ is indexable for all $m$ and $n$; if $G$ is a connected $(1, 2)$-indexable graph, then $G$ is a tree; the minimum degree of any $(k, 1)$-indexable graph with at least two vertices is at most 3; a caterpillar with partite sets of orders $a$ and $b$ is strongly $(1, 2)$-indexable if and only if $|a - b| \leq 1$; in a connected strongly $k$-indexable graph with $p$ vertices and $q$ edges, $k \leq p - 1$; and if a graph with $p$ vertices and $q$ edges is $(k, d)$-indexable, then $q \leq (2p - 3 - k + d)/d$. As a corollary of the latter, it follows that
\(K_n\) \((n \geq 4)\) and wheels are not \((k, d)\)-indexable.

Lee and Lee [1163] provide a way to construct a \((k, d)\)-strongly indexable graph from two given \((k, d)\)-strongly indexable graphs. Lee and Lo [1192] show that every given \((1,2)\)-strongly indexable spider can extend to an \((1,2)\)-strongly indexable spider with arbitrarily many legs.

Seoud, Abd El Hamid, and Abo Shady [1700] proved the following graphs are indexable: \(P_n \times P_n \) \((m, n \geq 2)\); the graphs obtained from \(P_n + K_1\) by inserting one vertex between every two consecutive vertices of \(P_n\); the one-point union of any number of copies of \(K_{2,n}\); and the graphs obtained by identifying a vertex of a cycle with the center of a star. They showed \(P_n\) is strongly \([n/2]\)-indexable; odd cycles \(C_n\) are strongly \([n/2]\)-indexable; \(K_{1}(n, m)\) \((m, n > 2)\) is indexable if and only if \(m \text{ or } n \) is at most 2. For a simple indexable graph \(G(V,E)\) they proved \(|E| \leq 2|V| - 3\). Also, they determine all indexable graphs of order at most 6.

Hegde and Shetty [805] also prove that if \(G\) is strongly \(k\)-indexable Eulerian graph with \(q\) edges then \(q \equiv 0, 3 \pmod{4}\) if \(k\) is even and \(q \equiv 0, 1 \pmod{4}\) if \(k\) is odd. They further showed how strongly \(k\)-indexable graphs can be used to construct polygons of equal internal angles with sides of different lengths.

Germina [700] has proved the following: fans \(P_n + K_1\) are strongly indexable if and only if \(n = 1, 2, 3, 4, 5, 6\); \(P_n + K_2\) is strongly indexable if and only if \(n \leq 2\); the only strongly indexable complete \(m\)-partite graphs are \(K_{1,n}\) and \(K_{1,1,n}\); ladders \(P_n \times P_2\) are \(\lceil \frac{n}{3} \rceil\)-strongly indexable, if \(n\) is odd; \(K_n \times P_k\) is a strongly indexable if and only if \(n = 3\); \(C_m \times P_n\) is 2-strongly indexable if \(m\) is odd and \(n \geq 2\); \(K_{1,n} + K_i\) is not strongly indexable for \(n \geq 2\); for \(G_i \equiv K_{1,n}, 1 \leq i \leq n\), the sequential join \(G \equiv (G_1 + G_2) \cup (G_2 + G_3) \cup \cdots \cup (G_n - 1 + G_n)\) is strongly indexable if and only if, either \(i = n = 1\) or \(i = 2\) and \(n = 1 \text{ or } i = 1, n = 3\); \(P_1 \cup P_n\) is strongly indexable if and only if \(n \leq 3\); \(P_2 \cup P_n\) is not strongly indexable; \(P_2 \cup P_n\) is \(\lceil \frac{n+3}{2} \rceil\)-strongly indexable; \(mC_n\) is \(k\)-strongly indexable if and only if \(m \text{ and } n\) are odd; \(K_{1,n} \cup K_{1,n+1}\) is strongly indexable; and \(mK_{1,n}\) is \(\lceil \frac{3m-1}{2} \rceil\)-strongly indexable when \(m\) is odd.

Acharya and Germina [28] proved that every graph can be embedded in a strongly indexable graph and gave an algorithmic characterization of strongly indexable unicyclic graphs. In [29] they provide necessary conditions for an Eulerian graph to be strongly \(k\)-indexable and investigate strongly indexable \((p, q)\)-graphs for which \(q = 2p - 3\).

Hegde and Shetty [801] proved that for \(n\) odd the generalized web graph \(W(t,n)\) with the center removed is strongly \((n - 1)/2\)-indexable. Hegde and Shetty [806] define a level joined planar grid as follows. Let \(u\) be a vertex of \(P_m \times P_n\) of degree 2. For every pair of distinct vertices \(v\) and \(w\) that do not have degree 4, introduce an edge between \(v\) and \(w\) provided that the distance from \(u\) to \(v\) equals the distance from \(u\) to \(w\). They prove that every level joined planar grid is strongly indexable. For any sequence of positive integers \((a_1, a_2, \ldots, a_n)\) Lee and Lee [1162] show how to associate a strongly indexable \((1,1)\)-graph. As a corollary, they obtain the aforementioned result Hegde and Shetty on level joined planar grids.

Section 5.2 of this survey includes a discussion of a labeling method called super edge-magic. In 2002 Hegde and Shetty [806] showed that a graph has a strongly \(k\)-indexable
labeling if and only if it has a super edge-magic labeling.

4.4 Elegant Labelings

In 1981 Chang, Hsu, and Rogers [446] defined an elegant labeling $f$ of a graph $G$ with $q$ edges as an injective function from the vertices of $G$ to the set $\{0, 1, \ldots, q\}$ such that when each edge $xy$ is assigned the label $f(x) + f(y)$ (mod $(q + 1)$) the resulting edge labels are distinct and nonzero. An injective labeling $f$ of a graph $G$ with $q$ vertices is called strongly $k$-elegant if the vertex labels are from $\{0, 1, \ldots, q\}$ and the edge labels induced by $f(x) + f(y)$ (mod $(q + 1)$) for each edge $xy$ are $k, \ldots, k + q - 1$. Note that in contrast to the definition of a harmonious labeling, for an elegant labeling it is not necessary to make an exception for trees.

Whereas the cycle $C_n$ is harmonious if and only if $n$ is odd, Chang et al. [446] proved that $C_n$ is elegant when $n \equiv 0$ or $3 \pmod{4}$ and not elegant when $n \equiv 1 \pmod{4}$. Chang et al. further showed that all fans are elegant and the paths $P_n$ are elegant for $n \neq 0 \pmod{4}$. Cahit [421] then showed that $P_4$ is the only path that is not elegant. Balakrishnan, Selvam, and Yegnanarayanan [266] have proved numerous graphs are elegant. Among them are $K_{m,n}$ and the $m$th-subdivision graph of $K_{1,2n}$ for all $m$. They prove that the bistar $B_{n,n}$ ($K_2$ with $n$ pendent edges at each endpoint) is elegant if and only if $n$ is even. They also prove that every simple graph is a subgraph of an elegant graph and that several families of graphs are not elegant. Deb and Limaye [528] have shown that triangular snakes (see §2.2 for the definition) are elegant if and only if the number of triangles is not equal to $3 \pmod{4}$. In the case where the number of triangles is $3 \pmod{4}$ they show the triangular snakes satisfy a weaker condition they call triangles is not equal to $3 \pmod{4}$). In 1981 Chang, Hsu, and Rogers [446] defined an elegant labeling $f$ of a graph $G$ with $q$ edges as an injective function from the vertices of $G$ to the set $\{0, 1, \ldots, q\}$ such that when each edge $xy$ is assigned the label $f(x) + f(y)$ (mod $(q + 1)$) the resulting edge labels are distinct and not equal to $q$. Thus, in a near-elegant labeling, instead of $0$ being the missing value in the edge labels, $q$ is the missing value.

Deb and Limaye show that triangular snakes where the number of triangles is $3 \pmod{4}$ are near-elegant. For any positive integers $\alpha \leq \beta \leq \gamma$ where $\beta$ is at least 2, the theta graph $\theta_{\alpha, \beta, \gamma}$ consists of three edge disjoint paths of lengths $\alpha, \beta$, and $\gamma$ having the same end points. Deb and Limaye [529] provide elegant and near-elegant labelings for some theta graphs where $\alpha = 1, 2$, or $3$. Seoud and Elsakhawi [1714] have proved that the following graphs are elegant: $K_{1,m,n}$; $K_{1,1,m,n}$; $K_2 + \overline{K_m}$; $K_3 + \overline{K_m}$; and $K_{m,n}$ with an edge joining two vertices of the same partite set. Elumalai and Sethuraman [575] proved $P_n^2$, $P_m^2 + \overline{K_n}$, $S_m + S_n$, $S_m + \overline{K_m}$, $C_3 \times P_m$, and even cycles $C_{2n}$ with vertices $a_0, a_1, \ldots, a_{2n-1}, a_0$ and $2n - 3$ chords $a_0a_2, a_0a_3, \ldots, a_0a_{2n-2}$ ($n \geq 2$) are elegant. Zhou [2260] has shown that for every strongly $k$-elegant graph $G$ with $p$ vertices and $q$ edges and any positive integer $m$ the graph $(G + \overline{K_m}) + \overline{K_n}$ is also strongly $k$-elegant when $q - p + 1 \leq m \leq q - p + k$.

Sethuraman and Elumalai [1752] proved that every graph is a vertex induced subgraph of an elegant graph and present an algorithm that permits one to start with any non-trivial
connected graph and successively form supersubdivisions (see §2.7) that have a strong form of elegant labeling. Acharya, Germina, Princy, and Rao [34] prove that every \((p,q)\)-graph \(G\) can be embedded in a connected elegant graph \(H\). The construction is done in such a way that if \(G\) is planar and elegant (harmonious), then so is \(H\).

In [1751] Sethuraman and Elumalai define a graph \(H\) to be a \(K_{1,m}\)-star extension of a graph \(G\) with \(p\) vertices and \(q\) edges at a vertex \(v\) of \(G\) where \(m > p - 1 - \deg(v)\) if \(H\) is obtained from \(G\) by merging the center of the star \(K_{1,m}\) with \(v\) and merging \(p - 1 - \deg(v)\) pendant vertices of \(K_{1,m}\) with the \(p - 1 - \deg(v)\) nonadjacent vertices of \(v\) in \(G\). They prove that for every graph \(G\) with \(p\) vertices and \(q\) edges and for every vertex \(v\) of \(G\) and every \(m \geq 2^{p-1} - 1 - q\), there is a \(K_{1,m}\)-star extension of \(G\) that is both graceful and harmonious. In the case where \(m \geq 2^{p-1} - q\), they show that \(G\) has a \(K_{1,m}\)-star extension that is elegant. Sethuraman and Selvaraju [1772] have shown that certain cases of the union of any number of copies of \(K_4\) with one or more edges deleted and one edge in common are elegant.

Gallian extended the notion of harmoniousness to arbitrary finite Abelian groups as follows. Let \(G\) be a graph with \(q\) edges and \(H\) a finite Abelian group (under addition) of order \(q\). Define \(G\) to be \(H\)-harmonious if there is an injection \(f\) from the vertices of \(G\) to \(H\) such that when each edge \(xy\) is assigned the label \(f(x) + f(y)\) the resulting edge labels are distinct. When \(G\) is a tree, one label may be used on exactly two vertices. Beals, Gallian, Headley, and Jungreis [328] have shown that if \(H\) is a finite Abelian group of order \(n > 1\) then \(C_n\) is \(H\)-harmonious if and only if \(H\) has a non-cyclic or trivial Sylow 2-subgroup and \(H\) is not of the form \(Z_2 \times Z_2 \times \cdots \times Z_2\). Thus, for example, \(C_{12}\) is not \(Z_{12}\)-harmonious but is \((Z_2 \times Z_2 \times Z_3)\)-harmonious. Analogously, the notion of an elegant graph can be extended to arbitrary finite Abelian groups. Let \(G\) be a graph with \(q\) edges and \(H\) a finite Abelian group (under addition) with \(q + 1\) elements. We say \(G\) is \(H\)-elegant if there is an injection \(f\) from the vertices of \(G\) to \(H\) such that when each edge \(xy\) is assigned the label \(f(x) + f(y)\) the resulting set of edge labels is the non-identity elements of \(H\). Beals et al. [328] proved that if \(H\) is a finite Abelian group of order \(n\) with \(n \neq 1\) and \(n \neq 3\), then \(C_{n-1}\) is \(H\)-elegant using only the non-identity elements of \(H\) as vertex labels if and only if \(H\) has either a non-cyclic or trivial Sylow 2-subgroup. This result completed a partial characterization of elegant cycles given by Chang, Hsu, and Rogers [446] by showing that \(C_n\) is elegant when \(n \equiv 2 \pmod 4\). Mollard and Payan [1413] also proved that \(C_n\) is elegant when \(n \equiv 2 \pmod 4\) and gave another proof that \(P_n\) is elegant when \(n \neq 4\). In 2014 Ollis [1466] used harmonious labelings for \(Z_m\) given by Beals, Gallian, Headley, and Jungreis in [328] to construct new Latin squares of odd order.

A function \(f\) is said to be an odd elegant labeling of a graph \(G\) with \(q\) edges if \(f\) is an injection from the vertices of \(G\) to the integers from 0 to \(2q - 1\) such that the induced mapping \(f^*(uv) = f(u) + f(v) \pmod{2q}\) from the edges of \(G\) to the odd integers between 1 to \(2q - 1\) is a bijection. Zhou, Yao, and Chen [2262] proved that every lobster is odd-elegant.

For a graph \(G(V,E)\) and an Abelian group \(H\) Valentin [2086] defines a polychrome labeling of \(G\) by \(H\) to be a bijection \(f\) from \(V\) to \(H\) such that the edge labels induced
by \( f(uv) = f(v) + f(u) \) are distinct. Valentin investigates the existence of polychrome labelings for paths and cycles for various Abelian groups.

### 4.5 Felicitous Labelings

Another generalization of harmonious labelings are felicitous labelings. An injective function \( f \) from the vertices of a graph \( G \) with \( q \) edges to the set \( \{0, 1, \ldots, q\} \) is called felicitous if the edge labels induced by \( f(x) + f(y) \) (mod \( q \)) for each edge \( xy \) are distinct. (Recall a harmonious labeling only allows the vertex labels 0, 1, \ldots, \( q - 1 \).) This definition first appeared in a paper by Lee, Schmeichel, and Shee [1216] and is attributed to E. Choo.

Balakrishnan and Kumar [263] proved the conjecture of Lee, Schmeichel, and Shee [1216] that every graph is a subgraph of a felicitous graph by showing the stronger result that every graph is a subgraph of a sequential graph. Among the graphs known to be felicitous are: \( C_n \) except when \( n \equiv 2 \) (mod 4) [1216]; \( K_{m,n} \) when \( m, n > 1 \) [1216]; \( P_2 \cup C_{2n+1} \) [1216]; \( P_2 \cup C_{2n} \) [1979]; \( P_3 \cup C_{2n+1} \) [1216]; \( S_m \cup C_{2n+1} \) [1216]; \( K_n \) if and only if \( n \leq 4 \) [1751]; \( P_n + \overline{K}_m \) [1751]; the friendship graph \( C_3(n) \) for odd \( n \) [1216]; \( P_n \cup C_3 \) [1790]; \( P_n \cup C_{n+3} \) [1979]; and the one-point union of an odd cycle and a caterpillar [1790]. Shee [1786] conjectured that \( P_m \cup C_n \) is felicitous when \( n > 2 \) and \( m > 3 \). Lee, Schmeichel, and Shee [1216] asked for which \( m \) and \( n \) is the one-point union of \( n \) copies of \( C_m \) felicitous. They showed that in the case where \( mn \) is twice an odd integer the graph is not felicitous. In contrast to the situation for felicitous labelings, we remark that \( C_{4k} \) and \( K_{m,n} \) where \( m, n > 1 \) are not harmonious and the one-point union of an odd cycle and a caterpillar is not always harmonious. Lee, Schmeichel, and Shee [1216] conjectured that the \( n \)-cube is felicitous. This conjecture was proved by Figueroa-Centeno and Ichishima in 2001 [610].

Balakrishnan, Selvam, and Yegnanarayanan [265] obtained numerous results on felicitous labelings. The wreath product, \( G \ast H \), of graphs \( G \) and \( H \) has vertex set \( V(G) \times V(H) \) and \( (g_1, h_1) \) is adjacent to \( (g_2, h_2) \) whenever \( g_1g_2 \in E(G) \) or \( g_1 = g_2 \) and \( h_1h_2 \in E(H) \). They define \( H_{n,n} \) as the graph with vertex set \( \{u_1, \ldots, u_n, v_1, \ldots, v_n\} \) and edge set \( \{u_iv_j | 1 \leq i \leq j \leq n\} \). They let \( \langle K_{1,n} : m \rangle \) denote the graph obtained by taking \( m \) disjoint copies of \( K_{1,n} \), and joining a new vertex to the centers of the \( m \) copies of \( K_{1,n} \). They prove the following are felicitous: \( H_{n,n}; P_n \ast \overline{K}_2; \langle K_{1,m} : m \rangle; \langle K_{1,2} : m \rangle \) when \( m \not\equiv 0 \) (mod 3), or \( m \equiv 3 \) (mod 6), or \( m \equiv 6 \) (mod 12); \( \langle K_{1,2n} : m \rangle \) for all \( m \) and \( n \geq 2 \); \( \langle K_{1,2t+1} : 2n+1 \rangle \) when \( n \geq t \); \( P^k_n \) when \( k = n-1 \) and \( n \not\equiv 2 \) (mod 4), or \( k = 2t \) and \( n \geq 3 \) and \( k < n-1 \); the join of a star and \( \overline{K}_n \); and graphs obtained by joining two end vertices or two central vertices of stars with an edge. Yegnanarayanan [2217] conjectures that the graphs obtained from an even cycle by attaching \( n \) new vertices to each vertex of the cycle is felicitous. This conjecture was verified by Figueroa-Centeno, Ichishima, and Muntaner-Batle in [615]. In [1768] Sethuraman and Selvaraju [1772] have shown that certain cases of the union of any number of copies of \( K_4 \) with 3 edges deleted and one edge in common are felicitous. Sethuraman and Selvaraju [1768] present an algorithm that permits one to start with any non-trivial connected graph and successively form supersubdivisions (see §2.7) that have a felicitous labeling. Krisha and Dulawat [1132] give algorithms for finding graceful, harmonious, sequential, felicitous, and antimagic (see
Figueras-Centeno, Ichishima, and Muntaner-Batle [616] define a felicitous graph to be strongly felicitous if there exists an integer \( k \) so that for every edge \( uv \), \( \min\{f(u), f(v)\} \leq k < \max\{f(u), f(v)\} \). For a graph with \( p \) vertices and \( q \) edges with \( q \geq p - 1 \) they show that \( G \) is strongly felicitous if and only if \( G \) has an \( \alpha \)-labeling (see §3.1). They also show that for graphs \( G_1 \) and \( G_2 \) with strongly felicitous labelings \( f_1 \) and \( f_2 \) the graph obtained from \( G_1 \) and \( G_2 \) by identifying the vertices \( u \) and \( v \) such that \( f_1(u) = 0 = f_2(v) \) is strongly felicitous and that the one-point union of two copies of \( C_m \) where \( m \geq 4 \) and \( m \) is even is strongly felicitous. As a corollary they have that the one-point union of \( n \) copies of \( C_m \) where \( m \) is even and at least \( 4 \) and \( n \equiv 2 \) (mod \( 4 \)) is felicitous. They conjecture that the one-point union of \( n \) copies of \( C_m \) is felicitous if and only if \( mn \equiv 0, 1, \) or \( 3 \) (mod \( 4 \)). In [620] Figueras-Centeno, Ichishima, and Muntaner-Batle prove that \( 2C_n \) is strongly felicitous if and only if \( n \) is even and at least \( 4 \). They conjecture [620] that \( mC_n \) is felicitous if and only if \( mn \equiv 2 \) (mod \( 4 \)) and that \( C_m \cup C_n \) is felicitous if and only if \( m + n \equiv 2 \) (mod \( 4 \)).

As consequences of their results about super edge-magic labelings (see §5.2) Figueras-Centeno, Ichishima, Muntaner-Batle, and Oshima [620] have the following corollaries: if \( m \) and \( n \) are odd with \( m \geq 1 \) and \( n \geq 3 \), then \( mC_n \) is felicitous; \( 3C_n \) is felicitous if and only if \( n \equiv 2 \) (mod \( 4 \)); and \( C_5 \cup P_n \) is felicitous for all \( n \).

In [1354] Manickam, Marudai, and Kala prove the following graphs are felicitous: the one-point union of \( m \) copies of \( C_n \) if \( mn \equiv 1, 3 \) (mod \( 4 \)); the one-point union of \( m \) copies of \( C_4 \); \( mC_n \) if \( mn \equiv 1, 3 \) (mod \( 4 \)); and \( mC_4 \). These results partially answer questions raised by Figueras-Centeno, Ichishima, Muntaner-Batle, and Oshima in [616] and [620].

Chang, Hsu, and Rogers [446] have given a sequential counterpart to felicitous labelings. They call a graph with \( q \) edges strongly \( c \)-elegant if the vertex labels are from \( \{0, 1, \ldots, q\} \) and the edge labels induced by addition are \( \{c, c+1, \ldots, c+q-1\} \). (A strongly 1-elegant labeling has also been called a consecutive labeling.) Notice that every strongly \( c \)-elegant graph is felicitous and that strongly \( c \)-elegant is the same as \((c, 1)\)-arithmetic in the case where the vertex labels are from \( \{0, 1, \ldots, q\} \). Chang et al. [446] have shown: \( K_n \) is strongly 1-elegant if and only if \( n = 2, 3, 4 \); \( C_n \) is strongly 1-elegant if and only if \( n = 3 \); and a bipartite graph is strongly 1-elegant if and only if it is a star. Shee [1787] has proved that \( K_{m,n} \) is strongly \( c \)-elegant for a particular value of \( c \) and obtained several more specialized results pertaining to graphs formed from complete bipartite graphs.

Seoud and Elsakhawi [1716] have shown: \( K_{m,n} \) (\( m \leq n \)) with an edge joining two vertices of the same partite set is strongly \( c \)-elegant for \( c = 1, 3, 5, \ldots, 2n+2 \); \( K_{1,m,n} \) is strongly \( c \)-elegant for \( c = 1, 3, 5, \ldots, 2m \) when \( m = n \), and for \( c = 1, 3, 5, \ldots, m+n+1 \) when \( m \neq n \); \( K_{1,m,n} \) is strongly \( c \)-elegant for \( c = 1, 3, 5, \ldots, 2m+1 \); \( P_n + \overline{K_m} \) is strongly \( n/2 \)-elegant; \( C_m + \overline{K_n} \) is strongly \( c \)-elegant for odd \( m \) and all \( n \) for \( c = (m-1)/2, (m-1)/2 + 2, \ldots, 2m \); \( C_m + \overline{K_n} \) is strongly \( c \)-elegant for odd \( m \) and all \( n \) for \( c = (m-1)/2, (m-1)/2 + 2, \ldots, 2m - (m-1)/2 \); \( L_{2k+1} \) \((k > 1)\) are strongly \( (k+1) \)-elegant; and \( B(3, 2, m) \) and \( B(4, 3, m) \) (see §2.4 for notation) are strongly 1-elegant and strongly 3-elegant for all \( m \); the composition \( P_n[P_2] \) (see §2.3 for the definition) is strongly \( c \)-elegant for \( c = 1, 3, 5, \ldots, 5n-6 \) when \( n \) is odd and for \( c = 1, 3, 5, \ldots, 5n-5 \) when \( n \) is even;
$P_n$ is strongly $\lfloor n/2 \rfloor$-elegant; $P_n^2$ is strongly $c$-elegant for $c = 1, 3, 5, \ldots, q$ where $q$ is the number of edges of $P_n^2$; and $P_n^3$ ($n > 3$) is strongly $c$-elegant for $c = 1, 3, 5, \ldots, 6k-1$ when $n = 4k$; $c = 1, 3, 5, \ldots, 6k + 1$ when $n = 4k + 1$; $c = 1, 3, 5, \ldots, 6k + 3$ when $n = 4k + 2$; $c = 1, 3, 5, \ldots, 6k + 5$ when $n = 4k + 3$.

### 4.6 Odd Harmonious and Even Harmonious Labelings

Liang and Bai [1271] introduced odd harmonious labelings by defining a function $f$ to be an odd harmonious labeling of a graph $G$ with $q$ edges if $f$ is an injection from the vertices of $G$ to the integers from 0 to $2q - 1$ such that the induced mapping $f^*(uv) = f(u) + f(v)$ from the edges of $G$ to the odd integers between 1 to $2q - 1$ is a bijection. A function $f$ is said to be a strongly odd harmonious labeling of a graph $G$ with $q$ edges if $f$ is an injection from the vertices of $G$ to the integers from 0 to $q$ such that the induced mapping $f^*(uv) = f(u) + f(v)$ from the edges of $G$ to the odd integers between 1 to $2q - 1$ is a bijection. Liang and Bai [1271] have shown the following: odd harmonious graphs are bipartite; if a $(p, q)$-graph is odd harmonious, then $2\sqrt{q} \leq p \leq 2q - 1$; if a $(p, q)$-graph with degree sequence $(d_1, d_2, \ldots, d_p)$ is odd harmonious, then $\gcd(d_1, d_2, \ldots, d_p)$ divides $q^2$; $P_n$ ($n > 1$) is odd harmonious and strongly odd harmonious; $C_n$ is odd harmonious if and only if $n \equiv 0 \pmod{4}$; $K_n$ is odd harmonious if and only if $n = 2$; $K_{n_1, n_2, \ldots, n_k}$ is odd harmonious if and only if $k = 2$; $K^t_n$ is odd harmonious if and only if $n = 2$; $P_m \times P_n$ is odd harmonious; the tadpole graph obtained by identifying the endpoint of a path with a vertex of an $n$-cycle is odd harmonious if $n \equiv 0 \pmod{4}$; the graph obtained by appending two or more pendent edges to each vertex of $C_{4n}$ is odd harmonious; the graph obtained by subdividing every edge of the cycle of a wheel (gear graphs) is odd harmonious; the graph obtained by appending an edge to each vertex of a strongly odd harmonious graph is odd harmonious; and caterpillars and lobsters are odd harmonious. They conjecture that every tree is odd harmonious.

Liang and Bai [1271] also shown that the $kC_4$-snake graph is an odd harmonious graph. Abdel-Aal [3] generalize this result by showing that the $kC_n$-snake with string $1, 1, \ldots, 1$ for $n \equiv 0 \pmod{4}$ are odd harmonious. He also showed that the $kC_4$ snake with $m$ pendent edges is odd harmonious and that all subdivisions of $2m$-triangular snakes are odd harmonious.

Abdel-Aal [3] proved that a necessary condition for odd harmonious Eulerian graphs with $q$ edges is $q \equiv 0 \pmod{4}$ and that the following graphs are odd harmonious: $C_m \times P_n$ ($n \geq 2, m \equiv 0 \pmod{4}$); $C_{4m} \odot C_4$; $S_n \odot \overline{K_m}$; two copies of an even $n$-cycle sharing a common edge is an odd harmonious graph when $n \equiv 0 \pmod{4}$; two copies of an even $n$-cycle sharing a common vertex is odd harmonious when $n \equiv 0 \pmod{4}$; and graphs obtained from $K_{2, n}$ ($n \geq 2$) by adding $r$ pendent edges to one of the two vertices of degree $n$ and $s$ pendent edges to the other vertex of degree $n$.

Vaidya and Shah [2052] prove that the shadow graphs (see §3.8 for the definition) of path $P_n$ and star $K_{1n}$ are odd harmonious. They also show that the splitting graphs (see §2.7 for the definition) of path $P_n$ and star $K_{1n}$ are odd harmonious. In [2053] Vaidya and Shah proved the following graphs are odd harmonious: the shadow graph and the...
splitting graph of bistar $B_{n,n}$; the arbitrary supersubdivision of paths; graphs obtained by joining two copies of cycle $C_n$ for $n \equiv 0 \pmod{4}$ by an edge; and the graphs $H_{n,n}$, where $V(H_{n,n}) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, v_n\}$ and $E(H_{n,n}) = \{v_iu_j : 1 \leq i \leq n, n - i + 1 \leq j \leq n\}$. In [2001] Yan proves that $P_n \times P_n$ is strongly odd harmonious. Koppendrayer [1108] has proved that every graph with an $\alpha$-labeling is odd harmonious. Li, Li, and Yan [1258] proved that $K_{m,n}$ is odd strongly harmonious.

Saputri, Sugeng, and Fronček [1682] proved that the graph obtained by joining $C_n$ to $C_k$ by an edge (dumbbell graph $D_{n,k,2}$) is odd harmonious for $n \equiv k \equiv 0 \pmod{4}$ and $n \equiv k \equiv 2 \pmod{4}$, and $C_n \times P_m$ is odd harmonious if and only if $n \equiv 0 \pmod{4}$. They also observe that $C_n \odot K_1$ with $n \equiv 0 \pmod{4}$ is odd harmonious.

Jeyanthi [948] proved that the shadow and splitting graphs of $K_{2,n}$, $C_{4n}$, the double quadrilateral snakes $DQ(n)$ ($n \geq 2$), and the graph $H_{n,n}$ with vertex set $V(H_{n,n}) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$ and the edge set $E(H_{n,n}) = \{v_iu_j : 1 \leq i \leq n, n - i + 1 \leq j \leq n\}$ are odd harmonious. Jeyanthi and Philo [948] proved that the shadow graphs $D_2(K_{2,n})$ and $D_2(H_{n,n})$ are odd harmonious and the splitting of graphs of $K_{2,n}$ and $H_{n,n}$ are odd harmonious. They also showed that the shadow graph $D_2(C_n)$ is odd harmonious if $n \equiv 0 \pmod{4}$, the splitting of $C_n$ is odd harmonious if $n \equiv 0 \pmod{4}$, and the double quadrilateral snake $DQ(n)$ is odd harmonious for $n \geq 2$. In [949] Jeyanthi and Philo prove that super subdivision of cycles, ladders, $C_{4n} \odot K_{1,m}$, and uniform fire crackers are odd harmonious graphs.

The following definitions are taken from [955]. The m-shadow graph $D_m(G)$ of a connected graph $G$ is constructed by taking $m$-copies of $G$, $G_1, G_2, G_3, \ldots, G_m$, and joining each vertex $u$ in $G_i$ to the neighbors of the corresponding vertex $v$ in $G_j$, $1 \leq j \leq m$. The m-splitting graph $Spl_m(G)$ of a graph $G$ is obtained by adding to each vertex $v$ of $G$ $m$ new vertices, $v^1, v^2, \ldots, v^m$ such that $v^i$, $1 \leq i \leq m$, is adjacent to every vertex that is adjacent to $v$ in $G$. Note that the 2-shadow graph is the shadow graph $D_2(G)$ and the 1-splitting graph is splitting graph. The m-mirror graph $M_m(G)$ is defined as the disjoint union of $m$ copies of $G$, $G_1, G_2, \ldots, G_m$, together with additional edges joining each vertex of $G_i$ to its corresponding vertex in $G_{i+1}$, $1 \leq i \leq m - 1$. The graph $\overline{W}_{m,n}$ is obtained from the gear graph arising from the wheel $W_n$ as follows: Join the vertices $v_i$ and $v_{i+2}$ with the new vertices $v^j_{i+1}$ for $1 \leq j \leq m$ and $2 \leq i \leq n - 2$ and join $v_n$ and $v_2$ with $v_{2i-1}$. The graph $K_{2,n}(r,s)$ is obtained from $K_{2,n}$ ($n \geq 2$) by adding $r$ and $s$ pendent edges to the two vertices of degree $n$. The graph $G = \langle C_n : K_{2,m} : C_r \rangle$ is obtained from $K_{2,m}$ with the partite set $\{u, v\}$ by identifying the vertex $u$ with a vertex of $C_n$ and the vertex $v$ with a vertex of $C_r$. Let $P_n$ be a path on $n$ vertices denoted by $(1,1), (1,2), \ldots, (1,n)$ and with $n - 1$ edges denoted by $e_1, e_2, \ldots, e_{n-1}$ where $e_i$ is the edge joining the vertices $(1, i)$ and $(1, i + 1)$. The step ladder graph $S(T_n)$ has $(n^2 + 3n - 2)/2$ vertices denoted by $(1,1), (1,2), \ldots, (1,n), (2,1), (2,2), \ldots, (2,n), (3,1), (3,2), \ldots, (3,n-1), (4,1), \ldots, (4,n-2), \ldots, (n,1), (n,2)$ and $n^2 + n + 2$ edges. In any ordered pair $(i,j)$, $i$ denotes the row (counted from bottom to top) and $j$ denotes the column (from left to right) in which the vertex occurs.

The cocktail party graph, $H_{m,n}$ ($m, n \geq 2$), is the graph with a vertex set $V = \{v_1, v_2, \ldots, v_{mn}\}$ partitioned into $n$ independent sets $V = \{I_1, I_2, \ldots, I_n\}$ each of size
m such that \( v_i v_j \in E \) for all \( i, j \in \{1, 2, \ldots, mn\} \) where \( i \in I_p, j \in I_q, p \neq q \).

Jeyanthi and Philo [953] proved that following graphs are odd harmonious: \( D_m(P_n) \) for all \( m, n \geq 2 \); \( Spl_m(P_n) \) for \( m, n \geq 2 \); \( D_m(H_{n,n}) \) for all \( m \geq 2 \) and \( n \geq 1 \); \( Spl_m(H_{n,n}) \) for all \( m \geq 2 \) and \( n \geq 1 \); \( D_m(K_{r,s}) \) for all \( r, s \geq 1 \); \( Spl_m(K_{r,s}) \) for all \( m \geq 2 \) and \( r, s \geq 1 \); \( D_m(P_n \oplus K_2) \) for all \( m, n \geq 2 \); \( Spl_m(P_n \oplus K_2) \), \( m, n \geq 2 \); and \( Spl_m(C_n) \) if and only if \( n \equiv 0 \pmod{4} \).

Jeyanthi and Philo [955] proved that following graphs are odd harmonious: \( \overline{W_{m,n}} \) for \( n \equiv 0 \pmod{4}, m \geq 1 \); \( D_m(P_n \cdot K_1) \) (the authors use the notion \( C_{bn} \) for the comb \( P_n \cdot K_1 \)) for all \( m \geq 2 \) and \( n \geq 1 \); \( Spl_m(K_{2,n}(r,s)) \); \( \langle C_n : K_{2,m} : C_r \rangle \) for \( n, r \equiv 0 \pmod{4} \) and \( m \geq 2 \); and the graphs obtained by arranging vertices into a finite number of rows with \( i \) vertices in the \( i \)th row and in every row the \( j \)th vertex in that row is joined to the \( j \)th vertex and \( j + 1 \)st vertex of the next row (a pyramid) for \( n \geq 2 \). They also prove that if \( G \) is a strongly odd harmonious tree, then \( M_m(G) \) is odd harmonious.

Recall from Section 2.7 that for even \( n > 2 \) a plus graph of size \( n \) (denoted by \( Pl_n \)) is the graph obtained by starting with paths \( P_2, P_4, P_{n-2}, P_n, P_{n-2}, \ldots, P_2, P_2 \) arranged vertically parallel with the vertices in the paths forming horizontal rows and edges joining the vertices of the rows. Jeyanthi [952] proved that following graphs are odd harmonious: \( Pl_n \) where \( n \equiv 0 \pmod{2}, n \neq 2 \); path unions of finitely many copies of \( Pl_n \) where \( n \equiv 0 \pmod{2}, n \neq 2 \); open stars of plus graphs \( S(t.Pl_n) \) where \( n \equiv 0 \pmod{2}, n \neq 2 \) and \( t \) odd; graphs obtained by joining \( C_m, m \equiv 0 \pmod{4} \) and a plus graph \( Pl_n, n \equiv 0 \pmod{2}, n \neq 2 \) with a path of arbitrary length; the graph obtained by replacing all vertices of \( K_{1,t} \), except the apex vertex, by the path union of \( n \) copies of the graph \( Pl_m \).

Jeyanthi [954] proved the \((m, n)\)-firecracker graph obtained by the concatenation of \( m \) \( n \)-stars by linking one leaf from each is odd harmonious; the arbitrary super subdivision of cycles \( C_m \) are odd harmonious; and the super subdivision of ladders are odd harmonious.

In [951] Jeyanthi and Philo modified the notion of odd harmonious by defining an odd harmonious labelings as a function \( f \) to be an odd harmonious labeling of a graph \( G \) with \( q \) edges if \( f \) is an injection from the vertices of \( G \) to the integers from 0 to \( 2q - 1 \) such that the induced mapping \( f^*(uv) = f(u) + f(v) \pmod{(2q)} \) from the edges of \( G \) to the odd integers between 1 to \( 2q - 1 \) is a bijection. Using this definition they proved that an \( m \)-cycle and an \( n \)-cycle sharing a common vertex is an odd harmonious if and only if either both \( m, n \equiv 0 \pmod{4} \) or both \( m, n \equiv 2 \pmod{4} \) and the same holds for an \( m \)-cycle and an \( n \)-cycle sharing a common edge. Jeyanthi and Philo [950] proved that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.

Sarasija and Binthiya [1683] say a function \( f \) is an even harmonious labeling of a graph \( G \) with \( q \) edges if \( f : V \rightarrow \{0, 1, \ldots, 2q\} \) is injective and the induced function \( f^*: E \rightarrow \{0, 2, \ldots, 2(2q-1)\} \) defined as \( f^*(uv) = f(u) + f(v) \pmod{2q} \) is bijective. Notice that for an even harmonious labeling of a connected graph all the vertex labels must have the same parity. Moreover, in the case of even harmonious labelings for connected graphs there is no loss of generality to assume that all the vertex labels are even integers and the duplicate vertex is 0. They proved the following graphs are even harmonious: non-trivial paths; complete bipartite graphs; odd cycles; bistars \( B_{m,n}; K_2 + \overline{K_n}; P_n^2 \); and the
friendship graphs $F_{2n+1}$. López, Muntaner-Batle and Rious-Font [1313] proved that every super edge-magic graph (see Section 5.2 for the definition of super edge-magic) with $p$ vertices and $q$ edges where $q \geq p - 1$ has an even harmonious labeling.

Because 0 and $2q$ are equal modulo $2q$ the following restricted form of even harmonious labelings is of interest. A function $f$ is said to be a properly even harmonious labeling of a graph $G$ with $q$ edges if it is an injection from the vertices of $G$ to the integers from 0 to $2q - 1$ and the induced function $f^*$ from the edges of $G$ to \{0, 2, \ldots, 2q - 2\} defined by $f^*(xy) = f(x) + f(y) \pmod{2q}$ is bijective. In their definition of properly even harmonious in [659] Gallian and Schoenhard incorrectly required that the vertex labels should be the even integers from 0 to $2q - 2$. For connected graphs the two definitions are equivalent but for disconnected graph they are not. They used vertex labels from 0 to $2q - 1$ for their results on disconnected graphs.

A graph with a properly even harmonious labeling is said to be properly even harmonious. Gallian and Schoenhard [659] say a properly even harmonious labeling of a graph with $q$ edges is strongly even harmonious if it satisfies the additional condition that for any two adjacent vertices with labels $u$ and $v$, $0 < u + v \leq 2q$.

Jared Bass [327] has observed that for connected graphs any harmonious labeling of a graph with $q$ edges yields an even harmonious labeling by simply multiplying each vertex label by 2 and adding the vertex labels modulo $2q$. Thus we know that every connected harmonious graph is an even harmonious graph and every connected graph that is not a tree that has a harmonious labeling also has a properly even harmonious labeling. Conversely, a properly even harmonious labeling of a connected graph with $q$ edges (assuming that the vertex labels are even) yields a harmonious labeling of the graph by dividing each vertex label by 2 and adding the vertex labels modulo $q$.

Gallian and Schoenhard [659] proved the following: wheels $W_n$ and helms $H_n$ are properly even harmonious when $n$ is odd; $nP_2$ is even harmonious for $n$ odd; $nP_2$ is properly even harmonious if and only if $n$ is even; $K_n$ is even harmonious if and only if $n \leq 4$; $C_{2n}$ is not even harmonious when $n$ is odd; $C_n \cup P_3$ is properly even harmonious when odd $n \geq 3$; $C_4 \cup P_n$ is even harmonious when $n \geq 2$; $C_4 \cup F_n$ is even harmonious when $n \geq 2$; $S_m \cup P_n$ is even harmonious when $n \geq 2$; $K_4 \cup S_n$ is properly even harmonious; $P_m \cup P_n$ is properly even harmonious for all $m \geq 2$ and $n \geq 2$; $C_3 \cup P_n^2$ is even harmonious when $n \geq 2$; $C_4 \cup P_n^2$ is even harmonious when $n \geq 2$; the disjoint union of two or three stars where each star has at least two edges and one has at least three edges is properly even harmonious; $P_n^2 \cup P_n$ is even harmonious for $m \geq 2$ and $2 \leq n < 4m - 5$; the one-point union of two complete graphs each with at least 3 vertices is not even harmonious; $S_m \cup P_n$ is strongly even harmonious if $n \geq 2$; and $S_{n_1} \cup S_{n_2} \cup \cdots \cup S_{n_t}$ is strongly even harmonious for $n_1 \geq n_2 \geq \cdots \geq n_t$ and $t < \frac{n_1}{2} + 2$. They conjecture that $S_{n_1} \cup S_{n_2} \cup \cdots \cup S_{n_t}$ is strongly even harmonious if at least one star has more than 2 edges. They also note that $C_4, C_8, C_{12}, C_{16}, C_{20}, C_{24}$ are even harmonious and conjecture that $C_{4n}$ is even harmonious for all $n$. This conjecture was proved by Youssef [2234]. Hall, Hillesheim, Kocina, and Schmit [758] proved that $nC_{2m+1}$ is properly even harmonious for all $n$ and $m$.

Binthiya and Sarasija [370] prove the following graphs are even harmonious: $C_n \odot mK_1$ (odd), $P_n \odot mK_1$ (odd), $C_n \odot K_1$ (even), $P_n$ (even) with $n-1$ copies of
mK_1$, the shadow graph $D_2(K_{1,n})$, the splitting graph $spl(K_{1,n})$, and the graph obtained from the $P_n$ ($n$ even) with $n-1$ copies of $K_m$ incident with first $n-1$ vertices of $P_n$.

In [660] and [661] Gallian and Stewart investigated properly even harmonic labelings of unions of graphs. They use $P_m+t$ to denote the graph obtained from the path $P_m$ by appending $t$ edges to an endpoint; $Cat_m+t$ to denote a caterpillar of path length $m$ with $t$ pendent edges; and $C_m+t$ to denote an $m$-cycle with $t$ pendent edges. They proved the following graphs are properly even harmonious: $nP_m$ if $n$ is even and $m \geq 2$; $P_n \cup K_m$ for $n$ odd and $n > 1$, $m > 1$; $P_n \cup S_m$ for $n > 2$ and $m_1 + m_2$ is odd; $C_n \cup S_m \cup S_2$ for $n$ odd and $m_1, m_2 > 3$; $P_m+t \cup P_m+1$; the union of any number of caterpillars; $C_m \cup Cat_n+t$ for $m > 1$ odd, $n > 1$; $C_4 \cup Cat_n+t$; the union of $C_4$ and a hairy cycle; $K_4 \cup C_m+n$ for some cases; $W_4 \cup C_m+n$ for some cases; $C_4 \cup (P_n + K_2)$ for $n > 1$; $K_4 \cup (P_n + K_m)$ for $n \equiv 1, 2 \pmod{4}$; $C_3 \cup (P_n + K_m)$ for $n \equiv 1, 2 \pmod{4}$; $W_4 \cup (P_n + K_m)$ for $n \equiv 1, 2 \pmod{4}$; $W_4 \cup P_n$ for $n \equiv 1, 2 \pmod{4}$; $K_4 \cup P_n$ for $n \equiv 1, 2 \pmod{4}$; $K_4 \cup P_n$ for $n > 1$ and $n \equiv 1, 2 \pmod{4}$; $K_4 \cup P_m \cup P_{m_2} \cup \cdots \cup P_{m_n}$ for $m_i > 2$, $n \geq 1$; $W_4 \cup P_{m_1} \cup P_{m_2} \cup \cdots \cup P_{m_n}$ for $m_i > 2$, $n \geq 1$; $C_m \cup P_{m_n}$ for $m \equiv 3 \pmod{4}$ and $n > 1$; and $2P_m \cup 2P_n$. They also prove that $nP_3$ is even harmonic if $n > 1$ is odd and $P_{m_1} \cup P_{m_2} \cup \cdots \cup P_{m_n}$ is strongly even harmonious for $m > 2$, $n \geq 1$.

Gallian and Stewart [662] call an injective labeling $f$ of a graph $G$ with $q$ edges even 2a-sequential if the vertex labels are from $\{0, 1, \ldots, 2q-1\}$ and the edge labels induced by $f(u)+f(v)$ for each edge $uv$ are $2a, 2a+2, \ldots, 2a+2q-2$. When $G$ is a tree, the allowable vertex labels are $0, 1, \ldots, 2q$. For connected a-sequential graphs, a connected 2a-sequential graph can be obtained by multiplying all the vertex labels by 2. Notice that the vertex labels in resulting graph belong to $\{0, 2, \ldots, 2q-2\}$ (or $\{0, 2, \ldots, 2q\}$ for trees) and the edges labels are from $2a$ to $2a+2q-2$. Moreover, a connected a-sequential graph can be obtained from a connected even 2a-sequential graph with even vertex labels by dividing all the vertex labels by 2. Likewise, a 2a-sequential labeling of a connected graph with odd vertex labels induces an a-sequential labeling of the graph by subtracting 1 from each vertex label and dividing by 2. Thus for connected graphs, a-sequential is equivalent to 2a-sequential. They prove that if $G$ is even 2a-sequential the following graphs are properly even harmonious: $G \cup P_{m}$ for $m > 2$, $G \cup P_n$ for $n > 1$, $n \equiv 1, 2 \pmod{4}$, $G \cup C_m+t$ for some cases, $G \cup Cat_m+n$ for $m > 1$, and $G \cup W_{2n+1}$.

For $n$ and $k$ odd and $m, n, k, t > 1$, Mbianda and Gallian (see [1372]) proved the following graphs have properly even harmonious labelings: $mP_3$ for even $m$; $2P_m \cup 2P_n \cup S_1$; $2P_m \cup 2P_n \cup P_k$; $2P_m \cup 2P_n \cup C_k$; $2P_m \cup 2P_n \cup C_4$; $2P_m \cup 2P_n \cup 2K_4$; $2P_m \cup 2P_n \cup 2W_4$; $2P_m \cup 2P_n \cup 2C_k$; $F_n \cup K_4$ ($F_n = P_n + K_1$ is the fan); $F_n \cup 2K_4$; $F_n \cup W_4$; $F_n \cup 2W_4$; $W_n \cup K_4$; $W_n \cup 2K_4$; $W_n \cup W_4$; $W_n \cup 2W_4$; $(C_n + K_1) \cup K_4$; $(C_n + K_1) \cup 2K_4$; $(C_n + K_1) \cup 2W_4$; and $(C_n + K_1) \cup 2K_4$ (or $C_n + K_1 + \overline{K}_2$ is the double cone). Gallian [656] proved the following graphs have properly even harmonious labelings (in all cases $m, n > 1$): $mP_n$ for $m$ even; $2P_m \cup 2P_n \cup 2C_3$; $2P_m \cup 2P_n \cup 2C_4$; $2P_m \cup 2P_n \cup C_3 \cup C_4$; $F_n \cup P_4$; $F_n \cup 2P_4$; $F_n \cup C_4$; and $F_n \cup 2C_4$. 

108
5 Magic-type Labelings

5.1 Magic Labelings

Motivated by the notion of magic squares in number theory, magic labelings were introduced by Sedláček [1687] in 1963. Responding to a problem raised by Sedláček, Stewart [1915] and [1916] studied various ways to label the edges of a graph in the mid 1960s. Stewart calls a connected graph semi-magic if there is a labeling of the edges with integers such that for each vertex the sum of the labels of all edges incident with v is the same for all v. (Berge [342] used the term “regularisable” for this notion.) A semi-magic labeling where the edges are labeled with distinct positive integers is called a magic labeling. Stewart calls a magic labeling supermagic if the set of edge labels consists of consecutive positive integers. The classic concept of an $n \times n$ magic square in number theory corresponds to a supermagic labeling of $K_{n,n}$. Stewart [1915] proved the following: $K_n$ is magic for $n = 2$ and all $n \geq 5$; $K_{n,n}$ is magic for all $n \geq 3$; fans $F_n$ are magic if and only if $n$ is odd and $n \geq 3$; wheels $W_n$ are magic for $n \geq 4$; and $W_n$ with one spoke deleted is magic for $n = 4$ and for $n \geq 6$. Stewart [1915] also proved that $K_{m,n}$ is semi-magic if and only if $m = n$. In [1916] Stewart proved that $K_n$ is supermagic for $n \geq 5$ if and only if $n > 5$ and $n \not\equiv 0 \pmod{4}$. Sedláček [1688] showed that Möbius ladders $M_n$ (see §2.3 for the definition) are supermagic when $n \geq 3$ and $n$ is odd and that $C_n \times P_2$ is magic, but not supermagic, when $n \geq 4$ and $n$ is even. Shiu, Lam, and Lee [1808] have proved: the composition of $C_m$ and $\overline{K}_n$ (see §2.3 for the definition) is supermagic when $m \geq 3$ and $n \geq 2$; the complete $m$-partite graph $K_{n,n,...,n}$ is supermagic when $n \geq 3$, $m > 5$ and $m \not\equiv 0 \pmod{4}$; and if $G$ is an $r$-regular supermagic graph, then so is the composition of $G$ and $\overline{K}_n$ for $n \geq 3$. Ho and Lee [813] showed that the composition of $K_m$ and $\overline{K}_n$ is supermagic for $m = 3$ or 5 and $n = 2$ or $n$ odd. Bača, Holländer, and Lih [209] have found two families of 4-regular supermagic graphs. Shiu, Lam, and Cheng [1805] proved that for $n \geq 2$, $mK_{n,n}$ is supermagic if and only if $n$ is even or both $m$ and $n$ are odd. Ivančo [860] gave a characterization of all supermagic regular complete multipartite graphs. He proved that $Q_n$ is supermagic if and only if $n = 1$ or $n$ is even and greater than 2 and that $C_n \times C_n$ and $C_{2m} \times C_{2n}$ are supermagic. He conjectures that $C_m \times C_n$ is supermagic for all $m$ and $n$. Trenklér [1991] has proved that a connected magic graph with $p$ vertices and $q$ edges other than $P_2$ exits if and only if $5p/4 < q \leq p(p - 1)/2$. In [1946] Sun, Guan, and Lee give an efficient algorithm for finding a magic labeling of a graph. In [2171] Wen, Lee, and Sun show how to construct a supermagic multigraph from a given graph $G$ by adding extra edges to $G$.

In [1125] Kovář provides a general technique for constructing supermagic labelings of copies of certain kinds of regular supermagic graphs. In particular, he proves: if $G$ is a supermagic $r$-regular graph ($r \geq 3$) with a proper edge $r$ coloring, then $nG$ is supermagic when $r$ is even and supermagic when $r$ and $n$ are odd; if $G$ is a supermagic $r$-regular graph with $m$ vertices and has a proper edge $r$ coloring and $H$ is a supermagic $s$-regular graph with $n$ vertices and has a proper edge $s$ coloring, then $G \times H$ is supermagic when $r$ is even or $n$ is odd and is supermagic when $s$ or $m$ is odd.
In [557] Drajnová, Ivančo, and Semaničová proved that the maximal number of edges in a supermagic graph of order \( n \) is 8 for \( n = 5 \) and \( \frac{n(n-1)}{2} \) for \( 6 \leq n \equiv 0 \pmod{4} \), and \( \frac{n(n-1)}{2} - 1 \) for \( 8 \leq n \equiv 0 \pmod{4} \). They also establish some bounds for the minimal number of edges in a supermagic graph of order \( n \). Ivančo, and Semaničová [869] proved that every 3-regular triangle-free supermagic graph has an edge such that the graph obtained by contracting that edge is also supermagic and the graph obtained by contracting one of the edges joining the two \( n \)-cycles of \( C_n \times K_2 \) \((n \geq 3)\) is supermagic.

Ivančo [862] proved: the complement of a \( d \)-regular bipartite graph of order \( 8k \) is supermagic if and only if \( d \) is odd; the complement of a \( d \)-regular bipartite graph of order \( 2n \) where \( n \) is odd and \( d \) is even is supermagic if and only if \( (n, d) \neq (3, 2) \); if \( G_1 \) and \( G_2 \) are disjoint \( d \)-regular Hamiltonian graphs of odd order and \( d \geq 4 \) and even, then the join \( G_1 \oplus G_2 \) is supermagic; and if \( G_1 \) is \( d \)-regular Hamiltonian graph of odd order \( n \), \( G_2 \) is \( d - 2 \)-regular Hamiltonian graph of order \( n \) and \( 4 \leq d \equiv 0 \pmod{4} \), then the join \( G_1 \oplus G_2 \) is supermagic.

An \( H \)-magic labeling in an \( H \)-decomposable of a graph \( G \) is a bijection \( f : V(G) \cup E(G) \) onto \( \{1, 2, \ldots, p + q \} \) such that for every copy of \( H \) in the decomposition, the sum of \( f(v) + f(e) \) over all \( v \) in \( V(H) \) and \( e \) in \( E(H) \) is constant. The labeling \( f \) is said to be \( H \)-super magic if \( f(V(G)) = \{1, 2, \ldots, p\} \). Stalin Kumar and Marimuthu [1911] prove that \( K_{n,n} \) is \( H \)-super magic decomposable where \( H \) is isomorphic to \( K_{1,n} \).

For \( k \geq 2 \) and graphs \( G \) and \( H \), the graph \( G \circ_k H \) defined as \( (G \circ^{k-1} H) \circ H \) (where \( G \circ^1 H = G \circ H \)) is called the \( k \)-multilevel corona of \( G \) with \( H \). Marbun and Salman [1355] proved \((W_n \circ^{k-1}) \circ C_n \) is \( W_n \)-edge magic.

In [354] Bezegová and Ivančo [356] extended the notion of supermagic regular graphs by defining a graph to be degree-magic if the edges can be labeled with \( \{1, 2, \ldots, |E(G)|\} \) such that the sum of the labels of the edges incident with any vertex \( v \) is equal to \( (1 + |E(G)|)/\deg(v) \). They used this notion to give some constructions of supermagic graphs and proved that for any graph \( G \) there is a supermagic regular graph which contains an induced subgraph isomorphic to \( G \). In [356] they gave a characterization of complete tripartite degree-magic graphs and in [357] they provided some bounds on the number of edges in degree-magic graphs. They say a graph \( G \) is conservative if it admits an orientation and a labeling of the edges by \( \{1, 2, \ldots, |E(G)|\} \) such that at each vertex the sum of the labels on the incoming edges is equal to the sum of the labels on the outgoing edges. In [355] Bezegová and Ivančo introduced some constructions of degree-magic labelings for a large family of graphs using conservative graphs. Using a connection between degree-magic labelings and supermagic labelings they also constructed supermagic labelings for the disjoint union of some regular non-isomorphic graphs. Among their results are: If \( G \) is a \( \delta \)-regular graph where \( \delta \) is even and at least 6, and each component of \( G \) is a complete multipartite graph of even size, then \( G \) is a supermagic graph; for any \( \delta \)-regular supermagic graph \( H \), the union of disjoint graphs \( H \) and \( G \) is supermagic; if \( G \) is a \( \delta \)-regular graph with \( \delta \equiv 0 \pmod{8} \) and each component is a circulant graph, then \( G \) is a supermagic graph; for any \( \delta \)-regular supermagic graph \( H \), the union of disjoint graphs \( H \) and \( G \) is a supermagic graph; and that the complement of the union of disjoint cycles \( C_{n_1}, \ldots, C_{n_k} \) is supermagic when \( k \equiv 1 \pmod{4} \) and \( 11 \leq n_i \equiv 3 \pmod{8} \) for all
Let $G$ be a copy of a simple graph $G$ and for each vertex $v_i$ of $G$ let $u_i$ be the vertex of $G$ corresponding with $v_i$. The **double graph** has vertex set $V(G) \cup V(G')$ and edge set $E(G) \cup E(G') \cup \{u_iv_j \mid u_i \in V(G); \ v_j \in V(G') \ \text{and} \ u_iu_j \in E(G)\}$. Ivančo [863] establishes sufficient conditions for generalized double graphs to be degree-magic and constructs supermagic labelings of some graphs generalizing double graphs.

Sedláček [1688] proved that graphs obtained from an odd cycle with consecutive vertices $u_1, u_2, \ldots, u_m, u_{m+1}, v_m, \ldots, v_1$ ($m \geq 2$) by joining each $u_i$ to $v_i$ and $v_{i+1}$ and $u_1$ to $v_{m+1}, u_m$ to $v_1$ and $v_1$ to $v_{m+1}$ are magic. Trenklér and Vetchý [1994] have shown that if $G$ has order at least 5, then $G^n$ is magic for all $n \geq 3$ and $G^2$ is magic if and only if $G$ is not $P_5$ and $G$ does not have a 1-factor whose every edge is incident with an end-vertex of $G$. Avadayappan, Jeyanthi, and Vasuki [156] have shown that $k$-sequential trees are magic (see §4.1 for the definition).

Seoud and Abdel Maqsoud [1702] proved that $K_{1,m,n}$ is magic for all $m$ and $n$ and that $P_2^n$ is magic for all $n$. However, Serverino has reported that $P_2^n$ is not magic for $n = 2, 3$, and 5 [706]. Jeurissan [888] characterized magic connected bipartite graphs. Ivančo [861] proved that bipartite graphs with $p \geq 8$ vertices, equal sized partite sets, and minimum degree greater than $p$ are magic. Baća [171] characterizes the structure of magic graphs that are formed by adding edges to a bipartite graph and proves that a regular connected magic graph of degree at least 3 remains magic if an arbitrary edge is deleted. In [1887] Solairaju and Arockiasamy prove that various families of subgraphs of grids $P_m \times P_n$ are magic. Dayanand and Ahmed [524] investigate super magic properties of several classes of connected and disconnected graphs. They show that there can be arbitrarily large gaps among the possible valences for certain super magic graphs. They also prove that the disjoint union of multiple copies of a super magic linear forest is super magic if the number of copies is odd and that the super magic labeling is complementary edge antimagic as well.

The *broom* $B_{n,t}$ is a graph obtained by attaching $n - t$ pendent edges to an end point vertex of the path $P_t$. Marimuthu, Raja, and Raja Durga [1359] prove that $B_{n,n-1}$ is $E$-super vertex magic if and only if $n \geq 3$ is odd and $B_{n,t}$ is not $E$-super vertex magic for $n - 2 \geq 2$ and $t \geq 3$.

A triplet $[H, \phi, t]$ is called a **supermagic frame** of $G$ if $\phi$ is a homomorphism of $H$ onto $G$ and $t : E(H) \to \{1, 2, \ldots, |E(H)|\}$ is an injective mapping such that the sum of $t(uw)$ over all $u \in \phi^{-1}(v)$ is independent of the vertex $v \in V(G)$. In 2000, Ivančo proved that if there is a supermagic frame of a graph $G$, then $G$ is supermagic. Singhun, Boonklurb, and Charmsamorn [1859] construct a supermagic frame of $m \geq 2$ copies of the Cartesian product of cycles and show that $m$ copies of the Cartesian product of cycles is supermagic.

A **prime-magic labeling** is a magic labeling for which every label is a prime. Sedláček [1688] proved that the smallest magic constant for prime-magic labeling of $K_{3,3}$ is 53 while Baća and Holländer [205] showed that the smallest magic constant for a prime-magic labeling of $K_{4,4}$ is 114. Letting $\sigma_n$ be the smallest natural number such that $n\sigma_n$ is equal to the sum of $n^2$ distinct prime numbers we have that the smallest magic constant for a prime-magic labeling of $K_{n,n}$ is $\sigma_n$. Baća and Holländer [205] conjecture that for
If \( n \geq 5 \), \( K_{n,n} \) has a prime-magic labeling with magic constant \( \sigma_n \). They proved the conjecture for \( 5 \leq n \leq 17 \) and confirmed the conjecture for \( n = 5, 6 \) and \( 7 \).

Characterizations of regular magic graphs were given by Doob [556] and necessary and sufficient conditions for a graph to be magic were given in [888], [987], and [537]. Some sufficient conditions for a graph to be magic are given in [554], [1990], and [1425]. Bertault, Miller, Pér-Rosés, Feria-Puron, and Vaezpour [352] provided a heuristic algorithm for finding magic labelings for specific families of graphs. The notion of magic graphs was generalized in [555] and [1671].

Let \( m, n, a_1, a_2, \ldots, a_m \) be positive integers where \( 1 \leq a_i \leq \lfloor n/2 \rfloor \) and the \( a_i \) are distinct. The circulant graph \( C_n(a_1, a_2, \ldots, a_m) \) is the graph with vertex set \( \{v_1, v_2, \ldots, v_m\} \) and edge set \( \{v_i v_{i+a_j} \mid 1 \leq i \leq n, 1 \leq j \leq m\} \) where addition of indices is done modulo \( n \). In [1997] Semaničová characterizes magic circulant graphs and 3-regular supermagic circulant graphs. In particular, if \( G = C_n(a_1, a_2, \ldots, a_m) \) has degree \( r \) at least 3 and \( d = \gcd(a_1, n/2) \) then \( G \) is magic if and only if \( r = 3 \) and \( n/d \equiv 2 \pmod{4} \), \( a_1/d \equiv 1 \pmod{2} \), or \( r \geq 4 \) (a necessary condition for \( C_n(a_1, a_2, \ldots, a_m) \) to be 3-regular is that \( n \) is even). In the 3-regular case, \( C_n(a_1, n/2) \) is supermagic if and only \( n/d \equiv 2 \pmod{4} \), \( a_1/d \equiv 1 \pmod{2} \) and \( d \equiv 1 \pmod{2} \). Semaničová also notes that a bipartite graph that is decomposable into an even number of Hamilton cycles is supermagic. As a corollary she obtains that \( C_n(a_1, a_2, \ldots, a_{2k}) \) is supermagic in the case that \( n \) is even, every \( a_i \) is odd, and \( \gcd(a_{2j-1}, a_{2j}, n) = 1 \) for \( i = 1, 2, \ldots, 2k \) and \( j = 1, 2, \ldots, k \).

Ivančo, Kovář, and Semaničová-Feňovčková [865] characterize all pairs \( n \) and \( r \) for which an \( r \)-regular supermagic graph of order \( n \) exists. They prove that for positive integers \( r \) and \( n \) with \( n \geq r + 1 \) there exists an \( r \)-regular supermagic graph of order \( n \) if and only if one of the following statements holds: \( r = 1 \) and \( n = 2 \); \( 3 \leq r \equiv 1 \pmod{2} \) and \( n \equiv 2 \pmod{4} \); and \( 4 \leq r \equiv 0 \pmod{2} \) and \( n > 5 \). The proof of the main result is based on finding supermagic labelings of circulant graphs. The authors construct supermagic labelings of several circulant graphs.

In [860] Ivančo completely determines the supermagic graphs that are the disjoint unions of complete \( k \)-partite graphs where every partite set has the same order.

Trenkler [1992] extended the definition of supermagic graphs to include hypergraphs and proved that the complete \( k \)-uniform \( n \)-partite hypergraph is supermagic if \( n \neq 2 \) or \( 6 \) and \( k \geq 2 \) (see also [1993]).

For connected graphs of size at least 5, Ivančo, Lastíková, and Semaničová [866] provide a forbidden subgraph characterization of the line graphs that can be magic. As a corollary they obtain that the line graph of every connected graph with minimum degree at least 3 is magic. They also prove that the line graph of every bipartite regular graph of degree at least 3 is supermagic.

For a natural number \( h \), Salehi [1658] defines a graph \( G \) to be \( h \)-magic if there is a labeling \( \alpha \) from the edges of \( G \) to the nonzero integers in \( Z_h \) such that for each vertex \( v \) in \( G \) the sum of all \( \alpha \) values of edges incident to \( v \) is a constant (called the magic sum index) that is independent of the choice of \( v \). If the constant is 0, \( G \) is called a zero-sum \( h \)-magic graph. The null set of graph \( G \) is the set of all natural numbers \( h \) for which \( G \) admits a zero-sum \( h \)-magic labeling. In [1658] Salehi determines the null sets.
for \( K_n, \ K_{m,n}, \ C_n, \) books, and cycles with a \( P_k \) chord. Lin and Wang [1277] determine the null sets of generalized wheels and generalized fans, and construct infinitely many examples of \( Z_h \)-magic graphs with magic sum zero and present some open problems.

In 1976 Sedláček [1688] defined a connected graph with at least two edges to be pseudo-magic if there exists a real-valued function on the edges with the property that distinct edges have distinct values and the sum of the values assigned to all the edges incident to any vertex is the same for all vertices. Sedláček proved that when \( n \geq 4 \) and \( n \) is even, the Möbius ladder \( M_n \) is not pseudo-magic and when \( m \geq 3 \) and \( m \) is odd, \( C_m \times P_2 \) is not pseudo-magic.

Kong, Lee, and Sun [1114] used the term “magic labeling” for a labeling of the edges with nonnegative integers such that for each vertex \( v \) the sum of the labels of all edges incident with \( v \) is the same for all \( v \). In particular, the edge labels need not be distinct. They let \( M(G) \) denote the set of all such labelings of \( G \). For any \( L \) in \( M(G) \), they let \( s(L) = \max\{L(e) : e \in E\} \) and define the magic strength of \( G \) as \( m(G) = \min\{s(L) : L \in M(G)\} \). To distinguish these notions from others with the same names and notation, which we will introduced in the next section for labelings from the set of vertices and edges, we call the Kong, Lee, and Sun version the edge magic strength and use \( em(G) \) for \( \min\{s(L) : L \in M(G)\} \) instead of \( m(G) \). Kong, Lee, and Sun [1114] use \( DS(k) \) to denote the graph obtained by taking two copies of \( K_{1,k} \) and connecting the \( k \) pairs of corresponding leaves. They show: for \( k > 1 \), \( em(DS(k)) = k - 1; \ em(P_k + K_1) = 1 \) for \( k = 1 \) or 2, \( em(P_k + K_1) = k \) if \( k \) is even and greater than 2, and 0 if \( k \) is odd and greater than 1; for \( k \geq 3 \), \( em(W(k)) = k/2 \) if \( k \) is even and \( em(W(k)) = (k - 1)/2 \) if \( k \) is odd; \( em(P_2 \times P_2) = 1; \ em(P_2 \times P_n) = 2 \) if \( n > 3 \), \( em(P_m \times P_n) = 3 \) if \( m \) or \( n \) is even and greater than 2; \( em(C_3^{(n)}) = 1 \) if \( n = 1 \) (Dutch windmill, – see §2.4), and \( em(C_3^{(n)}) = 2n - 1 \) if \( n > 1 \). They also prove that if \( G \) and \( H \) are magic graphs then \( G \times H \) is magic and \( em(G \times H) = \max\{em(G), em(H)\} \) and that every connected graph is an induced subgraph of a magic graph (see also [585] and [613]). They conjecture that almost all connected graphs are not magic. In [1213] Lee, Saba, and Sun show that the edge magic strength of \( P_n^k \) is 0 when \( k \) and \( n \) are both odd. Sun and Lee [1947] show that the Cartesian, conjunctive, normal, lexicographic, and disjunctive products of two magic graphs are magic and the sum of two magic graphs is magic. They also determine the edge magic strengths of the products and sums in terms of the edge magic strengths of the components graphs.

In [87] Akka and Warad define the super magic strength of a graph \( G \), \( sms(G) \) as the minimum of all magic constants \( c(f) \) where the minimum is taken over all super magic labeling \( f \) of \( G \) if there exist at least one such super magic labeling. They determine the super magic strength of paths, cycles, wheels, stars, bistars, \( P_n^2, < K_{1,n} : 2 > \) (the graph obtained by joining the centers of two copies of \( K_{1,n} \) by a path of length 2), and \((2n + 1)P_2 \).

A Halin graph is a planar 3-connected graphs that consist of a tree and a cycle connecting the end vertices of the tree. Let \( G \) be a \((p,q)\)-graph in which the edges are labeled \( k, k + 1, \ldots, k + q - 1 \), where \( k \geq 0 \). In [1230] Lee, Su, and Wang define a graph with \( p \) vertices to be \( k\)-edge-magic for every vertex \( v \) the sum of the labels of the incident
edges at \( v \) are constant modulo \( p \). They investigate some classes of Halin graphs that are \( k \)-edge-magic. Lee, Su, and Wang [1232] investigated some classes of cubic graphs that are \( k \)-edge-magic and provided a counterexample to a conjecture that any cubic graph of order \( p \equiv 2 \pmod{4} \) is \( k \)-edge-magic for all \( k \). Shiu and Lau [1812] gave some necessary conditions for families of wheels with certain spokes missing to admit \( k \)-edge-magic labelings.

Lau, Alikhani, Lee, and Kocay [1157] (see also [107]) show that maximal outerplanar graphs of orders \( p = 4, 5, 7 \) are \( k \)-edge magic if and only if \( k \equiv 2 \pmod{p} \) and determined all maximal outerplanar graphs that are \( k \)-edge magic for \( k = 3 \) and 4. They also characterize all \( (p, p-h) \)-graphs that are \( k \)-edge magic for \( h \geq 0 \) and conjecture that a maximal outerplanar graph of prime order \( p \) is \( k \)-edge magic if and only if \( k \equiv 2 \pmod{p} \).

S. M. Lee and colleagues [1252] and [1185] call a graph \( G \) \( k \)-magic if there is a labeling from the edges of \( G \) to the set \( \{1, 2, \ldots, k-1\} \) such that for each vertex \( v \) of \( G \) the sum of all edges incident with \( v \) is a constant independent of \( v \). The set of all \( k \) for which \( G \) is \( k \)-magic is denoted by \( \text{IM}(G) \) and called the \text{integer-magic spectrum} of \( G \). In [1252] Lee and Wong investigate the integer-magic spectrum of powers of paths. They prove: \( \text{IM}(P_2^n) = \{4, 6, 8, 10, \ldots\} \); for \( n > 5 \), \( \text{IM}(P_2^n) \) is the set of all positive integers except 2; for all odd \( d > 1 \), \( \text{IM}(P_d^n) \) is the set of all positive integers except 1; \( \text{IM}(P_4^n) \) is the set of all positive integers; for all odd \( n \geq 5 \), \( \text{IM}(P_3^n) \) is the set of all positive integers except 1 and 2; and for all even \( n \geq 2 \), \( \text{IM}(P_3^n) \) is the set of all positive integers except 2. For \( k > 3 \) they conjecture: \( \text{IM}(P_k^n) \) is the set of all positive integers when \( n = k+1 \); the set of all positive integers except 1 and 2 when \( n \) and \( k \) are odd and \( n \geq k \); the set of all positive integers except 1 and 2 when \( n \) and \( k \) are even and \( k \geq n/2 \); the set of all positive integers except 2 when \( n \) is even and \( k \) is odd and \( n \geq k \); and the set of all positive integers except 2 when \( n \) and \( k \) are even and \( k \leq n/2 \). In [1228] Lee, Su, and Wang showed that besides the natural numbers there are two types of the integer-magic spectra of honeycomb graphs. Fu, Jhuang and Lin [643] determine the integer-magic spectra of graphs obtained from attaching a path of length at least 2 to the end vertices of each edge of a cycle.

In [1185] Lee, Lee, Sun, and Wen investigated the integer-magic spectrum of various graphs such as stars, double stars (trees obtained by identifying the centers of two disjoint stars \( K_{1,m} \) and \( K_{1,n} \) with an edge), wheels, and fans. In [1661] Salehi and Bennett report that a number of the results of Lee et al. are incorrect and provide a detailed accounting of these errors as well as determine the integer-magic spectra of caterpillars.

Lee, Lee, Sun, and Wen [1185] use the notation \( C_m@C_n \) to denote the graph obtained by starting with \( C_m \) and attaching paths \( P_n \) to \( C_m \) by identifying the endpoints of the paths with each successive pairs of vertices of \( C_m \). They prove that \( \text{IM}(C_m@C_n) \) is the set of all positive integers if \( m \) or \( n \) is even and \( \text{IM}(C_m@C_n) \) is the set of all even positive integers if \( m \) and \( n \) are odd.

Lee, Valdés, and Ho [1239] investigate the integer magic spectrum for special kinds of trees. For a given tree \( T \) they define the double tree \( DT \) of \( T \) as the graph obtained by creating a second copy \( T^* \) of \( T \) and joining each end vertex of \( T \) to its corresponding vertex in \( T^* \). They prove that for any tree \( T \), \( \text{IM}(DT) \) contains every positive integer with the possible exception of 2 and \( \text{IM}(DT) \) contains all positive integers if and only if
the degree of every vertex that is not an end vertex is even. For a given tree \( T \) they define \( ADT \), the abbreviated double tree of \( T \), as the the graph obtained from \( DT \) by identifying the end vertices of \( T \) and \( T^* \). They prove that for every tree \( T \), \( IM(ADT) \) contains every positive integer with the possible exceptions of 1 and 2 and \( IM(ADT) \) contains all positive integers if and only if \( T \) is a path.

Lee, Salehi, and Sun [1215] have investigated the integer-magic spectra of trees with diameter at most four. Among their findings are: if \( n \geq 3 \) and the prime power factorization of \( n - 1 = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \), then \( IM(K_{1,n}) = p_1 \mathbb{N} \cup p_2 \mathbb{N} \cup \cdots \cup p_k \mathbb{N} \) (here \( p_i \mathbb{N} \) means all positive integer multiples of \( p_i \)); for \( m, n \geq 3 \), the double star \( IM(DS(m,m)) \) (that is, stars \( K_{m,1} \) and \( K_{n,1} \) that have an edge in common) is the set of all natural numbers excluding all divisors of \( m - 2 \) greater than 1; if the prime power factorization of \( m - n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \) and the prime power factorization of \( n - 2 = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} \), (the exponents are permitted to be 0) then \( IM(DS(m,n)) = A_1 \cup A_2 \cup \cdots \cup A_k \) where \( A_i = p_i^{1+s_i} \mathbb{N} \) if \( r_i > s_i \geq 0 \) and \( A_i = \emptyset \) if \( s_i \geq r_i > 0 \); for \( m, n \geq 3 \), \( IM(DS(m,n)) = \emptyset \) if and only if \( m - n \) divides \( n - 2 \); if \( m, n \geq 3 \) and \( |m - n| = 1 \), then \( DS(m,n) \) is not magic. Lee and Salehi [1214] give formulas for the integer-magic spectra of trees of diameter four but they are too complicated to include here.

For a graph \( G(V,E) \) and a function \( f \) from the \( V \) to the positive integers, Salehi and Lee [1665] define the functional extension of \( G \) by \( f \), as the graph \( H \) with \( V(H) = \cup \{u_i| u \in V(G) \text{ and } i = 1,2,\ldots,f(u)\} \) and \( E(H) = \cup \{u_iu_j| uv \in E(G), i = 1,2,\ldots,f(u); j = 1,2,\ldots,f(v)\} \). They determine the integer-magic spectra for \( P_2, P_3 \), and \( P_4 \).

More specialized results about the integer-magic spectra of amalgamations of stars and cycles are given by Lee and Salehi in [1214].

Table 5 summarizes the state of knowledge about magic-type labelings. In the table, \( SM \) means semi-magic, \( M \) means magic, and \( SPM \) means supermagic. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The table was prepared by Petr Kovár and Tereza Kovárová.
### Table 5: Summary of Magic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_n$</td>
<td>M</td>
<td>if $n = 2$, $n \geq 5$ [1915]</td>
</tr>
<tr>
<td></td>
<td>SPM</td>
<td>for $n \geq 5$ iff $n &gt; 5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n \not\equiv 0 \pmod{4}$ [1916]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>SM</td>
<td>if $n \geq 3$ [1915]</td>
</tr>
<tr>
<td>$K_{n,n}$</td>
<td>M</td>
<td>if $n \geq 3$ [1915]</td>
</tr>
<tr>
<td>fans $f_n$</td>
<td>M</td>
<td>iff $n$ is odd, $n \geq 3$ [1915]</td>
</tr>
<tr>
<td></td>
<td>not SM</td>
<td>if $n \geq 2$ [706]</td>
</tr>
<tr>
<td>wheels $W_n$</td>
<td>M</td>
<td>if $n \geq 4$ [1915]</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>if $n = 5$ or 6 [706]</td>
</tr>
<tr>
<td>wheels with one spoke deleted</td>
<td>M</td>
<td>if $n = 4$, $n \geq 6$ [1915]</td>
</tr>
<tr>
<td>null graph with $n$ vertices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Möbius ladders $M_n$</td>
<td>SPM</td>
<td>if $n \geq 3$, $n$ is odd [1688]</td>
</tr>
<tr>
<td>$C_n \times P_2$</td>
<td></td>
<td>not SPM for $n \geq 4$, $n$ even [1688]</td>
</tr>
<tr>
<td>$C_m[\overline{K}_n]$</td>
<td>SPM</td>
<td>if $m \geq 3$, $n \geq 2$ [1808]</td>
</tr>
<tr>
<td>$\overbrace{K_{n,n,\ldots,n}}^{p}$</td>
<td>SPM</td>
<td>$n \geq 3$, $p &gt; 5$ and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p \not\equiv 0 \pmod{4}$ [1808]</td>
</tr>
<tr>
<td>composition of $r$-regular SPM graph and $\overline{K}_n$</td>
<td>SPM</td>
<td>if $n \geq 3$ [1808]</td>
</tr>
<tr>
<td>$K_k[\overline{K}_n]$</td>
<td>SPM</td>
<td>if $k = 3$ or $5$, $n = 2$ or $n$ odd [813]</td>
</tr>
<tr>
<td>$mK_{n,n}$</td>
<td>SPM</td>
<td>for $n \geq 2$ iff $n$ is even or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>both $n$ and $m$ are odd [1805]</td>
</tr>
<tr>
<td>$Q_n$</td>
<td>SPM</td>
<td>iff $n = 1$ or $n &gt; 2$ even [860]</td>
</tr>
<tr>
<td>$C_m \times C_n$</td>
<td>SPM</td>
<td>$m = n$ or $m$ and $n$ are even [860]</td>
</tr>
</tbody>
</table>

*Continued on next page*
5.2 Edge-magic Total and Super Edge-magic Total Labelings

In 1970 Kotzig and Rosa [1120] defined a *magic valuation* of a graph $G(V, E)$ as a bijection $f$ from $V \cup E$ to $\{1, 2, \ldots, |V \cup E|\}$ such that for all edges $xy$, $f(x) + f(y) + f(xy)$ is constant (called the *magic constant*). This notion was rediscovered by Ringel and Lladó [1630] in 1996 who called this labeling *edge-magic*. To distinguish between this usage from that of other kinds of labelings that use the word magic we will use the term *edge-magic total* labeling as introduced by Wallis [2125] in 2001. (We note that for 2-regular graphs a vertex-magic total labeling is an edge-magic total labeling and vice versa.) Inspired by Kotzig-Rosa notion, Enomoto, Lladó, Nakamigawa, and Ringel [585] called a graph $G(V, E)$ with an edge-magic total labeling that has the additional property that the vertex labels are 1 to $|V|$ *super edge-magic total* labeling. Kotzig and Rosa proved: $K_{m,n}$ has an edge-magic total labeling for all $m$ and $n$; $C_n$ has an edge-magic total labeling for all $n \geq 3$ (see also [722], [1639], [345], and [585]); and the disjoint union of $n$ copies of $P_2$ has an edge-magic total labeling if and only if $n$ is odd. They further state that $K_n$ has an edge-magic total labeling if and only if $n = 1, 2, 3, 5, 6$ (see [1121], [514], and [585]) and ask whether all trees have edge-magic total labelings. Wallis, Baskoro, Miller, and Slamin [2129] enumerate every edge-magic total labeling of complete graphs. They also prove that the following graphs are edge-magic total: paths, crowns, complete bipartite graphs, and cycles with a single edge attached to one vertex. Enomoto, Llado, Nakamigana, and Ringel [585] prove that all complete bipartite graphs are edge-magic total. They also show
that wheels $W_n$ are not edge-magic total when $n \equiv 3 \pmod{4}$ and conjectured that all other wheels are edge-magic total. This conjecture was proved when $n \equiv 0, 1 \pmod{4}$ by Phillips, Rees, and Wallis [1495] and when $n \equiv 6 \pmod{8}$ by Slamin, Baća, Lin, Miller, and Simanjuntak [1870]. Fukuchi [649] verified all cases of the conjecture independently of the work of others. Slamin et al. further show that all fans are edge-magic total. Javed, Riasat, and Kanwal [884] study super edge-magic total labeling and deficiencies of forests consisting of combs, generalized combs, and stars. Their results provide the evidence to support the conjecture proposed by Figueroa-Centeno, Ichishima, and Muntaner-Bartle [618].

Ringel and Llado [1630] prove that a graph with $p$ vertices and $q$ edges is not edge-magic total if $q$ is even and $p + q \equiv 2 \pmod{4}$ and each vertex has odd degree. Ringel and Llado conjecture that trees are edge-magic total. In [317] Baskar Babujee and Rao show that the path with $n$ vertices has an edge-magic total labeling with magic constant $(5n + 2)/2$ when $n$ is even and $(5n + 1)/2$ when $n$ is odd. For stars with $n$ vertices they provide an edge-magic total labeling with magic constant $3n$. In [593] Eshghi and Azimi discuss a zero-one integer programming model for finding edge-magic total labelings of large graphs.

Santhosh [1679] proved that for $n$ odd and at least 3, the crown $C_n \circ P_2$ has an edge-magic total labeling with magic constant $(27n + 3)/2$ and for $n$ odd and at least 3, $C_n \circ P_3$ has an edge-magic total labeling with magic constant $(39n + 3)/2$. Baig and Afzal [161] investigate the super edge-magicness of special classes of graphs having maximum magic constant $k = 3p$.

Ahmad, Baig, and Imran [70] define a zig-zag triangle as the graph obtained from the path $x_1, x_2, \ldots, x_n$ by adding $n$ new vertices $y_1, y_2, \ldots, y_n$ and new edges $y_1x_1, y_nx_{n-1}; x_iy_i$ for $1 \leq i \leq n; y_ix_{i-1}y_iy_{i+1}$ for $2 \leq i \leq n - 1$. They define a graph $Cb_n$ as one obtained from the path $x_1, x_2, \ldots, x_n$ adding $n$ new vertices $y_1, y_2, \ldots, y_{n-1}$ and new edges $y_ix_{i+1}$ for $1 \leq i \leq n - 1$. The graph $Cb'_n$ is obtained from the $Cb_n$ by joining a new edge $x_1y_1$. They prove that zig-zag triangles, graphs that are the disjoint union of a star and a banana tree, certain disjoint unions of stars, and for $n \geq 4$, $Cb'_n \cupCb_{n-1}$ are super edge-magic total. Baig, Afzal, Imran, and Javaid [162] investigate the existence of super edge-magic labeling of volvox and pancyclic graphs.

Beardon [330] extended the notion of edge-magic total to countable infinite graphs $G(V, E)$ (that is, $V \cup E$ is countable). His main result is that a countably infinite tree that processes an infinite simple path has a bijective edge-magic total labeling using the integers as labels. He asks whether all countably infinite trees have an edge-magic total labeling with the integers as labels and whether the graph with the integers as vertices and an edge joining every two distinct vertices has a bijective edge-magic total labeling using the integers.

Cavenagh, Combe, and Nelson [442] investigate edge-magic total labelings of countably infinite graphs with labels from a countable Abelian group $A$. Their main result is that if $G$ is a countable graph that has an infinite set of mutually disjoint edges and $A$ is isomorphic to a countable subgroup of the real numbers under addition then for any $k$ in $A$ there is an edge-magic labeling of $G$ with elements from $A$ that has magic constant $k$. 
Balakrishnan and Kumar [263] proved that the join of $\overline{K_n}$ and two disjoint copies of $K_2$ is edge-magic total if and only if $n = 3$. Yegnanarayanan [2218] has proved the following graphs have edge-magic total labelings: $nP_3$ where $n$ is odd; $P_n + K_1$; $P_n \times C_3$ ($n \geq 2$); the crown $C_n \circ K_1$; and $P_n \times C_3$ with $n$ pendent vertices attached to each vertex of the outermost $C_3$. He conjectures that for all $n$, $C_n \circ \overline{K_n}$, the $n$-cycle with $n$ pendent vertices attached at each vertex of the cycle, and $nP_3$ have edge-magic total labelings. In fact, Figueroa-Centeno, Ichishima, and Muntaner-Batle, [620] have proved the stronger statement that for all $n \geq 3$, the corona $C_n \circ \overline{K_n}$ admits an edge-magic labeling where the set of vertex labels is \{1,2,...,|V|\}. (See also [1353].)

Yegnanarayanan [2218] also introduces several variations of edge-magic labelings and provides some results about them. Kotzig [2127] provides some necessary conditions for graphs with an even number of edges in which every vertex has odd degree to have an edge-magic total labeling. Craft and Tesar [514] proved that an $r$-regular graph with $r$ odd and $p \equiv 4 \pmod{8}$ vertices can not be edge-magic total. Wallis [2125] proved that if $G$ is an edge-magic total $r$-regular graph with $p$ vertices and $q$ edges where $r = 2^ts + 1$ ($t > 0$) and $q$ is even, then $2^{t+2}$ divides $p$.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [614] have proved the following graphs are edge-magic total: $P_4 \cup nK_2$ for $n$ odd; $P_3 \cup nK_2$; $P_5 \cup nK_2$; $nP_i$ for $n$ odd and $i = 3,4,5$; $2P_n$; $P_1 \cup P_2 \cup \cdots \cup P_n$; $mK_{1,n}$; $C_m \circ nK_1$; $K_1 \circ nK_2$ for $n$ even; $W_{2n}$; $K_2 \times \overline{K_n}$, $nK_3$ for $n$ odd (the case $nK_3$ for $n$ even and larger than 2 is done in [1375]); binary trees, generalized Petersen graphs (see also [1446]), ladders (see also [2173]), books, fans, and odd cycles with pendent edges attached to one vertex.

In [620] Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima, investigate super edge-magic total labelings of graphs with two components. Among their results are: $C_3 \cup C_n$ is super edge-magic total if and only if $n \geq 6$ and $n$ is even; $C_4 \cup C_n$ is super edge-magic total if and only if $n \geq 5$ and $n$ is odd; $C_5 \cup C_n$ is super edge-magic total if and only if $n \geq 4$ and $n$ is even; if $m$ is even with $m \geq 4$ and $n$ is odd with $n \geq m/2 + 2$, then $C_m \cup C_n$ is super edge-magic total; for $m = 6,8,10$, $C_m \cup C_n$ is super edge-magic total if and only if $n \geq 3$ and $n$ is odd; $2C_n$ is strongly felicitous if and only if $n \geq 4$ and $n$ is even (the converse was proved by Lee, Schmeichel, and Shee in [1216]); $C_3 \cup P_n$ is super edge-magic total for $n \geq 6$; $C_4 \cup P_n$ is super edge-magic total if and only if $n \neq 3$; $C_5 \cup P_n$ is super edge-magic total for $n \geq 4$; if $m$ is even with $m \geq 4$ and $n \geq m/2 + 2$ then $C_m \cup P_n$ is super edge-magic total; $P_m \cup P_n$ is super edge-magic total if and only $(m,n) \neq (2,2)$ or $(3,3)$; and $P_m \cup P_n$ is edge-magic total if and only $(m,n) \neq (2,2)$.

Enomoto, Llado, Nakamigawa, and Ringel [585] conjecture that if $G$ is a graph of order $n + m$ that contains $K_n$, then $G$ is not edge-magic total for $n \gg m$. Wijaya and Baskoro [2173] proved that $P_m \times C_n$ is edge-magic total for odd $n$ at least 3. Ngurah and Baskoro [1446] state that $P_2 \times C_n$ is not edge-magic total. Hegde and Shetty [797] have shown that every $T_p$-tree (see §4.4 for the definition) is edge-magic total. Ngurah, Simanjuntak, and Baskoro [1454] show that certain subdivisions of the star $K_{1,p}$ have edge-magic total labelings. Ali, Hussain, Shaker, and Javaid [105] provide super edge-magic total labelings of subdivisions of stars $K_{1,p}$ for $p \geq 5$. In [1451] Ngurah, Baskoro, Tomescu gave methods for construction new (super) edge-magic total graphs from old ones by adding some new
ependent edges. They also proved that $K_{1,m} \cup P_n$ is super edge-magic total. Wallis [2125] proves that a cycle with one pendant edge is edge-magic total. In [2125] Wallis poses a large number of research problems about edge-magic total graphs.

For $n \geq 3$, López, Muntaner-Batle, and Rius-Font [1314] (see [1315] for corrigendum) let $S_n$ denote the set of all super edge-magic total 1-regular labeled digraphs of order $n$ where each vertex takes the name of the label that has been assigned to it. For $\pi \in S_n$, they define a generalization of generalized Petersen graphs that they denote by $GGP(n; \pi)$, which consists of an outer $n$-cycle $x_0, x_1, \ldots, x_{n-1}, x_0$, a set of $n$-spokes $x_iy_i$, $0 \leq i \leq n-1$, and $n$ inner edges defined by $y_iy_{\pi(i)}$, $i = 0, \ldots, n-1$. Notice that, for the permutation $\pi$ defined by $\pi(i) = i + k$ (mod $n$) we have $GGP(n; \pi) = P(n; k)$. They define a second generalization of generalized Petersen graphs, $GGP(n; \pi_2, \ldots, \pi_m)$, as the graphs with vertex sets $\bigcup_{j=1}^m \{x_j^i : i = 0, \ldots, n-1\}$, an outer $n$-cycle $x_0^1, x_1^1, \ldots, x_{n-1}^1, x_0^1$, and inner edges $x_i^{j-1}x_i^j$ and $x_i^jx_{\pi_j(i)}^j$, for $j = 2, \ldots, m$, and $i = 0, \ldots, n-1$. Notice that, $GGP(n; \pi_2, \ldots, \pi_m)$ = $P_m \times C_n$, when $\pi_j(i) = i + 1$ (mod $n$) for every $j = 2, \ldots, m$. Among their results are the Petersen graphs are super edge-magic total; for each $m$ with $1 < l \leq m$ and $1 \leq k \leq 2$, the graph $GGP(5; \pi_2, \ldots, \pi_m)$, where $\pi_i = \sigma_1$ for $i \neq l$ and $\pi_l = \sigma_1$, is super edge-magic total; for each $1 \leq k \leq 2$, the graph $P(5n; k + 5r)$ where $r$ is the smallest integer such that $k + 5r = 1$ (mod $n$) is super edge-magic total.

A $w$-graph, $W(n)$, has vertices $\{(c_1, c_2, b, w, d) \cup (x^1, x^2, \ldots, x^n) \cup (y^1, y^2, \ldots, y^n)\}$ and edges $\{(c_1x^1, c_1x^2, \ldots, c_1x^n) \cup (c_2y^1, c_2y^2, \ldots, c_2y^n) \cup (c_1b, c_1w) \cup (c_2w, c_2d)\}$. A $w$-tree, $WT(n, k)$, is a tree obtained by taking $k$ copies of a $w$-graph $W(n)$ and a new vertex $a$ and joining $a$ with in each copy $d$ where $n \geq 2$ and $k \geq 3$. An extended $w$-tree $Ewt(n, k, r)$ is a tree obtained by taking $k$ copies of an extended $w$-graph $Ew(n, r)$ and a new vertex $a$ and joining $a$ with the vertex $d$ in each of the $k$ copies for $n \geq 2$, $k \geq 3$ and $r \geq 2$. Super edge-magic total labelings for $w$-trees, extended $w$-trees, and disjoint unions of extended $w$-trees are given in [882], [879], and [104]. Javaid, Hussain, Ali, and Shaker [883] provided super edge-magic total labelings of subdivisions of $K_{1,4}$ and $w$-trees. Shaker, Rana, Zobair, and Hussain [1782] gave a super edge-magic total labeling for a subdivided star with a center of degree at least 4.

In 1988 Godbod and Slater [722] made the following conjecture. If $n$ is odd, $n \neq 5$, $C_n$ has an edge magic labeling with valence $k$, when $(5n + 3)/2 \leq k \leq (7n + 3)/2$. If $n$ is even, $C_n$ has an edge-magic labeling with valence $k$ when $5n/2 + 2 \leq k \leq 7n/2 + 1$. Except for small values of $n$, very few valences for edge-magic labelings of $C_n$ are known. In [1319] López, Muntaner-Batle, and Rius-Font use the $\otimes_h$-product in order to prove the following two results. Let $n = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ be the unique prime factorization of an odd number $n$. Then $C_n$ admits at least $1 + \sum_{i=1}^{k} \alpha_i$ edge-magic labelings with at least $1 + \sum_{i=1}^{k} \alpha_i$ mutually different valences. Let $n = 2^{\alpha}p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ be the unique prime factorization of an even number $n$, with $p_1 > p_2 > \cdots > p_k$. Then $C_n$ admits at least $\sum_{i=1}^{k} \alpha_i$ edge-magic labelings with at least $\sum_{i=1}^{k} \alpha_i$ mutually different valences. If $\alpha \geq 2$ this lower bound can be improved to $1 + \sum_{i=1}^{k} \alpha_i$.

In 1996 Erdős asked for $M(n)$, the maximum number of edges that an edge-magic total graph of order $n$ can have (see [514]). In 1999 Craft and Tesar [514] gave the bound $[n^2/4] \leq M(n) \leq [n(n - 1)/2]$. For large $n$ this was improved by Pikhurko [1499] in
to construct $S$ in $E$ the electronic journal of combinatorics (2016), #DS6

2006 to $2n^2/7 + O(n) \leq M(n) \leq (0.489 + \cdots + o(1)n^2)$.

Enomoto, Lladó, Nakamigawa, and Muntaner-Batle [585] proved that a super edge-magic total graph $G(V,E)$ with $|V| \geq 4$ and with girth at least 4 has at most $2|V| - 5$ edges. They prove this bound is tight for graphs with girth 4 and 5 in [585] and [847].

In his Ph.D. thesis, Barrientos [278] introduced the following notion. Let $L_1, L_2, \ldots, L_h$ be ordered paths in the grid $P_r \times P_t$ that are maximal straight segments such that the end vertex of $L_i$ is the beginning vertex of $L_{i+1}$ for $i = 1, 2, \ldots, h - 1$. Suppose for some $i$ with $1 < i < h$ we have $V(L_i) = \{u_0, v_0\}$ where $u_0$ is the end vertex of $L_{i-1}$ and the beginning vertex of $L_i$ and $v_0$ is the end vertex of $L_1$ and the beginning vertex of $L_{i+1}$. Let $u \in V(L_{i-1}) - \{u_0\}$ and $v \in V(L_{i+1}) - \{v_0\}$. The replacement of the edge $u_0v_0$ by a new edge $uv$ is called an elementary transformation of the path $P_n$. A tree is called a path-like tree if it can be obtained from $P_n$ by a sequence of elementary transformations on an embedding of $P_3$ in a 2-dimensional grid. In [229] Bača, Lin, and Muntaner-Batle proved that if $T_1, T_2, \ldots, T_m$ are path-like trees each of order $n \geq 4$ where $m$ is odd and at least 3, then $T_1 \cup T_2 \cup \cdots \cup T_m$ has a super edge-magic labeling. In [228] Bača, Lin, Muntaner-Batle and Rius-Font proved that the number of such trees grows at least exponentially with $m$. As an open problem Bača, Lin, Muntaner-Batle and Rius-Font ask if graphs of the form $T_1 \cup T_2 \cup \cdots \cup T_m$ where $T_1, T_2, \ldots, T_m$ are path-like trees each of order $n \geq 2$ and $m$ is even have a super edge-magic labeling. In [278] Barrientos proved that all path-like trees admit an $\alpha$-valuation. Using Barrientos’s result, it is very easy to obtain that all path-like trees are a special kind of super edge-magic by using a super edge-magic labeling of the path $P_n$, and hence they are also super edge-magic. Furthermore in [7] Figueroa-Centeno at al. proved that if a tree is super edge-magic, then it is also harmonious. Therefore all path-like trees are also harmonious. In [1311] López, Muntaner-Batle, and Rius-Font also use a variation of the Kronecker product of matrices in order to obtain lower bounds for the number of non isomorphic super edge-magic labeling of some types of path-like trees. As a corollary they obtain lower bounds for the number of harmonious labelings of the same type of trees. López, Muntaner-Batle, and Rius-Font [1320] proved that if $m \geq 4$ is an even integer and $n \geq 3$ is an odd divisor of $m$, then $C_m \cup C_n$ is super edge-magic.

For a simple graph $H$ we say that $G(V,E)$ admits an $H$-covering if every edge in $E(G)$ belongs to a subgraph of $G$ that is isomorphic to $H$. In [1322] López, Muntaner-Batle, Rius-Font study a relationship existing among (super) magic coverings and the Kronecker product of matrices. (For a simple graph $H$, $G(V,E)$ admits an $H$-covering if every edge in $E(G)$ belongs to a subgraph of $G$ that is isomorphic to $H$.) Their results can be applied to construct $S$-magic partitions. For $m$ copies of a graph $G$ and a fixed subgraph $H$ of each copy the graph $I(G,H,m)$ is formed by taking of all the $G_i$’s and identifying their subgraph $H$. Liang [1269] determines which $I(G,H,m)$ and which $mG$ have $G$ supermagic coverings.

Bača, Lin and Muntaner-Batle in [227] using a generalization of the Kronecker product of matrices prove that the number of non-isomorphic super edge-magic labelings of the disjoint union of $m$ copies of the path $P_n$, $m \equiv 2 \pmod{4}$, $m \geq 2$, $n \geq 4$, is at least $(m/2)(2n-2)$. 

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 121
In [1313] López, Muntaner-Batle and Rius-Font proved that every super edge-magic graph with \( p \) vertices and \( q \) edges where \( q \geq p - 1 \) has an even harmonious labeling (See Section 4.6.) In [1318] they stated some open problems concerning relationships among super edge-magic labelings and graceful and harmonious labelings. A Langford sequence is a sequence \((t_1, t_2, \ldots, t_{2m})\) of \( 2m \) numbers such that (i) for every \( k \in [d, d + m] \) there exist exactly two subscripts \( i, j \in [1, 2m] \) with \( ti = tj = k \) and (ii) the subscripts \( i \) and \( j \) satisfy the condition \( |ij| = k \). López and Muntaner-Batle [1309] provided new lower bounds on the number of distinct Langford sequences with certain properties in terms of the number of 1-regular super edge-magic labeled digraphs of a particular order.

Lee and Lee [1184] prove the following graphs are super edge-magic: \( P_{2n} + K_m \), \((P_2 \cup nK_1) + K_2\), graphs obtained by appending a path to the apex of a fan with at least 4 vertices (umbrella), and jelly fish graphs \( J(m, n) \) obtained from a 4-cycle \( v_1, v_2, v_3, v_4 \) by joining \( v_1 \) and \( v_3 \) with an edge and appending \( m \) pendent edges to \( v_2 \) and \( n \) pendent edges to \( v_4 \).

In [50] Afzel introduces two new families of graphs called carrom and jukebox graphs and proves they admit super edge-magic labelings. Carroms are generalizations of \( C_n \times P_2 \).

Marimuthu and Balakrishnan [1357] define a graph \( G(p, q) \) to be edge magic graceful if there exists a bijection \( f \) from \( V(G) \cup E(G) \) to \( \{1, 2, \ldots, p + q\} \) such that \( |f(u) + f(v) - f(uv)| \) is a constant for all edges \( uv \) of \( G \). An edge magic graceful graph is said to be super edge magic graceful if \( V(G) = \{1, 2, \ldots, p\} \). They present some properties of super edge magic graceful graphs, prove some classes of graphs are super edge magic graceful, and prove that every super edge magic graceful graph with either \( f(uv) > f(u) + f(v) \) for all edges \( uv \) or \( f(uv) < f(u) + f(v) \) for all edges \( uv \) is sequential, harmonious, super edge magic and not graceful.

Let \( G = (V, E) \) be a \((p, q)\)-linear forest. In [228] Bača, Lin, Muntaner-Batle, and Rius-Font call a labeling \( f \) a strong super edge-magic labeling of \( G \) and \( G \) a strong super edge-magic graph if \( f : V \cup E \to \{1, 2, \ldots, p+q\} \) with the extra property that if \( uv \in E, u', v' \in V(G) \) and \( d_G(u, u') = d_G(v, v') < +\infty \), then we have that \( f(u) + f(v) = f(u') + f(v') \). In [75] Ahmad, López, Muntaner-Batle, and Rius-Font define the concept of strong super edge-magic labeling of a graph with respect to a linear forest as follows. Let \( G = (V, E) \) be a \((p, q)\)-graph and let \( F \) be any linear forest contained in \( G \). A strong super edge-magic labeling of \( G \) with respect to \( F \) is a super edge-magic labeling \( f \) of \( G \) with the extra property with if \( uv \in E(F), u', v' \in V(F) \) and \( d_F(u, u') = d_F(v, v') < +\infty \) then we have that \( f(u) + f(v) = f(u') + f(v') \). If a graph \( G \) admits a strong super edge-magic labeling with respect to some linear forest \( F \), they say that \( G \) is a strong super edge-magic graph with respect to \( F \). They prove that if \( m \) is odd and \( G \) is an acyclic graph which is strong super edge-magic with respect to a linear forest \( F \), then \( mG \) is strong super edge-magic with respect to \( F_1 \cup F_2 \cup \cdots \cup F_m \), where \( F_i \simeq F \) for \( i = 1, 2, \ldots, m \) and every regular caterpillar is strong super edge-magic with respect to its spine.

Noting that for a super edge-magic labeling \( f \) of a graph \( G \) with \( p \) vertices and \( q \) edges, the magic constant \( k \) is given by the formula: \( k = (\sum_{u \in V} \deg(u) f(u) + \sum_{i=p+1}^{p+q} i)/q \), López,
Muntaner-Batle and Rius-Font [1312] define the set

$$S_G = \left\{ \frac{\sum_{u \in V} \deg(u)g(u) + \sum_{i=p+1}^{q} i}{q} : \text{the function } g : V \to \{i\}_{i=1}^{q} \text{ is bijective} \right\}.$$ 

If \( \lceil \min S_G \rceil \leq \lceil \max S_G \rceil \) then the super edge-magic interval of \( G \) is the set \( I_G = [\lceil \min S_G \rceil, \lceil \max S_G \rceil] \cap \mathbb{N} \). The super edge-magic set of \( G \) is \( \sigma_G = \{ k \in I_G : \text{there exists a super edge-magic labeling of } G \text{ with valence } k \} \). López et al. call a graph \( G \) perfect super edge-magic if \( I_G = \sigma_G \). They show that the family of paths \( P_n \) is a family of perfect super edge-magic graphs with \( |I_{P_n}| = 1 \) if \( n \) is even and \( |I_{P_n}| = 2 \) if \( n \) is odd and raise the question of whether there is an infinite family \( F_1, F_2, \ldots \) of graphs such that each member of the family is perfect super edge-magic and \( \lim_{i \to +\infty} |I_{F_i}| = +\infty \). They show that graphs \( G \cong C_{p^k} \odot K_n \) where \( p > 2 \) is a prime is such a family.

In [1313] López et al. define the irregular crown \( C(n; j_1, j_2, \ldots, j_n) = (V, E) \), where \( n > 2 \) and \( j_i \geq 0 \) for all \( i \in \{1, 2, \ldots, n\} \) as follows: \( V = \{v_i\}_{i=1}^{n} \cup \{V_1 \cup V_2 \cup \cdots \cup V_n, \) where \( V_k = \{v_{k,1}^{1}, v_{k,1}^{2}, \ldots, v_{k,1}^{k}\}, \) if \( j_k \neq 0 \) and \( V_k = \emptyset \) if \( j_k = 0 \), for each \( k \in \{1, 2, \ldots, n\} \) and \( E = \{v_{i}v_{i+1}\}_{i=1}^{n} \cup \{v_{1}v_{n}\} \cup \{v_{k,1}^{j_{k}, -1}(v_{k,1}^{j_{k}, 1})_{i=1}\}. \) In particular, they denote \( C_n^{n} = C(m; j_1, j_2, \ldots, j_m) \), where \( j_{2i-1} = n \), for each \( i \) with \( 1 \leq i \leq (m + 1)/2 \), and \( j_{2i} = 0 \), for each \( i, 1 \leq i \leq (m - 1)/2 \). They prove that the graphs \( C_3^n \) and \( C_5^n \) are perfect edge-magic for all \( n > 1 \).

López et al. [1316] define \( \mathcal{F}^k \)-family and \( \mathcal{E}^k \)-family of graphs as follows. The infinite family of graphs \( (F_1, F_2, \ldots) \) is an \( \mathcal{F}^k \)-family if each element \( F_n \) admits exactly \( k \) different valences for super edge-magic labelings, and \( \lim_{n \to +\infty} |I(F_n)| = +\infty \). The infinite family of graphs \( (F_1, F_2, \ldots) \) is an \( \mathcal{E}^k \)-family if each element \( F_n \) admits exactly \( k \) different valences for edge-magic labelings, and \( \lim_{n \to +\infty} |J(F_n)| = +\infty \).

An easy observation is that \((K_{1,2}, K_{1,3}, \ldots) \) is an \( \mathcal{F}^3 \)-family and an \( \mathcal{E}^3 \)-family. They pose the two problems: for which positive integers \( k \) is it possible to find \( \mathcal{F}^k \)-families and \( \mathcal{E}^k \)-families? Their main results in [1316] are that an \( \mathcal{F}^k \)-family exits for each \( k = 1, 2, 3; \) and an \( \mathcal{E}^k \)-family exits for each \( k = 3, 4 \) and \( 7 \).

McSorley and Trono [1379] define a relaxed version of edge-magic total labelings of a graph as follows. An edge-magic injection \( \mu \) of a graph \( G \) is an injection \( \mu \) from the set of vertices and edges of \( G \) to the natural numbers such that for every edge \( uv \) the sum \( \mu(u) + \mu(v) + \mu(uv) \) is some constant \( k_\mu \). They investigate \( \kappa(G) \), the smallest \( k_\mu \) among all edge-magic injections of a graph \( G \). They determine \( \kappa(G) \) in the cases that \( G \) is \( K_2, K_3, K_5, K_6 \) (recall that these are the only complete graphs that have edge-magic total labelings), a path, a cycle, or certain types of trees. They also show that every graph has an edge-magic injection and give bounds for \( \kappa(K_n) \).

Avadayappan, Vasuki, and Jayanthi [157] define the edge-magic total strength of a graph \( G \) as the minimum of all constants over all edge-magic total labelings of \( G \). We denote this by \( e\text{mt}(G) \). They use the notation \(< K_{1,n} : 2 >\) for the tree obtained from the bistar \( B_{n,n} \) (the graph obtained by joining the center vertices of two copies of \( K_{1,n} \) with an edge) by subdividing the edge joining the two stars. They prove: \( e\text{mt}(P_{2n}) = 5n + 1; e\text{mt}(P_{2n+1}) = 5n + 3; e\text{mt}(< K_{1,n} : 2 >) = 4n + 9; e\text{mt}(B_{n,n}) = 5n + 6; e\text{mt}((2n+1)) = 5n + 2). \)
1) $P_2) = 9n + 6$; $\text{emt}(C_{2n+1}) = 5n + 4$; $\text{emt}(C_{2n}) = 5n + 2$; $\text{emt}(K_{1,n}) = 2n + 4$; $\text{emt}(P_n^2) = 3n$; and $\text{emt}(K_{n,m}) \leq (m + 2)(n + 1)$ where $n \leq m$. Using an analogous definition for super edge-magic total strength, Swaninathan and Jeyanthi [1967], [1967], [1968] provide results about the super edge-magic strength of trees, fire crackers, unicyclic graphs, and generalized theta graphs. Ngurah, Simanjuntak, and Baskoro [1454] show that certain subdivisions of the star $K_{1,3}$ have super edge-magic total labelings. In [585] Enomoto, Lladó, Nakamigawa and Ringel conjectured that all trees have a super edge-magic total labeling. Ichishima, Muntaner-Batle, and Rius-Font [846] have shown that any tree of order $p$ is contained in a tree of order at most $2p - 3$ that has a super edge-magic total labeling.

In [228] Bača, Lin, Muntaner-Batle, and Rius-Font call a super edge-magic labeling $f$ of a linear forest $G$ of order $p$ and size $q$ satisfying $f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ with the additional property that if $uv \in E(G)$, $u'v' \notin E(G)$ and $d_G(u, u') = d_G(v, v') < \infty$, then $f(u) + f(v) = f(u') + f(v')$ a strong super edge-magic labeling of $G$. They use a generalization of the Kronecker product of matrices introduced by Figueroa-Centeno, Ichishima, Muntaner-Batle, and Rius-Font [622] to obtain an exponential lower bound for the number of non-isomorphic strong super edge-magic labelings of the graph $mP_n$, for $m$ odd and any $n$, starting from the strong super edge-magic labeling of $P_n$. They prove that the number of non-isomorphic strong super edge-magic labelings of the graph $mP_n$, $n \geq 4$, is at least $\frac{5q(q^2)}{2} + 1$ where $m \geq 3$ is an odd positive integer. This result allows them to generate an exponential number of non-isomorphic super edge-magic labelings of the forest $F \approx \bigcup_{j=1}^m T_j$, where each $T_j$ is a path-like tree of order $n$ and $m$ is an odd integer.

López, Muntaner-Batle, and Rius-Font [1310] introduced a generalization of super edge-magic graphs called super edge-magic models and prove some results about them.

Yegnanarayanan and Vaidhyananathan [2219] use the term nice $(1, 1)$ edge-magic labeling for a super edge-magic total labeling. They prove: a super edge-magic total labeling $f$ of a $(p, q)$-graph $G$ satisfies $2 \sum_{v \in V(G)} f(v) \deg(v) \equiv 0 \pmod{q}$; if $G$ is $(p, q)$ $r$-regular graph ($r > 1$) with a super edge-magic total labeling then $q$ is odd and the magic constant is $(4p + q + 3)/2$; every super edge-magic total labeling has at least two vertices of degree less than 4; fans $P_n + K_1$ are edge-magic total for all $n$ and super edge-magic total if and only if $n$ is at most 6; books $B_n$ are edge-magic total for all $n$; a super edge-magic total $(p, q)$-graph with $q \geq p$ is sequential; a super edge-magic total tree is sequential; and a super edge-magic total tree is cordial. These last three results had been proved earlier by Figueroa-Centenoa, Ichishima, and Muntaner-Batle [613].

In [2218] Yegnanarayanan conjectured that the disjoint union of $2t$ copies of $P_3$ has a $(1, 1)$ edge-magic labeling and posed the problem of determining the values of $m$ and $n$ such that $mP_n$ has a $(1, 1)$ edge-magic labeling. Manickam and Marudai [1353] prove the conjecture and partially settle the open problem.

Hegde and Shetty [803] (see also [802]) define the maximum magic strength of a graph $G$ as the maximum magic constant over all edge-magic total labelings of $G$. We use $\text{eMt}(G)$ to denote the maximum magic strength of $G$. Hegde and Shetty call a graph $G$ with $p$ vertices strong magic if $\text{eMt}(G) = \text{emt}(G)$; ideal magic if $1 \leq \text{eMt}(G) - \text{emt}(G) \leq p$; and
weak magic if eMt(G) − emt(G) > p. They prove that for an edge-magic total graph G with p vertices and q edges, eMt(G) = 3(p + q + 1) − emt(G). Using this result they obtain: \( P_n \) is ideal magic for \( n > 2 \); \( K_{1,1} \) is strong magic; \( K_{1,2} \) and \( K_{1,3} \) are ideal magic; and \( K_{1,n} \) is weak magic for \( n > 3 \); \( B_{n,n} \) is ideal magic; \((2n + 1)P_2\) is strong magic; cycles are ideal magic; and the generalized web \( W(t, 3) \) (see §2.2 for the definition) with the central vertex deleted is weak magic.

Santhosh [1679] has shown that for \( n \) odd and at least 3, \( eMt(C_n \oplus P_2) = (27n + 3)/2 \) and for \( n \) odd and at least 3, \( (39n + 3)/2 \leq eMt(C_n \oplus P_2) \leq (40n + 3)/2 \). Moreover, he proved that for \( n \) odd and at least 3 both \( C_n \oplus P_2 \) and \( C_n \oplus P_3 \) are weak magic. In [480] Chopra and Lee provide an number of families of super edge-magic graphs that are weak magic.

In [1427] Murugan introduces the notions of almost-magic labeling, relaxed-magic labeling, almost-magic strength, and relaxed-magic strength of a graph. He determines the magic strength of Huffman trees and twigs of odd order and the almost-magic strength of \( nP_2 \) (\( n \) is even) and twigs of even order. Also, he obtains a bound on the magic strength of the path-union \( P_n(m) \) and on the relaxed-magic strength of \( kS_n \) and \( kP_n \).

Enomoto, Llado, Nakamigawa, and Ringel [585] call an edge-magic total labeling super edge-magic if the set of vertex labels is \{1, 2, \ldots, |V|\} (Wallis [2125] calls these labelings strongly edge-magic). They prove the following: \( C_n \) is super edge-magic if and only if \( n \) is odd; caterpillars are super edge-magic; \( K_{m,n} \) is super edge-magic if and only if \( m = 1 \) or \( n = 1 \); and \( K_n \) is super edge-magic if and only if \( n = 1, 2, \) or 3. They also prove that if a graph with \( p \) vertices and \( q \) edges is super edge-magic then, \( q \leq 2p - 3 \). In [1344] MacDougall and Wallis study super edge-magic \((p, q)\)-graphs where \( q = 2p - 3 \). Enomoto et al. [585] conjecture that every tree is super edge-magic. Lee and Shan [1224] have verified this conjecture for trees with up to 17 vertices with a computer. Fukuchi, and Oshima, [651] have shown that if \( T \) is a tree of order \( n \geq 2 \) such that \( T \) has diameter greater than or equal to \( n - 5 \), then \( T \) has a super edge-magic labeling.

Various classes of banana trees that have super edge-magic total labelings have been found by Swaminathan and Jeyanthi [1967] and Hussain, Baskoro, and Slamin [838]. In [58] Ahmad, Ali, and Baskoro [58] investigate the existence of super edge-magic labelings of subdivisions of banana trees and disjoint unions of banana trees. They pose three open problems.

Kotzig and Rosa’s ([1120] and [1121]) proof that \( nK_2 \) is edge-magic total when \( n \) is odd actually shows that it is super edge-magic. Kotzig and Rosa also prove that every caterpillar is super-edge magic. Figueroa-Centeno, Ichishima, and Muntaner-Batle prove the following: if \( G \) is a bipartite or tripartite (super) edge-magic graph, then \( nG \) is (super) edge-magic when \( n \) is odd [617]; if \( m \) is a multiple of \( n + 1 \), then \( K_{1,m} \cup K_{1,n} \) is super edge-magic [617]; \( K_{1,2} \cup K_{1,n} \) is super edge-magic if and only if \( n \) is a multiple of \( 3 \); \( K_{1,m} \cup K_{1,n} \) is edge-magic if and only if \( mn \) is even [617]; \( K_{1,3} \cup K_{1,n} \) is super edge-magic if and only if \( n \) is a multiple of \( 4 \) [617]; \( P_m \cup K_{1,n} \) is super edge-magic when \( m \geq 4 \) [617]; \( 2P_n \) is super edge-magic if and only if \( n \) is not 2 or 3; \( K_{1,m} \cup 2nK_2 \) is super edge-magic for all \( m \) and \( n \) [617]; \( C_3 \cup C_n \) is super edge-magic if and only if \( n \geq 6 \) and \( n \) is even [620] (see also [739]); \( C_4 \cup C_n \) is super edge-magic if and only if \( n \geq 5 \) and \( n \) is odd [620] (see also [739]); \( C_5 \cup C_n \)
is super edge-magic if and only if $n \geq 4$ and $n$ is even [620]; if $m$ is even and at least $6$ and $n$ is odd and satisfies $n \geq m/2 + 2$, then $C_m \cup C_n$ is super edge-magic [620]; $C_4 \cup P_n$ is super edge-magic if and only if $n \neq 3$ [620]; $C_5 \cup P_n$ is super edge-magic if $n \geq 4$ [620]; if $m$ is even and at least $6$ and $n \geq m/2 + 2$, then $C_m \cup P_n$ is super edge-magic [620]; and $P_m \cup P_n$ is super edge-magic if and only if $(m,n) \neq (2,2)$ or $(3,3)$ [620]. They [617] conjecture that $K_{1,m} \cup K_{1,n}$ is super edge-magic only when $m$ is a multiple of $n + 1$ and they prove that if $G$ is a super edge-magic graph with $p$ vertices and $q$ edges with $p \geq 4$ and $q \geq 2p - 4$, then $G$ contains triangles. In [620] Figueroa-Centeno et al. conjecture that $C_m \cup C_n$ is super edge-magic if and only if $m + n \geq 9$ and $m + n$ is odd.

Singgish [1844] gave super edge magic total labelings for unions of books $mB(n)$ for odd $m; m(P_2 \times P_n)$ for $m$ and $n$ odd; $r(P_m \times P_n)$ for odd $r$ and $(m,n) \neq (2,2)$ or $(3,3); r(P_3 \times mP_n)$ for odd $r; mP_n$ for $m \equiv 2 \pmod{4}, n \neq 2,3$; and $mP_{4n}$ for $m \equiv 2 \pmod{4}, n > 1$.

In [650] Fukuchi and Oshima describe a construction of super-edge-magic labelings of some families of trees with diameter $4$. Salman, Nguah, and Izzati [1669] use $S^n_m$ ($n \geq 3$) to denote the graph obtained by inserting $n$ vertices in every edge of the star $S_n$. They prove that $S^n_m$ is super edge-magic when $m = 1$ or $2$.

In [1321] López, Muntaner-Batle, and Rius-Font introduce a new construction for super edge-magic labelings of 2-regular graphs which allows loops and is related to the knight jump in the game of chess. They also study the super edge-magic properties of cycles with cords.

Muntaner-Batle calls a bipartite graph with partite sets $V_1$ and $V_2$ special super edge-magic if is has a super edge-magic total labeling $f$ with the property that $f(V_1) = \{1,2,\ldots,|V_1|\}$. He proves that a tree has a special super edge-magic labeling if and only if it has an $\alpha$-labeling (see §3.1 for the definition). Figueroa-Centeno, Ichishima, Muntaner-Batle, and Rius-Font [622] use matrices to generate edge-magic total labeling and define the concept of super edge-magic total labelings for digraphs. They prove that if $G$ is a graph with a super edge-magic total labeling then for every natural number $d$ there exists a natural number $k$ such that $G$ has a $(k,d)$-arithmetic labeling (see §4.2 for the definition). In [1163] Lee and Lee prove that a graph is super edge-magic if and only if it is $(k,1)$-strongly indexable (see §4.3 for the definition of $(k,d)$-strongly indexable graphs). They also provide a way to construct $(k,d)$-strongly indexable graphs from two given $(k,d)$-strongly indexable graphs. This allows them to obtain several existing results about super edge-magic graphs as special cases of their constructions. Acharya and Germina [28] proved that the class of strongly indexable graphs is a proper subclass of super edge-magic graphs.

In [841] Ichishima, López, Muntaner-Batle and Rius-Font show how one can use the product $\otimes_h$ of super edge-magic 1-regular labeled digraphs and digraphs with harmonious, or sequential labelings to create new undirected graphs that have harmonious, sequential labelings or partitional labelings (see §4.1 for the definition). They define the product $\otimes_h$ as follows. Let $\overrightarrow{D} = (V,E)$ be a digraph with adjacency matrix $A(\overrightarrow{D}) = (a_{ij})$ and let $\Gamma = \{F_i\}_{i=1}^m$ be a family of $m$ digraphs all with the same set of vertices $V'$. Assume that $h : E \rightarrow \Gamma$ is any function that assigns elements of $\Gamma$ to the arcs of $\overrightarrow{D}$. Then the
digraph $\overrightarrow{D} \otimes h \Gamma$ is defined by $V(D \otimes h \Gamma) = V \times V'$ and $((a_1, b_1), (a_2, b_2)) \in E(D \otimes h \Gamma) \iff [(a_1, a_2) \in E(D) \land (b_1, b_2) \in E(h(a_1, a_2))]$. An alternative way of defining the same product is through adjacency matrices, since one can obtain the adjacency matrix of $\overrightarrow{D} \otimes h \Gamma$ as follows: if $a_{ij} = 0$ then $a_{ij}$ is multiplied by the $p' \times p'$ 0-square matrix, where $p' = |V'|$. If $a_{ij} = 1$ then $a_{ij}$ is multiplied by $A(h(i, j))$ where $A(h(i, j))$ is the adjacency matrix of the digraph $h(i, j)$. They prove the following. Let $\overrightarrow{D} = (V, E)$ be a harmonious $(p, q)$-digraph with $p \leq q$ and let $h$ be any function from $E$ to the set of all super edge-magic 1-regular labeled digraphs of order $n$, which we denote by $S_n$. Then the undirected graph $\text{und}(\overrightarrow{D} \otimes h S_n)$ is harmonious. Let $\overrightarrow{D} = (V, E)$ be a sequential digraph and let $h : E \rightarrow S_n$ be any function. Then $\text{und}(\overrightarrow{D} \otimes h S_n)$ is sequential. Let $D$ be a partitional graph and let $h : E \rightarrow S_n$ be any function, where $\overrightarrow{D} = (V, E)$ is the digraph obtained by orienting all edges from one stable set to the other one. Then $\text{und}(\overrightarrow{D} \otimes h S_n)$ is partitional.

In [1317] López, Muntaner-Batle and Rius-Font introduce the concept of \{H_i\}_{i \in I} super edge-magic decomposable as follows: Let $G = (V, E)$ be any graph and let \{H_i\}_{i \in I} be a set of graphs such that $G = \biguplus_{i \in I} H_i$ (that is, $G$ decomposes into the graphs in the set \{H_i\}_{i \in I}). Then we say that $G$ is \{H_i\}_{i \in I}-super edge-magic decomposable if there is a bijection $\beta : V \rightarrow [1, |V|]$ such that for each $i \in I$ the subgraph $H_i$ meets the following two requirements: (i) $\beta(V(H_i)) = [1, |V(H_i)|]$ and (ii) $\{\beta(a) + \beta(b) : ab \in E(H_i)\}$ is a set of consecutive integers. Such function $\beta$ is called an \{H_i\}_{i \in I}-super edge-magic labeling of $G$. When $H_i = H$ for every $i \in I$ we just use the notation $H$-super edge-magic decomposable labeling. Among their results are the following. Let $G = (V, E)$ be a $(p, q)$-graph which is \{H_1, H_2\}-super edge-magic decomposable for a pair of graphs $H_1$ and $H_2$. Then $G$ is super edge-bimagic; Let $n$ be an even integer. Then the cycle $C_n$ is $(n/2)K_2$-super edge-magic decomposable if and only if $n \equiv 2 \pmod{4}$. Let $n$ be odd. Then for any super edge-magic tree $T$ there exists a bipartite connected graph $G = G(T, n)$ such that $G$ is $(nT)$-super edge-magic decomposable. Let $G$ be a \{H_i\}_{i \in I}-super edge magic decomposable graph, where $H_i$ is an acyclic digraph for each $i \in I$. Assume that $\overrightarrow{G}$ is any orientation of $G$ and $h : E(\overrightarrow{G}) \rightarrow S_p$ is any function. Then $\text{und}(\overrightarrow{G} \otimes h S_p)$ is \{pH_i\}_{i \in I}-super edge magic decomposable.

As a corollary of the last result they have that if $G$ is a 2-regular, (1-factor)-super edge-magic decomposable graph and $\overrightarrow{G}$ is any orientation of $G$ and $h : E(\overrightarrow{G}) \rightarrow S_p$ is any function, then $\text{und}(\overrightarrow{G} \otimes h S_p)$ is a 2-regular, (1-factor)-super edge-magic decomposable graph. Moreover, if we denote the 1-factor of $G$ by $F$ then $pF$ is the 1-factor of $\text{und}(\overrightarrow{G} \otimes h S_p)$.

They pose the following two open questions: Fix $p \in \mathbb{N}$. Find the maximum $r \in \mathbb{N}$ such that there is a $r$-regular graph of order $p$ which is $(p/2)K_2$-super edge-magic decomposable; and characterize the set of 2-regular graphs of order $n$, $n \equiv 2 \pmod{4}$, such that each component has even order and admits an $(n/2)K_2$-super edge-magic decomposition.

In connection to open question 1 they prove: For all $r \in \mathbb{N}$, there is $n \in \mathbb{N}$ such that there exists a $k$-regular bipartite graph $B(n)$, with $k > r$ and $|V(B(n))| = 2 \cdot 3^p$, such that $B(n)$ is $(3^pK_2)$-super edge-magic decomposable.
A bipartite graph \( G \) with partite sets \( X_1 \) and \( X_2 \) is called \textit{consecutively super edge-magic} if there exists a bijective function \( f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\} \) such that \( f(X_1) = \{1, 2, \ldots, |X_1|\} \), \( f(X_2) = \{X_1 + 1, |X_1| + 2, \ldots, |V(G)|\} \) and \( f(u) + f(v) + f(uv) \) is a constant for each \( uv \in E(G) \). In [845] Ichishima, Muntaner-Batle, and Oshima investigated for which bipartite graphs it is possible to add a finite number of isolated vertices so that the resulting graph is consecutively super edge-magic. If it is possible for a bipartite graph \( G \), then we say that the minimum such number of isolated vertices is the \textit{consecutively super edge-magic deficiency} of \( G \); otherwise, we define it to be \( +\infty \). They also include a detailed discussion of other concepts that are closely related to the consecutively super edge-magic deficiency.

Avadayappan, Jeyanthi, and Vasuki [156] define the \textit{super magic strength} of a graph \( G \) as \( sm(G) = \min\{s(L)\} \) where \( L \) runs over all super edge-magic labelings of \( G \). They use the notation \( <K_{1,n} : 2> \) for the tree obtained from the bistar \( B_{n,n} \) (the graph obtained by joining the center vertices of two copies of \( K_{1,n} \) with an edge) by subdividing the edge joining the two stars. They prove: \( sm(P_{2n}) = 5n + 1; \) \( sm(P_{2n+1}) = 5n + 3; sm(<K_{1,n} : 2>) = 4n + 9; \) \( sm(B_{n,n}) = 5n + 6; \) \( sm((2n + 1)P_{2}) = 9n + 6; \) \( sm(C_{2n+1}) = 5n + 4; \) \( emt(C_{2n}) = 5n + 2; \) \( sm(K_{1,n}) = 2n + 4; \) and \( sm(P_{n}^{2}) = 3n. \) Note that in each case the super magic strength of the graph is the same as its magic strength.

Santhosh and Singh [1678] proved that \( C_n \odot P_2 \) and \( C_n \odot P_3 \) are super edge-magic for all odd \( n \geq 3 \) and prove for odd \( n \geq 3 \), \( sm(C_n \odot P_2) = (15n + 3)/2 \) and \( (20n + 3) \leq sm(C_n \odot P_3) \leq (21n + 3)/2. \)

Gray [740] proves that \( C_5 \cup C_n \) is super edge-magic if and only if \( n \geq 6 \) and \( C_4 \cup C_n \) is super edge-magic if and only if \( n \geq 5 \). His computer search shows that \( C_5 \cup 2C_3 \) does not have a super edge-magic labeling.

In [2125] Wallis posed the problem of investigating the edge-magic properties of \( C_n \) with the path of length \( t \) attached to one vertex. Kim and Park [1085] call such a graph an \((n, t)\)-\textit{kite}. They prove that an \((n, 1)\)-kite is super edge-magic if and only if \( n \) is odd and an \((n, 3)\)-kite is super edge-magic if and only if \( n \) is odd and at least \( 5 \). Park, Choi, and Bae [1476] show that \((n, 2)\)-kite is super edge-magic if and only if \( n \) is even. Wallis [2125] also posed the problem of determining when \( K_2 \cup C_n \) is super edge-magic. In [1476] and [1085] Park et al. prove that \( K_2 \cup C_n \) is super edge-magic if and only if \( n \) is even. Kim and Park [1085] show that the graph obtained by attaching a pendent edge to a vertex of degree one of a star is super-edge magic and that a super edge-magic graph with edge magic constant \( k \) and \( q \) edges satisfies \( q \leq 2k/3 - 3 \).

Lee and Kong [1811] use \( St(a_1, a_2, \ldots, a_n) \) to denote the disjoint union of the \( n \) stars \( St(a_1), St(a_2), \ldots, St(a_n) \). They prove the following graphs are super edge-magic: \( St(m, n) \) where \( n \equiv 0 \mod(m + 1); St(1, 1, n); St(1, 2, n); St(1, n, n); St(2, 2, n); St(2, 3, n); St(1, 1, 2, n) \) \((n \geq 2); St(1, 1, 3, n); St(1, 2, 2, n); \) and \( St(2, 2, 2, n). \) They conjecture that \( St(a_1, a_2, \ldots, a_n) \) is super edge-magic when \( n > 1 \) is odd. Gao and Fan [673] proved that \( St(1, m, n); St(3, m, m + 1); \) and \( St(n, n + 1, n + 2) \) are super edge-magic, and under certain conditions \( St(a_1, a_2, \ldots, a_{2n+1}), St(a_1, a_2, \ldots, a_{4n+1}), \) and \( St(a_1, a_2, \ldots, a_{4n+3}) \) are also super edge magic.

In [1343] MacDougall and Wallis investigate the existence of super edge-magic labelings.
of cycles with a chord. They use $C^t_2$ to denote the graph obtained from $C_v$ by joining two vertices that are distance $t$ apart in $C_v$. They prove: $C^t_{4m+1}$ $(m \geq 3)$ has a super edge-magic labeling for every $t$ except $4m - 4$ and $4m - 8$; $C^t_{4m}$ $(m \geq 3)$ has a super edge-magic labeling when $t \equiv 2 \mod 4$; and that $C^t_{4m+2}$ $(m > 1)$ has a super edge-magic labeling for all odd $t$ other than 5, and for $t = 2$ and 6. They pose the problem of what values of $t$ does $C^t_{2n}$ have a super edge-magic labeling.

Enomoto, Masuda, and Nakamigawa [586] have proved that every graph can be embedded in a connected super edge-magic graph as an induced subgraph. Slamin, Baća, Lin, Miller, Simanjuntak [1870] proved that the friendship graph consisting of $n$ triangles is super edge-magic if and only if $n$ is 3, 4, 5, or 7. Fukuchi proved [648] the generalized Petersen graph $P(n, 2)$ (see §2.7 edge-magic if $n$ is odd and at least 3 while Xu, Yang, Xi, Haque, and Shen [2197] showed that $P(n, 3)$ is super edge-magic for odd $n$ is odd and at least 5. Baskoro and Ngurah [325] showed that $nP_3$ is super edge-magic for $n \geq 4$ and $n$ even.

Hegde and Shetty [806] showed that a graph is super edge-magic if and only if it is strongly $k$-indexable (see §4.1 for the definition). Figueroa-Centeno, Ichishima, and Muntaner-Batle [613] proved that a graph is super edge-magic if and only if it is strongly 1-harmonious and that every super edge-magic graph is cordial. They also proved that $P^2_n$ and $K_2 \times C_{2n+1}$ are super edge-magic. In [614] Figueroa-Centeno et al. show that the following graphs are super edge-magic: $P_3 \cup kP_2$ for all $k$; $kP_n$ when $k$ is odd; $k(P_2 \cup P_n)$ when $n$ is odd and $n = 3$ or $n = 4$; and fans $F_n$ if and only if $n \leq 6$. They conjecture that $kP_2$ is not super edge-magic when $k$ is even. This conjecture has been proved by Z. Chen [468] who showed that $kP_2$ is super edge-magic if and only if $k$ is odd. Figueroa-Centeno et al. proved that the book $B_n$ is not super edge-magic when $n \equiv 1, 3, 7 \pmod{8}$ and when $n = 4$. They proved that $B_n$ is super edge-magic for $n = 2$ and 5 and conjectured that for every $n \geq 5$, $B_n$ is super edge-magic if and only if $n$ is even or $n \equiv 5 \pmod{8}$. Yuansheng, Yue, Xirong, and Xinhong [2245] proved this conjecture for the case that $n$ is even. They prove that every tree with an $\alpha$-labeling is super edge-magic. Yokomura (see [585]) has shown that $P_{2m+1} \times P_3$ and $C_{2m+1} \times P_m$ are super edge-magic (see also [613]). In [615], Figueroa-Centeno et al. proved that if $G$ is a (super) edge-magic 2-regular graph, then $G \odot K_n$ is (super) edge-magic and that $C_m \odot K_n$ is super edge-magic. Fukuchi [647] shows how to recursively create super edge-magic trees from certain kinds of existing super edge-magic trees. Ngurah, Baskoro, and Simanjuntak [1450] provide a method for constructing new (super) edge-magic graphs from existing ones. One of their results is that if $G$ has an edge-magic total labeling and $G$ has order $p$ and size $p$ or $p - 1$, then $G \odot nK_1$ has an edge-magic total labeling.

Ichishima, Muntaner-Batle, Oshima [843] enlarged the classes of super edge-magic 2-regular graphs by presenting some constructions that generate large classes of super edge-magic 2-regular graphs from previously known super edge-magic 2-regular graphs or pseudo super edge-magic graphs. By virtue of known relationships among other classes of labelings the 2-regular graphs obtained from their constructions are also harmonious, sequential, felicitous and equitable. Their results add credence to the conjecture of Holden et al. [820] that all 2-regular graphs of odd order with the exceptions of $C_3 \cup C_4$, $3C_3 \cup C_4$, \ldots
and $2C_3 \cup C_5$ possess a strong vertex-magic total labeling, which is equivalent to super edge-magic labelings for 2-regular graphs.

Lee and Lee [1183] investigate the existence of total edge-magic labelings and super edge-magic labelings of unicyclic graphs. They obtain a variety of positive and negative results and conjecture that all unicyclic are edge-magic total.

Shiu and Lee [1813] investigated edge labelings of multigraphs. Given a multigraph $G$ with $q$ edges they call a bijection from the set of edges of $G$ to $\{1, 2, \ldots, q\}$ with the property that for each vertex $v$ the sum of all edge labels incident to $v$ is a constant independent of $v$ a supermagic labeling of $G$. They use $K_2[n]$ to denote the multigraph consisting of $n$ edges joining 2 vertices and $mK_2[n]$ to denote the disjoint union of $m$ copies of $K_2[n]$. They prove that for $m$ and $n$ at least 2, $mK_2[n]$ is supermagic if and only if $n$ is even or if both $m$ and $n$ are odd.

In 1970 Kotzig and Rosa [1120] defined the edge-magic deficiency, $\mu(G)$, of a graph $G$ as the minimum $n$ such that $G \cup nK_1$ is edge-magic total. If no such $n$ exists they define $\mu(G) = \infty$. In 1999 Figueroa-Centeno, Ichishima, and Muntaner-Batle [619] extended this notion to super edge-magic deficiency, $\mu_s(G)$, is the analogous way. They prove the following: $\mu_s(nK_2) = \mu_s(nK_2) = n - 1$ (mod 2); $\mu_s(C_n) = 0$ if $n$ is odd; $\mu_s(C_n) = 1$ if $n \equiv 0$ (mod 4); $\mu_s(C_n) = \infty$ if $n \equiv 2$ (mod 4); $\mu_s(K_n) = \infty$ if and only if $n \geq 5$; $\mu_s(K_{m,n}) \leq (m-1)(n-1)$; $\mu_s(K_{2,n}) = n - 1$; and $\mu_s(F)$ is finite for all forests $F$. They also prove that if a graph $G$ has $q$ edges with $q/2$ odd, and every vertex is even, then $\mu_s(G) = \infty$ and conjecture that $\mu_s(K_{m,n}) \leq (m-1)(n-1)$. This conjecture was proved for $m = 3, 4,$ and 5 by Hegde, Shetty, and Shankaran [807] using the notion of strongly $k$-indexable labelings. Baig, Baskoro, and Semaničová-Feňovčíková [163] investigated the super edge-magic deficiency of a forest consisting of stars.

For an $(n,t)$-kite graph (a path of length $t$ attached to a vertex of an $n$-cycle) $G$ Ahmad, Siddiqui, Nadeem, and Imran [79] proved the following: for odd $n \geq 5$ and even $t \geq 4$, $\mu_s(G) = 1$; for odd $n \geq 5$, $t \geq 5$, $t \neq 11$, and $t \equiv 3, 7$ (mod 8), $\mu_s(G) \leq 1$; for $n \geq 10$, $n \equiv 2$ (mod 4) and $t = 4$, $\mu_s(G) \leq 1$; and for $t = 5$, $\mu_s(G) = 1$.

In [250] Baig, Ahmad, Baskoro, and Simanjuntak provide an upper bound for the super edge-magic deficiency of a forest formed by paths, stars, combs, banana trees, and subdivisions of $K_{1,3}$. Baig, Baskoro, and Semaničová-Feňovčíková [251] investigate the super edge-magic deficiency of forests consisting of stars. Among their results are: a forest consisting of $k \geq 3$ stars has super edge-magic deficiency at most $k - 2$; for every positive integer $n$ a forest consisting of 4 stars with exactly 1, $n$, $n$, and $n+2$ leaves has a super edge-magic total labeling; for every positive integer $n$ a forest consisting of 4 stars with exactly 1, $n+5, 2n+6,$ and $n+1$ leaves has a super edge-magic total labeling; and for every positive integers $n$ and $k$ a forest consisting of $k$ identical stars has super edge-magic deficiency at most 1 when $k$ is even and deficiency 0 when $k$ is odd. In [74] Ahmad, Javaid, Nadeem, and Hasni investigate the super edge-magic deficiency of some families of graphs related to ladder graphs.

The generalized Jahangir graph $J_{n,m}$ for $m \geq 3$ is a graph on $nm+1$ vertices, consisting of a cycle $C_{nm}$ with one additional vertex that is adjacent to $m$ vertices of $C_{nm}$ at distance $n$ to each other on $C_{nm}$. In [252] Baig, Imran, Javaid, and Semaničová-Feňovčíková study
the super edge-magic deficiencies of the web graph $W_{b,m}$, the generalized Jahangir graph $J_{2,n}$, crown products $L_n \odot K_1$, $K_4 \odot nK_1$, and gave the exact value of super edge-magic deficiency for one class of lobsters.

In [618] Figueroa-Centeno, Ichishima, and Muntaner-Batle proved that $\mu_s(P_m \cup K_{1,n}) = 1$ if $m = 2$ and $n$ is odd, or $m = 3$ and $n$ is not congruent to 0 mod 3, whereas in all other cases $\mu_s(P_m \cup K_{1,n}) = 0$. They also proved that $\mu_s(2K_{1,n}) = 1$ when $n$ is odd and $\mu_s(2K_{1,n}) \leq 1$ when $n$ is even. They conjecture that $\mu_s(2K_{1,n}) = 1$ in all cases. Other results in [618] are: $\mu_s(P_m \cup P_n) = 1$ when $(m, n) = (2, 2)$ or $(3, 3)$ and $\mu_s(P_m \cup P_n) = 0$ in all other cases; $\mu_s(K_{1,m} \cup K_{1,n}) = 0$ when $mn$ is even and $\mu_s(K_{1,m} \cup K_{1,n}) = 1$ when $mn$ is odd; $\mu(P_m \cup K_{1,n}) = 1$ when $m = 2$ and $n$ is odd and $\mu(P_m \cup K_{1,n}) = 0$ in all other cases; $\mu(P_m \cup P_n) = 1$ when $(m, n) = (2, 2)$ and $\mu(P_m \cup P_n) = 0$ in all other cases; $\mu_s(2C_n) = 1$ when $n$ is even and $\infty$ when $n$ is odd; $\mu_s(3C_n) = 0$ when $n$ is odd; $\mu_s(3C_n) = 1$ when $n \equiv 0$ (mod 4); $\mu_s(3C_n) = \infty$ when $n \equiv 2$ (mod 4); and $\mu_s(4C_n) = 1$ when $n \equiv 0$ (mod 4). They conjecture the following: $\mu_s(mC_n) = 0$ when $mn$ is odd; $\mu_s(mC_n) = 1$ when $mn \equiv 0$ (mod 4); $\mu_s(mC_n) = \infty$ when $mn \equiv 2$ (mod 4); $\mu_s(2K_{1,n}) = 1$; and if $F$ is a forest with two components, then $\mu(F) \leq 1$ and $\mu_s(F) \leq 1$. Santhosh and Singh [1677] proved: for $n$ odd at least 3, $\mu_s(K_2 \odot C_n) \leq (n - 3)/2$; for $n > 1$, $1 \leq \mu_s(P_n[P_2]) = [(n - 1)/2]$; and for $n \geq 1$, $1 \leq \mu_s(P_n \times K_2) \leq n$.

Ichishima and Oshima [851] prove the following: if a graph $G(V, E)$ has an $\alpha$-labeling and no isolated vertices, then $\mu_s(G) \leq |E| - |V| + 1$; if a graph $G(V, E)$ has an $\alpha$-labeling, is not sequential, and has no isolated vertices, then $\mu_s(G) = |E| - |V| + 1$; and, if $m$ is even, then $\mu_s(mK_{1,n}) \leq 1$. As corollaries of the last result they have: $\mu_s(2K_{1,n}) = 1$; when $m \equiv 2$ (mod 4) and $n$ is odd, $\mu_s(mK_{1,1}) = 1$; $\mu_s(mK_{1,3}) = 0$ when $m \equiv 4$ (mod 8) or $m$ is odd; $\mu_s(mK_{1,3}) = 1$ when $m \equiv 2$ (mod 4); $\mu_s(mK_{2,2}) = 1$; for $n \geq 4$, $(n - 4)2^{n-2} + 3 \leq \mu_s(Q_n) \leq (n - 2)2^{n-1} - 4$; and for $s \geq 2$ and $t \geq 2$, $\mu_s(mK_{s,t}) \leq m(st - s - t) + 1$. They conjecture that for $s \geq 2$ and $t \geq 2$, $\mu_s(mK_{s,t}) = m(st - s - t) + 1$ and pose as a problem determining the exact value of $\mu_s(Q_n)$.

Ichishima and Oshima [849] determined the super edge-magic deficiency of graphs of the form $C_m \cup C_n$ for $m$ and $n$ even and for arbitrary $n$ when $m = 3, 4, 5,$ and $7$. They state a conjecture for the super edge-magic deficiency of $C_m \cup C_n$ in the general case.

A block of a graph is a maximal subgraph with no cut-vertex. The block-cut-vertex graph of a graph $G$ is a graph $H$ whose vertices are the blocks and cut-vertices in $G$; two vertices are adjacent in $H$ if and only if one vertex is a block in $G$ and the other is a cut-vertex in $G$ belonging to the block. A chain graph is a graph with blocks $B_1, B_2, B_3, \ldots, B_k$ such that for every $i, B_i$ and $B_{i+1}$ have a common vertex in such a way that the block-cut-vertex graph is a path. The chain graph with $k$ blocks where each block is identical and isomorphic to the complete graph $K_n$ is called the $kK_n$-path.

Ngurah, Baskoro, and Simanjuntak [1449] investigate the exact values of $\mu_s(kK_n$-path) when $n = 2$ or $4$ for all values of $k$ and when $n = 3$ for $k \equiv 0, 1, 2$ (mod 4), and give an upper bound for $k \equiv 3$ (mod 4). They determine the exact super edge-magic deficiencies for fans, double fans, wheels of small order and provide upper and lower bounds for the general case as well as bounds for some complete partite graphs. They also include some open problems. Lee and Wang [1244] show that various chain graphs with blocks that are
complete graphs are super edge-magic. In [73] investigate the super edge-magic deficiency of some kites and $C_n \cup K_2$.

Figueroa-Centeno and Ichishima [611] introduce the notion of the sequential number $\sigma(G)$ of a graph $G$ without isolated vertices to be either the smallest positive integer $n$ for which it is possible to label the vertices of $G$ with distinct elements from the set $\{0, 1, \ldots, n\}$ in such a way that each $uv \in E(G)$ is labeled $f(u) + f(v)$ and the resulting edge labels are $|E(G)|$ consecutive integers or $+\infty$ if there exists no such integer $n$. They prove that $\sigma(G) = \mu_s(G) + |V(G)| - 1$ for any graph $G$ without isolated vertices, and $\sigma(K_{m,n}) = mn$, which settles the conjecture of Figueroa-Centeno, Ichishima, and Muntaner-Batle [619] that $\mu_s(K_{m,n}) = (m - 1)(n - 1)$.

In [842] Ichishima and Muntaner-Batle define the strong sequential number $\sigma_s(G)$ of $G$ as the smallest positive integer $n$ for which there exists an injective function from the vertices of $G$ to $[0, n]$ such that when each edge $uv$ is labeled $f(u) + f(v)$, the resulting set of edge labels is $[c, c+q-1]$ for some positive integer $c$ and there exists an integer $\lambda$ so that $\min\{f(u), f(v)\} \leq \lambda < \max\{f(u), f(v)\}$ for all edges $uv$. Note that for $G$ to have finite $\sigma_s(G)$, it must be bipartite. They prove for a graph $G$ of order $p$, $\sigma(G) = \mu_s(G) + p - 1$. From this it follows that the problems of determining the sequential number and super edge-magic deficiency are equivalent and that for any graph $G$, $\sigma(G)$ is finite if and only if $\mu_s(G)$ is finite. They also introduced the following parameter as a measure of how close a graph $G$ is to having an $\alpha$-labeling. The alpha-number $\alpha(G)$ of a graph $G$ with $q$ edges is the smallest positive integer $n$ for which there exists an injective function $f : V(G) \to [0, n]$ such that when each edge $uv$ is labeled $|f(u) - f(v)|$ the resulting set of edge labels is $[c, c+q-1]$ for some positive integer $c$, and there exists an integer $\lambda$ so that $\min\{f(u), f(v)\} \leq \lambda < \max\{f(u), f(v)\}$ for each $uv \in E(G)$. If no such $n$ exists the alpha-number of $G$ is defined to be $+\infty$. Since a graph that admits an $\alpha$-labeling is necessarily bipartite, graphs with finite $\alpha(G)$ are bipartite.

Ichishima and Muntaner-Batle [842] prove: if every vertex of graph $G$ has even degree and $|E(G)| \equiv 2 \pmod{4}$, then $\sigma(G) = \sigma_s(G) = +\infty$; for every graph $G$ of order $p$, $\sigma_s(G) = \mu_e(G) + p - 1$; and if $G$ is a super edge-magic graph with at least one edge, then the graph $G + nK_1$ is sequential for every positive integer $n$. As corollaries they have: for every graph $\sigma_s(G) = \alpha(G)$; a graph $G$ has an $\alpha$-labeling if and only if $\sigma_s(G) = |E(G)|$; and if a graph $G$ of order $p$ and size $q \geq 1$ has a super edge-magic labeling $f$ with $s = \min\{f(u) + f(v) : uv \in E(G)\}$, then $\sigma(G + nK_1) \leq s + q + (n-1)p - 2$; if $G$ is a graph of order $p$ and size $q \geq 1$ and $G$ has a super edge-magic labeling $f$ with $s = \min\{f(u) + f(v) : uv \in E(G)\}$, then $\mu_s(G + nK_1) \leq s + q + (n-2)(p-1) - 3$; and if $G$ is a super edge-magic graph with at least one edge, then the graph $G + nK_1$ is harmonious and felicitous for any positive integer $n$.

The following result established in [845] shows the connection between the alpha-number of a graph and its consecutively super edge-magic deficiency. For every graph $G$ of order $p$, $\alpha(G) = \mu_e(G) + p - 1$. This result shows that the problems of determining the alpha-number and consecutively super edge-magic deficiency are equivalent.

Z. Chen [468] has proved: the join of $K_1$ with any subgraph of a star is super edge-magic; the join of two nontrivial graphs is super edge-magic if and only if at least one of
them has exactly two vertices and their union has exactly one edge; and if a $k$-regular graph is super edge-magic, then $k \leq 3$. Chen also obtained the following: there is a connected super edge-magic graph with $p$ vertices and $q$ edges if and only if $p - 1 \leq q \leq 2p - 3$; there is a connected 3-regular super edge-magic graph with $p$ vertices if and only if $p \equiv 2$ (mod 4); and if $G$ is a $k$-regular edge-magic total graph with $p$ vertices and $q$ edges then $(p + q)(1 + p + q) \equiv 0$ (mod $2d$) where $d = \gcd(k - 1, q)$. As a corollary of the last result, Chen observes that $nK_2 + nK_2$ is not edge-magic total.

Another labeling that has been called “edge-magic” was introduced by Lee, Seah, and Tan in 1992 [1222]. They defined a graph $G = (V, E)$ to be edge-magic if there exists a bijection $f: E \to \{1, 2, \ldots, |E|\}$ such that the induced mapping $f^+: V \to N$ defined by $f^+(u) = \sum_{(u,v) \in E} f(u, v)$ (mod $|V|$) is a constant map. Lee (see [1210]) conjectured that a cubic graph with $p$ vertices is edge-magic if and only if $p \equiv 2$ (mod 4). Lee, Pigg, and Cox [1210] verified this conjecture for prisms and several other classes of cubic graphs. They also show that $C_n \times K_2$ is edge-magic if and only if $n$ is odd. Shiu and Lee [1813] showed that the conjecture is not true for multigraphs and disconnected graphs. In [1813] Lee’s conjecture was modified by restricting it to simple connected cubic graphs. A computer search by Lee, Wang, and Wen [1247] showed that the new conjecture was false for a graph of order 10. Using different methods, Shiu [1796] and Lee, Su, and Wang [1232] gave proofs that it is was false.

Lee, Seah, and Tan [1222] establish that a necessary condition for a multigraph with $p$ vertices and $q$ edges to be edge-magic is that $p$ divides $q(q + 1)$ and they exhibit several new classes of cubic edge-magic graphs. They also proved: $K_{n,m}$ ($n \geq 3$) is edge-magic and $K_n$ is edge-magic for $n \equiv 1, 2$ (mod 4) and for $n \equiv 3$ (mod 4) ($n \geq 7$). Lee, Seah, and Tan further proved that following graphs are not edge-magic: all trees except $P_3$; all unicyclic graphs; and $K_n$ where $n \equiv 0$ (mod 4). Schaffer and Lee [1684] have proved that $C_m \times C_n$ is always edge-magic. Lee, Tong, and Seah [1238] have conjectured that the total graph of a $(p, p)$-graph is edge-magic if and only if $p$ is odd. They prove this conjecture for cycles. Lee, Kitagaki, Young, and Kocay [1180] proved that a maximal outerplanar graph with $p$ vertices is edge-magic if and only if $p = 6$. Shiu [1795] used matrices with special properties to prove that the composition of $P_n$ with $K_n$ and the composition of $P_n$ with $K_{kn}$ where $kn$ is odd and $n$ is at least 3 have edge-magic labelings. An edge magic total labeling of a $(p, q)$-graph is a bijection $f$ from $V(G) \cup E(G)$ to $\{1, 2, \ldots, p + q\}$ such that for each edge $xy \in E(G)$, the value of $f(x) + f(xy) + f(y)$ is either $k_1$ or $k_2$ or $k_3$ is said to be an edge trimagic total labeling. Regees and Jayasekaran [1626] proved that $C_m \times P_n$, the generalized web graph, and the generalized web graph without a center are super edge trimagic total graphs.

Chopra, Dios, and Lee [479] investigated the edge-magicness of joins of graphs. Among their results are: $K_{2,m}$ is edge-magic if and only if $m = 4$ or 10; the only possible edge-magic graphs of the form $K_{3,m}$ are those with $m = 3, 5, 6, 15, 33$, and 69; for any fixed $m$ there are only finitely many $n$ such that $K_{m,n}$ is edge-magic; for any fixed $m$ there are only finitely many trees $T$ such that $T + K_m$ is edge-magic; and wheels are not edge-magic.

Lee, Ho, Tan, and Su [1179] define the edge-magic index of a graph $G$ to be the smallest positive integer $k$ such that the graph $kG$ is edge-magic. They completely determined
the edge-magic indices of graphs which are stars. In [1810] Shiu, Lam, and Lee give the edge-magic index set of the second power of a path.

For any graph $G$ and any positive integer $k$ the graph $G[k]$, called the $k$-fold $G$, is the hypergraph obtained from $G$ by replacing each edge of $G$ with $k$ parallel edges. Lee, Seah, and Tan [1222] proved that for any graph $G$ with $p$ vertices, $G[2p]$ is edge-magic and, if $p$ is odd, $G[p]$ is edge-magic. Shiu, Lam, and Lee [1809] show that if $G$ is an $(n + 1, n)$-multigraph, then $G$ is edge-magic if and only if $n$ is odd and $G$ is isomorphic to the disjoint union of $K_2$ and $(n - 1)/2$ copies of $K_2[2]$. They also prove that if $G$ is a $(2m + 1, 2m)$-multigraph and $k \geq 2$, then $G[k]$ is edge-magic if and only if $2m + 1$ divides $k(k - 1)$. For a $(2m, 2m - 1)$-multigraph $G$ and $k$ at least 2, they show that $G[k]$ is edge-magic if $4m$ divides $(2m - 1)(2m + k)$ or if $4m$ divides $(2m + k - 1)(2m - 1)k$. In [1807] Shiu, Lam, and Lee characterize the $(p, p)$-multigraphs that are edge-magic as $mK_2[2]$ or the disjoint union of $mK_2[2]$ and two particular multigraphs or the disjoint union of $K_2$, $mK_2[2]$, and four particular multigraphs. They also show for every $(2m + 1, 2m + 1)$-multigraph $G$, $G[k]$ is edge-magic for all $k$ at least 2. Lee, Seah, and Tan [1222] prove that the multigraph $C_n[k]$ is edge-magic for $k \geq 2$.

Tables 6 and 7 summarize what is known about edge-magic total labelings and super edge-magic total labelings. We use SEMT to indicate the graphs have super edge-magic total labelings and EMT to indicate the graphs have edge-magic total labelings. A question mark following SEMT or EMT indicates that the graph is conjectured to have the corresponding property. The tables were prepared by Petr Kovár and Tereza Kovárová.
Table 6: **Summary of Edge-magic Total Labelings**

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n$</td>
<td>EMT</td>
<td>[2129]</td>
</tr>
<tr>
<td>trees</td>
<td>EMT?</td>
<td>[1121], [1630]</td>
</tr>
<tr>
<td>$C_n$</td>
<td>EMT</td>
<td>for $n \geq 3$ [1120], [722], [1639], [345]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>EMT</td>
<td>iff $n = 1, 2, 3, 4, 5$, or $6$ [1121], [514], [585] enumeration of all EMT of $K_n$ [2129]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>EMT</td>
<td>[2129], [1120]</td>
</tr>
<tr>
<td>crowns $C_n \odot K_1$</td>
<td>EMT</td>
<td>[2218], [2129]</td>
</tr>
<tr>
<td>$C_n$ with a single edge attached to one vertex</td>
<td>EMT</td>
<td>[2129]</td>
</tr>
<tr>
<td>wheels $W_n$</td>
<td>EMT</td>
<td>iff $n \not\equiv 3 \pmod{4}$ [585], [649]</td>
</tr>
<tr>
<td>fans</td>
<td>EMT</td>
<td>[1870], [613], [614]</td>
</tr>
<tr>
<td>$(p, q)$-graph</td>
<td>not EMT</td>
<td>if $q$ even and $p + q \equiv 2 \pmod{4}$ [1630]</td>
</tr>
<tr>
<td>$nP_2$</td>
<td>EMT</td>
<td>iff $n \equiv 2 \pmod{4}$ [1630]</td>
</tr>
<tr>
<td>$P_n + K_1$</td>
<td>EMT</td>
<td>[2218]</td>
</tr>
<tr>
<td>$r$-regular graph</td>
<td>not EMT</td>
<td>$r$ odd and $p \equiv 4 \pmod{8}$ [514]</td>
</tr>
<tr>
<td>$P_3 \cup nK_2$ and $P_5 \cup nK_2$</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>$P_4 \cup nK_2$</td>
<td>EMT</td>
<td>$n$ odd [613], [614]</td>
</tr>
<tr>
<td>$nP_i$</td>
<td>EMT</td>
<td>$n$ odd, $i = 3, 4, 5$ [2218] [613], [614]</td>
</tr>
<tr>
<td>$nP_3$</td>
<td>EMT?</td>
<td>[2218]</td>
</tr>
<tr>
<td>$2P_n$</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>$P_1 \cup P_2 \cup \cdots \cup P_n$</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
</tbody>
</table>

*Continued on next page*
Table 6 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$mK_{1,n}$</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>unicyclic graphs</td>
<td>EMT?</td>
<td>[1183]</td>
</tr>
<tr>
<td>$K_1 \odot nK_2$</td>
<td>EMT</td>
<td>$n$ even [613], [614]</td>
</tr>
<tr>
<td>$K_2 \times \overline{K}_n$</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>$nK_3$</td>
<td>EMT</td>
<td>iff $n \neq 2$ odd [613], [614], [1375]</td>
</tr>
<tr>
<td>binary trees</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>$P(m, n)$ (generalized Petersen graph see §2.7)</td>
<td>EMT</td>
<td>[613], [614], [1446]</td>
</tr>
<tr>
<td>ladders</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>books</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>odd cycle with pendent edges</td>
<td>EMT</td>
<td>[613], [614]</td>
</tr>
<tr>
<td>attached to one vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_m \times C_n$</td>
<td>EMT</td>
<td>$n$ odd $n \geq 3$ [2173]</td>
</tr>
<tr>
<td>$P_m \times P_2$</td>
<td>EMT</td>
<td>$m$ odd $m \geq 3$ [2173]</td>
</tr>
<tr>
<td>$K_{1,m} \cup K_{1,n}$</td>
<td>EMT</td>
<td>iff $mn$ is even [617]</td>
</tr>
<tr>
<td>$G \odot \overline{K}_n$</td>
<td>EMT</td>
<td>if $G$ is EMT 2-regular graph [615]</td>
</tr>
</tbody>
</table>

Table 7: Summary of Super Edge-magic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_n$</td>
<td>SEMT</td>
<td>iff $n$ is odd [585]</td>
</tr>
<tr>
<td>caterpillars</td>
<td>SEMT</td>
<td>[585], [1120], [1121]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>SEMT</td>
<td>iff $m = 1$ or $n = 1$ [585]</td>
</tr>
<tr>
<td>Graph</td>
<td>Types</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>$K_n$</td>
<td>SEMT</td>
<td>iff $n = 1, 2$ or $3$ [585]</td>
</tr>
<tr>
<td>trees</td>
<td>SEMT?</td>
<td>[585]</td>
</tr>
<tr>
<td>$nK_2$</td>
<td>SEMT</td>
<td>iff $n$ odd [468]</td>
</tr>
<tr>
<td>$nG$</td>
<td>SEMT</td>
<td>if $G$ is a bipartite or tripartite SEM graph and $n$ odd [617]</td>
</tr>
<tr>
<td>$mB(n)$</td>
<td>SEMT</td>
<td>if $m$ is odd [1844]</td>
</tr>
<tr>
<td>$m(P_2 \times P_n)$</td>
<td>SEMT</td>
<td>if $m$, $nn$ are odd [1844]</td>
</tr>
<tr>
<td>$r(P_m \times P_n)$</td>
<td>SEMT</td>
<td>if $r$ is odd, $(m, n) \neq (2, 2)$ or $(3, 3)$ [1844]</td>
</tr>
<tr>
<td>$r(P_3 \times mP_n)$</td>
<td>SEMT</td>
<td>if $r$ is odd [1844]</td>
</tr>
<tr>
<td>$K_{1,m} \cup K_{1,n}$</td>
<td>SEMT</td>
<td>if $m$ is a multiple of $n + 1$ [617]</td>
</tr>
<tr>
<td>$K_{1,m} \cup K_{1,n}$</td>
<td>SEMT?</td>
<td>iff $m$ is a multiple of $n + 1$ [617]</td>
</tr>
<tr>
<td>$K_{1,2} \cup K_{1,n}$</td>
<td>SEMT</td>
<td>if $n$ is a multiple of $3$ [617]</td>
</tr>
<tr>
<td>$K_{1,3} \cup K_{1,n}$</td>
<td>SEMT</td>
<td>if $n$ is a multiple of $4$ [617]</td>
</tr>
<tr>
<td>$P_m \cup K_{1,n}$</td>
<td>SEMT</td>
<td>if $m \geq 4$ is even [617]</td>
</tr>
<tr>
<td>$2P_n$</td>
<td>SEMT</td>
<td>iff $n$ is not $2$ or $3$ [617]</td>
</tr>
<tr>
<td>$2P_{4n}$</td>
<td>SEMT</td>
<td>for all $n$ [617]</td>
</tr>
<tr>
<td>$mP_n$</td>
<td>SEMT</td>
<td>if $m \equiv 2 \pmod{4}$, $n \neq 2, 3$ [1844]</td>
</tr>
<tr>
<td>$mP_{4n}$</td>
<td>SEMT</td>
<td>if $m \equiv 2 \pmod{4}$, $n &gt; 1$ [1844]</td>
</tr>
<tr>
<td>$K_{1,m} \cup 2nK_{1,2}$</td>
<td>SEMT</td>
<td>for all $m$ and $n$ [617]</td>
</tr>
<tr>
<td>$C_3 \cup C_n$</td>
<td>SEMT</td>
<td>iff $n \geq 6$ even [620], [739]</td>
</tr>
<tr>
<td>$C_4 \cup C_n$</td>
<td>SEMT</td>
<td>iff $n \geq 5$ odd [620], [739]</td>
</tr>
</tbody>
</table>

*Continued on next page*
Table 7 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_5 \cup C_n$</td>
<td>SEMT</td>
<td>iff $n \geq 4$ even [620]</td>
</tr>
<tr>
<td>$C_m \cup C_n$</td>
<td>SEMT</td>
<td>if $m \geq 6$ even and $n$ odd $n \geq m/2 + 2$ [620]</td>
</tr>
<tr>
<td>$C_m \cup C_n$</td>
<td>SEMT?</td>
<td>iff $m + n \geq 9$ and $m + n$ odd [620]</td>
</tr>
<tr>
<td>$C_4 \cup P_n$</td>
<td>SEMT</td>
<td>iff $n \neq 3$ [620]</td>
</tr>
<tr>
<td>$C_5 \cup P_n$</td>
<td>SEMT</td>
<td>if $n \neq 4$ [620]</td>
</tr>
<tr>
<td>$C_m \cup P_n$</td>
<td>SEMT</td>
<td>if $m \geq 6$ even and $n \geq m/2 + 2$ [620]</td>
</tr>
<tr>
<td>$P_m \cup P_n$</td>
<td>SEMT</td>
<td>iff $(m, n) \neq (2, 2)$ or $(3, 3)$ [620]</td>
</tr>
<tr>
<td>corona $C_n \odot \overline{K}_m$</td>
<td>SEMT</td>
<td>$n \geq 3$ [620]</td>
</tr>
<tr>
<td>$St(m, n)$</td>
<td>SEMT</td>
<td>$n \equiv 0 \pmod{m + 1}$ [1181]</td>
</tr>
<tr>
<td>$St(1, k, n)$</td>
<td>SEMT</td>
<td>$k = 1, 2$ or $n$ [1181]</td>
</tr>
<tr>
<td>$St(2, k, n)$</td>
<td>SEMT</td>
<td>$k = 2, 3$ [1181]</td>
</tr>
<tr>
<td>$St(1, 1, k, n)$</td>
<td>SEMT</td>
<td>$k = 2, 3$ [1181]</td>
</tr>
<tr>
<td>$St(k, 2, 2, n)$</td>
<td>SEMT</td>
<td>$k = 1, 2$ [1181]</td>
</tr>
<tr>
<td>$St(a_1, \ldots, a_n)$</td>
<td>SEMT?</td>
<td>for $n &gt; 1$ odd [1181]</td>
</tr>
<tr>
<td>$C_{4m}^t$</td>
<td>SEMT</td>
<td>[1343]</td>
</tr>
<tr>
<td>$C_{4m+1}^t$</td>
<td>SEMT</td>
<td>[1343]</td>
</tr>
<tr>
<td>friendship graph of $n$ triangles</td>
<td>SEMT</td>
<td>iff $n = 3, 4, 5$, or 7 [1870]</td>
</tr>
<tr>
<td>generalized Petersen graph $P(n, 2)$ (see §2.7)</td>
<td>SEMT</td>
<td>if $n \geq 3$ odd [647]</td>
</tr>
<tr>
<td>$nP_3$</td>
<td>SEMT</td>
<td>if $n \geq 4$ even [325]</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n^2$</td>
<td>SEMT</td>
<td>[613]</td>
</tr>
<tr>
<td>$K_2 \times C_{2n+1}$</td>
<td>SEMT</td>
<td>[613]</td>
</tr>
<tr>
<td>$P_3 \cup kP_2$</td>
<td>SEMT</td>
<td>for all $k$ [614]</td>
</tr>
<tr>
<td>$kP_n$</td>
<td>SEMT</td>
<td>if $k$ is odd [614]</td>
</tr>
<tr>
<td>$k(P_2 \cup P_n)$</td>
<td>SEMT</td>
<td>if $k$ is odd and $n = 3, 4$ [614]</td>
</tr>
<tr>
<td>fans $F_n$</td>
<td>SEMT</td>
<td>iff $n \leq 6$ [614]</td>
</tr>
<tr>
<td>books $B_n$</td>
<td>SEMT</td>
<td>if $n$ even [2245]</td>
</tr>
<tr>
<td>books $B_n$</td>
<td>SEMT?</td>
<td>if $n \equiv 5 \pmod{8}$ [614]</td>
</tr>
<tr>
<td>trees with $\alpha$-labelings</td>
<td>SEMT</td>
<td>[614]</td>
</tr>
<tr>
<td>$P_{2m+1} \times P_2$</td>
<td>SEMT</td>
<td>[585], [613]</td>
</tr>
<tr>
<td>$C_{2m+1} \times P_m$</td>
<td>SEMT</td>
<td>[613]</td>
</tr>
<tr>
<td>$G \circ K_n$</td>
<td>SEMT</td>
<td>if $G$ is SEM 2-regular graph [615]</td>
</tr>
<tr>
<td>$C_m \circ K_n$</td>
<td>SEMT</td>
<td>[615]</td>
</tr>
<tr>
<td>join of $K_1$ with any subgraph of a star</td>
<td>SEMT</td>
<td>[468]</td>
</tr>
<tr>
<td>if $G$ is $k$-regular SEMT graph</td>
<td></td>
<td>then $k \leq 3$ [468]</td>
</tr>
<tr>
<td>$G$ is connected $(p,q)$-graph</td>
<td>SEMT</td>
<td>$G$ exists iff $p - 1 \leq q \leq 2p - 3$ [468]</td>
</tr>
<tr>
<td>$G$ is connected 3-regular graph on $p$ vertices</td>
<td>SEMT</td>
<td>iff $p \equiv 2 \pmod{4}$ [468]</td>
</tr>
<tr>
<td>$nK_2 + nK_2$</td>
<td>not SEMT</td>
<td>[468]</td>
</tr>
</tbody>
</table>
5.3 Vertex-magic Total Labelings

MacDougall, Miller, Slamin, and Wallis [1340] introduced the notion of a vertex-magic total labeling in 1999. For a graph \(G(V, E)\) an injective mapping \(f\) from \(V \cup E\) to the set \(\{1, 2, \ldots, |V| + |E|\}\) is a vertex-magic total labeling if there is a constant \(k\), called the magic constant, such that for every vertex \(v\), \(f(v) + \sum f(vu) = k\) where the sum is over all vertices \(u\) adjacent to \(v\) (some authors use the term “vertex-magic” for this concept). They prove that the following graphs have vertex-magic total labelings: \(C_n\); \(P_n\) \((n > 2)\); \(K_{m,m}\) \((m > 1)\); \(K_{m,m} - e\) \((m > 2)\); and \(K_n\) for \(n\) odd. They also prove that when \(n > m + 1\), \(K_{m,n}\) does not have a vertex-magic total labeling. They conjectured that \(K_{m,m+1}\) has a vertex-magic total labeling for all \(m\) and that \(K_n\) has vertex-magic total labeling for all \(n \geq 3\). The latter conjecture was proved by Lin and Miller [1279] for the case that \(n\) is divisible by 4 while the remaining cases were done by MacDougall, Miller, Slamin, and Wallis [1340]. McQuillan [1374] provided many vertex-magic total labelings for cycles \(C_{nk}\) for \(k \geq 3\) and odd \(n \geq 3\) using given vertex-magic labelings for \(C_k\). Gray, MacDougall, and Wallis [749] then gave a simpler proof that all complete graphs are vertex-magic total. Krishnappa, Kothapalli, and Venkaiah [1112] gave another proof that all complete graphs are vertex-magic total. Senthil Amutha and Murugesan [1699] characterized connected vertex magic total labeling graphs through their ideals in topological spaces.

In [1340] MacDougall, Miller, Slamin, and Wallis conjectured that for \(n \geq 5\), \(K_n\) has a vertex-magic total labeling with magic constant \(h\) if and only if \(h\) is an integer satisfying \(n^3 + 3n^2 + n\leq 4h \leq n^3 + 2n^2 + n\). In [1376] McQuillan and Smith proved that this conjecture is true when \(n\) is odd. Armstrong and McQuillan [144] proved that if \(n \equiv 2\) \((\text{mod} 4)\) \((n \geq 6)\) then \(K_n\) has a vertex-magic total labeling with magic constant \(h\) for each integer \(h\) satisfying \(n^3 + 6n \leq 4h \leq n^3 + 2n^2 - 2n\). If, in addition, \(n \equiv 2\) \((\text{mod} 8)\), \(K_n\) has a vertex-magic total labeling with magic constant \(h\) for each integer \(h\) satisfying \(n^3 + 4n \leq 4h \leq n^3 + 2n^2\). They further showed that for each odd integer \(n \geq 5\), \(2K_n\) has a vertex-magic total labeling with magic constant \(h\) for each integer \(h\) such that \(n^3 + 5n \leq 2h \leq n^3 + 2n^2 - 3n\). If, in addition, \(n \equiv 1\) \((\text{mod} 4)\), then \(2K_n\) has a vertex-magic total labeling with magic constant \(h\) for each integer \(h\) such that \(n^3 + 3n \leq 2h \leq n^3 + 2n^2 - n\).

In [1375] McQuillan and McQuillan investigate the existence of vertex-magic labelings of \(nC_3\). They prove: for every even integer \(n \geq 4\), \(nC_3\) is vertex-magic (and therefore also edge-magic); for each even integer \(n \geq 6\), \(nC_3\) has vertex-magic total labelings with at least \(2n - 2\) different magic constants; if \(n \equiv 2\) \((\text{mod} 4)\), two extra vertex-magic total labelings with the highest possible and lowest possible magic constants exist; if \(n = 2 \cdot 3^k\), \(k > 1\), \(nC_3\) has a vertex-magic total labeling with magic constant \(k\) if and only if \((1/2)(15n + 4) \leq k \leq (1/2)(21n + 2)\); if \(n\) is odd, there are vertex-magic total labelings for \(nC_3\) with \(n + 1\) different magic constants. In [1373] McQuillan provides a technique for constructing vertex-magic total labelings of 2-regular graphs. In particular, if \(m\) is an odd positive integer, \(G = C_{n_1} \cup C_{n_2} \cup \cdots \cup C_{n_k}\) has a vertex-magic total labeling, and \(J\) is any subset of \(I = \{1, 2, \ldots, k\}\) then \((\cup_{i \in J} mC_{n_i}) \cup (\cup_{i \in I - J} mC_{n_i})\) has a vertex-magic...
total labeling.

Lin and Miller [1279] have shown that $K_{m,m}$ is vertex-magic total for all $m > 1$ and that $K_n$ is vertex-magic total for all $n \equiv 0 \pmod{4}$. Phillips, Rees, and Wallis [1496] generalized the Lin and Miller result by proving that $K_{m,n}$ is vertex-magic total if and only if $m$ and $n$ differ by at most 1. Cattell [440] has shown that a necessary condition for a graph of the form $H + K_n$ to be vertex-magic total is that the number of vertices of $H$ is at least $n - 1$. As a corollary he gets that a necessary condition for $K_{m_1,m_2,...,m_r,n}$ where $n$ is the largest size of any partite set to be vertex-magic total is that $m_1 + m_2 + \cdots + m_r \geq n$. He poses as an open question whether graphs that meet the conditions of the theorem are vertex-magic total. Cattell also proves that $K_{1,n,n}$ has a vertex-magic total labeling when $n$ is odd and $K_{2,n,n}$ has a vertex-magic total labeling when $n \equiv 3 \pmod{4}$. In [1581] Rahim and Slamin proved the disjoint union of coronas $C_t \circ K_1 \cup C_t \circ K_1 \cup \cdots \cup C_t \circ K_1$ has a vertex-magic total labeling with magic constant $6\sum_{k=1}^{n} t_k + 1$.

Miller, Baća, and MacDougall [1392] have proved that the generalized Petersen graphs $P(n,k)$ (see §2.7 for the definition) are vertex-magic total when $n$ is even and $k \leq n/2 - 1$. They conjecture that all $P(n,k)$ are vertex-magic total when $k \leq (n - 1)/2$ and all prisms $C_n \times P_2$ are vertex-magic total. Baća, Miller, and Slamin [240] proved the first of these conjectures (see also [1872] for partial results) while Slamin and Miller prove the second. Slamin, Prihandoko, Setiawan, Rosita and Shaleh [1873] constructed vertex-magic total labelings for the disjoint union of two copies of $P(n,k)$ and Silaban, Parestu, Herawati, Sugeng, and Slamin [1839] extended this to any number of copies of $P(n,k)$. More generally, they proved that for $n_j \geq 3$ and $1 \leq k_j \leq \lfloor (n_j - 1)/2 \rfloor$, the union $P(n_1,k_1) \cup P(n_2,k_2) \cup \cdots \cup P(n_t,k_t)$ has a vertex-magic total labeling with vertex magic constant $10(n_1 + n_2 + \cdots + n_t) + 2$. In the same article Silaban et al. define the union of $t$ special circulant graphs $\bigcup_{j=1}^{t} C_n(1,m_j)$ as the graph with vertex set $\{v_i\}^t_{i=0} \{v_i\}^t_{i=0}$ and edge set $\{v_i v_{i+1} \mid 0 \leq i \leq n-1, 1 \leq j \leq t\}$ and edge set $\{v_i v_{i+m_j} \mid 0 \leq i \leq n-1, 1 \leq j \leq \lfloor t/2 \rfloor\}$. They prove that for odd $n$ at least 5 and $m_j \in \{2,3,\ldots,(n-1)/2\}$, the disjoint union $\bigcup_{j=1}^{t} C_n(1,m_j)$ has a vertex-magic total labeling with constant $8tn + (n - 10)/2 + 3$.

MacDougall et al. ([1340], [1342] and [747]) have shown: $W_n$ has a vertex-magic total labeling if and only if $n \leq 11$; fans $F_n$ have a vertex-magic total labelings if and only if $n \leq 10$; friendship graphs have vertex-magic total labelings if and only if the number of triangles is at most 3; $K_{m,n}$ $(m > 1)$ has a vertex-magic total labeling if and only if $m$ and $n$ differ by at most 1. Wallis [2125] proved: if $G$ and $H$ have the same order and $G \cup H$ is vertex-magic total then so is $G + H$; if the disjoint union of stars is vertex-magic total, then the average size of the stars is less than 3; if a tree has $n$ internal vertices and more than $2n$ leaves then it does not have a vertex-magic total labeling. Wallis [2126] has shown that if $G$ is a regular graph of even degree that has a vertex-magic total labeling then the graph consisting of an odd number of copies of $G$ is vertex-magic total. He also proved that if $G$ is a regular graph of odd degree (not $K_1$) that has a vertex-magic total labeling then the graph consisting of any number of copies of $G$ is vertex-magic total.

Gray, MacDougall, McSorley, and Wallis [748] investigated vertex-magic total labelings of forests. They provide sufficient conditions for the nonexistence of a vertex-magic total labeling of forests based on the maximum degree and the number of internal vertices, and
leaves or the number of components. They also use Skolem sequences to prove a star forest with each component a $K_{1,2}$ has a vertex-magic total labeling.

Recall a helm $H_n$ is obtained from a wheel $W_n$ by attaching a pendent edge at each vertex of the $n$-cycle of the wheel. A generalized helm $H(n, t)$ is a graph obtained from a wheel $W_n$ by attaching a path on $t$ vertices at each vertex of the $n$-cycle. A generalized web $W(n, t)$ is a graph obtained from a generalized helm $H(n, t)$ by joining the corresponding vertices of each path to form an $n$-cycle. Thus $W(n, t)$ has $(t + 1)n + 1$ vertices and $2(t + 1)n$ edges. A generalized Jahangir graph $J_{k,s}$ is a graph on $ks + 1$ vertices consisting of a cycle $C_{ks}$ and one additional vertex that is adjacent to $k$ vertices of $C_{ks}$ at distance $s$ to each other on $C_{ks}$. Rahim, Tomescu, and Slamin [1582] prove: $H_n$ has no vertex-magic total labeling for any $n \geq 3$; $W(n, t)$ has a vertex-magic total labeling for $n = 3$ or $n = 4$ and $t = 1$, but it is not vertex-magic total for $n \geq 17t + 12$ and $t \geq 0$; and $J_{n,t,1}$ is vertex-magic total for $n = 3$ and $t = 1$, but it does not have this property for $n \geq 7t + 11$ and $t \geq 1$. Recall a flower is the graph obtained from a helm by joining each pendent vertex to the central vertex of the helm. Ahmad and Tomescu [80] proved that flower graph is vertex-magic if and only if the underlying cycle is $C_3$.

Fronček, Kovář, and Kovářová [632] proved that $C_n \times C_{2n+1}$ and $K_5 \times C_{2n+1}$ are vertex-magic total. Kovář [1123] furthermore proved some general results about products of certain regular vertex-magic total graphs. In particular, if $G$ is a $(2r + 1)$-regular vertex-magic total graph that can be factored into an $(r + 1)$-regular graph and an $r$-regular graph, then $G \times K_5$ and $G \times C_n$ for $n$ even are vertex-magic total. He also proved that if $G$ an $r$-regular vertex-magic total graph and $H$ is a $2s$-regular supermagic graph that can be factored into two $s$-regular factors, then their Cartesian product $G \times H$ is vertex-magic total if either $r$ is odd, or $r$ is even and $|H|$ is odd.

Ivančo and Pollák [868] consider supermagic graphs having a saturated vertex (i.e., a vertex that is adjacent to every other vertex). They characterize supermagic graphs $G + K_1$, where $G$ is a regular graph, using a connection to vertex-magic total graphs. They prove that if $G$ is a $d$-regular graph of order $n$ then the join $G + K_1$ is supermagic if and only if $G$ has a VMT labeling with constant $h$ such that $(n - d - 1)$ is a divisor of the non-negative integer $(n + 1)h - n((d + 2)/2)(n(d + 2)/2 + 1)$. They also prove $K_{1,n,n}$ is supermagic if and only if $n \geq 2$; $K_{1,2,2,\ldots,2}$ is supermagic except for $K_{1,2}$; and the graph obtained from $K_{n,n}$ ($n \geq 5$) by removing all edges in a Hamilton cycle is supermagic. They also consider circulant graphs and prove that the complement of the circulant graph $C_{2n}(1,n)$, $n \geq 4$, is supermagic.

MacDougall, Miller, and Sugeng [1341] define a super vertex-magic total labeling of a graph $G(V,E)$ as a vertex-magic total labeling $f$ of $G$ with the additional property that $f(V) = \{1,2,\ldots,|V|\}$ and $f(E) = \{|V| + 1,|V| + 2,\ldots,|V| + |E|\}$ (some authors use the term “super vertex-magic” for this concept). They show that a $(p,q)$-graph that has a super vertex-magic total labeling with magic constant $k$ satisfies the following conditions: $k = (p + q)(p + q + 1)/v - (v + 1)/2$; $k \geq (41p + 21)/18$; if $G$ is connected, $k \geq (7p - 5)/2$; $p$ divides $q(q + 1)$ if $p$ is odd, and $p$ divides $2q(q + 1)$ if $p$ is even; if $G$ has even order either $p \equiv 0 \pmod{8}$ and $q \equiv 0$ or $3 \pmod{4}$ or $p \equiv 4 \pmod{8}$ and $q \equiv 1$ or $2 \pmod{4}$; if $G$ is $r$-regular and $p$ and $r$ have opposite parity then $p \equiv 0 \pmod{8}$ implies $q \equiv 0 \pmod{4}$.
and $p \equiv 4 \pmod{8}$ implies $q \equiv 2 \pmod{4}$. They also show: $C_n$ has a super vertex-magic total labeling if and only if $n$ is odd; and no wheel, ladder, fan, friendship graph, complete bipartite graph or graph with a vertex of degree 1 has a super vertex-magic total labeling. They conjecture that no tree has a super vertex-magic total labeling and that $K_{4r}$ has a super vertex-magic total labeling when $n > 1$. The latter conjecture was proved by Gómez in [728]. In [729] Gómez proved that if $G$ is a $d$-regular graph that has a vertex-magic total labeling and $k$ is a positive integer such that $(k - 1)(d + 1)$ is even, then $kG$ has a super vertex-magic total labeling. As a corollary, we have that if $n$ and $k$ are odd or if $n \equiv 0 \pmod{4}$ and $n > 4$, then $kK_n$ has a super vertex-magic total labeling. Gómez also shows how graphs with super vertex-magic total labeling can be constructed from a given graph $G$ with super vertex-magic total labeling by adding edges to $G$ in various ways.

Gray and MacDougall [746] establish the existence of vertex-magic total labelings for several infinite classes of regular graphs. Their method enables them to begin with any even-regular graph and from it construct a cubic graph possessing a vertex-magic total labeling. A feature of the construction is that it produces strong vertex-magic total labelings many even order regular graphs. The construction also extends to certain families of non-regular graphs. MacDougall has conjectured (see [1124]) that every $r$-regular $(r > 1)$ graph with the exception of $2K_3$ has a vertex-magic total labeling. As a corollary of a general result Kovář [1124] has shown that every $2r$-regular graph with an odd number of vertices and a Hamiltonian cycle has a vertex-magic total labeling.

Gómez and Kovář [730] proved that a super vertex-magic total labeling of $kK_n$ exists for $n$ odd and any $k$, for $4 < n \equiv 0 \pmod{4}$ and any $k$, and for $n = 4$ and $k$ even. They also showed $kK_{4r+2}$ does not admit a super vertex-magic total labeling for $k$ odd and provide a large number of super vertex-magic total labelings of $kK_{4r+2}$ for any $k$ based on a super vertex-magic total labeling of $kK_{4r+1}$.

Beardon [329] has shown that a necessary condition for a graph with $c$ components, $p$ vertices, $q$ edges and a vertex of degree $d$ to be vertex-magic total is $(d+2)^2 \leq (7q^2 + (6c + 5)q + c^2 + 3c)/p$. When the graph is connected this reduces to $(d+2)^2 \leq (7q^2 + 11q + 4)/p$. As a corollary, the following are not vertex-magic total: wheels $W_n$ when $n \geq 12$; fans $F_n$ when $n \geq 11$; and friendship graphs $C_3^{(n)}$ when $n \geq 4$.

Beardon [331] has investigated how vertices of small degree effect vertex-magic total labelings. Let $G(p, q)$ be a graph with a vertex-magic total labeling with magic constant $k$ and let $d_0$ be the minimum degree of any vertex. He proves $k \leq (1 + d_0)(p + q - d_0/2)$ and $q < (1 + d_0)q$. He also shows that if $G(p, q)$ is a vertex-magic graph with a vertex of degree one and $t$ is the number of vertices of degree at least two, then $t > q/3 \geq (p-1)/3$. Beardon [331] has shown that the graph obtained by attaching a pendent edge to $K_n$ is vertex-magic total if and only if $n = 2, 3, 4, 5$.

Meissner and Zwierzyński [1383] used finding vertex-magic total labelings of graphs as a way to compare the efficiency of parallel execution of a program versus sequential processing.

Swaminathan and Jeyanthi [1965] prove the following graphs are super vertex-magic total: $P_n$ if and only if $n$ is odd and $n \geq 3$; $C_n$ if and only if $n$ is odd; the star graph if and only if it is $P_2$; and $mC_n$ if and only if $m$ and $n$ are odd. In [1966] they prove
the following: no super vertex-magic total graph has two or more isolated vertices or an
isolated edge; a tree with \( n \) internal edges and \( tn \) leaves is not super vertex-magic total
if \( t > (n + 1)/n \); if \( \Delta \) is the largest degree of any vertex in a tree \( T \) with \( p \) vertices and
\( \Delta > (-3 + \sqrt{1 + 16p})/2 \), then \( T \) is not super vertex-magic total; the graph obtained from
a comb by appending a pendent edge to each vertex of degree 2 is super vertex-magic
total; the graph obtained by attaching a path with \( t \) edges to a vertex of an \( n \)-cycle is
super vertex-magic total if and only if \( n + t \) is odd. Ali, Baća, and Bashir [100] proved
that \( mP_3 \) and \( mP_4 \) have no super vertex-magic total labeling.

For \( n > 1 \) and distinct odd integers \( x, y \) and \( z \) in \([1, n - 1]\) Javaid, Ismail, and Salman
[874] define the chordal ring of order \( n \) \( CR_n(x, y, z) \), as the graph with vertex set \( Z_n \),
the additive group of integers modulo \( n \), and edges \((i, i + x), (i, i + y), (i, i + z)\) for all even
\( i \). They prove that \( CR_n(1, 3, n - 1) \) has a super vertex-magic total labeling when \( n \equiv 0
\mod 4 \) and \( n \geq 8 \) and conjecture that for an odd integer \( \Delta \), \( 3 \leq \Delta \leq n - 3, n \equiv 0 \mod 4, \)
\( CR_n(1, \Delta, n - 1) \) has a super vertex-magic total labeling with magic constant \( 23n/4 + 2 \).

The Knödel graphs \( W_{\Delta, n} \) with \( n \) even and degree \( \Delta \), where \( 1 \leq \Delta \leq \lfloor \log_2 n \rfloor \) have
vertices pairs \((i, j)\) with \( i = 1, 2 \) and \( 0 \leq j \leq n/2 - 1 \) where for every \( 0 \leq j \leq n/2 - 1 \) and
there is an edge between vertex \( (1, j) \) and every vertex \( (2, (j + 2^k - 1) \mod n/2) \), for
\( k = 0, 1, \ldots, \Delta - 1 \). Xi, Yang, Mominul, and Wong [2187] have shown that \( W_{3, n} \) is super
vertex-magic total when \( n \equiv 0 \mod 4 \).

A vertex magic total labeling of \( G(V, E) \) is said to be \( E \)-super if \( f(E(G)) = \{1, 2, 3, \ldots, |E(G)|\} \). The cocktail party graph, \( H_{m,n} \) \((m, n \geq 2)\), is the graph with a
vertex set \( V = \{v_1, v_2, \ldots, v_{mn}\} \) partitioned into \( n \) independent sets \( V = \{I_1, I_2, \ldots , I_n\} \) each of size \( m \) such that \( v_i v_j \in E \) for all \( i, j \in \{1, 2, \ldots , mn\} \) where \( i \in I_p, j \in I_q, p \neq q \).
(\( H_{n,n} \) is the complement of the ladder graph and the dual graph of the \( n \)-cube.)
Marimuthu and Balakrishnan [1356] gave some basic properties of such labelings and
proved that \( H_{m,n} \) is \( E \)-super vertex magic. Wang and Zhang [2157] show the fol-
lowing: Hamiltonian even regular graphs of odd order are \( E \)-super magic; even-regular
graphs of odd order that contains a 2-factor consisting of an odd number of odd cycles
with the same size are \( E \)-super vertex magic; graphs that can be decomposed into the
sum of two spanning graphs where one is \( E \)-super magic and one is regular of even degree
are \( E \)-supermagic; even-regular graphs of odd order that contain a 2-factor consisting of
an odd number of odd cycles with the same size are \( E \)-super vertex magic; and circu-
lant graphs with odd order are \( E \)-super vertex magic. Swaminathan and Jeyanthi [1965]
proved that \( mC_n \) is \( E \)-super magic if and only if both \( m \) and \( n \) are odd.

In [1358] Marimuthu and Kumar investigate \( E \)-super vertex magic labelings of discon-
ected graphs. They prove: if a graph with \( p \) vertices and \( q \) edges and even order has an
\( E \)-super vertex magic labeling, then either (i) \( p \equiv 0 \mod 8 \) and \( q \equiv 0 \) or 3 \mod 4, \)
or (ii) \( p \equiv 4 \mod 8 \) and \( q \equiv 1 \) or 2 \mod 4; if an \( r \)-regular graph \( G \) of order \( p \) has an
\( E \)-super vertex magic labeling, then \( p \) and \( r \) have opposite parity and (i) if \( p \equiv 0 \mod 8 \),
then \( q \equiv 0 \mod 4 \) (ii) if \( p \equiv 4 \mod 8 \), then \( q \equiv 2 \mod 4 \); \( mC_n \) is \( E \)-super vertex
magic if and only if \( P_n \cup (m - 1)C_n \) is \( E \)-super vertex magic; \( P_n \cup K_{1,m} \) is not \( E \)-super
vertex magic; \( C_m \cup P_n \) is not \( E \)-super vertex magic if both \( m \) and \( n \) have the same parity;
the disjoint union of two non-isomorphic sums is not \( E \)-super vertex magic; the disjoint
union of any number of isomorphic suns is not \( E \)-super vertex magic; and \( mP_3 \) is not \( E \)-super vertex magic for any integer \( m > 1 \). They conjecture that \( K_m \cup P_m \) is \( E \)-super vertex magic if \( m = 8t + 2 \).

Balbuena, Barker, Das, Lin, Miller, Ryan, and Slamin [255] call a vertex-magic total labeling of \( G(V,E) \) a strongly vertex-magic total labeling if the vertex labels are \( \{1,2,\ldots,|V|\} \). They prove: the minimum degree of a strongly vertex-magic total graph is at least 2; for a strongly vertex-magic total graph \( G \) with \( n \) vertices and \( e \) edges, if \( 2e \geq \sqrt{10n^2 - 6n + 1} \) then the minimum degree of \( G \) is at least 3; and for a strongly vertex-magic total graph \( G \) with \( n \) vertices and \( e \) edges if \( 2e < \sqrt{10n^2 - 6n + 1} \) then the minimum degree of \( G \) is at most 6. They also provide strongly vertex-magic total labelings for certain families of circulant graphs. In [1373] McQuillan provides a technique for constructing vertex-magic total labelings of 2-regular graphs. In particular, if \( m \) is an odd positive integer, \( G = C_{n_1} \cup C_{n_2} \cup \cdots \cup C_{n_k} \) has a strongly vertex-magic total labeling, and \( J \) is any subset of \( I = \{1,2,\ldots,k\} \) then \( (\cup_{i \in J} mC_{n_i}) \cup (\cup_{i \in I - J} mC_{n_i}) \) has a strongly vertex-magic total labeling.

Gray [740] proved that if \( G \) is a graph with a spanning subgraph \( H \) that possesses a strongly vertex-magic total labeling and \( G - E(H) \) is even regular, then \( G \) also possesses a strongly vertex-magic total labeling. As a corollary one has that regular Hamiltonian graphs of odd order have a strongly vertex-magic total labelings.

In a series of papers Gray and MacDougall expand on McQuillan’s technique to obtain a variety of results. In [743] Gray and MacDougall show that for any \( r \geq 4 \), every \( r \)-regular graph of odd order at most 17 has a strong vertex-magic total labeling. They also show that several large classes of \( r \)-regular graphs of even order, including some Hamiltonian graphs, have vertex-magic total labelings. They conjecture that every 2-regular graph of odd order possesses a strong vertex-magic total labeling if and only if it is not of the form \( (2t - 1)C_3 \cup C_4 \) or \( 2tC_3 \cup C_5 \). They include five open problems.

In [745] Gray and MacDougall introduce a procedure called a mutation that transforms one vertex-magic total labeling into another one by swapping sets of edges among vertices that may result in different labeling of the same graph or a labeling of a different graph. Among their results are: a description of all possible mutations of a labeling of the path and the cycle; for all \( n \geq 2 \) and all \( i \) from 1 to \( n - 1 \) the graphs obtained by identifying an end points of paths of lengths \( i, i + 1 \), and \( 2n - 2i - 1 \) have a vertex-magic total labeling; for odd \( n \), the graph obtained by attaching a path of length \( n - m \) to an \( m \) cycle, (such graphs are called \( (m; n - m) \)-kites ) have strong vertex-magic total labelings for \( m = 3, \ldots, n - 2; C_{2n+1} \cup C_{4n+4} \) and \( 3C_{2n+1} \) have a strong vertex-magic total labeling; and for \( n \geq 2 \), \( C_{4n} \cup C_{6n-1} \) has a strong vertex-magic total labeling. They conclude with three open problems.

Kimberley and MacDougall [1086] studied mutations that involve labelings of regular graphs into labelings of other regular graphs. They present results of extensive computations which confirm how prolific this procedure is. These computations add weight to MacDougall’s conjecture that all nontrivial regular graphs are vertex-magic.

Gray and MacDougall [744] show how to construct vertex-magic total labelings for several families of non-regular graphs, including the disjoint union of two other graphs.
already possessing vertex-magic total labelings. They prove that if $G$ is a $d$-regular graph of order $v$ and $H$ a $t$-regular graph of order $u$ with each having a strong vertex magic total labeling and $vd^2 + 2d + 2v + 2u = 2tvd + 2t + ut^2$ then $G \cup H$ possesses a strong vertex-magic total labeling. They also provide bounds on the minimum degree of a graph with a vertex-magic total labeling.

In [746] Gray and MacDougall establish the existence of vertex-magic total labelings for several infinite classes of regular graphs. Their method enables them to begin with any even-regular graph and construct a cubic graph possessing a vertex-magic total labeling that produces strong vertex-magic total labelings for many even order regular graphs. The construction also extends to certain families of non-regular graphs.

Rahim and Slamin [1580] give the bounds for the number of vertices for Jahangir graphs, helms, webs, flower graphs and sunflower graphs when the graphs considered are not vertex-magic total.

Thirusangu, Nagar, and Rajeswari [1984] show that certain Cayley digraphs of cyclic groups have vertex-magic total labelings.

Balbuena, Barker, Lin, Miller, and Sugeng [260] call vertex-magic total labeling an $a$-vertex consecutive magic labeling if the vertex labels are $\{a, a+1, \ldots, a+|V|\}$. For an $a$-vertex consecutive magic labeling of a graph $G$ with $p$ vertices and $q$ edges they prove: if $G$ has one isolated vertex, then $a = q$ and $(p-1)^2 + p^2 = (2q+1)^2$; if $q = p-1$, then $p$ is odd and $a = p-1$; if $p = q$, then $p$ is odd and if $G$ has minimum degree 1, then $a = (p+1)/2$ or $a = p$; if $G$ is 2-regular, then $p$ is odd and $a = 0$ or $p$; and if $G$ is $r$-regular, then $p$ and $r$ have opposite parities. They also define an $b$-edge consecutive magic labeling analogously and state some results for these labelings.

Wood [2179] generalizes vertex-magic total and edge-magic total labelings by requiring only that the labels be positive integers rather than consecutive positive integers. He gives upper bounds for the minimum values of the magic constant and the largest label for complete graphs, forests, and arbitrary graphs.

Exoo, Ling, McSorley, Phillips, and Wallis [598] call a function $\lambda$ a totally magic labeling of a graph $G$ if $\lambda$ is both an edge-magic total and a vertex-magic total labeling of $G$. A graph with such a labeling is called totally magic. Among their results are: $P_3$ is the only connected totally magic graph that has a vertex of degree 1; the only totally magic graphs with a component $K_1$ are $K_1$ and $K_1 \cup P_3$; the only totally magic complete graphs are $K_1$ and $K_3$; the only totally magic complete bipartite graph is $K_{1,2}$; $nK_3$ is totally magic if and only if $n$ is odd; $P_3 \cup nK_3$ is totally magic if and only if $n$ is even. In [2128] Wallis asks: Is the graph $K_{1,m} \cup nK_3$ ever totally magic? That question was answered by Calhoun, Ferland, Lister, and Polhill [434] who proved that if $K_{1,m} \cup nK_3$ is totally magic then $m = 2$ and $K_{1,2} \cup nK_3$ is totally magic if and only if $n$ is even.

McSorley and Wallis [1378] examine the possible totally magic labelings of a union of an odd number of triangles and determine the spectrum of possible values for the sum of the label on a vertex and the labels on its incident edges and the sum of an edge label and the labels of the endpoints of the edge for all known totally magic graphs.

Gray and MacDougall [741] define an order $n$ sparse semi-magic square to be an $n \times n$ array containing the entries $1, 2, \ldots, m$ once (for some $m < n^2$), has its remaining entries
equal to 0, and whose rows and columns have a constant sum of $k$. They prove some basic properties of such squares and provide constructions for several infinite families of squares, including squares of all orders $n \geq 3$. Moreover, they show how such arrays can be used to construct vertex-magic total labelings for certain families of graphs.

In Tables 8, 9 and 10, VMT means vertex-magic total labeling, SVMT means super vertex magic total, and TM means totally magic labeling. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The tables were prepared by Petr Kovář and Tereza Kovárová and updated by J. Gallian in 2007.
Table 8: **Summary of Vertex-magic Total Labelings**

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_n$</td>
<td>VMT</td>
<td>[1340]</td>
</tr>
<tr>
<td>$P_n$</td>
<td>VMT</td>
<td>$n &gt; 2$ [1340]</td>
</tr>
<tr>
<td>$K_{m,m} - e$</td>
<td>VMT</td>
<td>$m &gt; 2$ [1340]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>VMT</td>
<td>iff $</td>
</tr>
<tr>
<td>$K_n$</td>
<td>VMT</td>
<td>for $n$ odd [1340] for $n \equiv 2 \pmod{4}, n &gt; 2$ [1279]</td>
</tr>
<tr>
<td>$nK_3$</td>
<td>VMT</td>
<td>iff $n \neq 2$ [613], [614], [1375]</td>
</tr>
<tr>
<td>$mK_n$</td>
<td>VMT</td>
<td>$m \geq 1$, $n \geq 4$ [1377]</td>
</tr>
<tr>
<td>Petersen $P(n,k)$</td>
<td>VMT</td>
<td>[240]</td>
</tr>
<tr>
<td>prisms $C_n \times P_2$</td>
<td>VMT</td>
<td>[1872]</td>
</tr>
<tr>
<td>$W_n$</td>
<td>VMT</td>
<td>iff $n \leq 11$ [1340], [1342]</td>
</tr>
<tr>
<td>$F_n$</td>
<td>VMT</td>
<td>iff $n \leq 10$ [1340], [1342]</td>
</tr>
<tr>
<td>friendship graphs</td>
<td>VMT</td>
<td>iff # of triangles $\leq 3$ [1340], [1342]</td>
</tr>
<tr>
<td>$G + H$</td>
<td>VMT</td>
<td>$</td>
</tr>
<tr>
<td>unions of stars</td>
<td>VMT</td>
<td>[2125]</td>
</tr>
<tr>
<td>tree with $n$ internal vertices and more than $2n$ leaves</td>
<td>not VMT</td>
<td>[2125]</td>
</tr>
<tr>
<td>$nG$</td>
<td>VMT</td>
<td>$n$ odd, $G$ regular of even degree, VMT [2126] $G$ is regular of odd degree, VMT, but not $K_1$ [2126]</td>
</tr>
<tr>
<td>$C_n \times C_{2m+1}$</td>
<td>VMT</td>
<td>[632]</td>
</tr>
<tr>
<td>$K_5 \times C_{2n+1}$</td>
<td>VMT</td>
<td>[632]</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 8: Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G \times C_{2n}$</td>
<td>VMT</td>
<td>$G 2r + 1$-regular VMT [1123]</td>
</tr>
<tr>
<td>$G \times K_5$</td>
<td>VMT</td>
<td>$G 2r + 1$-regular VMT [1123]</td>
</tr>
<tr>
<td>$G \times H$</td>
<td>VMT</td>
<td>$G r$-regular VMT, $r$ odd or $r$ even and $</td>
</tr>
</tbody>
</table>

### Table 9: Summary of Super Vertex-magic Total Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n$</td>
<td>SVMT</td>
<td>iff $n &gt; 1$ is odd [1965]</td>
</tr>
<tr>
<td>$C_n$</td>
<td>SVMT</td>
<td>iff $n$ is odd [1965] and [1341]</td>
</tr>
<tr>
<td>$K_{1,n}$</td>
<td>SVMT</td>
<td>iff $n = 1$ [1965]</td>
</tr>
<tr>
<td>$mC_n$</td>
<td>SVMT</td>
<td>iff $m$ and $n$ are odd [1965]</td>
</tr>
<tr>
<td>$W_n$</td>
<td>not SVMT</td>
<td>[1341]</td>
</tr>
<tr>
<td>ladders</td>
<td>not SVMT</td>
<td>[1341]</td>
</tr>
<tr>
<td>friendship graphs</td>
<td>not SVMT</td>
<td>[1341]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>not SVMT</td>
<td>[1341]</td>
</tr>
<tr>
<td>dragons (see §2.2)</td>
<td>SVMT</td>
<td>iff order is even [1966], [1966]</td>
</tr>
<tr>
<td>Knödel graphs $W_{3,n}$</td>
<td>SVMT</td>
<td>$n \equiv 0 \pmod{4}$ [2187]</td>
</tr>
<tr>
<td>graphs with minimum degree 1</td>
<td>not SVMT</td>
<td>[1341]</td>
</tr>
<tr>
<td>$K_{4n}$</td>
<td>SVMT</td>
<td>$n &gt; 1$ [728]</td>
</tr>
</tbody>
</table>
Table 10: Summary of Totally Magic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_3$</td>
<td>TM</td>
<td>the only connected TM graph with vertex of degree 1 [598]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>TM</td>
<td>iff $n = 1, 3$ [598]</td>
</tr>
<tr>
<td>$K_{m,n}$</td>
<td>TM</td>
<td>iff $K_{m,n} = K_{1,2}$ [598]</td>
</tr>
<tr>
<td>$nK_3$</td>
<td>TM</td>
<td>iff $n$ is odd [598]</td>
</tr>
<tr>
<td>$P_3 \cup nK_3$</td>
<td>TM</td>
<td>iff $n$ is even [598]</td>
</tr>
<tr>
<td>$K_{1,m} \cup nK_3$</td>
<td>TM</td>
<td>iff $m = 2$ and $n$ is even [434]</td>
</tr>
</tbody>
</table>

5.4 $H$-Magic Labelings

In 2005 Gutiérrez and Lladó [754] introduced the notion of an $H$-magic labeling of a graph, which generalizes the concept of a magic valuation. Let $H$ and $G = (V, E)$ be finite simple graphs with the property that every edge of $G$ belongs to at least one subgraph isomorphic to $H$. A bijection $f: V \cup E \rightarrow \{1, \ldots, |V| + |E|\}$ is an $H$-magic labeling of $G$ if there exists a positive integer $m(f)$, called the magic sum, such that for any subgraph $H'(V', E')$ of $G$ isomorphic to $H$, the sum $\sum_{v \in V'} f(v) + \sum_{e \in E'} f(e)$ is equal to the magic sum, $m(f)$. A graph is $H$-magic if it admits an $H$-magic labeling. If, in addition, the $H$-magic labeling $f$ has the property that $\{f(v)\}_{v \in V} = \{1, \ldots, |V|\}$, then the graph is $H$-supermagic. A $K_2$-magic labeling is also known as an edge-magic total labeling. Gutiérrez and Lladó investigate the cases where $G = K_n$ or $G = K_{m,n}$ and $H$ is a star or a path. Among their results are: a $d$-regular graph is not $K_{1,h}$ for any $1 < h < d$; $K_{n,n}$ is $K_{1,n}$-magic for all $n$; $K_{n,n}$ is not $K_{1,n}$-supermagic for $n > 1$; for any integers $1 < r < s$, $K_{r,s}$ is $K_{1,h}$-supermagic if and only if $h = s$; $P_n$ is $P_h$-supermagic for all $2 \leq h \leq n$; $K_n$ is not $P_h$-magic for any $2 < h \leq n$; $C_n$ is $P_h$-magic for any $2 \leq h < n$ such that gcd$(n, h(h - 1)) = 1$. They also show that by uniformly gluing copies of $H$ along edges of another graph $G$, one can construct connected $H$-magic graphs from a given 2-connected graph $H$ and an $H$-free supermagic graph $G$.

Lladó and Moragas [1305] studied cycle-magic graphs. They proved: wheels $W_n$ are $C_3$-magic for odd $n$ at least 5; for $r \geq 3$ and $k \geq 2$ the windmill graphs $C_r^{(k)}$ (the one-point union of $k$ copies of $C_r$) are $C_r$-supermagic; and if $G$ is $C_4$-free supermagic graph of odd size, then $G \times K_2$ is $C_4$-supermagic. As corollaries of the latter result, they have that for $n$ odd, prisms $C_n \times K_2$ and books $K_{1,n} \times K_2$ are $C_4$-magic. They define a subdivided wheel $W_n(r,k)$ as the graph obtained from a wheel $W_n$ by replacing each radial edge
if \(K\) and \(k\) \(C\) there exists a \(i\) for every supermagic.

H and \(q\) and Kalinowski \[1459\] show that for odd \(n\) \(C\) and the splitting graph of \(C\) visions of stars, shrubs and banana trees. Ngurah, Salman, and Sudarsana \[1452\] construct \(F\) are cycle-supermagic. They also prove that some special nonuniform subdivisions of fans and triangular ladders graphs of fans, antiprisms, triangular ladders, ladders and grids are cycle-(super)magic. Results on the cycle-supermagicness they immediately obtain that uniform subdivided subdivided graph \(G\) Miller, and Ryan \[1636\] prove that if a graph \(H\) \(C\) and \(k\) ati, Salman, Baskoro, and Irawati \[1368\] proved that the disjoint union of \(k\) is \(C\)-supermagic decomposition of \(k\) and \(k\) \(H\) \(C\) good edges from each subgraph isomorphic to \(H\) and arbitrary \(s\) is \(m,n\) is \(C\)-supermagic, and flower graphs are \(C\)-supermagic.

An edge of \(H\)-magic graph \(G\) is said to be a good edge if it belongs to only one subgraph isomorphic to \(H\). For \(s \geq 1\), \(B\) is the collection of good edges obtained by choosing exactly \(s\) good edges from each subgraph isomorphic to \(H\) in \(G\). A uniform subdivided graph \(G\) of the graph \(G\) is obtained by subdividing all edges of \(B\) with \(k \geq 1\) vertices. A nonuniform subdivided graph is obtained by subdividing the edges of \(E(G)\) \(B\). Rizvi, Khalid, Ali, Miller, and Ryan \[1636\] prove that if a graph \(G\) is a \(C\)-supermagic graph then its uniform subdivided graph \(G\) is \(C_{n+sk}\)-(super)magic for positive integers \(n\), \(s\), and \(k\). Using known results on the cycle-supermagicness they immediately obtain that uniform subdivided graphs of fans, antiprisms, triangular ladders, ladders and grids are cycle-(super)magic. They also prove that some special nonuniform subdivisions of fans and triangular ladders are cycle-supermagic.

Jeyanthi and Muthuraja \[946\] established that \(P_{m,n}\) is \(C_{2m}\)-supermagic for all \(m,n \geq 2\) and the splitting graph of \(C_n\) is \(C_{4}\)-supermagic for \(n \neq 4\). Nirmalasari Wijaya, Ryan, and Kalinowski \[1459\] show that for odd \(n\) and arbitrary \(k\), the firecracker \(F_{k,n}\) is \(F_{2,n}\)-supermagic, the banana tree \(B_{k,n}\) is \(B_{1,n}\)-supermagic, and flower graphs are \(C_3\)-supermagic.

Liang \[1267\] proved the following: if there exist an even integer \(k\) and \(m_i \equiv 0\ (\mod k)\) for every \(i\) in \([1,n]\), then there exist \(K_{k,k}\) and \(C_{2k}\)-supermagic decompositions of \(K_{m_1,...,m_n}\); if \(k\) and \(t_n \geq k\) are even integers, then for any positive integers \(t_i \equiv 0\ (\mod k)\), \(i\) in \([1,n-1]\), there exists a \(C_{2k}\)-supermagic decomposition of \(K_{t_1,...,t_n}\); if there exists an even integer \(k\) and \(K_{m,n}\) is \(C_2\)-decomposable, then there exists a \(C_{2k}\)-supermagic decomposition of \(K_{m,n}\); and if \(G\) is a graph with \(p\) vertices and \(p\) edges, \(H\) is a graph with \(q\) vertices and \(q\) edges, and there is an \(H\)-supermagic decomposition of \(G\), then there exists an \(H\)-supermagic decomposition of \(nG\).

In \[1365\] Maryati, Baskoro, and Salman provided \(P_n\)-(super) magic labelings of subdivisions of stars, shrubs and banana trees. Ngurah, Salman, and Sudarsana \[1452\] construct \(C_n\)-(super) magic labelings for some fans and ladders. For any connected graph \(H\), Maryati, Salman, Baskoro, and Irawati \[1368\] proved that the disjoint union of \(k\) isomorphic copies of a connected graph \(H\) is a \(H\)-supermagic graph if and only if \(|V(H)| + |E(H)|\) is even or \(k\) is odd. In \[1366\] Maryati, Baskoro, Salman, and Irawati give some necessary conditions for any \(P_n\)-magic graph and provide some \(P_n\)-supermagic labelings of a cycle with some pendent edges and its subdivisions.
Kojima [1104] proved the following. Let \( G \) be a \( C_4 \)-free super edge-magic \((p, q)\)-graph with the minimum degree at least one and \( m \geq 2 \). If \( q \) odd and \( m = 2 \) or \(|p - q| \geq 2\), then \( P_m \times G \) is \( C_4 \)-supermagic; if \( p \) is odd and \( m = 2 \) or \(|p - q| = 1 \) and \( m \leq 5 \), then \( P_m \times G \) is \( C_4 \)-supermagic; if \( n \geq 3 \) is odd and \( m \) is even, then \( P_2 \times (C_n \circ K_m) \) is \( C_4 \)-supermagic; if \( n \geq 3 \) is odd and \( m \) is odd, then \( P_2 \times (C_n \circ K_m) \) is not \( C_4 \)-supermagic; if \( G \) is a caterpillar, then \( P_m \times G \) is \( C_4 \)-supermagic for \( m \geq 2 \); and \( P_m \times C_n \) is \( C_4 \)-supermagic for \( m \geq 2 \) and \( n \geq 3 \). The latter result solved an open problem in [1453]. Kojima also proved that if a \( C_4 \)-free bipartite \((p, p - 1)\)-graph \( G \) with the minimum degree at least one and partite sets \( U \) and \( V \) has a super edge-magic labeling \( f \) of \( G \) such that \( f(U) = \{1, 2, \ldots, \left| U \right|\} \), then \( P_m \times (2G) \) is \( C_4 \)-supermagic.

Maryati, Salman, Baskoro, Ryan, and Miller [1369] define a shackles as a graph obtained from nontrivial connected graphs \( G_1, G_2, \ldots, G_k \) \((k \geq 2)\) such that \( G_s \) and \( G_t \) have no common vertex for every \( s \) and \( t \) in \([1, k]\) with \(|s - t| \geq 2\), and for every \( i \) in \([1, k - 1]\), \( G_i \) and \( G_{i+1} \) share exactly one common vertex that are all distinct. They prove that shackles and amalgamations constructed from copies of a connected graph \( H \) are \( H \)-supermagic. (Recall for finite collection of graph \( G_1, G_2, \ldots, G_k \) with a fixed vertex \( v_i \) from each \( G_i \); an amalgamation, \( \text{Amal}(G_i, v_i) \), is the graph obtained by identifying the \( v_i \).)

Ngurah, Salman, and Susilowati [1453] proved the following: chain graphs with identical blocks each isomorphic to \( C_n \) are \( C_n \)-supermagic; fans are \( C_n \)-supermagic; ladders and books are \( C_4 \)-supermagic; \( K_{1,n} + K_1 \) are \( C_3 \)-supermagic; grids \( P_m \times P_n \) are \( C_4 \)-supermagic for \( m \geq 3 \) and \( n = 3, 4, \) and 5. They pose the case that \( P_m \times P_n \) are \( C_4 \)-supermagic for \( n > 5 \) as an open problem. They also have some results on \( P_r \)-(super) magic labelings of cycles.

Roswitha, Baskoro, Maryati, Kurdhi, and Susanti [1649] proved: the generalized Jahangir graph \( J_{k,s} \) is \( C_{s+2} \)-supermagic; \( K_{2,n} \) is \( C_4 \)-supermagic; and \( W_n \) for \( n \) even and \( n \geq 4 \) is \( C_3 \)-supermagic. As an open problem they asked if \( K_{m,n} \), \( 2 < m \leq n \), admits a \( C_{2m} \)-supermagic labeling. Roswitha and Baskoro [1650] proved that double stars, caterpillars, firecrackers, and banana trees admit star-supermagic labelings.

Maryati, Salman, and Baskoro [1367] characterized all graphs \( G \) such that the disjoint union of copies of \( G \) is \( G \)-supermagic. They also showed: the disjoint union of any paths is \( mP_n \)-supermagic for certain values of \( m \) and \( n \); some subgraph amalgamations of graphs \( G \) are \( G \)-supermagic; and for any subgraph \( H \) of \( G \) \( \text{Amal}(G, H, k) \) is \( G \)-supermagic. Salman and Maryati [1668] proved that \( \text{Amal}(G, P_n, k) \) is \( G \)-supermagic.

Selvagopal and Jeyanthi proved: for any positive integer \( n \), a the \( k \)-polygonal snake of length \( n \) is \( C_k \)-supermagic [1692]; for \( m \geq 2 \), \( n = 3 \), or \( n > 4 \), \( C_n \times P_m \) is \( C_4 \)-supermagic [978]; \( P_2 \times P_n \) and \( P_3 \times P_n \) are \( C_4 \)-supermagic for all \( n \geq 2 \) [978]; the one-point union of any number of copies of a 2-connected \( H \) is \( H \)-magic [976]; graphs obtained by taking copies \( H_1, H_2, \ldots, H_n \) of a 2-connected graph \( H \) and two distinct edges \( e_i, e_i' \) from each \( H_i \) and identifying \( e_i' \) of \( H_i \) with \( e_{i+1} \) of \( H_{i+1} \) where \(|V(H)| \geq 4, |E(H)| \geq 4 \) and \( n \) is odd or both \( n \) and \( |V(H)| + |E(H)| \) are even are \( H \)-supermagic [976]. For simple graphs \( H \) and \( G \) the \( H \)-supermagic strength of \( G \) is the minimum constant value of all \( H \)-magic total labelings of \( G \) for which the vertex labels are \( \{1, 2, \ldots, |V|\} \). Jeyanthi and Selvagopal [977] found the \( C_n \)-supermagic strength of \( n \)-polygonal snakes of any length and the \( H \)-supermagic strength of any graph. They also have some results on \( H \)-supermagic labelings of regular graphs.
strength of a chain of an arbitrary 2-connected simple graph.

Let \( H_1, H_2, \ldots, H_n \) be copies of a graph \( H \). Let \( u_i \) and \( v_i \) be two distinct vertices of \( H_i \) for \( i = 1, 2, \ldots, n \). The chain graph \( H_n \) of \( H \) of length \( n \) is the graph obtained by identifying the vertices \( u_i \) and \( v_{i+1} \) for \( i = 1, 2, \ldots, n-1 \). In [975] Jayanthi and Selvagopal show that a chain graph of any 2-connected simple graph \( H \) is \( H \)-supermagic and if \( H \) is a 2-connected \((p,q)\) simple graph, then \( H_n \) is \( H \)-supermagic if \( p+q \) is even or \( p+q+n \) is even.

The antiprism on \( 2n \) vertices has vertex set \( \{x_{1,1}, \ldots, x_{1,n}, x_{2,1}, \ldots, x_{2,n}\} \) and edge set \( \{x_{j,i}, x_{j,i+1}\} \cup \{x_{1,i}, x_{2,i}\} \cup \{x_{1,i}, x_{2,i-1}\} \) (subscripts are taken modulo \( n \)). Jayanthi, Selvagopal, and Sundaram [980] proved the following graphs are \( C_3 \)-supermagic: antiprisms, fans, and graphs obtained from the ladders \( P_2 \times P_n \) with the two paths \( v_{1,1}, \ldots, v_{1,n} \) and \( v_{2,1}, \ldots, v_{2,n} \) by adding the edges \( v_{1,j}v_{2,j+1} \).

Jayanthi and Selvagopal [979] show that for any 2-connected simple graph \( H \) the edge amalgamation of a finite number of copies of \( H \) is \( H \)-supermagic. They also show that the graph obtained by picking one endpoint \( v_i \) from each of \( k \) copies of \( K_{1,k} \) then creating a new graph by joining each \( v_i \) to a fixed new vertex \( v \) is \( K_{1,k} \)-supermagic.

An \( H \)-magic labeling \( f \) is said to be an \( H - E \)-super magic labeling if \( f(E(G)) = \{1, 2, \ldots, q\} \). A graph that admits an \( H - E \)-super magic labeling is called an \( H - E \)-super magic decomposable graph. Subbiah and Pandimadevi [1919] study some elementary properties of \( H - E \)-super magic labelings with \( H \) an \( m \)-factor and provide a necessary and sufficient condition for an even regular graph to be \( H - E \)-super magic decomposable where \( H \) is a 2-factor.

### 5.5 Magic Labelings of Type \((a,b,c)\)

A magic-type method for labeling the vertices, edges, and faces of a planar graph was introduced by Lih [1275] in 1983. Lih defines a magic labeling of type \((1,1,0)\) of a planar graph \( G(V, E) \) as an injective function from \( \{1, 2, \ldots, |V|+|E|\} \) to \( V \cup E \) with the property that for each interior face the sum of the labels of the vertices and the edges surrounding that face is some fixed value. Similarly, Lih defines a magic labeling of type \((1,1,1)\) of a planar graph \( G(V, E) \) with face set \( F \) as an injective function from \( \{1, 2, \ldots, |V|+|E|+|F|\} \) to \( V \cup E \cup F \) with the property that for each interior face the sum of the labels of the face and the vertices and the edges surrounding that face is some fixed value. Lih calls a labeling involving the faces of a plane graph consecutive if for every integer \( s \) the weights of all \( s \)-sided faces constitute a set of consecutive integers. Lih gave consecutive magic labelings of type \((1,1,0)\) for wheels, friendship graphs, prisms, and some members of the Platonic family. In [172] Baça shows that the cylinders \( C_n \times P_m \) have magic labelings of type \((1,1,0)\) when \( m \geq 2, n \geq 3, n \neq 4 \). In [182] Baça proves that the generalized Petersen graph \( P(n,k) \) (see §2.7 for the definition) has a consecutive magic labeling if and only if \( n \) is even and at least 4 and \( k \leq n/2 - 1 \).

Baça gave magic labelings of type \((1,1,1)\) for fans [166], ladders [166], planar bipyramids (that is, 2-point suspensions of paths) [166], grids [175], hexagonal lattices [174], Möbius ladders [169], and \( P_n \times P_3 \) [170]. Kathiresan and Ganesan [1067] show that the
graph $P_{a,b}$ consisting of $b \geq 2$ internally disjoint paths of length $a \geq 2$ with common end points has a magic labeling of type $(1,1,1)$ when $b$ is odd, and when $a = 2$ and $b \equiv 0 \pmod{4}$. They also show that $P_{a,b}$ has a consecutive labeling of type $(1,1,1)$ when $b$ is even and $a \neq 2$. Ali, Hussain, Ahmad, and Miller [103] study magic labeling of type $(1,1,1)$ for wheels and subdivided wheels. They prove: wheels admits a magic labeling of type $(1,1,1)$ and $(0,1,1)$, for odd $n$ wheels $W_n$ $n$ admit a magic labeling of type $(0,1,0)$, and subdivided wheels admit a magic labeling of type $(1,1,0)$. As an open problem they ask for a magic labeling of type $(1,1,0)$ for $W_n$ and $n$ even. Ahmad [55] proves that subdivided ladders admit magic labelings of type $(1,1,1)$ and admit consecutive magic labelings of type $(1,0,0)$. As an open problem they ask for a magic labeling of type $(1,1,0)$ for $W_n$ and $n$ even. Ahmad [55] proves that subdivided ladders admit magic labelings of type $(1,1,1)$ and admit consecutive magic labelings of type $(1,0,0)$.

Bača [168], [167], [178], [176], [170], [177] and Bača and Holländer [206] gave magic labelings of type $(1,1,1)$ and type $(1,1,0)$ for certain classes of convex polytopes. Kathiresan and Gokulakrishnan [1069] provided magic labelings of type $(1,1,1)$ for the families of planar graphs with 3-sided faces, 5-sided faces, 6-sided faces, and one external infinite face. Bača [173] also provides consecutive and magic labelings of type $(0,1,1)$ (that is, an injective function from $\{1,2,\ldots,|E| + |F|\}$ to $E \cup F$ with the property that for each interior face the sum of the labels of the face and the edges surrounding that face is some fixed value) and a consecutive labeling of type $(1,1,1)$ for a kind of planar graph with hexagonal faces. Tabraiz and Hussain [1974] provide a super magic labeling of type $(1, 0, 0)$ for ladders and a super magic labeling of type $(1, 0, 0)$ for subdivided ladders.

A magic labeling of type $(1,0,0)$ of a planar graph $G$ with vertex set $V$ is an injective function from $\{1,2,\ldots,|V|\}$ to $V$ with the property that for each interior face the sum of the labels of the vertices surrounding that face is some fixed value. Kathiresan, Muthuvel, and Nagasubbu [1071] define a lotus inside a circle as the graph obtained from the cycle with consecutive vertices $a_1, a_2, \ldots, a_n$ and the star with central vertex $b_0$ and end vertices $b_1, b_2, \ldots, b_n$ by joining each $b_i$ to $a_i$ and $a_{i+1}$ ($a_{n+1} = a_1$). They prove that these graphs $(n \geq 5)$ and subdivisions of ladders have consecutive labelings of type $(1,0,0)$. Devaraj [540] proves that graphs obtained by subdividing each edge of a ladder exactly the same number of times has a magic labeling of type $(1,0,0)$.

In Table 11 we use following abbreviations

$\text{M}(a,b,c)$ magic labeling of type $(a,b,c)$

$\text{CM}(a,b,c)$ consecutive magic labeling of type $(a,b,c)$.

A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová.
Table 11: **Summary of Magic Labelings of Type \((a, b, c)\)**

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_n) friendship graphs</td>
<td>CM(1,1,0)</td>
<td>[1275]</td>
</tr>
<tr>
<td>prisms</td>
<td>CM(1,1,0)</td>
<td>[1275]</td>
</tr>
<tr>
<td>cylinders (C_n \times P_m)</td>
<td>M(1,1,0)</td>
<td>(m \geq 2, n \geq 3, n \neq 4) [172]</td>
</tr>
<tr>
<td>fans (F_n)</td>
<td>M(1,1,1)</td>
<td>[166]</td>
</tr>
<tr>
<td>ladders</td>
<td>M(1,1,1)</td>
<td>[166]</td>
</tr>
<tr>
<td>planar bipyramids (see §5.3)</td>
<td>M(1,1,1)</td>
<td>[166]</td>
</tr>
<tr>
<td>grids</td>
<td>M(1,1,1)</td>
<td>[175]</td>
</tr>
<tr>
<td>hexagonal lattices</td>
<td>M(1,1,1)</td>
<td>[174]</td>
</tr>
<tr>
<td>Möbius ladders</td>
<td>M(1,1,1)</td>
<td>[169]</td>
</tr>
<tr>
<td>(P_n \times P_3)</td>
<td>M(1,1,1)</td>
<td>[170]</td>
</tr>
<tr>
<td>certain classes of</td>
<td>M(1,1,1)</td>
<td>[168], [178], [176], [170]</td>
</tr>
<tr>
<td>convex polytopes</td>
<td>M(1,0,0)</td>
<td>[177], [206]</td>
</tr>
<tr>
<td>certain classes of planar</td>
<td>M(0,1,1)</td>
<td>[173]</td>
</tr>
<tr>
<td>graphs with hexagonal faces</td>
<td>CM(0,1,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM(1,1,1)</td>
<td></td>
</tr>
<tr>
<td>lotus inside a circle (see §5.3)</td>
<td>CM(1,0,0)</td>
<td>(n \geq 5) [1071]</td>
</tr>
<tr>
<td>subdivisions of ladders</td>
<td>M(1,0,0)</td>
<td>[540]</td>
</tr>
<tr>
<td></td>
<td>CM(1,0,0)</td>
<td>[1071]</td>
</tr>
</tbody>
</table>
5.6 Sigma Labelings / 1-vertex magic labelings / Distance Magic

In 1987 Vilfred [2109] (see also [2110]) defined a sigma-labeling of a graph $G$ with $n$ vertices as a bijection $f$ from the vertices of $G$ to $\{1, 2, \ldots, n\}$ such that there is a constant $k$ with the property that, at any vertex $v$ the sum $\sum f(u)$ taken over all neighbors $u$ of $v$ is $k$. The concept of sigma labeling was independently studied in 2003 by Miller, Rodger, and Simanjuntak in [1398] under the name 1-vertex magic. In a 2009 article Sugeng, Fronček, Miller, Ryan, and Walker [1932] used the term distance magic labeling. For convenience, we will use the term distance magic. In [2111] Vilfred and Jinnah give a number of necessary conditions for a graph to have a distance magic labeling. One of them is that if $u$ and $v$ are vertices of a graph with a distance labeling, then the order of the symmetric difference of $N(u)$ and $N(v)$ (neighborhoods of $u$ and $v$) is not 1 or 2. This condition rules out a large class of graphs as having distance magic labelings. Rao, Singh, and Parameswaran [1615] have shown $C_m \times C_n$ has a distance magic labeling if and only if $m = n \equiv 2 \pmod{4}$ and $K_m \times K_n$, $m \geq 2, n \geq 3$ does not have a distance magic labeling. In [334] Benna gives necessary and sufficient condition for $K_{m,n}$ to be a distance magic graph and proves that if $G_1$ and $G_2$ are connected graphs with minimum degree 1 and at least three vertices, then $G_1 \times G_2$ does not have a distance magic labeling. Rao, Singh, and Parameswaran [43] prove that every graph is an induced subgraph of a regular graph that has a distance magic labeling. As open problems, Rao [1613] asks for a characterize 4-regular graphs that have distance magic labelings and which graphs of the form $C_m \times C_n$, $m = n \equiv 2 \pmod{4}$ have distance magic labelings. Kovář, Fronček, and Kovářová [1126] classified all orders $n$ for which a 4-regular distance magic graph exists and also showed that there exists a distance magic graph with $k = 2t$ for every integer $t \geq 6$. Acharaya, Rao, Singh, and Parameswaran [42] proved $P_m \times C_n$ does not have a distance magic labeling when $m$ is at least 3 and provide necessary and sufficient conditions for $K_{m,n}$ to have a distance magic labeling. Kovář and Silber [1127] proved that an $(n-3)$-regular distance magic graph with $n$ vertices exists if and only if $n \equiv 3 \pmod{6}$ and that its structure is determined uniquely. Moreover, they reduce constructions of Fronček to a single construction and provide another sufficient condition for the existence a distance magic graph with an odd number of vertices. Fronček, Kovář, and Kovářová [633] provide a construction for distance magic graphs arising from arbitrary regular graphs based on an application of magic rectangles. They also solve a problem posed by Shafiq, Ali, and Simanjuntak [1775].

Among the results of Miller, Rodger, and Simanjuntak in [1398]: the only trees that have a distance magic labeling are $P_1$ and $P_3$; $C_n$ has a distance magic labeling if and only if $n = 4$; $K_n$ has a distance magic labeling if and only if $n = 1$; the wheel $W_n = C_n + P_1$ has a distance magic labeling if and only if $n = 4$; the complete graph $K_{n,n,\ldots,n}$ with $p$ partite sets has a distance magic labeling if and only if $n$ is even or both $n$ and $p$ are odd; an $r$-regular graph where $n$ is odd does not have a distance magic labeling; and $G \times \overline{K}_{2n}$ has a distance magic labeling for any regular graph $G$. They also give necessary and sufficient conditions for complete tripartite graphs to have a distance magic labeling.

Anholcerc, Cichacz, Peterin, and Tepeh [132] proved that the direct product of two
cycles \( C_m \) and \( C_n \) is distance magic if and only if \( m = 4 \) or \( n = 4 \), or \( m, n \equiv 0 \pmod{4} \) (the direct product of graphs \( G \) and \( H \) has the vertex set \( V(G) \times V(H) \) and \( (g, h) \) is adjacent to \( (g', h') \) if \( g \) is adjacent to \( g' \) in \( G \) and \( h \) is adjacent to \( h' \) in \( H \)). In [501] Cichacz gave necessary and sufficient conditions for circulant graph \( C_n(1, 2, \ldots, p) \) to be distance magic for \( p \) odd. In [503] Cichacz and Fronček characterized all distance magic circulant graphs \( C_n(1, p) \) for \( p \) odd. Cichacz, Fronček, Krop, and Raridan [504] proved that \( r \)-partite graph \( K_{n, n, \ldots, n} \times C_4 \) is distance magic if and only if \( r > 1 \) and \( n > 2 \) is even. Anholcer and Cichacz [135] gave necessary and sufficient conditions for lexicographic product of an \( r \)-regular graph \( G \) and \( K_{m, n} \) to be distance magic. Cichacz and Görlich [507] gave necessary and sufficient conditions for the direct product of an \( r \)-regular graph \( G \) and \( K_{m, n} \) to be distance magic. Cichacz and Nikodem [508] showed that if \( G \) is an \( r \)-regular graph of order \( t \) and \( H \) is \( p \)-regular such that \( tH \) is distance magic, then both the lexicographic product and direct product of graphs \( G \) and \( H \) are distance magic. In [153] Arumugam, Kamatchi, and Kovár give several results on distance magic graphs and open problems.

In [1704] Seoud, Maqsoud, and Aldiban determined whether or not the following families of graphs have a distance magic vertex labeling: \( K_n - \{e\} \); \( K_n - \{2e\} \); \( P_n \); \( C_n^2 \); \( K_m \times C_n \); \( C_m + P_n \); \( C_m + C_n \); \( P_m + P_n \); \( K_{1, r, s} \); \( K_{1, r, m, n} \); \( K_{2, r, m, n} \); \( K_{m, n} + P_k \); \( K_{m, n} + C_k \); \( C_m + K_n \); \( P_m + K_n \); \( P_m \times P_n \); \( K_{m, n} \times P_k \); \( K_m \times P_n \); the splitting graph of \( K_{m, n} \); \( K_m + G \); \( K_m + K_n \); \( K_m + C_n \); \( K_m + P_n \); \( K_{m, n} + K_r \); \( C_m \times P_n \); \( C_m \times K_{1, n} \); \( C_m \times K_{n, n} \); \( C_m \times K_{n, n+1} \); \( K_m \times K_{n, r} \); and \( K_m \times K_n \). Typically, distance magic labelings exist only a few low parameter cases.

In [628] Fronček defined the notion of a \( \Gamma \)-distance magic graph as one that has a bijective labeling of vertices with elements of an Abelian group \( \Gamma \) resulting in constant sums of neighbor labels. A graph that is \( \Gamma \)-distance magic for an Abelian group \( \Gamma \) is called group distance magic. Cichacz and Fronček [503] showed that for an \( r \)-regular distance magic graph \( G \) on \( n \) vertices, where \( r \) is odd there does not exist an Abelian group \( \Gamma \) of order \( n \) having exactly one involution (i.e., an element that is its own inverse) that is \( \Gamma \)-distance magic. Fronček [628] proved that \( C_m \times C_n \) is a \( Z_{mn} \)-distance magic graph if and only if \( mn \) is even. He also showed that \( C_{2n} \times C_{2n} \) has a \( Z_{22n} \)-distance magic labeling. In [497] Cichacz showed some \( \Gamma \)-distance magic labelings for \( C_m \times C_n \) where \( \Gamma \not\cong Z_{mn} \) and \( \Gamma \not\cong Z_{22n} \). Anholcer, Cichacz, Peterin, and Tepeh [134] proved that if an \( r_1 \)-regular graph \( G_1 \) is \( \Gamma_1 \)-distance magic and an \( r_2 \)-regular graph \( G_2 \) is \( \Gamma_2 \)-distance magic, then the direct product of graphs \( G_1 \) and \( G_2 \) is \( \Gamma_1 \times \Gamma_2 \)-distance magic. Moreover they showed that if \( G \) is an \( r \)-regular graph of order \( n \) and \( m = 4 \) or \( m = 8 \) and \( r \) is even, then \( C_m \times G \) is group distance magic. They proved that \( C_m \times C_n \) is \( Z_{mn} \)-distance magic if and only if \( m \in \{4, 8\} \) or \( n \in \{4, 8\} \) or \( m, n \equiv 0 \pmod{4} \). They also showed that if \( m, n \equiv 0 \pmod{4} \) then \( C_m \times C_n \) is not \( \Gamma \)-distance magic for any Abelian group \( \Gamma \) of order \( mn \). Cichacz [498] gave necessary and sufficient conditions for complete \( k \)-partite graphs of odd order \( p \) to be \( Z_p \)-distance magic. Moreover she showed that if \( p \equiv 2 \pmod{4} \) and \( k \) is even, then there does not exist a group \( \Gamma \) of order \( p \) that has a \( \Gamma \)-distance labeling for a \( k \)-partite complete graph of order \( p \). She also proved that \( K_{m, n} \) is a group distance magic graph if and only if \( n + m \equiv 2 \pmod{4} \). In [499] Cichacz proved that if \( G \) is an Eulerian graph,
then the lexicographic product of $G$ and $C_4$ is group distance magic. In the same paper she also showed that if $m + n$ is odd, then the lexicographic product of $K_{m,n}$ and $C_4$ is group distance magic. In [500] Cichacz gave necessary and sufficient conditions for direct product of $K_{m,n}$ and $C_4$ for $m + n$ odd and for $K_{m,n} \times C_8$ to be group distance magic. In [502] Cichacz proved that for $n$ even and $r > 1$ the Cartesian product the complete $r$-partitie graph $K_{n,n,\ldots,n}$ and $C_4$ is group distance magic.

In [133] Anholcer, Cichacz, Peterin, and Tepeh introduce the notion of balanced distance magic graphs. They say that a distance magic graph $G$ with an even number of vertices is balanced if there exists a bijection $f$ from $V(G)$ to $\{1, 2, \ldots, |V(G)|\}$ such that for every vertex $u$ the following holds: If $u \in N(w)$ with $f(u) = i$, then there exists $v \in N(w), u \neq v$ with $f(v) = |V(G)| - i + 1$. They prove that a graph $G$ is distance magic if and only if $G$ is regular and $V(G)$ can be partitioned in pairs $(u_i, v_i), i \in \{1, 2, \ldots, |V(G)|/2\}$, such that $N(u_i) = N(v_i)$ for all $i$. Using this characterization, the following theorems are proved: if $G$ is a regular graph and $H$ is a graph not isomorphic to $\overline{K_n}$ where $n$ is odd, then $G \odot H$ is a balanced distance magic graph if and only if $H$ is a balanced distance magic graph; $G \times H$ is balanced distance magic if and only if one of $G$ and $H$ is balanced distance magic and the other one is regular; and $C_m \times C_n$ is distance magic if and only if $n = 4$ or $m = 4$ or $m, n \equiv 0$ (mod 4) and $C_m \times C_n$ is balanced distance magic if and only if $n = 4$ or $m = 4$. In [136] they prove that every balanced distance magic graph is also group distance magic; the Cartesian product of a balanced distance magic graph and a regular graph is group distance magic; the direct product of $C_4$ or $C_8$ and a regular graph is group distance magic; and they show that $C_8 \times G$ is also group distance magic for any even-regular graph $G$. They also prove that $C_4 \times C_4$ is $A \times B$-distance magic for any Abelian groups $A$ and $B$ of order $4s$ and $4t$, respectively. Moreover, they conjecture that $C_4 \times C_4$ is a group distance magic graph. They prove that $C_m \times C_n$ is $Z_{mn}$-distance magic if and only if $m \in \{4, 8\}$ or $n \in \{4, 8\}$ or both $n$ and $m$ are divisible by 4, and that $C_m \times C_n$ with orders not divisible by 4 is not $\Gamma$-distance magic for any Abelian group $\Gamma$ of order $mn$.

A survey of results on distance magic (sigma, 1-vertex) labelings through 2009 is given in [149].

### 5.7 Other Types of Magic Labelings

In 2004 Baskar Babujee [300] and [301] introduced the notion of vertex-bimagic labeling in which there exist two constants $k_1$ and $k_2$ such that the sums involved in a specified type of magic labeling is $k_1$ or $k_2$. Thus a vertex-bimagic total labeling with bimagic constants $k_1$ and $k_2$ is the same as a vertex-magic total labeling except for each vertex $v$ the sum of the label of $v$ and all edges adjacent to $v$ may be $k_1$ or $k_2$. Murugesan and Senthil Amutha [1433] proved that the bistar $B_{n,n}$ is vertex-bimagic total labeling for $n > 2$. An edge bimagic total labeling edge bimagic total of a graph $G(V,E)$ with $p$ vertices and $q$ edges is a bijection $f$ from the set of vertices and edges to such that for every edge $uv \in E, f(u) + f(uv) + f(v)$ is one of two oconstants $k_1$ or $k_2$, independent of the choice of the edge. A bimagic labeling is of interest for graphs that do not have
a magic labeling of a particular type. Bimagic labelings for which the number of sums equal to \( k_1 \) and the number of sums equal to \( k_2 \) differ by at most 1 are called equitable. When all sums except one are the same the labeling is called almost magic. Although the wheel \( W_n \) does not have an edge-magic total labeling when when \( n \equiv 3 \pmod{4} \), Marr, Phillips and Wallis [1363] showed that these wheels have both equitable bimagic and almost magic labelings. They also show that whereas \( nK_2 \) has an edge-magic total labeling if and only if \( n \) is odd, \( nK_2 \) has an edge-bimagic total labeling when \( n \) is even and although even cycles do not have super edge-magic total labelings all cycles have super edge-bimagic total labelings. They conjecture that there is a constant \( N \) such that \( K_n \) has a edge-bimagic total labeling if and only if \( n \) is at most \( N \). They show that such an \( N \) must be at least 8. They also prove that if \( G \) has an edge-magic total labeling then \( 2G \) has an edge-bimagic total equitable labeling. Amara Jothi, David, and Baskar Babujee [117] provide edge-bimagic labelings for switching of paths, cycles, stars, crowns and helms. They also examine whether operations on edge magic graphs results in edge bimagic graphs or not.

Baskar Babujee and Babitha [304] call a graph with \( p \) vertices 1-vertex bimagic if there is a bijective labeling \( f \) from the vertices to \( \{1, 2, \ldots, p\} \) such that for each vertex \( u \) the sum of all \( f(v) \) where \( v \) is adjacent to \( u \) is either a constant \( k_1 \) or a constant \( k_2 \) and \( k_1 \neq k_2 \). A graph with \( p \) vertices is called odd 1-vertex bimagic if there is a bijective labeling \( f \) from the vertices to \( \{1, 3, \ldots, 2p - 1\} \) such that for each vertex \( u \) the sum of all \( f(v) \) where \( v \) is adjacent to \( u \) is either a constant \( k_1 \) or a constant \( k_2 \) and \( k_1 \neq k_2 \). A graph with \( p \) vertices is called even 1-vertex bimagic if there is a bijective labeling \( f \) from the vertices to \( \{0, 2, \ldots, 2(p - 1)\} \) such that for each vertex \( u \) the sum of all \( f(v) \) where \( v \) is adjacent to \( u \) is either a constant \( k_1 \) or a constant \( k_2 \) and \( k_1 \neq k_2 \).

Baskar Babujee and Babitha [304] prove that a necessary condition for the existence of a 1-vertex bimagic vertex labeling \( f \) of a graph \( G \) is \( \sum_{x \in V(G)} d(x)f(x) = k_1p_1 + k_2p_2 \) where \( d(x) \) is the degree of vertex \( x \) and \( p_1 \) and \( p_2 \) are the number of vertices with common count \( k_1 \) and \( k_2 \), respectively. Among their results are: if \( G \) has a 1-vertex bimagic vertex labeling and \( G \neq C_4 \), then \( G + K_1 \) admits a 1-vertex bimagic vertex labeling; \( C_n \) a 1-vertex bimagic if and only if \( n = 4 \); \( K_{m,n} \) is 1-vertex bimagic; graphs obtained from \( P_n \) \( (n \geq 3) \) by adding edges joining every pair of vertices an odd distance apart are 1-vertex bimagic; \( n \)-partite graphs of the form \( K_{p,p,\ldots,p} \) are 1-vertex bimagic for all \( p > 1 \) when \( n \) is even and 1-vertex bimagic for all even \( p \) when \( n \) is odd; a regular or biregular graph admits a 1-vertex bimagic labeling if and only if it admits an odd 1-vertex bimagic labeling and if and only it admits an even 1-vertex bimagic labeling.

Baskar Babujee and Jagadesh [301], [308], [309], and [307] proved the following graphs have super edge bimagic labelings: cycles of length 3 with a nontrivial path attached; \( P_3 \odot K_{1,n} \) \( n \) even; \( P_n + K_2 \) \( (n \) odd); \( P_2 + mK_1 \) \( (m \geq 2) \); \( 2P_n \) \( (n \geq 2) \); the disjoint union of two stars; \( 3K_{1,n} \) \( (n \geq 2) \); \( P_n \cup P_{n+1} \) \( (n \geq 2) \); \( C_3 \cup K_{1,n} \); \( P_n \); \( K_{1,n} \); \( K_{1,n,n} \); the graphs obtained by joining the centers of any two stars with an edge or a path of length 2; the graphs obtained by joining the centers of two copies of \( K_{1,n} \) \( (n \geq 3) \) with a path of length 2 then joining the center one of copies of \( K_{1,n} \) to the center of a third copy of \( K_{1,n} \) with a path of length 2; combs \( P_n \odot K_1 \); cycles; wheels; fans; gears; \( K_n \) if and only if \( n \leq 5 \).
In [1314] López, Muntaner-Batle, and Rius-Font give a necessary condition for a complete graph to be edge bimagic in the case that the two constants have the same parity.

In [305] Baskar Babujee, Babitha, and Vishnupriya make the following definitions. For any natural number \( a \), a graph \( G(p,q) \) is said to be \( a \)-additive super edge bimagic if there exists a bijective function \( f \) from \( V(G) \cup E(G) \) to \( \{a + 1, a + 2, \ldots, a + p + q\} \) such that for every edge \( uv \), \( f(u) + f(v) + f(uv) = k_1 \) or \( k_2 \). For any natural number \( a \), a graph \( G(p,q) \) is said to be \( a \)-multiplicative super edge bimagic if there exists a bijective \( f \) from \( V(G) \cup E(G) \) to \( \{a, 2a, \ldots, (p+q)a\} \) such that for every edge \( uv \), \( f(u) + f(v) + f(uv) = k_1 \) or \( k_2 \). A graph \( G(p,q) \) is said to be super edge-odd bimagic if there exists a bijection \( f \) from \( V(G) \cup E(G) \) to \( \{1, 3, 5, \ldots, 2(p + q) - 1\} \) such that for every edge \( uv \), \( f(u) + f(v) + f(uv) = k_1 \) or \( k_2 \).

If \( f \) is a super edge bimagic labeling, then a function \( g \) from \( E(G) \) to \( \{0, 1\} \) with the property that for every edge \( uv \), \( g(uv) = 0 \) if \( f(u) + f(v) + f(uv) = k_1 \) and \( g(uv) = 1 \) if \( f(u) + f(v) + f(uv) = k_2 \) is called a super edge bimagic cordial labeling if the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. They prove: super edge bimagic graphs are \( a \)-additive super edge bimagic; super edge bimagic graphs are \( a \)-multiplicative super edge bimagic; if \( G \) is super edge-magic, then \( G + K_1 \) is super edge bimagic labeling; the union of two super edge magic graphs is super edge bimagic; and \( P_1, C_{2n} \) and \( K_{1,n} \) are super edge bimagic cordial.

For any nontrivial Abelian group \( A \) under addition a graph \( G \) is said to be \( A \)-magic if there exists a labeling \( f \) of the edges of \( G \) with the nonzero elements of \( A \) such that the vertex labeling \( f^+ \) defined by \( f^+(v) = \Sigma f(uv) \) over all edges \( vu \) is a constant. In [1912] and [1913] Stanley noted that \( Z \)-magic graphs can be viewed in the more general context of linear homogeneous diophantine equations. Shiu, Lam, and Sun [1811] have shown the following: the union of two edge-disjoint \( A \)-magic graphs with the same vertex set is \( A \)-magic; the Cartesian product of two \( A \)-magic graphs is \( A \)-magic; the lexicographic product of two \( A \)-magic connected graphs is \( A \)-magic; for an Abelian group \( A \) of even order a graph is \( A \)-magic if and only if the degrees of all of its vertices have the same parity; if \( G \) and \( H \) are connected and \( A \)-magic, \( G \) composed with \( H \) is \( A \)-magic; \( K_{m,n} \) is \( A \)-magic when \( m, n \geq 2 \) and \( A \) has order at least 4; \( K_n \) with an edge deleted is \( A \)-magic when \( n \geq 4 \) and \( A \) has order at least 4; all generalized theta graphs (§4.4 for the definition) are \( A \)-magic when \( A \) has order at least 4; \( C_n + K_m \) is \( A \)-magic when \( n \geq 3, m \geq 2 \) and \( A \) has order at least 2; wheels are \( A \)-magic when \( A \) has order at least 4; flower graphs \( C_m @ C_n \) are \( A \)-magic when \( m, n \geq 2 \) and \( A \) has order at least 4 \( (C_m @ C_n) \) is obtained from \( C_n \) by joining the end points of a path of length \( m - 1 \) to each pair of consecutive vertices of \( C_n \).

When the constant sum of an \( A \)-magic graph is zero the graph is called zero-sum \( A \)-magic. The null set \( N(G) \) of a graph \( G \) is the set of all positive integers \( h \) such that \( G \) is zero-sum \( Z_h \)-magic. Akbari, Ghareghani, Khosrovshahi, and Zare [84] and Akbari, Kano, and Zare [85] proved that the null set \( N(G) \) of an \( r \)-regular graph \( G, r \geq 3 \), does not contain the numbers 2, 3 and 4. Akbari, Rahmati, and Zare [86] proved the following: if \( G \) is an even regular graph then \( G \) is zero-sum \( Z_h \)-magic for all \( h \); if \( G \) is an odd \( r \)-regular graph, \( r \geq 3 \) and \( r \neq 5 \) then \( N(G) \) contains all positive integers except 2 and 4; if an odd regular graph is also 2-edge connected then \( N(G) \) contains all positive integers.
except 2; and a 2-edge connected bipartite graph is zero-sum $Z_h$-magic for $h \geq 6$. They also determine the null set of 2-edge connected bipartite graphs, describe the structure of some odd regular graphs, $r \geq 3$, that are not zero-sum 4-magic, and describe the structure of some 2-edge connected bipartite graphs that are not zero-sum $Z_h$-magic for $h = 2, 3, 4$. They conjecture that every 5-regular graph admits a zero-sum 3-magic labeling.

In [1212] Lee, Saba, Salehi, and Sun investigate graphs that are $A$-magic where $A = V_i \approx Z_2 \oplus Z_2$ is the Klein four-group. Many of theorems are special cases of the results of Shiu, Lam, and Sun [1811] given in the previous paragraph. They also prove the following are $V_4$-magic: a tree if and only if every vertex has odd degree; the star $K_{1,n}$ if and only if $n$ is odd; $K_{m,n}$ for all $m, n \geq 2$; $K_n - e$ (edge deleted $K_n$) when $n > 3$; even cycles with $k$ pendent edges if and only if $k$ is even; odd cycles with $k$ pendent edges if and only if $k$ is odd; wheels; $C_n + \overline{K}_2$; generalized theta graphs; graphs that are copies of $C_n$ that share a common edge; and $G + \overline{K}_2$ whenever $G$ is $V_4$-magic.

In [478] Choi, Georges, and Mauro explore $Z_k^4$-magic graphs in terms of even edge-coverings, graph parity, factorability, and nowhere-zero 4-flows. They prove that the minimum $k$ such that bridgeless $G$ is zero-sum $Z_2^k$-magic is equal to the minimum number of even subgraphs that cover the edges of $G$, known to be at most 3. They also show that bridgeless $G$ is zero-sum $Z_2^k$-magic for all $k \geq 2$ if and only if $G$ has a nowhere-zero 4-flow, and that $G$ is zero-sum $Z_2^k$-magic for all $k \geq 2$ if $G$ is Hamiltonian, bridgeless planar, or isomorphic to a bridgeless complete multipartite graph, and establish equivalent conditions for graphs of even order with bridges to be $Z_2^k$-magic for all $k \geq 4$. In [698] Georges, Mauro, and Wang utilized well-known results on edge-colorings in order to construct infinite families that are $V_4$-magic but not $Z_4$-magic.

Baskar Babujee and Shobana [320] prove that the following graphs have $Z_3$-magic labelings: $C_{2n}$; $K_n$ ($n \geq 4$); $K_{m,2m}$ ($m \geq 3$); ladders $P_n \times P_2$ ($n \geq 4$); bistars $B_{3n-1,3n-1}$; and cyclic, dihedral, and symmetric Cayley digraphs for certain generating sets. Siddiqui [1836] proved that generalized prisms, generalized antiprisms, fans and friendship graphs are $Z_{3k}$-magic for $k \geq 1$. In [484] Chou and Lee investigated $Z_3$-magic graphs.

Chou and Lee [484] showed that every graph is an induced subgraph of an $A$-magic graph for any nontrivial Abelian group $A$. Thus it is impossible to find a Kuratowski type characterization of $A$-magic graphs. Low and Lee [1327] have shown that if a graph is $A_1$-magic then it is $A_2$-magic for any subgroup $A_2$ of $A_1$ and for any nontrivial Abelian group $A$ every Eulerian graph of even size is $A$-magic. For a connected graph $G$, Low and Lee define $T(G)$ to be the graph obtained from $G$ by adding a disjoint $uv$ path of length 2 for every pair of adjacent vertices $u$ and $v$. They prove that for every finite nontrivial Abelian group $A$ the graphs $T(P_{2k})$ and $T(K_{1,2n+1})$ are $A$-magic. Shiu and Low [1819] show that $K_{k_1,k_2,...,k_n}(k_i \geq 2)$ is $A$-magic, for all $A$ where $|A| \geq 3$. In [1824] Shiu and Low analyze the $A$-magic property for complete $n$-partite graphs and composition graphs with deleted edges. Lee, Salehi and Sun [1215] have shown that for $m, n \geq 3$ the double star $DS(m,n)$ is $Z$-magic if and only if $m = n$.

S. M. Lee [1176] calls a graph $G$ fully magic if it is $A$-magic for all nontrivial abelian groups $A$. Low and Lee [1327] showed that if $G$ is an Eulerian graph of even size, then $G$ is fully magic. In [1176] Lee gives several constructions that produce infinite families of
fully magic graphs and proves that every graph is an induced subgraph of a fully magic graph.

In [1144] Kwong and Lee call the set of all $k$ for which a graph is $Z_k$-magic the integer-magic spectrum of the graph. They investigate the integer-magic spectra of the coronas of some specific graphs including paths, cycles, complete graphs, and stars. Low and Sue [1330] have obtained some results on the integer-magic spectra of tessellation graphs. Shiu and Low [1820] provide the integer-magic spectra of sun graphs. Chopra and Lee [482] determined the integer-magic spectra of all graphs consisting of any number of pairwise disjoint paths with common end vertices (that is, generalized theta graphs). Low and Lee [1327] also prove that if $G$ is an Abelian group and $H$ are $A$-magic, then so are $G \times H$ and the lexicographic product of $G$ and $H$. Low and Shiu [1329] prove: $K_{1,n} \times K_{1,n}$ has a $Z_{n+1}$-magic labeling with magic constant 0; if $G \times H$ is $Z_2$-magic, then so are $G$ and $H$; if $G$ is $Z_m$-magic and $H$ is $Z_n$-magic, then the integer-magic spectra of $G \times H$ contains all common multiples of $m$ and $n$; if $n$ is even and $k_i \geq 3$ then the integer-magic spectra of $P_{k_1} \times P_{k_2} \times \cdots \times P_{k_n} = \{3, 4, 5, \ldots\}$. In [1822] Shiu and Low determine all positive integers $k$ for which fans and wheels have a $Z_k$-magic labeling with magic constant 0. Shiu and Low [1823] determined for which $k \geq 2$ a connected bicyclic graph without a pendant has a $Z_k$-magic labeling.

Jeyanthi and Jeya Daisy [912] prove that $P_n^2$ ($n > 4$), $C_n^2$, the total graph of $C_n$, and the splitting graph of $C_{2n}$ are $Z_k$-magic graphs. They also prove: the splitting graph of $C_n$ is $Z_k$-magic when $n$ is even and $k$ is odd and $k$ is even, the middle graph of $C_n$ is $Z_k$-magic when $n$ and $k$ are odd, the $m\Delta_{2n}$-snake graph is $Z_k$-magic when $k > m$, the graph obtained by joining the vertices $u_i$ and $u_{i+1}$ of $C_n$ by a path of length $m_i$ for $1 \leq i \leq n-1$, and $u_1$ and $u_n$ by a path of length $m_n$ is $Z_k$-magic if either all $m_1, m_2, \ldots, m_n$ are even or all are odd. In [913] Jeyanthi and Jeya Daisy prove total graphs of the paths, flower graphs, and $C_m \times P_n$ are $Z_k$-magic. They also prove closed helms are $Z_k$-magic when $k > 4$ is even, lotuses inside a circle are $Z_{4k}$-magic, and graphs consisting of two cycles with a common edge are $Z_k$-magic when at least one cycle is even. In [919] Jeyanthi prove the following graphs are $Z_k$-magic: two odd cycles connected by a path; the graph obtained by identifying a vertex of $C_n$ with a pendant vertex of a star, $m$-splitting graphs of paths, and $m$-middle graphs of paths. They prove that if $G$ is $Z_m$-magic with magic constant $a$ then $G \odot K_m$ is $Z_m$-magic.

Jeyanthi and Jeya Daisy [911] prove that the subdivision graphs of the following families of graphs are $Z_k$-magic: ladders, triangular ladders, the shadow graph of paths, the total graph of paths, flowers, generalized prisms $C_m \times P_n$ for $m$ even, $m\Delta_n$-snakes, lotuses inside a circle, the square graph of paths, gears of even cycles, closed helms of even cycles, and antiprisms $A_{2n}^n$ for $m$ even.

Recall the star of a graph $G$ is the graph obtained by replacing each vertex of $K_{1,n}$ by a copy of $G$. Jeyanthi and Jeya Daisy [914] proved that the star graphs of cycles, flowers,
double wheels, shells, cylinders, gears, generalised Jahangir graphs, lotuses inside a circle, wheels, and closed helms graph are $Z_k$-magic graphs.

Let $G$ be a graph and let $G_1, G_2, \ldots, G_n$ be $n \geq 2$ copies of $G$. The graph obtained by replacing each endpoint vertex of $K_{1,n}$ by the graphs $G_1, G_2, \ldots, G_n$ is called the open star of $G$. Jeyanthi and Jeya Daisy [915] proved that the open star graphs of shells, flowers, double wheels, cylinders, wheels, generalised Peterson graphs, lotuses inside a circle, and closed helms are $Z_k$-magic graphs. They also prove that the super subdivision of any graph is $Z_k$-magic.

Jeyanthi and Jeya Daisy [916] proved that the path union of $n \geq 2$ copies of the following families of graphs are $Z_k$-magic: odd cycles; generalised Peterson graphs $P(r, m)$ when $r$ is odd and $1 \leq m \leq \frac{k}{2}$; shell graphs $S_r$ when $r > 3$; wheels $W_r$ when $r > 3$; closed helms $CH_r$ when (i) $r > 3$ is odd and (ii) $r$ is even and $k$ is even; double wheels $DW_r$ when $r > 3$ is odd; flowers $Fl_r$ when $r > 2$; $C_r \times P_2$ when $r$ is odd; total graphs of paths $T(P_r)$ for all $n, r > 4$; lotuses inside a circle $LC_r$ when $r > 3$; and $C_r \odot K_1$ for odd $r$.

Jeyanthi and Jeya Daisy [917] proved that the following graphs are $k$-magic: shell graphs $S_n$ when $n$ is odd or $n$ is even and $k$ is even; generalised Jahangir graphs $J_{n,s}$ when $n$ and $s$ have the same parity or $n$ is even, $s$ is odd, and $k$ is even; $(P_n + P_1) \times P_2$ when $n$ is odd; double wheels $2C_n + K_1$; mongolian tents $M(m, n)$ when $m$ is even; flower snark graphs; slanting ladders (that is, graphs obtained from two paths $u_1, u_2, \ldots, u_n$ and $v_1, v_2, \ldots, v_n$ by joining each $u_i$ with $v_{i+1}$, $1 \leq i \leq n - 1$) when $n$ is even; double step grid graphs; double arrow graphs obtained from $P_n \times P_n$ by joining a new vertex with the $m$ vertices of the first copy of $P_m$ and another new vertex with the $m$ vertices of the last copy of $P_m$ when $m$ is even; semi Jahangir graphs (the connected graph with vertex set \{p, x_i, y_k : 1 \leq i \leq n + 1, 1 \leq k \leq n\} and the edge set \{px_i : 1 \leq i \leq n + 1\} \cup \{x_iy_k : 1 \leq i \leq n\}) graphs obtained by connecting double wheels $DW_{n_1}$ and $DW_{n_2}$ by a path when $n_1$ and $n_2$ are odd; graphs obtained by joining two copies of shell graphs by a path; and the splitting graph of a $Z_k$ magic graph with magic constant 0.

Let $G$ be a graph with $n$ vertices $\{u_1, u_2, \ldots, u_n\}$ and consider $n$ copies of $G, G_1, G_2, \ldots, G_n$, with vertex sets $V(G_i) = \{u_i^{(j)} : 1 \leq i \leq n, 1 \leq j \leq n\}$. The cycle of a graph $G$, denoted by $C(n G)$, is obtained by identifying the vertex $u_i^{(j)}$ of $G_j$ with $u_i$ of $G$ for $1 \leq i \leq n, 1 \leq j \leq n$. Jeyanthi and Jeya Daisy [918] prove that the following graphs are $Z_k$-magic: $C(n, C_r)$ except $r$ is even, $n$ is odd, and $k$ is odd; generalised Peterson graphs $C(n, P(r, m))$ except $r$ is even, $n$ is odd, and $k$ is odd; cycles of shell graphs; cycles of wheel graphs; cycles of closed helms; cycles of double wheels $C(n, DW_r)$ except $r$ is even, $n$ is odd, and $k$ is odd; cycles of triangular ladder graphs; cycles of flower graphs; and cycles of lotus inside a circle graphs. Jeyanthi and Jeya Daisy [918] also prove that if $G$ is $Z_k$-magic then $C(n, G)$ is $Z_k$-magic if $n$ or $k$ are even.

Shiu and Low [1821] have introduced the notion of ring-magic as follows. Given a commutative ring $R$ with unity, a graph $G$ is called $R$-ring-magic if there exists a labeling $f$ of the edges of $G$ with the nonzero elements of $R$ such that the vertex labeling $f^+$ defined by $f^+(v) = \sum f(vu)$ over all edges $vu$ and vertex labeling $f^x$ defined by $f^x(v) = \Pi f(vu)$ over all edges $vu$ are constant. They give some results about $R$-ring-magic graphs.

In [429] Cahit says that a graph $G(p, q)$ is total magic cordial (TMC) provided there
is a mapping \( f \) from \( V(G) \cup E(G) \) to \( \{0, 1\} \) such that \((f(a) + f(b) + f(ab)) \mod 2 = 0\) for all edges \( ab \in E(G) \) and \( |f(0) - f(1)| \leq 1 \) where \( f(0) \) denotes the sum of the number of vertices labeled with 0 and the number of edges labeled with 0 and \( f(1) \) denotes the sum of the number of vertices labeled with 1 and the number of edges labeled with 1. He says a graph \( G \) is total sequential cordial (TSC) if there is a mapping \( f \) from \( V(G) \cup E(G) \) to \( \{0, 1\} \) such that for each edge \( e = ab \) with \( f(e) = |f(a) - f(b)| \) it is true that \( |f(0) - f(1)| \leq 1 \) where \( f(0) \) denotes the sum of the number of vertices labeled with 0 and the number of edges labeled with 0 and \( f(1) \) denotes the sum of the number of vertices labeled with 1 and the number of edges labeled with 1. He proves that the following graphs have a TMC labeling: \( K_{m,n} \) \((m,n>1)\), trees, cordial graphs, and \( K_n \) if and only if \( n = 2, 3, 5, \text{ or } 6 \). He also proves that the following graphs have a TSC labeling: trees; cycles; complete bipartite graphs; friendship graphs; cordial graphs; cubic graphs other than \( K_4 \); wheels \( W_n \) \((n > 3)\); \( K_{4k+1} \) if and only if \( k \geq 1 \) and \( \sqrt{k} \) is an integer; \( K_{4k+2} \) if and only if \( \sqrt{4k+1} \) is an integer; \( K_{4k} \) if and only if \( \sqrt{4k+1} \) is an integer; and \( K_{4k+3} \) if and only if \( \sqrt{k+1} \) is an integer. In [903] Jeyanthi, Angel Benseera, and Cahit prove \( mP_2 \) is TMC if \( m \equiv 2 \mod 4 \), \( mP_n \) is TMC for all \( m \geq 1 \) and \( n \geq 3 \), and obtain partial results about TMC labelings of \( mK_n \).

Jeyanthi and Angel Benseera [901] investigated the existence of totally magic cordial (TMC) labelings of the one-point unions of copies of cycles, complete graphs and wheels. In [902] Jeyanthi and Angel Benseera prove that if \( G_i(p_i, q_i), i = 1, 2, 3, \ldots, n \) are totally magic cordial graphs with \( C = 0 \) such that \( p_i + q_i, i = 1, 2, 3, \ldots, n \) are even, and \( |p_i - 2m_i| \leq 1 \), where \( m_i \) is the number of vertices labeled with 0 in \( G_i, i = 1, 2, \ldots, n \), then \( G_1 + G_2 + \cdots + G_n \) is TMC; if \( G \) is an odd graph with \( p + q \equiv 2 \mod 4 \), then \( G \) is not TMC; fans \( F_n \) are TMC for \( n \geq 2 \); wheels \( W_n \) \((n \geq 3)\) are TMC if and only if \( n \equiv 3 \mod 4 \); \( mW_{4k+3} \) is TMC if and only if \( m \) is even; \( mW_n \) is TMC if \( n \equiv 3 \mod 4 \); \( C_n + K_{2m+1} \) is TMC if and only if \( n \equiv 3 \mod 4 \); \( C_{2n+1} \times K_m \) is TMC if and only if \( m \) is odd; the disjoint union of \( K_{1,m} \) and \( K_{1,n} \) is TMC if and only if \( m \) or \( n \) is even.

For a bijection \( f : V(G) \cup E(G) \to Z_k \) such that for each edge \( uv \in E(G) \), \( f(u) + f(v) + f(uv) \) is constant \((\mod k)\), \( n_f(i) \) denotes the number vertices and edges labeled by \( i \) under \( f \). If \( |n_f(i) - n_f(j)| \leq 1 \) for all \( 0 \leq i < j \leq k - 1 \), \( f \) is called a \( k \)-totally magic cordial labeling of \( G \). A graph is said to be \( k \)-totally magic cordial if it admits a \( k \)-totally magic cordial labeling. In [904] Jeyanthi, Angel Benseera, and Lau provide some ways to construct new families of \( k \)-totally magic cordial \((k-TMC)\) graphs from a known \( k \)-totally magic cordial graph. Let \( G \) be a \((p, q)\)-graph, respectively, an \((n, m)\)-graph that admits a \( k \)-TMC labeling \( f \) \((\text{respectively, } g)\) with constant \( C \) such that \( n_f(i) \) and \( v_f(i) = \frac{p}{k} \) \((\text{or } n_g(i) \text{ and } v_g(i) = \frac{q}{k})\) are constants for all \( 0 \leq i \leq k - 1 \), they show that \( G + \bar{H} \) also admits a \( k \)-TMC labeling with constant \( C \). They prove the following. If \( G \) is an edge magic total graph, then \( G \) is \( k \)-TMC for \( k \geq 2 \); if \( G \) is an odd graph with \( p + q \equiv k \mod 2k \) and \( k \equiv 2 \mod 4 \), then \( G \) is not \( k \)-TMC; if \( n \equiv 7 \mod 8 \), \( K_n \odot K_1 \) is not \( 2n \)-TMC; if \( n \equiv 2 \mod 4 \), \( C_n \odot C_3 \) is not \( n \)-TMC; if \( n \equiv 1 \mod 2 \), \( C_n \odot K_5 \) is not \( 2n \)-TMC; if \( n \equiv 2 \mod 4 \), \( C_n \times P_2 \) is not \( n \)-TMC; \( K_n \odot K_1 \) \((n \geq 3)\) is \( n \)-TMC; \( S_n \) is \( n \)-TMC for all \( n \geq 1 \); \( K_{m,n} \) \((m \geq n \geq 2)\) is both \( m \)-TMC and \( n \)-TMC; \( W_n \) is \( n \)-TMC for all odd \( n \geq 3 \) and is \( 3 \)-TMC for \( n \equiv 0 \mod 6 \);
mK\textit{n} (n \geq 2) is n-TMC if n \geq 3 is odd; K\textit{n} + K\textit{n} is n-TMC if n \geq 3 is odd; S\textit{n} + S\textit{n} (n \geq 1) is (n + 1)-TMC; and if m \geq 3 and n is odd, C\textit{n} \times P\textit{m} (n \geq 3) is n-TMC. In [906] Jeyanthi, Angel Benseera, and Lau call a graph G hypo-k-TMC if G – \{v\} is k-TMC for each vertex v in V(G) and establish that some families of graphs admit and do not admit hypo-k-TMC labeling.

A binary magic total labeling of a graph G is a function f : V(G) \cup E(G) \rightarrow \{0, 1\} such that f(a) + f(b) + f(ab) \equiv C \ (\text{mod} \ 2) for all ab \in E(G). Jeyanthi and Angel Benseera [905] define the totally magic cordial deficiency of G as the minimum number of vertices taken over all binary magic total labeling of G that is necessary to add so that the resulting graph is totally magic cordial. The totally magic cordial deficiency of G is denoted by \mu_{T}(G). They provide \mu_{T}(K\textit{n}) for some cases.

Let G be a graph rooted at a vertex u and f\textsubscript{i}(u) = 0 for i = 1, 2, \ldots, k and n\textsubscript{f\textsubscript{i}}(0) = \alpha\textsubscript{i}, n\textsubscript{f\textsubscript{i}}(1) = \beta\textsubscript{i} for i = 1, 2, \ldots, k. Jeyanthi and Angel Benseera [905] determine the totally magic cordial deficiency of the one-point union G\textsuperscript{(m)} of n copies of G. They show that for n \equiv 3 \ (\text{mod} \ 4) the totally magic cordial deficiency of W\textsubscript{n}, W\textsubscript{n,4t+1} \equiv -n \ (\text{mod} \ 2) for all \textit{n}. Jeyanthi and Angel Benseera [905] determine the totally magic cordial deficiency of the one-point union G\textsuperscript{(m)} of n copies of G. They show that for n \equiv 3 \ (\text{mod} \ 4) the totally magic cordial deficiency of W\textsuperscript{n}, W\textsubscript{n,4t+1} \equiv -n \ (\text{mod} \ 2) for all \textit{n}. They provide \mu_{T}(K\textit{n}) for some cases.

In 2001, Simanjuntak, Rodgers, and Miller [1398] defined a 1-vertex magic (also known as distance magic labeling vertex labeling of G(V, E) as a bijection from V \rightarrow \{1, 2, \ldots, |V|\} with the property that there is a constant k such that at any vertex v the sum \sum f(u) taken over all neighbors of v is k. Among their results are: H \times \overline{K}_{2k} has a 1-vertex-magic vertex labeling for any regular graph H; the symmetric complete multipartite graph with p parts, each of which contains n vertices, has a 1-vertex-magic vertex labeling if and only if whenever n is odd, p is also odd; P\textsubscript{n} has a 1-vertex-magic vertex labeling if and only if n = 1 or 3; C\textsubscript{n} has a 1-vertex-magic vertex labeling if and only if n = 4; K\textsubscript{n} has a 1-vertex-magic vertex labeling if and only if n = 1; W\textsubscript{n} has a 1-vertex-magic vertex labeling if and only if n = 4; a tree has a 1-vertex-magic vertex labeling if and only if it is P\textsubscript{1} or P\textsubscript{3}; and r-regular graphs with r odd do not have a 1-vertex-magic vertex labeling.

Miller, Rodgers, and Simanjuntak [1398] the complete p-partite (p > 1) graph K\textsubscript{n,n,...,n} (n > 1) has a 1-vertex-magic vertex labeling if and only if either n is even or np is odd. Shafiq, Ali, Simanjuntak [1775] proved mK\textsubscript{n,n,...,n} has a 1-vertex-magic vertex labeling if n is even or mnp is odd and m \geq 1, n > 1, p > 1; and mK\textsubscript{n,n,...,n} does not have a 1-vertex-magic vertex labeling if np is odd, p \equiv 3 \ (\text{mod} \ 4), and m is even.

Recall if V(G) = \{v\textsubscript{1}, v\textsubscript{2}, \ldots, v\textsubscript{p}\} is the vertex set of a graph G and H\textsubscript{1}, H\textsubscript{2}, \ldots, H\textsubscript{p} are isomorphic copies of a graph H, then G[H] is the graph obtained from G by replacing each vertex v\textsubscript{i} of G by H\textsubscript{i} and joining every vertex in H\textsubscript{i} to every neighbor of v\textsubscript{i}. Shafiq, Ali, Simanjuntak [1775] proved if G is an r-regular graph (r \geq 1) then G[C\textsubscript{n}] has a 1-vertex-magic vertex labeling if and only if n = 4. They also prove that for m \geq 1 and n > 1, mC\textsubscript{p}[\overline{K}_{n}] has 1-vertex-magic vertex labeling if and only if either n is even or mnp is odd or n is odd and p \equiv 3 \ (\text{mod} \ 4).

For a graph G Jeyanthi and Angel Benseera [900] define a function f from V(G) \cup E(G) to \{0, 1\} to be a totally vertex-magic cordial labeling (TVMC) with a constant C if
$f(a)+\sum_{b \in N(a)} f(ab) \equiv C \pmod{2}$ for all vertices $a \in V(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $N(a)$ is the set of vertices adjacent to the vertex $a$ and $n_f(i)$ is the sum of the number of vertices and edges with label $i$. They prove the following graphs have totally vertex-magic cordial labelings: vertex-magic total graphs; trees; $K_n$; $K_{m,n}$ whenever $|m-n| \leq 1$; $P_n + P_2$; friendship graphs with $C = 0$; and flower graphs $Fl_n$ for $n \geq 3$ with $C=0$. They also proved that if $G$ is TVMC with $C = 1$, then the graph obtained by identifying any vertex of $G$ with any vertex of a tree is TVMC with $C = 1$; if $G$ is a $(p,q)$ graph with $|p-q| \leq 1$, then $G$ is TVMC with $C = 1$; and if $G(p,q)$ is a TVMC graph with constant $C = 0$ where $p$ is odd, then $G + \overline{K_{2m}}$ is TVMC with $C = 1$ if $m$ is odd and with $C = 0$ if $m$ is even.

Jeyanthi, Angel Benseera and Immaculate Mary [899] showed that the following graphs have totally vertex-magic cordial labelings: $(p,q)$ graphs with $|p-q| \leq 1$; flower graphs $Fl_n$ for $n \geq 3$; ladders; and graphs obtained by identifying a vertex of $C_m$ with each vertex of $C_n$. They also proved that if $G_1(p_1,q_1)$ and $G_2(p_2,q_2)$ are two disjoint totally magic cordial graphs with $p_1=q_1$ or $p_2=q_2$ then $G_1 \cup G_2$ is totally magic cordial. In Theorem 10 in [429] Cahit stated that $K_n$ is totally magic cordial if and only if $n \in \{2,3,5,6\}$. Jeyanthi and Angel Benseera [905] proved that $K_n$ is totally magic cordial if and only if $\sqrt{4k+1}$ has an integer value when $n = 4k$; $\sqrt{k+1}$ or $\sqrt{k}$ have an integer value when $n = 4k + 1$; $\sqrt{4k+5}$ or $\sqrt{4k+1}$ have an integer value when $n = 4k + 2$; or $\sqrt{k+1}$ has an integer value when $n = 4k + 3$.

A graph $G$ is said to have a totally magic cordial TMC labeling with constant $C$ if there exists a mapping $f : V(G) \cup E(G) \rightarrow \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ ($i=0,1$) is the sum of the number of vertices and edges with label $i$. In [902] Jeyanthi and Angel Benseera prove that if $G_i(p_i,q_i)$, $i=1,2,3,\ldots,n$ are totally magic cordial graphs with $C = 0$ such that $p_i + q_i$, $i=1,2,3,\ldots,n$ are even, and $|p_i - 2m_i| \leq 1$, where $m_i$ is the number of vertices labeled with 0 in $G_i$, $i=1,2,\ldots,n$, then $G_1 + G_2 + \cdots + G_n$ is TMC. They also prove the following. If $G$ be an odd graph with $p + q \equiv 2 \pmod{4}$, then $G$ is not TMC; fan graph $F_n$ is TMC for $n \geq 2$; the wheel graph $W_n$ ($n \geq 3$) is TMC if and only if $n \neq 3 \pmod{4}$; $mW_{4t+3}$ is TMC if and only if $m$ is even; $mW_n$ is TMC if $n \neq 3 \pmod{4}$ and $m \geq 1$; $C_n + \overline{K_{2m+1}}$ is TMC if and only if $n \neq 3 \pmod{4}$; $C_{2n+1} \odot \overline{K_m}$ is TMC if and only if $m$ is odd; and the disjoint union of $K_{1,m}$ and $K_{1,n}$ is TMC if and only if $m$ or $n$ is even.

Balbuena, Barker, Lin, Miller, and Sugeng [267] call a vertex-magic total labeling of a graph $G(V,E)$ an $a$-vertex consecutive magic labeling if the vertex labels are $\{a+1,a+2,\ldots,a+|V|\}$ where $0 \leq a \leq |E|$. They prove: if a tree of order $n$ has an $a$-vertex consecutive magic labeling then $n$ is odd and $a = n-1$; if $G$ has an $a$-vertex consecutive magic labeling with $n$ vertices and $e = n$ edges, then $n$ is odd and if $G$ has minimum degree 1, then $a = (n+1)/2$ or $a = n$; if $G$ has an $a$-vertex consecutive magic labeling with $n$ vertices and $e$ edges such that $2a \leq e$ and $2e \geq \sqrt{6n-1}$, then the minimum degree of $G$ is at least 2; if a 2-regular graph of order $n$ has an $a$-vertex consecutive magic labeling, then $n$ is odd and $a = 0$ or $n$; and if a $r$-regular graph of order $n$ has an $a$-vertex consecutive magic labeling, then $n$ and $r$ have opposite parities.

Balbuena et al. also call a vertex-magic total labeling of a graph $G(V,E)$ a $b$-edge
consecutive magic labeling if the edge labels are \( \{b+1, b+2, \ldots, b+|E|\} \) where \( 0 \leq b \leq |V| \). They prove: if \( G \) has \( n \) vertices and \( e \) edges and has a \( b \)-edge consecutive magic labeling and one isolated vertex, then \( b = 0 \) and \( (n - 1)^2 + n^2 = (2e + 1)^2 \); if a tree with odd order has a \( b \)-edge consecutive magic labeling then \( b = 0 \); if a tree with even order has a \( b \)-edge consecutive magic labeling then it is \( P_4 \); a graph with \( n \) vertices and \( e \) edges such that \( e \geq 7n/4 \) and \( b \geq n/4 \) and a \( b \)-edge consecutive magic labeling has minimum degree 2; if a 2-regular graph of order \( n \) has a \( b \)-edge consecutive magic labeling, then \( n \) is odd and \( b = 0 \) or \( b = n \); and if a \( r \)-regular graph of order \( n \) has an \( b \)-edge consecutive magic labeling, then \( n \) and \( r \) have opposite parities.

Sugeng and Miller [1935] prove: If \( (V, E) \) has an \( a \)-vertex consecutive edge magic labeling, where \( a \neq 0 \) and \( a \neq |E| \), then \( G \) is disconnected; if \( (V, E) \) has an \( a \)-vertex consecutive edge magic labeling, where \( a \neq 0 \) and \( a \neq |E| \), then \( G \) cannot be the union of three trees with more than one vertex each; for each nonnegative \( a \) and each positive \( n \), there is an \( a \)-vertex consecutive edge magic labeling with \( n \) vertices; the union of \( r \) stars and a set of \( r - 1 \) isolated vertices has an \( s \)-vertex consecutive edge magic labeling, where \( s \) is the minimum order of the stars; for every \( b \) every caterpillar has a \( b \)-edge consecutive edge magic labeling; if a connected graph \( G \) with \( n \) vertices has a \( b \)-edge consecutive edge magic labeling where \( 1 \leq b \leq n - 1 \), then \( G \) is a tree; the union of \( r \) stars and a set of \( r - 1 \) isolated vertices has an \( r \)-edge consecutive edge magic labeling.

Baskar Babujee, Vishnupriya, and Jagadesh [323] introduced a labeling called \( a \)-vertex consecutive edge bimagic total as a graph \( G(V, E) \) for which there are two positive integers \( k_1 \) and \( k_2 \) and a bijection \( f \) from \( V \cup E \) to \( \{1, 2, \ldots, |V| + |E|\} \) such that \( f(u) + f(v) + f(uv) = k_1 \) or \( k_2 \) for all edges \( uv \) and \( f(V) = \{a + 1, a + 2, \ldots, a + |V|\} \), \( 0 \leq a \leq |V| \). They proved the following graphs have such labelings: \( P_n, K_{1,n} \), combs, bistars \( B_{m,n} \), trees obtained by adding a pendent edge to a vertex adjacent to the end point of a path, trees obtained by joining the centers of two stars with a path of length 2, trees obtained from \( P_3 \) by identifying the center of a copy \( K_{1,n} \) with the two end vertices and the middle vertex. In [313] Baskar Babujee and Jagadesh proved that cycles, fans, wheels, and gear graphs have \( a \)-vertex consecutive edge bimagic total labelings. Baskar Babujee, Jagadesh, Vishnupriya [315] study the properties of \( a \)-vertex consecutive edge bimagic total labeling for \( P_3 \circ K_{1,2n}, P_n + K_2 \) (\( n \) is odd and \( n \geq 3 \), \( (P_2 \cup mK_1) + K_2, (P_2 + mK_1) \) (\( m \geq 2 \)), \( C_n \), fans \( P_n + K_1 \), double fans \( P_{n+1} + 2K_1 \), and graphs obtained by appending a path of length at least 2 to a vertex of \( C_3 \). Baskar Babujee and Jagadesh [314] prove the following graphs have \( a \)-vertex consecutive edge bimagic total labelings: \( 2P_n \) (\( n \geq 2 \), \( P_n \cup P_{n+1} \) (\( n \geq 2 \)), \( K_{2,n}, C_n \circ K_1 \), and that \( C_3 \cup K_{1,n} \) an \( a \)-vertex consecutive edge bimagic labeling for \( a = n + 3 \).

Vishnupriya, Manimekalai, and Baskar Babujee [2123] define a labeling \( f \) of a graph \( G(p, q) \) to be a edge bimagic total labeling if there exists a bijection \( f \) from \( V(G) \cup E(G) \to \{1, 2, \ldots, p+q\} \) such that for each edge \( e = (u, v) \in E(G) \) we have \( f(u) + f(v) = k_1 \) or \( k_2 \), where \( k_1 \) and \( k_2 \) are two constants. They provide edge bimagic total labelings for \( B_{m,n}, K_{1,n,n} \), and trees obtained from a path by appending an edge to one of the vertices adjacent to an endpoint of the path. An edge bimagic total labeling is \( G(V, E) \) is called an \( a \)-vertex consecutive edge bimagic total labeling if the vertex labels are \( \{a+1, a+2, \ldots, a+\)
$|V|$ \text{ where } 0 \leq a \leq |E|$. Baskar Babujee and Jagadesh [311] prove the following graphs $a$-vertex consecutive edge-bimagic total labelings: the trees obtained from $K_{1,n}$ by adding a new pendent edge to each of the existing $n$ pendent vertices; the trees obtained by adding a pendent path of length 2 to each of the $n$ pendent vertices of $K_{1,n}$; the graphs obtained by joining the centers of two copies of identical stars by a path of length 2; and the trees obtained from a path by adding new pendent edges to one pendent vertex of the path. Baskar Babujee, Vishnupriya, and Jagadesh [323] proved the following graphs have such labelings: $P_n$, $K_{1,n}$, combs, bistars $B_{m,n}$, trees obtained by adding a pendent edge to a vertex adjacent to the end point of a path, trees obtained by joining the centers of two stars with a path of length 2, trees obtained from $P_3$ by identifying the center of a copy $K_{1,n}$ with the two end vertices and the middle vertex. In [313] Baskar Babujee and Jagadesh proved that cycles, fans, wheels, and gear graphs have $a$-vertex consecutive edge bimagic total labelings. Baskar Babujee, Jagadesh, Vishnupriya [315] study the properties of $a$-vertex consecutive edge bimagic total labeling for $P_3 \odot K_{1,2n}$, $P_n + \overline{K}_2$ ($n$ is odd and $n \geq 3$), $(P_2 \cup mK_1) + \overline{K}_2$, $(P_2 + mK_1)$ ($m \geq 2$), $C_n$, fans $P_n + K_1$, double fans $P_n + 2K_1$, and graphs obtained by appending a path of length at least 2 to a vertex of $C_3$.

Vishnupriya, Manimekalai, and Baskar Babujee [2123] prove that bistars, trees obtained by adding a pendent edge to a vertex adjacent to the end point of a path, and trees obtained subdividing each edge of a star have edge bimagic total labelings. Prathap and Baskar Babujee [1566] obtain all possible edge magic total labelings and edge bimagic total labelings for the star $K_{1,n}$. Magic labelings of directed graphs are discussed in [1361] and [379].
6 Antimagic-type Labelings

6.1 Antimagic Labelings

Hartsfield and Ringel [772] introduced antimagic graphs in 1990. A graph with $q$ edges is called antimagic if its edges can be labeled with $1, 2, \ldots, q$ without repetition such that the sums of the labels of the edges incident to each vertex are distinct. Among the graphs they proved are antimagic are: $P_n$ ($n \geq 3$), cycles, wheels, and $K_n$ ($n \geq 3$). T. Wang [2141] has shown that the toroidal grids $C_{n_1} \times C_{n_2} \times \cdots \times C_{n_k}$ are antimagic and, more generally, graphs of the form $G \times C_n$ are antimagic if $G$ is an $r$-regular antimagic graph with $r > 1$. Cheng [473] proved that all Cartesian products or two or more regular graphs of positive degree are antimagic and that if $G$ is $j$-regular and $H$ has maximum degree at most $k$, minimum degree at least one ($G$ and $H$ need not be connected), then $G \times H$ is antimagic provided that $j$ is odd and $j^2 - j \geq 2k$, or $j$ is even and $j^2 > 2k$. Wang and Hsiao [2142] prove the following graphs are antimagic: $G \times P_n$ ($n > 1$) where $G$ is regular; $G \times K_{1,n}$ where $G$ is regular; compositions $G[H]$ (see §2.3 for the definition) where $H$ is $d$-regular with $d > 1$; and the Cartesian product of any double star (two stars with an edge joining their centers) and a regular graph. In [472] Cheng proved that $P_{n_1} \times P_{n_2} \times \cdots \times P_{n_t}$ ($t \geq 2$) and $C_m \times P_n$ are antimagic. In [1887] Solairaju and Arockiasamy prove that various families of subgraphs of grids $P_m \times P_n$ are antimagic. Liang and Zhu [1262] proved that if $G$ is $k$-regular ($k \geq 2$), then for any graph $H$ with $|E(H)| \geq |V(H)| - 1 \geq 1$, the Cartesian product $H \times G$ is antimagic. They also showed that if $|E(H)| \geq |V(H)| - 1$ and each connected component of $H$ has a vertex of odd degree, or $H$ has at least $2|V(H)| - 2$ edges, then the prism of $H$ is antimagic. Shang [1783] showed that all spiders are antimagic. Lee, Lin, and Tsai [1170] proved that $C_n^2$ is antimagic and the vertex sums form a set of successive integers when $n$ is odd. Shang, Lin, and Liaw [1784] show that a star forest containing no $S_1$ and at most one $S_2$ as components is antimagic. They also prove that if a star forest $mS_2$ is antimagic then $m = 1$ and $mS_2 \cup S_n$ ($n \geq 3$) is antimagic if and only if $m \leq \min\{2n + 1, 2n - 5 + \sqrt{8n^2 - 24n + 17}/2\}$. Wang, Miao, and Li [2152] show that certain graphs with even factors are antimagic. Li [1259] gives antimagic labelings for $C_n^k$ for $k = 2, 3$, and $4$.

For a graph $G$ and a vertex $v$ of $G$, the vertex switching graph $G_v$ is the graph obtained from $G$ by removing all edges incident to $v$ and adding edges joining $v$ to every vertex not adjacent to $v$ in $G$. Vaidya and Vyas [2079] proved that the graphs obtained by the switching of a pendant vertex of a path, a vertex of a cycle, a rim vertex of a wheel, the center vertex of a helm, or a vertex of degree 2 of a fan are antimagic graphs.

Phanalasy, Miller, Rylands and Lieby [1494] in 2011 showed that there is a relationship between completely separating systems and labeling of regular graphs. Based on this relationship they proved that some regular graphs are antimagic. Phanalasy, Miller, Iliopoulos, Pissis and Vaezpour [1492] proved the Cartesian product of regular graphs obtained from [1494] is antimagic. Ryan, Phanalasy, Miller and Rylands introduced the generalized web and flower graphs in [1652] and proved that these families of graphs are antimagic. Rylands, Phanalasy, Ryan and Miller extended the concept of generalized web
graphs to the single apex multi-generalized web graphs and they proved these graphs to be antimagic in [1655]. Ryan, Phanalasy, Rylands and Miller extended the concept of generalized flower to the single apex multi-(complete) generalized flower graphs and constructed antimagic labeling for this family of graphs in [1653]. For more about antimagicness of generalized web and flower graphs see [1394]. Phanalasy, Ryan, Miller and Arumugam [1493] introduced the concept of generalized pyramid graphs and they constructed antimagic labeling for these graphs. Bača, Miller, Phanalasy and Feňovčíková proved that some join graphs and incomplete join graphs are antimagic in [238]. Moreover, in [219] they proved that the complete bipartite graph $K_{m,m}$ and complete 3-partite graph $K_{m,m,m}$ are antimagic and if $G$ is a $k$-regular (connected or disconnected) graph with $p$ vertices and $k \geq 2$, then the join of $G$ and $(p-k)K_1$, $G + (p-k)K_1$ is antimagic. Arumugam, Miller, Phanalasy, and Ryan [154] provided antimagic labelings for a family of generalized pyramid graphs. Daykin, Iliopoulas, Miller, and Phanalasy [527] show several families of graphs recursively defined from a sequence of graphs that are generalizations of corona graphs are antimagic.

Let $G$ be a $k$-regular graph with $p$ vertices and $q$ edges. The generalized sausage graph, denoted by $S(G;m)$, is the graph obtained from $G \times P_m$ ($G \times P_1 = G$), by joining each end vertex of the $P_m$ to a new vertex (which we call apexes) with an edge. In particular, when $m = 1$, each vertex of the graph $G$ joins to two vertices with two edges. The mixed generalized sausage graph, denoted by $MS(G;m)$, is the graph obtained from the generalized sausage graph $S(G;m)$, $m \geq 3$, by joining each vertex of each copy of the $[m/2]$ copies of $G$ on the left hand side to the left hand side apex, except the nearest copy to the apex, and similarly for the right hand side apex. The complete mixed generalized sausage graph, denoted by $CMS(G;m)$ is the graph obtained from the generalized sausage graph by joining each vertex of each copy of $G$, except the two nearest copies of $G$ to the apexes, to each apex with an edge, and each corresponding pair of vertices of the two nearest copies of $G$ to the apexes with an edge. The complete mixed generalized sausage graph $CMS^-(G;m)$ is the graph obtained from $CMS(G;m)$ by deleting the edge connecting each corresponding pair of vertices of the two nearest copies of $G$ to the apexes. In [1491] Phanalasy proved a families of generalized sausage graphs, mixed generalized sausage graphs, and complete mixed generalized sausage graphs are antimagic.

A split graph is a graph that has a vertex set that can be partitioned into a clique and an independent set. Tyshkevich (see [299]) defines a canonically decomposable graph as follows. For a split graph $S$ with a given partition of its vertex set into an independent set $A$ and a clique $B$ (denoted by $S(A,B)$), and an arbitrary graph $H$ the composition $S(A,B) \circ H$ is the graph obtained by taking the disjoint union of $S(A,B)$ and $H$ and adding to it all edges having an endpoint in each of $B$ and $V(H)$. If $G$ contains nonempty induced subgraphs $H$ and $S$ and vertex subsets $A$ and $B$ such that $G = S(A,B) \circ H$, then $G$ is canonically decomposable; otherwise $G$ is canonically indecomposable. Barrus [299] proved that every connected graph on at least 3 vertices that is split or canonically decomposable is antimagic.

Hartsfield and Ringel [772] conjecture that every tree except $P_2$ is antimagic and, moreover, every connected graph except $P_2$ is antimagic. Alon, Kaplan, Lev, Roditty,
and Yuster [112] use probabilistic methods and analytic number theory to show that this conjecture is true for all graphs with $n$ vertices and minimum degree $\Omega(\log n)$. They also prove that if $G$ is a graph with $n \geq 4$ vertices and $\Delta(G) \geq n - 2$, then $G$ is antimagic and all complete partite graphs except $K_2$ are antimagic. Slíva [1879] proved the conjecture for graphs with a regular dominating subgraph. Chawathe and Krishna [460] proved that every complete $m$-ary tree is antimagic. Yilma [2220] extended results on antimagic graphs that contain vertices of large degree by proving that a connected graph with $\Delta(G) \geq |V(G)| - 3$, $|V(G)| \geq 9$ is antimagic and that if $G$ is a graph with $\Delta(G) = \deg(u) = |V(G)| - k$, where $k \leq |V(G)|/3$ and there exists a vertex $v$ in $G$ such that the union of neighborhoods of the vertices $u$ and $v$ forms the whole vertex set $V(G)$, then $G$ is antimagic.

Fronček [629] defines a handicap incomplete tournament of $n$ teams with $r$ rounds, HIT$(n, r)$, as a tournament in which every team plays $r$ other teams and the total strength of the opponents that team $i$ plays is $\tilde{S}_{n,r}(i) = t - i$ for every $i$ and some fixed constant $t$. (This means that the strongest team plays strongest opponents, and the lowest ranked team plays weakest opponents.) In terms of distance magic graphs this restriction corresponds to finding a distance antimagic graph with the additional property that the sequence $w(1), w(2), \ldots, w(n)$ (where team $i$ is again the $i$-th ranked team) is an increasing arithmetic progression with difference one. These graphs are called handicap distance antimagic graphs. A handicap distance $d$-antimagic labeling of a graph $G(V, E)$ with $n$ vertices is a bijection $\tilde{f} : V \rightarrow \{1, 2, \ldots, n\}$ with the property that $\tilde{f}(x_i) = i$ and the sequence of the weights $w(x_1), w(x_2), \ldots, w(x_n)$ forms an increasing arithmetic progression with difference $d$. A graph $G$ is a handicap distance $d$-antimagic graph if it admits a handicap distance $d$-antimagic labeling, and handicap distance antimagic graph when $d = 1$. In [629] Fronček establishes a relationship between handicap incomplete tournaments and distance antimagic graphs and construct some new infinite classes of distance antimagic graphs and infinite classes of handicap incomplete round robin tournaments.

Cranston [515] proved that for $k \geq 2$, every $k$-regular bipartite graph is antimagic. For non-bipartite regular graphs, Liang and Zhu [1263] proved that every cubic graph is antimagic. That result was generalized by Cranston, Liang and Zhu [516], who proved that odd degree regular graphs are antimagic. Hartsfield and Ringel [772] proved that every 2-regular graph is antimagic. Bérczi, Bernáth, and Vizer [341] use a slight modification of an argument of Cranston et al. [516] to prove that $k$-regular graphs are antimagic for $k \geq 2$. The same was done by Chang, Liang, Pan, and Zhu [447] proved that every even degree regular graph is antimagic.

Beck and Jackanich [333] showed that every connected bipartite graph except $P_2$ with $|E|$ edges admits an edge labeling with labels from $\{1, 2, \ldots, |E|\}$, with repetition allowed, such that the sums of the labels of the edges incident to each vertex are distinct. They call such a graph weak antimagic.

Wang, Liu, and Li [2150] proved: $mP_3$ ($m \geq 2$) is not antimagic; $P_n \cup P_n$ ($n \geq 4$) is antimagic; $S_n \cup P_n$ is antimagic; $S_n \cup P_{n+1}$ is antimagic; $C_n \cup S_m$ is antimagic for $m \geq 2\sqrt{n} + 2$; $mS_n$ is antimagic; if $G$ and $H$ are graphs of the same order and $G \cup H$ is antimagic, then so is $G + H$; and if $G$ and $H$ are $r$-regular graphs of even order, then
\(G+H\) is antimagic. In [2151] Wang, Liu, and Li proved that if \(G\) is an \(n\)-vertex graph with minimum degree at least \(r\) and \(H\) is an \(m\)-vertex graph with maximum degree at most \(2r-1\) \((m \geq n)\), then \(G+H\) is antimagic. Bača, Kimáková, Semanicová-Feňovčíková, and Umar [212] prove the disjoint union of multiple copies of a \((a,1)-(\text{super})\)-tree-antimagic graph is also a \((b,1)-(\text{super})\)-tree-antimagic for certain \(a\) and \(b\).

For any given degree sequence pertaining to a tree, Miller, Phanalasy, Ryan, and Rylands [1396] gave a construction for two vertex antimagic edge trees with the given degree sequence and provided a construction to obtain an antimagic unicyclic graph with a given degree sequence pertaining to a unicyclic graph.

Kaplan, Lev, and Roditty [1060] prove that every non-trivial rooted tree for which every vertex that is not a leaf has at least two children is antimagic (see [1261]) for a correction of a minor error in the proof). For a graph \(G\) with \(m\) vertices and an Abelian group \(A\) they define \(G\) to be \(A\)-antimagic if there is a one-to-one mapping from the edges of \(G\) to the nonzero elements of \(A\) such that the sums of the labels of the edges incident to \(v\), taken over all vertices \(v\) of \(G\), are distinct. For any \(n \geq 2\) they show that a non-trivial rooted tree with \(n\) vertices for which every vertex that is a leaf has at least two children is \(Z_n\)-antimagic if and only if \(n\) is odd. They also show that these same trees are \(A\)-antimagic for elementary Abelian groups \(G\) with prime exponent congruent to 1 \((\text{mod } 3)\).

In [443] Chan, Low, and Shiu use \([G, A]\) to denote the class of distinct \(A\)-antimagic labelings of \(G\). They prove: for a non-trivial Abelian group \(A\) that underlies some commutative ring \(R\) with unity, if \(d\) is a unit in \(R\) and \(f \in [G, A]\), then \(df \in [G, A]\); if \(A\) is an Abelian group that contains a subgroup isomorphic to \(B\) and a graph \(G\) is \(B\)-antimagic, then \(G\) is \(A\)-antimagic; \(P_{4m+r}\) and \(C_{4m+r}\) are \(Z_k\)-antimagic for \(k \geq 4m+r\) and \(r = 0, 1, 3\); \(P_{4m+2}\) is \(Z_k\)-antimagic for \(k \geq 4m+3\); regular Hamiltonian graphs of order \(4m+r\) are \(Z_k\)-antimagic for \(k \geq 4m+r\) and \(r = 0, 1, 3\), and \(Z_k\)-antimagic for \(k \geq 4m+3\) and \(r = 2\); for odd \(n\), \(S_n\) is \(Z_k\)-antimagic for \(k \geq n > 4\); for even \(n\), \(S_n\) is \(Z_k\)-antimagic for \(k \geq n+2\) but not \(Z_n\)-antimagic or \(Z_{n+1}\)-antimagic; trees of order \(n\) with exactly one vertex of even degree are \(Z_k\)-antimagic for \(k \geq n\); trees of order \(n\) with exactly two vertices of even degree are \(Z_k\)-antimagic for \(k \geq n+1\); and double stars of order are \(Z_k\)-antimagic for \(k \geq n+1\) when \(n \equiv 2\) \((\text{mod } 4)\) and \(Z_k\)-antimagic for \(k \geq n\) when \(n \not\equiv 2\) \((\text{mod } 4)\).

The **integer-antimagic spectrum** of a graph \(G\) is the set \(\{k \mid G\) is \(Z_k\)-antimagic \((k \geq 2)\}\. Shiu, Sun, and Low [1826] determine the integer-antimagic spectra of tadpoles and lolipops. Shiu and Low [1825] determine the integer-antimagic spectra of complete bipartite graphs and complete bipartite graphs with a deleted edge.

Liang, Wong, and Zhu [1261] study trees with many degree 2 vertices with a restriction on the subgraph induced by degree 2 vertices and its complement. Denoting the set of degree 2 vertices of a tree \(T\) by \(V_2(T)\), Liang, Wong, and Zhu proved that if \(V_2(T)\) and \(V \setminus V_2(T)\) are both independent sets, or \(V_2(T)\) induces a path and every other vertex has an odd degree, then \(T\) is antimagic.

In [2083] Vaidya and Vyas proved that the middle graphs, total graphs, and shadow graphs of paths and cycles are antimagic. Krishnaa [1131] provided some results for...
antimagic labelings for graphs derived from wheels.

Bertault, Miller, Pé-Rosés, Feria-Puron, and Vaezpour [352] approached labeling problems as combinatorial optimization problems. They developed a general algorithm to determine whether a graph has a magic labeling, antimagic labeling, or an \((a,d)\)-antimagic labeling. They verified that all trees with fewer than 10 vertices are super edge magic and all graphs of the form \(P_2^r \times P_3^s\) with less than 50 vertices are antimagic. In [230] Bača, MacDougall, Miller, Slamin, and Wallis survey results on antimagic, edge-magic total, and vertex-magic total labelings.

A **total labeling** of a graph \(G\) is a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1, 2, \ldots, |V(G)| + |E(G)|\}\). When \(f(V(G)) = \{1, 2, \ldots, |V(G)|\}\), we say the total labeling is **super**. For a labeling \(f\) the associated edge-weight of an edge \(uv\) is defined by \(wt_f(uv) = f(uv) + f(u) + f(v)\). The associated vertex-weight of a vertex \(v\) is defined by \(wt_f(v) = \sum_{u \in N(v)} f(uv) + f(v)\), where \(N(v)\) is the set of the neighbors of \(v\). A labeling \(f\) is called **edge-antimagic total** (**vertex-antimagic total**) if all edge-weights (vertex-weights) are pairwise distinct.

A graph that admits an edge-antimagic total (vertex-antimagic total) labeling is called an **edge-antimagic total** (**vertex-antimagic total**) graph. A labeling that is simultaneously edge-antimagic total and vertex-antimagic total is called a **totally antimagic total labeling**. A graph that admits a totally antimagic total labeling is called a **totally antimagic total graph**. A labeling \(g\) is said to be ordered (**sharp ordered**) if \(wt_g(u) \leq wt_g(v)\) (\(wt_g(u) < wt_g(v)\)) holds for every pair of vertices \(u, v \in V(G)\) such that \(g(u) < g(v)\). A graph that admits a (sharp) ordered labeling is called a (**sharp**) **ordered graph**.

Bača, Miller, Phanalasy, Ryan, Semaničová-Feňovčíková, and Abildgaard Sillasen [218] prove that \(mK_1, mK_2, P_n\) \((n \geq 2)\), and \(C_n\) are sharp ordered super totally antimagic total. They prove if \(G\) is an ordered super edge-antimagic total graph then \(G + K_1\) is a totally antimagic total graph. As a corollary they get that stars, friendship graphs \(nK_2 + K_1\), fans, and wheels are totally antimagic total. They also prove that if \(G\) is a regular ordered super edge-antimagic total graph then \(G \circ nK_1\) is totally antimagic total. As a corollary of this result, they have double-stars \(K_2 \circ nK_1\) and crowns \(C_m \circ nK_1\) are totally antimagic total. They show that a union of regular totally antimagic total graphs is a totally antimagic total graph.

Akwu and Ajayi [91] prove that complete bipartite graphs with an equal number of vertices in each partite set and complete bipartite graphs with different number of vertices in each partite set are totally antimagic total graphs. They also show that the join of a complete bipartite graph and \(K_1\) is a totally antimagic total graph.

Miller, Phanalasy, Ryan, and Rylands [1395] provide a method whereby, given any degree sequence pertaining to a tree, one can construct an antimagic tree based on this sequence. By swapping the roles of edges and vertices with respect to a labeling, they provide a method to construct an edge antimagic vertex labeling for any tree. Ahmad, Semaničová-Feňovčíková, Siddiqui, and Kamran [77] construct \(\alpha\)-labelings from graceful labelings of smaller trees and transform this labeling to edge-antimagic vertex labeling of trees.

In [781] Hefetz, Mütze, and Schwartz investigate antimagic labelings of directed graphs. An **antimagic** labeling of a directed graph \(D\) with \(n\) vertices and \(m\) arcs is a
bijection from the set of arcs of $D$ to the integers $\{1, \ldots, m\}$ such that all $n$ oriented vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of all edges entering that vertex minus the sum of labels of all edges leaving it. Hefetz et al. raise the questions “Is every orientation of any simple connected undirected graph antimagic?” and “Given any undirected graph $G$, does there exist an orientation of $G$ which is antimagic?” They call such an orientation an antimagic orientation of $G$. Regarding the first question, they state that, except for $K_{1,2}$ and $K_3$, they know of no other counterexamples. They prove that there exists an absolute constant $C$ such that for every undirected graph on $n$ vertices with minimum degree at least $C \log n$ every orientation is antimagic. They also show that every orientation of $S_n$, $n \neq 2$, is antimagic; every orientation of $W_n$ is antimagic; and every orientation of $K_n$, $n \neq 3$, is antimagic. For the second question they prove: for odd $r$, every undirected $r$-regular graph has an antimagic orientation; for even $r$ every undirected $r$-regular graph that admits a matching that covers all but at most one vertex has an antimagic orientation; and if $G$ is a graph with $2n$ vertices that admits a perfect matching and has an independent set of size $n$ such that every vertex in the independent set has degree at least 3, then $G$ has an antimagic orientation. They conjecture that every connected undirected graph admits an antimagic orientation and ask if it true that every connected directed graph with at least 4 vertices is antimagic. Sonntag [1902] investigated antimagic labelings of hypergraphs. He shows that certain classes of cacti, cycle, and wheel hypergraphs have antimagic labelings. Javaid and Bhatti [878] extended some of Sonntag’s results to disjoint unions of hypergraphs.

Hefetz [780] calls a graph with $q$ edges $k$-antimagic if its edges can be labeled with $1, 2, \ldots, q + k$ such that the sums of the labels of the edges incident to each vertex are distinct. In particular, antimagic is the same as 0-antimagic. More generally, given a weight function $\omega$ from the vertices to the natural numbers Hefetz calls a graph with $q$ edges $(\omega, k)$-antimagic if its edges can be labeled with $1, 2, \ldots, q + k$ such that the sums of the labels of the edges incident to each vertex and the weight assigned to each vertex by $\omega$ are distinct. In particular, antimagic is the same as $(\omega, 0)$-antimagic where $\omega$ is the zero function. Using Alon’s combinatorial nullstellensatz [111] as his main tool, Hefetz has proved the following: a graph with $3^n$ vertices and a $K_3$ factor is antimagic; a graph with $q$ edges and at most one isolated vertex and no isolated edges is $(\omega, 2q - 4)$-antimagic; a graph with $p > 2$ vertices that admits a 1-factor is $(p - 2)$-antimagic; a graph with $p$ vertices and maximum degree $n - k$, where $k \geq 3$ is any function of $p$ is $(3k - 7)$-antimagic and, in the case that $p \geq 6k^2$, is $(k - 1)$-antimagic. Hefetz, Saluz, and Tran [782] improved the first of Hefetz’s results by showing that a graph with $p^n$ vertices, where $p$ is an odd prime and $m$ is positive, and a $C_p$ factor is antimagic.

Ahmad, Baˇ ca, Lasesáková and Semaničová-Feňovčíková [66] call a labeling of a plane graph $d$-antimagic if for every positive integer $s$, the set of $s$-sided face weights is $W_s = \{a_s, a_s + d, a_s + 2d, \ldots, a_s + (f_s - 1)d\}$ for some positive integers as $a_s$ and $d$, where $f_s$ is the number of the $s$-sided faces. (They allow different sets $W_s$ for different $s$). A $d$-antimagic labeling is called super if the smallest possible labels appear on the vertices. In [102] they investigated the existence of super $d$-antimagic labelings of type $(1, 1, 0)$ for disjoint union of plane graphs for several values of difference $d$. Baˇ ca, Numan, and
Semaničová-Feňovčíková [223] investigate the existence of super $d$-antimagic labelings of generalized prisms. Hussainm and Tabraiz [839] investigated super $d$-antimagic labeling of type $(1,1,1)$ on the snakes $kC_5$; subdivided $kC_5$; and isomorphic copies of $kC_5$ for strings $(1,1,\ldots,1)$ and $(2,2,\ldots,2)$.

Bača, Baskoro, Jendroľ, and Miller [192] investigated various $k$-antimagic labelings for graphs in the shape of hexagonal honeycombs. They use $H_m^n$ to denote the honeycomb graph with $m$ rows, $n$ columns, and $mn$ 6-sided faces. They prove: for $n$ odd $H_m^n$; has a 0-antimagic vertex labeling and a 2-antimagic edge labeling, and if $n$ is odd and $mn > 1$, $H_m^n$ has a 1-antimagic face labeling.

Huang, Wong, and Zhu [834] say a graph $G$ is weighted-$k$-antimagic if for any vertex weight function $w$ from the vertices of $G$ to the natural numbers there is an injection $f$ from the edges of $G$ to $\{1,2,\ldots,|E|+k\}$ such that for any two distinct vertices $u$ and $v$, $\sum (f(e) + w(v)) \neq \sum (f(e) + w(u))$ over all edges incidence to $v$. They proved that if $G$ has odd prime power order $p^z$ and has total domination number 2 with the degree of one vertex in the total dominating set not a multiple of $p$, then $G$ is weighted-$1$-antimagic, and if $G$ has odd prime power order $p^z$, $p \neq 3$ and has maximum degree at least $|V(G)| − 3$, then $G$ is weighted-$1$-antimagic.

Wong and Zhu [835] proved: graphs that have a vertex that is adjacent to all other vertices are weighted-2-antimagic; graphs with a prime number of vertices that have a Hamiltonian path are weighted-1-antimagic; and connected graphs $G \neq K_2$ on $n$ vertices are weighted-$\left\lfloor \frac{3n}{2} \right\rfloor$-antimagic.

In [152] Arumugam and Kamatchi introduced the notion of $(a,d)$-distance antimagic graphs as follows. Let $G$ be a graph with vertex set $V$ and $f : V \to \{1,2,\ldots,|V|\}$ be a bijection. If for all $v$ in $G$ the set of sums $\sum f(u)$ taken over all neighbors $u$ of $v$ is the arithmetic progression $\{a,a + d,a + 2d,\ldots,a + (|V| − 1)d\}$, $f$ is called an $(a,d)$-distance antimagic labeling and $G$ is called a $(a,d)$-distance antimagic graph. Arumugam and Kamatchi [152] proved: $C_n$ is $(a,d)$-distance antimagic if and only if $n$ is odd and $d = 1$; there is no $(1,d)$-distance antimagic labeling for $P_n$ when $n ≥ 3$; a graph $G$ is $(1,d)$-distance antimagic graph if and only if every component of $G$ is $K_2$; $C_n \times K_2$ is $(n + 2,1)$-distance antimagic; and the graph obtained from $C_{2n} = (v_1,v_2,\ldots,v_{2n})$ by adding the edges $v_{i}v_{i+1}$ and $v_{i}v_{i+2}$ for $i = 2,3,\ldots,n$ is $(2n + 2,1)$-distance antimagic.

In Table 12 we use the abbreviation $A$ to mean antimagic. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová and updated by J. Gallian in 2014.

Table 12: Summary of Antimagic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n$</td>
<td>A</td>
<td>for $n ≥ 3$ [772]</td>
</tr>
<tr>
<td>$C_n$</td>
<td>A</td>
<td>[772]</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_n$</td>
<td>A</td>
<td>[772]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>A</td>
<td>for $n \geq 3$ [772]</td>
</tr>
<tr>
<td>every tree except $K_2$</td>
<td>A?</td>
<td>[772]</td>
</tr>
<tr>
<td>regular graphs</td>
<td>A</td>
<td>[1263], [772], [447]</td>
</tr>
<tr>
<td>every connected graph except $K_2$</td>
<td>A?</td>
<td>[772]</td>
</tr>
<tr>
<td>$n \geq 4$ vertices</td>
<td>A</td>
<td>[112]</td>
</tr>
<tr>
<td>$\Delta(G) \geq n - 2$</td>
<td>A</td>
<td>[112]</td>
</tr>
<tr>
<td>all complete partite graphs except $K_2$</td>
<td>A</td>
<td>[112]</td>
</tr>
<tr>
<td>$C_m \times P_n$</td>
<td>A</td>
<td>[472]</td>
</tr>
<tr>
<td>$P_{m_1} \times P_{m_2} \times \cdots \times P_{m_k}$</td>
<td>A</td>
<td>[472]</td>
</tr>
<tr>
<td>$C_{m_1} \times C_{m_2} \times \cdots \times C_{m_k}$</td>
<td>A</td>
<td>[2141]</td>
</tr>
<tr>
<td>$C_n^2$</td>
<td>A</td>
<td>[1170]</td>
</tr>
<tr>
<td>$mP_3$ $m \geq 2$</td>
<td>not A</td>
<td>[2150]</td>
</tr>
</tbody>
</table>

### 6.2 $(a, d)$-Antimagic Labelings

The concept of an $(a, d)$-antimagic labelings was introduced by Bodendiek and Walther [382] in 1993. A connected graph $G = (V, E)$ is said to be $(a, d)$-antimagic if there exist positive integers $a, d$ and a bijection $f: E \rightarrow \{1, 2, \ldots, |E|\}$ such that the induced mapping $g_f: V \rightarrow N$, defined by $g_f(v) = \sum \{f(\{u\})| \ u \in E(G)\}$, is injective and $g_f(V) = \{a, a + d, \ldots, a + (|V| - 1)d\}$. (In [1280] Lin, Miller, Simanjuntak, and Slamim called these $(a, d)$-vertex-antimagic edge labelings). Bodendick and Walther ([384] and [385]) prove the Herschel graph is not $(a, d)$-antimagic and obtain both positive and negative results about $(a, d)$-antimagic labelings for various cases of graphs called parachutes $P_{g,p}$. 
proved that the generalized Petersen graph $P_n$ is $(3n + 6)/2, 3)$-antimagic when $n$ is odd and at least 7. Bodendiek and Walther [383] also conjectured that $C_n \times P_2 (n \geq 7)$ is $((n + 7)/2, 4)$-antimagic. Miller and Bača [1390] prove that the generalized Petersen graph $P(n, 2)$ is $((3n + 6)/2, 3)$-antimagic for $n \equiv 0 (mod 4), n \geq 8$ and conjectured that $P(n, k)$ is $((3n + 6)/2, 3)$-antimagic for even $n$ and $2 \leq k \leq n/2 - 1$ (see §2.7 for the definition of $P(n, k)$). This conjecture was proved for $k = 3$ by Xu, Yang, Xi, and Li [2198]. Jirimutu and Wang proved that $P(n, 2)$ is $((5n + 5)/2, 2)$-antimagic for $n \equiv 3 (mod 4)$ and $n \geq 7$. Xu, Xu, Lú, Baosheng, and Nan [2194] proved that $P(n, 2)$ is $((3n + 6)/2, 2)$-antimagic for $n \equiv 2 (mod 4)$ and $n \geq 10$. Xu, Yang, Xi, and Li [2198] proved that $P(n, 3)$ is $((3n + 6)/2, 3)$-antimagic for even $n \geq 10$. Xu, Yang, Xi, and Li [2198] proved that the generalized Petersen graph $P(n, 3)$ is $(3n + 6/2, 3)$-antimagic for $n \equiv 0 (mod 4), n \geq 8$. In [1283] Lingqi, Linma, Yuan show that the generalized Petersen graph $P(n, 3)$ is $(5n + 5/2, 2)$-antimagic for odd $n \geq 7$. Feng, Hong, Yang, and Jirimutu [607] show that the generalized Petersen graph $P(n, 5)$ is $(3n + 62, 3)$-antimagic for even $n \geq 12$. Ivančo [863] investigates $(a, 1)$-antimagic labelings and their connection with supermagic generalized double graphs.

Bodendiek and Walther [386] proved that the following graphs are $(a, d)$-antimagic: even cycles; paths of even order; stars; $C_3^{(k)}$; $C_4^{(k)}$; trees of odd order at least 5 that have a vertex that is adjacent to three or more end vertices; $n$-ary trees with at least two layers when $d = 1$; the Petersen graph; $K_4$ and $K_{3,3}$. They also prove: $P_{2k+1}$ is $(k, 1)$-antimagic; $C_{2k+1}$ is $(k + 2, 1)$-antimagic; if a tree of odd order $2k + 1 \ (k > 1)$ is $(a, d)$-antimagic, then $d = 1$ and $a = k$; if $K_{4k} \ (k \geq 2)$ is $(a, d)$-antimagic, then $d$ is odd and $d \leq 2k(k - 3) + 1$; if $K_{4k+2}$ is $(a, d)$-antimagic, then $d$ is even and $d \leq (2k + 1)(4k - 1) + 1$; and if $K_{2k+1} \ (k \geq 2)$ is $(a, d)$-antimagic, then $d \leq (2k + 1)(k - 1)$. Lin, Miller, Simanjuntak, and Slamin [1280] show that no wheel $W_n \ (n > 3)$ has an $(a, d)$-antimagic labeling.

In [870] Ivančo, and Semaničová show that a 2-regular graph is super edge-magic if and only if it is $(a, 1)$-antimagic. As a corollary we have that each of the following graphs are $(a, 1)$-antimagic: $kC_n$ for $n$ odd and at least 3; $k(C_3 \cup C_n)$ for $n$ even and at least 6; $k(C_4 \cup C_n)$ for $n$ odd and at least 5; $k(C_5 \cup C_n)$ for $n$ even and at least 4; $k(C_m \cup C_n)$ for $m$ even and at least 6, $n$ odd, and $n \geq m/2 + 2$. Extending a idea of Kovář they prove if $G$ is $(a_1, 1)$-antimagic and $H$ is obtained from $G$ by adding an arbitrary $2k$-factor then $H$ is $(a_2, 1)$-antimagic for some $a_2$. As corollaries they observe that the following graphs are $(a, 1)$-antimagic: circulant graphs of odd order; $2r$-regular Hamiltonian graphs of odd order; and $2r$-regular graphs of odd order $n < 4r$. They further show that if $G$ is an $(a, 1)$-antimagic $r$-regular graph of order $n$ and $n - r - 1$ is a divisor of the non-negative integer $a + n(1 + r - (n + 1)/2)$, then $G \oplus K_1$ is supermagic. As a corollary of this result
they have if $G$ is $(n - 3)$-regular for $n$ odd and $n \geq 7$ or $(n - 7)$-regular for $n$ odd and $n \geq 15$, then $G \oplus K_1$ is supermagic.

Bertault, Miller, Feria-Purón, and Vaezpour [352] approached labeling problems as combinatorial optimization problems. They developed a general algorithm to determine whether a graph has a magic labeling, antimagic labeling, or an $(a, d)$-antimagic labeling. They verified that all trees with fewer than 10 vertices are super edge magic and all graphs of the form $P_2 \times P_2$ with less than 50 vertices are antimagic. Javaid, Hussain, Ali, and Dar [882] and Javaid, Bhatti, and Hussain [879] constructed super $(a, d)$-edge-antimagic total labelings for $w$-trees and extended $w$-trees (see 5.2 for the definitions) as well as super $(a, d)$-edge-antimagic total labelings for disjoint union of isomorphic and non-isomorphic copies of extended $w$-trees. In [880] Javaid and Bhatt defined a generalized $w$-tree and proved that they admit a super $(a, d)$-edge-antimagic total labeling. In [2148] Wang, Li, and Wang proved that some classes of graphs derived from regular or regular bipartite graphs are antimagic. A subdivided star $T(n_1, n_2, \ldots, n_r)$ is a tree obtained by inserting $n_i \geq 1$, $1 \leq i \leq r$ with $r \geq 3$ vertices. In [1576] Raheem, Javaid, and Baig study a super $(a, d)$-edge-antimagic total labelings of the subdivided stars $T(n, n + 1, n_3, \ldots, n_r)$ when $n$ is even and $T(n, n, n + 1, n_4, \ldots, n_r)$ when $n$ is odd for all possible values of $d$.

For graphs $G$ and $F$, if every edge of $G$ belongs to a subgraph of $G$ isomorphic to $F$ and there exists a total labeling $\lambda$ of $G$ such that for every subgraph $F'$ of $G$ that is isomorphic to $F$, the set $\{\Sigma \lambda(F') : F' \cong F, F' \subseteq G\}$ forms an arithmetic progression starting with a common difference $d$, Lee, Tsai, and Lin [1169] say that $G$ is $(a, d)$-$F$-antimagic. Furthermore, if $\lambda(V(G)) = \{1, 2, \ldots, |V(G)|\}$ then $G$ is said to be super $(a, d)$-$F$-antimagic and $\lambda$ is said to be a super $(a, d)$-$F$-antimagic labeling of $G$. Lee, Tsai, and Lin [1169] proved that $P_m \times P_n$ ($m, n \geq 2$) is super $(a, 1)$-$C_4$-antimagic.

Yegnanarayanan [2218] introduced several variations of antimagic labelings and provides some results about them.

The antiprism on $2n$ vertices has vertex set $\{x_{1,1}, \ldots, x_{1,n}, x_{2,1}, \ldots, x_{2,n}\}$ and edge set $\{x_{j,i}, x_{j,i+1}\} \cup \{x_{1,i}, x_{2,i}\} \cup \{x_{1,i}, x_{2,i-1}\}$ (subscripts are taken modulo $n$). For $n \geq 3$ and $n \neq 2$ (mod 4) Baca [180] gives $(6n + 3, 2)$-antimagic labelings and $(4n + 4, 4)$-antimagic labelings for the antiprism on $2n$ vertices. He conjectures that for $n \equiv 2$ (mod 4), $n \geq 6$, the antiprism on $2n$ vertices has a $(6n + 3, 2)$-antimagic labeling and a $(4n + 4, 4)$-antimagic labeling.

Nicholas, Somasundaram, and Vilfred [1457] prove the following: If $K_{m,n}$ where $m \leq n$ is $(a, d)$-antimagic, then $d$ divides $((m - n)(2a + d(m + n - 1)))/4 + dmn/2$; if $m + n$ is prime, then $K_{m,n}$, where $n > m > 1$, is not $(a, d)$-antimagic; if $K_{n,n+2}$ is $(a, d)$-antimagic, then $d$ is even and $n + 1 \leq d < (n + 1)^2/2$; if $K_{n,n+2}$ is $(a, d)$-antimagic and $n$ is odd, then $a$ is even and $d$ divides $a$; if $K_{n,n+2}$ is $(a, d)$-antimagic and $n$ is even, then $d$ divides $2a$; if $K_{n,n}$ is $(a, d)$-antimagic, then $n$ and $d$ are even and $0 < d < n^2/2$; if $G$ has order $n$ and is unicyclic and $(a, d)$-antimagic, then $(a, d) = (2, 2)$ when $n$ is even and $(a, d) = (2, 2)$ or $(a, d) = ((n + 3)/2, 1)$ when $n$ is odd; a cycle with $m$ pendant edges attached at each vertex is $(a, d)$-antimagic if and only if $m = 1$; the graph obtained by joining an endpoint of $P_1$ with one vertex of the cycle $C_n$ is $(2, 2)$-antimagic if $m = n$ or $m = n - 1$; if $m + n$ is even the graph obtained by joining an endpoint of $P_m$ with one vertex of the cycle $C_n$.
is \((a, d)\)-antimagic if and only if \(m = n\) or \(m = n - 1\). They conjecture that for \(n\) odd and at least 3, \(K_{n,n+2}\) is \(((n + 1)(n^2 - 1)/2, n + 1)\)-antimagic and they have obtained several results about \((a, d)\)-antimagic labelings of caterpillars.

In [2113] Vilfred and Florida proved the following: the one-sided infinite path is \((1, 2)\)-antimagic; \(P_{2n}\) is not \((a, d)\)-antimagic for any \(a\) and \(d\); \(P_{2n+1}\) is \((a, d)\)-antimagic if and only if \((a, d) = (n, 1)\); \(C_{2n+1}\) has an \((n + 2, 1)\)-antimagic labeling; and that a 2-regular graph \(G\) is \((a, d)\)-antimagic if and only if \(|V(G)| = 2n + 1\) and \((a, d) = (n + 2, 1)\). They also prove that for a graph with an \((a, d)\)-antimagic labeling, \(q\) edges, minimum degree \(\delta\) and maximum degree \(\Delta\), the vertex labels lie between \(\delta(\delta + 1)/2\) and \(\Delta(2q - \Delta + 1)/2\).

Chelvam, Rilwan, and Kalaimurugan [461] proved that Cayley digraph of any finite group admits a super vertex \((a, d)\)-antimagic labeling depending on \(d\) and the size of the generating set. They provide algorithms for constructing the labelings.

For \(n > 1\) and distinct odd integers \(x, y\) and \(z\) in \([1, n - 1]\) Javaid, Ismail, and Salman [874] define the chordal ring of order \(n\), \(CR_n(x, y, z)\), as the graph with vertex set \(Z_n\), the additive group of integers modulo \(n\), and edges \((i, i + x), (i, i + y), (i, i + z)\) for all even \(i\). They prove that \(CR_n(1, 3, 7)\) and \(CR_n(1, 5, n - 1)\) have \((a, d)\)-antimagic labelings when \(n \equiv 0 \mod 4\) and conjecture that for an odd integer \(\Delta\), \(3 \leq \Delta \leq n - 3, n \equiv 0 \mod 4\), \(CR_n((1, \Delta, n - 1))\) has an \(((7n + 8)/4, 1)\)-antimagic labeling.

In [2114] Vilfred and Florida call a graph \(G = (V, E)\) odd antimagic if there exist a bijection \(f : E \rightarrow \{1, 3, 5, \ldots, 2|E| - 1\}\) such that the induced mapping \(g_f : V \rightarrow N\), defined by \(g_f(v) = \sum \{f(uv)\mid uv \in E(G)\}\), is injective and odd \((a, d)\)-antimagic if there exist positive integers \(a, d\) and a bijection \(f : E \rightarrow \{1, 3, 5, \ldots, 2|E| - 1\}\) such that the induced mapping \(g_f : V \rightarrow N\), defined by \(g_f(v) = \sum \{f(uv)\mid uv \in E(G)\}\), is injective and \(g_f(V) = \{a, a + d, a + 2d, \ldots, a + (|V| - 1)d\}\). Although every \((a, d)\)-antimagic graph is antimagic, \(C_4\) has an antimagic labeling but does not have an \((a, d)\)-antimagic labeling. They prove: \(P_{2n+1}\) is not odd \((a, d)\)-antimagic for any \(a\) and \(d\); \(C_{2n+1}\) has an odd \((2n + 2, 2)\)-antimagic labeling; if a 2-regular graph \(G\) has an odd \((a, d)\)-antimagic labeling, then \(|V(G)| = 2n + 1\) and \((a, d) = (2n + 2, 2)\); \(C_{2n}\) is odd magic; and an odd magic graph with at least three vertices, minimum degree \(\delta\), maximum degree \(\Delta\), and \(q \geq 2\) edges has all its vertex labels between \(\delta^2\) and \(\Delta(2q - \Delta)\).

In Table 13 we use the abbreviation \((a, d)\)-A to mean that the graph has an \((a, d)\)-antimagic labeling. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová and updated by J. Gallian in 2008.

### Table 13: Summary of \((a, d)\)-Antimagic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{2n})</td>
<td>not ((a, d))-A</td>
<td>[386]</td>
</tr>
<tr>
<td>(P_{2n+1})</td>
<td>iff ((n, 1))-A</td>
<td>[386]</td>
</tr>
</tbody>
</table>

Continued on next page

---

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6

179
Table 13 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{2n}$</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>$C_{2n+1}$</td>
<td>$(n + 2, 1)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>stars</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>$C_3^{(k)}$, $C_4^{(k)}$</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>$K_{3,3}$</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>$K_4$</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>Petersen graph</td>
<td>not $(a, d)$-A</td>
<td>[386]</td>
</tr>
<tr>
<td>$W_n$</td>
<td>not $(a, d)$-A</td>
<td>$n &gt; 3$ [1280]</td>
</tr>
<tr>
<td>antiprism on $2n$</td>
<td>$(6n + 3, 2)$-A</td>
<td>$n \geq 3$, $n \not\equiv 2 \pmod{4}$ [180]</td>
</tr>
<tr>
<td>vertices (see §6.2)</td>
<td>$(4n + 4, 4)$-A</td>
<td>$n \geq 3$, $n \not\equiv 2 \pmod{4}$ [180]</td>
</tr>
<tr>
<td></td>
<td>$(2n + 5, 6)$-A?</td>
<td>$n \geq 4$ [180]</td>
</tr>
<tr>
<td></td>
<td>$(6n + 3, 2)$-A?</td>
<td>$n \geq 6$, $n \not\equiv 2 \pmod{4}$ [180]</td>
</tr>
<tr>
<td></td>
<td>$(4n + 4, 4)$-A?</td>
<td>$n \geq 6$, $n \not\equiv 2 \pmod{4}$ [180]</td>
</tr>
<tr>
<td>Hershel graph (see [456])</td>
<td>not $(a, d)$-A</td>
<td>[382], [384]</td>
</tr>
<tr>
<td>parachutes $P_{g,p}$ (see §6.2)</td>
<td>$(a, d)$-A</td>
<td>for certain classes [382], [384]</td>
</tr>
<tr>
<td>prisms $C_n \times P_2$</td>
<td>$((7n + 4)/2, 1)$-A</td>
<td>$n \geq 3$, $n$ even [383], [207]</td>
</tr>
<tr>
<td></td>
<td>$((5n + 5)/2, 2)$-A</td>
<td>$n \geq 3$, $n$ odd [383], [207]</td>
</tr>
<tr>
<td></td>
<td>$((3n + 6)/2, 3)$-A</td>
<td>$n \geq 3$, $n$ even [207]</td>
</tr>
<tr>
<td></td>
<td>$((n + 7)/2, 4)$-A?</td>
<td>$n \geq 7$, [384], [207]</td>
</tr>
<tr>
<td>generalized Petersen graph $P(n, 2)$</td>
<td>$((3n + 6)/2, 3)$-A</td>
<td>$n \geq 8$, $n \equiv 0 \pmod{4}$ [208]</td>
</tr>
</tbody>
</table>

6.3 $(a, d)$-Antimagic Total Labelings

Bača, Bertault, MacDougall, Miller, Simanjuntak, and Slamin [197] introduced the notion of a $(a, d)$-vertex-antimagic total labeling in 2000. For a graph $G(V, E)$, an injective mapping $f$ from $V \cup E$ to the set $\{1, 2, \ldots, |V| + |E|\}$ is a $(a, d)$-vertex-antimagic total labeling if the set $\{f(v) + \sum f(vu)\}$ where the sum is over all vertices $u$ adjacent to $v$ for all $v$ in $G$ is $\{a, a+d, a+2d, \ldots, a+(|V|-1)d\}$. In the case where the vertex labels are 1, 2, $\ldots$, $|V|$, $(a, d)$-vertex-antimagic total labeling is called a super $(a, d)$-vertex-antimagic total labeling.
labeling. Among their results are: every super-magic graph has an \( (a, 1) \)-vertex-antimagic total labeling; every \( (a, d) \)-antimagic graph \( G(V, E) \) is \( (a + |E| + 1, d + 1) \)-vertex-antimagic total; and, for \( d > 1 \), every \( (a, d) \)-antimagic graph \( G(V, E) \) is \( (a + |V| + |E|, d - 1) \)-vertex-antimagic total. They also show that paths and cycles have \( (a, d) \)-vertex-antimagic total labelings for a wide variety of \( a \) and \( d \). In [198] Bača et al. use their results in [197] to obtain numerous \( (a, d) \)-vertex-antimagic total labelings for prisms, and generalized Petersen graphs (see §2.7 for the definition). (See also [210] and [1937] for more results on generalized Petersen graphs.)

Sugeng, Miller, Lin, and Bača [1937] prove: \( C_n \) has a super \( (a, d) \)-vertex-antimagic total labeling if and only if \( d = 0 \) or \( 2 \) and \( n \) is odd, or \( d = 1 \); \( P_n \) has a super \( (a, d) \)-vertex-antimagic total labeling if and only if \( d = 2 \) and \( n \geq 3 \) is odd, or \( d = 3 \) and \( n \geq 3 \); no even order tree has a super \( (a, 1) \)-vertex antimagic total labeling; no cycle with at least one tail and an even number of vertices has a super \( (a, 1) \)-vertex-antimagic labeling; and the star \( S_n \), \( n \geq 3 \), has no super \( (a, d) \)-super antimagic labeling. As open problems they ask whether \( K_{n,n} \) has a super \( (a, d) \)-vertex-antimagic total labeling and the generalized Petersen graph has a super \( (a, d) \)-vertex-antimagic total labeling for specific values \( a, d \), and \( n \). Lin, Miller, Simanjuntak, and Slamin [1280] have shown that for \( n > 20 \), \( W_n \) has no \( (a, d) \)-vertex-antimagic total labeling. Tezer and Cahit [1980] proved that neither \( P_n \) nor \( C_n \) has \( (a, d) \)-vertex-antimagic total labelings for \( a \geq 3 \) and \( d \geq 6 \). Kovár [1124] has shown that every \( 2r \)-regular graph with \( n \) vertices has an \( (s, 1) \)-vertex antimagic total labeling for \( s \in \{(rn + 1)(r + 1) + tn \mid t = 0, 1, \ldots, r\} \).

Several papers have been written about vertex-antimagic total labeling of graphs that are the disjoint union of suns. The sun graph \( S_n \) is \( C_n \odot K_1 \). Rahim and Sugeng [1579] proved that \( S_{n_1} \cup S_{n_2} \cup \cdots \cup S_{n_t} \) is \( (a, 0) \)-vertex-antimagic total (or vertex magic total). Parestu, Silaban, and Sugeng [1474] and [1475] proved \( S_{n_1} \cup S_{n_2} \cup \cdots \cup S_{n_t} \) is \( (a, d) \)-vertex-antimagic total for \( d = 1, 2, 3, 4, \) and \( 6 \) and particular values of \( a \). In [1577] Rahim, Ali, Kashif, and Javaid provide \( (a, d) \)-vertex antimagic total labelings of disjoint unions of cycles, sun graphs, and disjoint unions of sun graphs. In [585] Enomoto et al. proposed the conjecture that every tree is a super \( (a, 0) \)-edge-antimagic total graph. Javaid [876] gave \( (a, d) \)-edge-antimagic total labelings for certain subclasses of subdivided stars. Javaid [877] gave a super \( (a, d) \)-edge-antimagic total labeling for the subdivided star \( T(n, n, n+4, n+4, n_5, n_6, \ldots, n_r) \) for \( d = 0, 1, 2 \), where \( n_p = 2^{p-1}(n+3)+1 \), \( 5 \leq p \leq r \) and \( n \geq 3 \) is odd.

In [1447] Ngurah, Baskova, and Simanjuntak provide \( (a, d) \)-vertex-antimagic total labelings for the generalized Petersen graphs \( P(n, m) \) for the cases: \( n \geq 3 \), \( 1 \leq m \leq \lfloor (n-1)/2 \rfloor \), \( (a, d) = (8n + 3, 2) \); odd \( n \geq 5 \), \( m = 2 \), \( (a, d) = ((15n + 5)/2, 1) \); odd \( n \geq 5 \), \( m = 2 \), \( (a, d) = ((21n + 5)/2, 1) \); odd \( n \geq 7 \), \( m = 3 \), \( (a, d) = ((15n + 5)/2, 1) \); odd \( n \geq 7 \), \( m = 3 \), \( (a, d) = ((21n + 5)/2, 1) \); odd \( n \geq 9 \), \( m = 4 \), \( (a, d) = ((15n + 5)/2, 1) \); and \( (a, d) = ((21n + 5)/2, 1) \). They conjecture that for \( n \) odd and \( 1 \leq m \leq \lfloor (m-1)/2 \rfloor \), \( P(n, m) \) has an \( (21n + 5)/2, 1 \)-vertex-antimagic labeling. In [1942] Sugeng and Silaban show: the disjoint union of any number of odd cycles of orders \( n_1, n_2, \ldots, n_t \), each at least \( 5 \), has a super \( (3(n_1 + n_2 + \cdots + n_t) + 2, 1) \)-vertex-antimagic total labeling; for any odd positive integer \( t \), the disjoint union of \( t \) copies of the generalized Petersen graph \( P(n, 1) \)
has a super \((10t + 2)n - \lfloor n/2 \rfloor + 2, 1\)-vertex-antimagic total labeling; and for any odd positive integers \(t\) and \(n\) \((n \geq 3)\), the disjoint union of \(t\) copies of the generalized Petersen graph \(P(n, 2)\) has a super \((21tn + 5)/2, 1\)-vertex-antimagic total labeling.

Ail, Bača, Lin, and Semaničová-Feňovčíková [102] investigated super-\((a, d)\)-vertex antimagic total labelings of disjoint unions of regular graphs. Among their results are: if \(m\) and \((m - 1)(r + 1)/2\) are positive integers and \(G\) is an \(r\)-regular graph that admits a super-vertex magic total labeling, then \(mG\) has a super-\((a, 2)\)-vertex antimagic total labeling; if \(G\) has a 2-regular super-\((a, 1)\)-vertex antimagic total labeling, then \(mG\) has a super-\((m(a - 2) + 2, 1)\)-vertex antimagic total labeling; \(mC_n\) has a super-\((a, d)\)-vertex antimagic total labeling if and only if either \(d\) is 0 or 2 and \(m\) and \(n\) are odd and at least 3 or \(d = 1\) and \(n \geq 3\); and if \(G\) is an even regular Hamilton graph, then \(mG\) has a super-\((a, 1)\)-vertex antimagic total labeling for all positive integers \(m\).

In [244] Bača, A. Semaničová-Feňovčíková, Wang, and Zhang investigate the existence of \((a, 1)\)-vertex-antimagic edge labelings for disconnected 3-regular graphs. As an extension of \((a, d)\)-vertex-antimagic edge labeling they also introduce the concept of \((a, d)\)-vertex-antimagic edge deficiency for measuring how close a graph is away from being an \((a, d)\)-antimagic graph.

Ahmad, Ali, Bača, Kovár and Semaničová-Feňovčíková [57] provided a technique that allows one to construct several \((a, r)\)-vertex-antimagic edge labelings for any \(2r\)-regular graph \(G\) of odd order provided the graph is Hamiltonian or has a 2-regular factor that has \((b, 1)\)-vertex-antimagic edge labeling. A similar technique allows them to construct a super \((a, d)\)-vertex-antimagic total labeling for any \(2r\)-regular Hamiltonian graph of odd order with differences \(d = 1, 2, \ldots, r\) and \(d = 2r + 2\).

For \(n \geq 2\) Dafik, Setiawani, and Azizah [517] define a **shackle** as a graph constructed from connected graphs \(G_1, G_2, \ldots, G_n\), all isomorphic to \(G\), such that \(G_s\) and \(G_t\) are disjoint when \(|s - t| \geq 2\) and for every \(i = 1, 2, \ldots, n - 1\), \(G_i\) and \(G_{i+1}\) share exactly one common vertex \(v\). In a **generalized shackle** a common subgraph is shared by each \(G_i\) and \(G_{i+1}\). Dafik, Setiawani, and Azizah prove that the generalized shackle of a fan of order four and five admits a super \((a, d)\)-edge antimagic total labeling for \(d = 0, 1, 2\).

Sugeng and Bong [1931] show how to construct super \((a, d)\)-vertex antimagic total labelings for the circulant graphs \(C_n(1, 2, 3)\), for \(d = 0, 1, 2, 3, 4, 8\). Thirusangu, Nagar, and Rajeswari [1984] show that certain Cayley digraphs of dihedral groups have \((a, d)\)-vertex-magic total labelings.

For a simple graph \(H\) we say that \(G(V, E)\) admits an **\(H\)-covering** if every edge in \(E(G)\) belongs to a subgraph of \(G\) that is isomorphic to \(H\). Inayah, Salman, and Simanjuntak [856] define an \((a, d)\)-**\(H\)-antimagic total labeling** of \(G\) as a bijective function \(\xi\) from \(V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\}\) such that for all subgraphs \(H'\) isomorphic to \(H\), the \(H\)-weights \(w(H') = \sum_{v \in V(H')} \xi(v) + \sum_{e \in E(H')} \xi(e)\) constitute an arithmetic progression \(a, a + d, a + 2d, \ldots, a + (t - 1)d\) where \(a\) and \(d\) are positive integers and \(t\) is the number of subgraphs of \(G\) isomorphic to \(H\). Such a labeling \(\xi\) is called a super \((a, d)\)-**\(H\)-antimagic total labeling**, if \(\xi(V) = \{1, 2, \ldots, |V|\}\). Inayah et al. study some basic properties of such labeling and give \((a, d)\)-cycle-antimagic labelings of fans. Laurence and Kathiresan [1160] investigated super \((a, d)\)-**\(P_n\)-antimagic total labeling** of stars.
For a vertex $u$ of a graph $G$, $G_u[S_n]$ is the graph obtained by identifying $u$ with the center of $S_n$. Then for any vertex $w$ of $S_n$ $G + e$, $e = uw$ is a subgraph of $G_u[S_n]$. Kathiresan and Laurence [1070] prove that the graph $G_u[S_n]$ admits a super-$(a, d)$-antimagic total labeling if and only if $d \in \{0, 1, 2, \ldots, |V(G)| + |E(G)| + 2\}$. Moreover, they show that a caterpillar $S_{n_1, n_2, \ldots, n_k}$ has a super-$(a, 4n^2)$-antimagic total labeling for $n_1 = n_2 = \cdots = n_k = n$.

Jeyanthi, Muthuraja, and Dharshikha proved [947] proved that every wheel there is no $(a, d)$-edge-antimagic total labeling. Similarly, Simanjuntak et al. define an $(a, d)$-antimagic total labeling was defined by Hegde in 1989 in his Ph. D. thesis–see [784].) They also proved that ladder are super $(a, d)$-C₃-antimagic for $1 \leq d \leq 8$. Inayah, Simanjuntak and Salman [857] proved that there exists a super $(a, d)$-H-antimagic total labelings for shackles of a connected graph $H$.

A graph $G$ is said to have an $(H_1, H_2, \ldots, H_k)$-covering if every edge in $G$ belongs to at least one of the $H_i$’s. Susilowati, Sania, and Estuningsih [1959] investigated such antimagic labelings for the ladders $P_n \times P_2$ with $C_t$-coverings for $t = 4$, $6$, and $8$ for some value of $d$.

Simanjuntak, Bertault, and Miller [1841] define an $(a, d)$-edge-antimagic vertex labeling for a graph $G(V, E)$ as an injective mapping $f$ from $V$ onto the set $\{1, 2, \ldots, |V|\}$ such that the set $\{f(u) + f(v) | uv \in E\}$ is $\{a, a + d, a + 2d, \ldots, a + (|E| - 1)d\}$. (The equivalent notion of $(a, d)$-indexable labeling was defined by Hegde in 1989 in his Ph. D. thesis–see [784].) Similarly, Simanjuntak et al. define an $(a, d)$-edge-antimagic total labeling for a graph $G(V, E)$ as an injective mapping $f$ from $V \cup E$ onto the set $\{1, 2, \ldots, |V| + |E|\}$ such that the set $\{f(v) + f(vu) + f(v) | uv \in E\}$ where $v$ ranges over all of $V$ is $\{a, a + d, a + 2d, \ldots, a + (|V| - 1)d\}$. Among their results are: $C_2n$ has no $(a, d)$-edge-antimagic vertex labeling; $C_{2n+1}$ has a $(n + 2, 1)$-edge-antimagic vertex labeling and a $(n + 3, 1)$-edge-antimagic vertex labeling; $P_{2n}$ has a $(n + 2, 1)$-edge-antimagic vertex labeling; $P_n$ has a $(3, 2)$-edge-antimagic vertex labeling; $C_n$ has $(2n + 2)$- and $(3n + 2, 1)$-edge-antimagic total labelings; $C_2n$ has $(4n + 2, 2)$- and $(4n + 3, 2)$-edge-antimagic total labelings; $C_{2n+1}$ has $(3n + 4, 3)$- and $(3n + 5, 3)$-edge-antimagic total labelings; $P_{2n+1}$ has $(3n + 4, 2)$-, $(3n + 4, 3)$-, $(2n + 4, 4)$-, $(5n + 4, 2)$-, $(3n + 5, 2)$-, and $(2n + 6, 4)$-edge-antimagic total labelings; $P_{2n}$ has $(6n + 1)$- and $(6n + 2, 2)$-edge-antimagic total labelings; and several parity conditions for $(a, d)$-edge-antimagic total labelings. They conjecture: $C_{2n}$ has a $(2n + 3, 4)$- or a $(2n + 4, 4)$-edge-antimagic total labeling; $C_{2n+1}$ has a $(n + 4, 5)$- or a $(n + 5, 5)$-edge-antimagic total labeling; paths have no $(a, d)$-edge-antimagic vertex labelings with $d > 2$; and cycles have no $(a, d)$-antimagic total labelings with $d > 5$. The first and last of these conjectures were proved by Zhenbin in [2257] and the last two were verified by Bača, Lin, Miller, and Simanjuntak [221] who proved that a graph with $v$ vertices and $e$ edges that has an $(a, d)$-edge-antimagic vertex labeling must satisfy $d(e - 1) \leq 2v - 1 - a \leq 2v - 4$. As a consequence, they obtain: for every path there is no $(a, d)$-edge-antimagic vertex labeling with $d > 2$; for every cycle there is no $(a, d)$-edge-antimagic vertex labeling with $d > 1$; for $K_n$ $(n > 1)$ there is no $(a, d)$-edge-antimagic vertex labeling (the cases for $n = 2$ and $n = 3$ are handled individually); $K_{n,n}$ $(n > 3)$ has no $(a, d)$-edge-antimagic vertex labeling; for every wheel there is no $(a, d)$-edge-antimagic vertex labeling; for every generalized Petersen graph there is no $(a, d)$-edge-antimagic vertex labeling with $d > 1$. They also study the
relationship between graphs with \((a, d)\)-edge-antimagic labelings and magic and antimagic labelings. They conjecture that every tree has an \((a, 1)\)-edge-antimagic total labeling.

Baća and Barrientos [184] prove that if a tree \(T\) has an \(\alpha\)-labeling and \(\{A, B\}\) is the bipartition of the vertices of \(T\), then \(T\) also admits an \((a, 1)\)-edge-antimagic vertex labeling and it admits a \((3, 2)\)-edge-antimagic vertex labeling if and only if \(|A| - |B| \leq 1\).

In [221] Baća, Lin, Miller, and Simanjuntak prove: if \(P_n\) has an \((a, d)\)-edge-antimagic total labeling, then \(d \leq 6\); \(P_n\) has \((2n + 2, 1)\)-, \((3n, 1)\)-, \((n + 4, 3)\)-, and \((2n + 2, 3)\)-edge-antimagic total labelings; \(P_{2n+1}\) has \((3n + 4, 2)\)-, \((5n + 4, 3)\)-, \((2n + 4, 4)\)-, and \((2n + 6, 4)\)-edge-antimagic total labelings; and \(P_{2n}\) has \((3n + 3, 2)\)- and \((5n + 1, 2)\)-edge-antimagic total labelings. Ngurah [1445] proved \(P_{2n+1}\) has \((4n + 4, 1)\)-, \((6n + 5, 3)\)-, \((4n + 4, 2)\)-, \((4n + 5, 2)\)-edge-antimagic total labelings and \(C_{2n+1}\) has \((4n + 4, 2)\) and \((4n + 5, 2)\)-edge-antimagic total labelings. Silaban and Sugeng [1840] prove: \(P_n\) has \((n + 4, 4)\)- and \((6, 6)\)-edge-antimagic total labelings; if \(C_m \subseteq K_n\) has an \((a, d)\)-edge-antimagic total labeling, then \(d \leq 5\); \(C_m \subseteq K_n\) has \((a, d)\)-edge-antimagic total labelings for \(m \geq 3, n > 1\) and \(d = 2\) or \(4\); and \(C_m \subseteq K_n\) has no \((a, d)\)-edge-antimagic total labelings for \(m\) and \(d\) and \(n \equiv 1\) mod 4. They conjecture that \(P_n (n \geq 3)\) has \((a, 5)\)-edge-antimagic total labelings. In 1943 Sugeng and Xie use adjacency methods to construct super edge magic graphs from \((a, d)\)-edge-antimagic vertex graphs. Pushpam and Saibulla [1570] determined super \((a, d)\)-edge antimagic total labelings for graphs derived from copies of generalized ladders, fans, generalized prisms and web graphs. Ahmad, Ali, Baća, Kovar, and Semaničová-Fenovčíková, investigated the vertex-antimagicness of regular graphs and the existence of (super) \((a, d)\)-vertex antimagic total labelings for regular graphs in general.

In [247] Baća and Youssef used parity arguments to find a large number of conditions on \(p, q\) and \(d\) for which a graph with \(p\) vertices and \(q\) edges cannot have an \((a, d)\)-edge-antimagic total labeling or vertex-antimagic total labeling. Baća and Youssef [247] made the following connection between \((a, d)\)-edge-antimagic vertex labelings and sequential labelings: if \(G\) is a connected graph other than a tree that has an \((a, d)\)-edge-antimagic vertex labeling, then \(G + K_1\) has a sequential labeling.

In [1923] Sudarsana, Ismaiinuza, Baskoro, and Assiyatun prove: for every \(n \geq 2\), \(P_n \cup P_{n+1}\) has a \((6n + 1, 1)\)- and a \((4n + 3, 3)\)-edge-antimagic total labeling, for every odd \(n \geq 3\), \(P_n \cup P_{n+1}\) has a \((6n, 1)\)- and a \((5n + 1, 2)\)-edge-antimagic total labeling, for every \(n \geq 2\), \(nP_2 \cup P_n\) has a \((7n, 1)\)- and a \((6n + 1, 2)\)-edge-antimagic total labeling. In [1920] the same authors show that \(P_n \cup P_{n+1}\), \(nP_2 \cup P_n (n \geq 2)\), and \(nP_2 \cup P_{n+2}\) are super edge-magic total. They also show that under certain conditions one can construct new super edge-magic total graphs from existing ones by joining a particular vertex of the existing super edge-magic total graph to every vertex in a path or every vertex of a star and by joining one extra vertex to some vertices of the existing graph. Baskoro, Sudarsana, and Cholily [326] also provide algorithms for constructing new super edge-magic total graphs from existing ones by adding pendent vertices to the existing graph. A corollary to one of their results is that the graph obtained by attaching a fixed number of pendent edges to each vertex of a path of even length is super edge-magic. Baskoro and Cholily [324] show that the graphs obtained by attaching any numbers of pendent edges to a single vertex or a fix number of pendent edges to every vertex of the following graphs are super.
edge-magic total graphs: odd cycles, the generalized Petersen graphs \(P(n, 2)\) (n odd and at least 5), and \(C_n \times P_m\) (n odd, \(m \geq 2\)).

Arunumag and Nalliah [155] proved: the friendship graph \(C_3^{(n)}\) with \(n \equiv 0, 8 \pmod{12}\) has no super \((a, 2)\)-edge-antimagic total labeling; \(C_n^{(n)}\) with \(n \equiv 2 \pmod{4}\) has no super \((a, 2)\)-edge-antimagic total labeling; and the generalized friendship graph \(F_{2, p}\) consisting of 2 cycles of various lengths, having a common vertex, and having order \(p\) where \(p \geq 5\), has a super \((2p + 2, 1)\)-edge-antimagic total labeling if and only if \(p\) is odd.

An \((a, d)\)-edge-antimagic total labeling of \(G(V, E)\) is called a super \((a, d)\)-edge-antimagic total if the vertex labels are \(\{1, 2, \ldots, |V(G)|\}\) and the edge labels are \(\{|V(G)| + 1, |V(G)| + 2, \ldots, |V(G)| + |E(G)|\}\). Bača, Baskoro, Simanjuntak, and Sugeng [196] prove the following: \(C_n\) has a super \((a, d)\)-edge-antimagic total labeling if and only if either \(d = 0\) or \(2\) and \(n\) is odd, or \(d = 1\); for odd \(n \geq 3\) and \(m = 1\) or \(2\), the generalized Petersen graph \(P(n, m)\) has a super \((11n + 3)/2, 0)\)-edge-antimagic total labeling and a super \((5n + 5)/2, 2)\)-edge-antimagic total labeling; for odd \(n \geq 3\), \(P(n, (n - 1)/2)\) has a super \((11n + 3)/2, 0)\)-edge-antimagic total labeling and a super \((5n + 5)/2, 2)\)-edge-antimagic total labeling. They also prove: if \(P(n, m), n \geq 3, 1 \leq m \leq [(n - 1)/2]\) is super \((a, d)\)-edge-antimagic total, then \((a, d) = (4n + 2, 1)\) if \(n\) is even, and either \((a, d) = ((11n + 3)/2, 0)\), or \((a, d) = (4n + 2, 1)\), or \((a, d) = ((5n + 5)/2, 2)\), if \(n\) is odd; and for odd \(n \geq 3\) and \(m = 1, 2\), or \((n - 1)/2\), \(P(n, m)\) has an \((a, 0)\)-edge-antimagic total labeling and an \((a, 2)\)-edge-antimagic total labeling. (In a personal communication MacDougall argues that “edge-magic” is a better term than “\((a, 0)\)-edge-antimagic” for while the latter is technically correct, “antimagic” suggests different weights whereas “magic” emphasizes equal weights and that the edge-magic case is much more important, interesting, and fundamental rather than being just one subcase of equal value to all the others.) They conjecture that for odd \(n \geq 9\) and \(3 \leq m \leq (n - 3)/2\), \(P(n, m)\) has a super \((a, 0)\)-edge-antimagic total labeling and an \((a, 2)\)-edge-antimagic total labeling. Ngurah and Baskoro [1446] have shown that for odd \(n \geq 3\), \(P(n, 1)\) and \(P(n, 2)\) have \((5n + 5)/2, 2)\)-edge-antimagic total labelings and when \(n \geq 3\) and \(1 \leq m < n/2\), \(P(n, m)\) has a super \((4n + 2, 1)\)-edge-antimagic total labeling. In [1447] Ngurah, Baskova, and Simanjuntak provide \((a, d)\)-edge-antimagic total labelings for the generalized Petersen graphs \(P(n, m)\) for the cases \(m = 1\) or \(2\), odd \(n \geq 3\), and \((a, d) = ((9n + 5)/2, 2)\).

In [1921] Sudarsana, Baskoro, Uttunggadewa, and Ismaimuza show how to construct new larger super \((a, d)\)-edge-antimagic-total graphs from existing smaller ones.

In [1448] Ngurah, Baskoro, and Simanjuntak prove that \(mC_n\) \((n \geq 3)\) has an \((a, d)\)-edge-antimagic total in the following cases: \((a, d) = (5mn/2 + 2, 1)\) where \(m\) is even; \((a, d) = (2mn + 2, 2)\); \((a, d) = ((3mn + 5)/2, 3)\) for \(mn\) and \(n\) odd; and \((a, d) = ((mn + 3), 4)\) for \(mn\) and \(n\) odd; and \(mC_n\) has a super \((2mn + 2, 1)\)-edge-antimagic total labeling.

Bača and Barrientos [185] have shown that \(mK_n\) has a super \((a, d)\)-edge-antimagic total labeling if and only if \((i) d \in \{0, 2\}, n \in \{2, 3\}\) and \(m \geq 3\) is odd, or \((ii) d = 1, n \geq 2\) and \(m \geq 2\), or \((iii) d \in \{3, 5\}, n = 2\) and \(m \geq 2\), or \((iv) d = 4, n = 2\), and \(m \geq 3\) is odd. In [184] Bača and Barrientos proved the following: if a graph with \(q\) edges and \(q + 1\) vertices has an \(\alpha\)-labeling, then it has an \((a, 1)\)-edge-antimagic vertex labeling; a tree has a \((3, 2)\)-edge-antimagic vertex labeling if and only if it has an \(\alpha\)-labeling and the number
of vertices in its two partite sets differ by at most 1; if a tree with at least two vertices has a super $(a,d)$-edge-antimagic total labeling, then $d$ is at most 3; if a graph has an $(a,1)$-edge-antimagic vertex labeling, then it also has a super $(a_1,0)$-edge-antimagic total labeling and a super $(a_2,2)$-edge-antimagic total labeling.

Bača and Youssef [247] proved the following: if $G$ is a connected $(a,d)$-edge-antimagic vertex graph that is not a tree, then $G+K_1$ is sequential; $mC_n$ has an $(a,d)$-edge-antimagic vertex labeling if and only if $m$ and $n$ are odd and $d = 1$; an odd degree $(p,q)$-graph $G$ cannot have a $(a,d)$-edge-antimagic total labeling if $p \equiv 2 \pmod{4}$ and $q \equiv 0 \pmod{4}$, or $p \equiv 0 \pmod{4}$, $q \equiv 2 \pmod{4}$, and $d$ is even; a $(p,q)$-graph $G$ cannot have a super $(a,d)$-edge-antimagic total labeling if $G$ has odd degree, $p \equiv 2 \pmod{4}$, $q$ is even, and $d$ is odd, or $G$ has even degree, $q \equiv 2 \pmod{4}$, and $d$ is even; $C_n$ has a $(2n+2,3)$- and an $(n+4,3)$-edge-antimagic total labeling; a $(p,q)$-graph is not super $(a,d)$-vertex-antimagic total if: $p \equiv 2 \pmod{4}$ and $d$ is even; $p \equiv 0 \pmod{4}$, $q \equiv 2 \pmod{4}$, and $d$ is odd; $p \equiv 0 \pmod{8}$ and $q \equiv 2 \pmod{4}$.

In [1923] Sudarsana, Ismaimuza, Baskoro, and Assiyatun prove: for every $n \geq 2$, $P_n \cup P_{n+1}$ has super $(n+4,1)$- and $(2n+6,3)$-edge antimagic total labelings; for every odd $n \geq 3$, $P_n \cup P_{n+1}$ has super $(4n+5,1)$-, $(3n+6,2)$-, $(4n+3,1)$- and $(3n+4,2)$-edge antimagic total labelings; for every $n \geq 2$, $nP_2 \cup P_n$ has super $(6n+2,1)$- and $(5n+3,2)$-edge antimagic total labelings; and for every $n \geq 1$, $nP_2 \cup P_{n+2}$ has super $(6n+6,1)$- and $(5n+6,2)$-edge antimagic total labelings. They pose a number of open problems about constructing $(a,d)$-edge antimagic labelings and super $(a,d)$-edge antimagic labelings for the graphs $P_n \cup P_{n+1}$, $nP_2 \cup P_n$, and $nP_2 \cup P_{n+2}$ for specific values of $d$.

Dafik, Miller, Ryan, and Bača [520] investigated the super edge-antimagicness of the disconnected graph $mC_n$ and $mP_n$. For the first case they prove that $mC_n$, $m \geq 2$, has a super $(a,d)$-edge-antimagic total labeling if and only if either $d$ is 0 or 2 and $m$ and $n$ are odd and at least 3, or $d = 1$, $m \geq 2$, and $n \geq 3$. For the case of the disjoint union of paths they determine all feasible values for $m$, $n$, and $d$ for $mP_n$ to have a super $(a,d)$-edge-antimagic total labeling except when $m$ is even and at least 2, $n \geq 2$, and $d$ is 0 or 2. In [522] Dafik, Miller, Ryan, and Bača obtain a number of results about super edge-antimagicness of the disjoint union of two stars and state three open problems.

Sudarsana, Hendra, Adiwijaya, and Setyawan [1922] show that the $t$-joint copies of wheel $W_n$ have a super edge antimagic $((2n+2)t+2,1)$-total labeling for $n \geq 4$ and $t \geq 2$.

In [214] Bača, Łuczak, and Semaničová investigated the connection between graphs with $\alpha$-labelings and graphs with super $(a,d)$-edge-antimagic total labelings. Among their results are: If $G$ is a graph with $n$ vertices and $n - 1$ edges ($n \geq 3$) and $G$ has an $\alpha$-labeling, then $mG$ is super $(a,d)$-edge-antimagic total if either $d$ is 0 or 2 and $m$ is odd, or $d = 1$ and $n$ is even; if $G$ has an $\alpha$-labeling and has $n$ vertices and $n - 1$ edges with vertex bipartition sets $V_1$ and $V_2$, and $|V_1|$ and $|V_2|$ differ by at most 1, then $mG$ is super $(a,d)$-edge-antimagic total for $d = 1$ and $d = 3$. In the same paper Bača et al. prove: caterpillars with odd order at least 3 have super $(a,1)$-edge-antimagic total labelings; if $G$ is a caterpillar of odd order at least 3 and $G$ has a super $(a,1)$-edge-antimagic total labeling, then $mG$ has a super $(b,1)$-edge-antimagic total labeling for some $b$ that is a function of $a$ and $m$. 
In [519] Dafik, Miller, Ryan, and Bača investigated the existence of antimagic labelings of disjoint unions of s-partite graphs. They proved: if \( s \equiv 0 \) or 1 (mod 4), \( s \geq 4, m \geq 2, n \geq 1 \) or \( mn \) is even, \( m \geq 2, n \geq 1, s \geq 4 \), then the complete s-partite graph \( mK_{n,n,...,n} \) has no super \((a,0)\)-edge-antimagic total labeling; if \( m \geq 2 \) and \( n \geq 1 \), then \( mK_{n,n,n,n} \) has no super \((a,2)\)-antimagic total labeling; and for \( m \geq 2 \) and \( n \geq 1 \), \( mK_{n,n,n,n} \) has an \((8mn + 2, 1)\)-edge-antimagic total labeling. They conjecture that for \( m \geq 2, n \geq 1 \) and \( s \geq 5 \), the complete s-partite graph \( mK_{n,n,...,n} \) has a super \((a,1)\)-antimagic total labeling.

In [241] Bača, Muntaner-Batle, Semaničová-Feňovčiková, and Shafiq investigate super \((a,d)\)-edge-antimagic total labelings of disconnected graphs. Among their results are: If \( G \) is a (super) \((a,2)\)-edge-antimagic total labeling and \( m \) is odd, then \( mG \) has a (super) \((a',2)\)-edge-antimagic-total labeling where \( a' = m(a - 3) + (m + 1)/2 + 2 \); and if \( d \) a positive even integer and \( k \) a positive odd integer, \( G \) is a graph with all of its vertices having odd degree, and the order and size of \( G \) have opposite parity, then \( 2kG \) has no \((a,d)\)-edge-antimagic total labeling. Bača and Brankovic [199] have obtained a number of results about the existence of super \((a,d)\)-edge-antimagic totalizing of disjoint unions of the form \( mK_{n,n} \). In [203] Bača, Dafik, Miller, and Ryan provide \((a,d)\)-edge-antimagic vertex labelings and super \((a,d)\)-edge-antimagic total labelings for a variety of disjoint unions of caterpillars. Bača and Youssef [247] proved that \( mC_n \) has an \((a,d)\)-edge-antimagic vertex labeling if and only if \( m \) and \( n \) are odd and \( d = 1 \). Bača, Dafik, Miller, and Ryan [204] constructed super \((a,d)\)-edge-antimagic total labeling for graphs of the form \( m(C_n \oplus K_s) \) and \( mP_n \cup kC_n \) while Dafik, Miller, Ryan, and Bača [521] do the same for graphs of the form \( mK_{n,n,n} \) and \( K_{1,m} \cup 2sK_{1,n} \). Both papers provide a number of open problems. In [229] Bača, Lin, and Muntaner-Batle provide super \((a,d)\)-edge-antimagic total labeling of forests in which every component is a specific kind of tree. In [213] Bača, Kovár, Semaničová-Feňovčiková, and Shafiq prove that every even regular graph and every odd regular graph with a 1-factor are super \((a,1)\)-edge-antimagic total and provide some constructions of non-regular super \((a,1)\)-edge-antimagic total graphs. Bača, Lin, and Semaničová-Feňovčiková [231] show: the disjoint union of \( m \) graphs with super \((a,1)\)-edge antimagic total labelings have super \((m(a - 2) + 2, 1)\)-edge antimagic total labelings; the disjoint union of \( m \) graphs with super \((a,3)\)-edge antimagic total labelings have super \((m(a - 3) + 3, 3)\)-edge antimagic total labelings; if \( G \) has a \((a,1)\)-edge antimagic total labeling then \( mG \) has an \((b,1)\)-edge antimagic total labeling for some \( b \); and if \( G \) has a \((a,3)\)-edge antimagic total labelings then \( mG \) has an \((b,3)\)-edge antimagic total labeling for some \( b \).

For \( t \geq 2 \) and \( n \geq 4 \) the Harary graph, \( C_p^t \), is the graph obtained by joining every two vertices of \( C_p \) that are at distance \( t \) in \( C_p \). In [1577] Rahim, Ali, Kashif, and Javaid provide super \((a,d)\)-edge antimagic total labelings for disjoint unions of Harary graphs and disjoint unions of cycles. In [836] Hussain, Ali, Rahim, and Baskoro construct various \((a,d)\)-vertex-antimagic labelings for Harary graphs and disjoint unions of identical Harary graphs. For \( p \) odd and at least 5, Balbuena, Barker, Das, Lin, Miller, Ryan, Slamin, Sugeng, and Tkac [255] give a super \(((17p + 5)/2)\)-vertex-antimagic total labeling of \( C_p^t \). MacDougall and Wallis [1343] have proved the following: \( C_{4m+3}^t \); \( m \geq 1 \), has a super \((a,0)\)-edge-antimagic total labeling for all possible values of \( t \) with \( a = 10m + 9 \) or \( 10m + 10 \); \( C_{4m+1}^t \), \( m \geq 3 \), has
a super \((a,0)\)-edge-antimagic total labeling for all possible values except \(t = 5, 9, 4m - 4,\)
and \(4m - 8\) with \(a = 10m + 4\) and \(10m + 5\); \(C'_{4m+1}\), \(m \geq 1\), has a super \((10m + 4,0)\)-
edge-antimagic total labeling for all \(t \equiv 1 \pmod{4}\) except \(4m - 3\); \(C'_{4m}\), \(m > 1\), has a
super \((10m + 2,0)\)-edge-antimagic total labeling for all \(t \equiv 2 \pmod{4}\); \(C'_{4m+2}\), \(m > 1\), has
a super \((10m + 7,0)\)-edge-antimagic total labeling for all odd \(t\) other than 5 and for \(t = 2\) or 6.
In [837] Hussain, Baskoro, and Ali prove the following: for any \(p \geq 4\) and for any \(t \geq 2\), \(C''_p\) admits a super \((2p + 2,1)\)-edge-antimagic total labeling; for \(n \geq 4\), \(k \geq 2\) and
\(t \geq 2\), \(kC''_n\) admits a super \((2nk + 2,1)\)-edge-antimagic total labeling; and for \(p \geq 5\) and
\(t \geq 2\), \(C''_{p}\) admits a super \((8p + 3,1)\)-vertex-antimagic total labeling, provided if \(p \neq 2t\).

Bača and Murugan [242] have proved: if \(C'^n_n\), \(n \geq 4, 2 \leq t \leq n - 2\), is super \((a,d)\)-
edge-antimagic total, then \(d = 0, 1, or 2\); for \(n = 2k + 1 \geq 5\), \(C'^n_n\) has a super \((a,0)\)-
edge-antimagic total labeling for all possible values of \(t\) with \(a = 5k + 4\) or \(5k + 5\); for \(n = 2k+1 \geq 5\), \(C'^n_n\) has a super \((a,2)\)-edge-antimagic total labeling for all possible values of \(t\) with \(a = 3k+3\) or \(3k+4\); for \(n \equiv 0 \pmod{4}\), \(C'^n_n\) has a super \((5n/2+2,0)\)-edge-antimagic total labeling and a super \((3n/2+2,0)\)-edge-antimagic total labeling for all \(t \equiv 2 \pmod{4}\); for \(n = 10\) and \(n \equiv 2 \pmod{4}\), \(n \geq 18\), \(C'^n_n\) has a super \((5n/2+2,0)\)-edge-antimagic total labeling and a super \((3n/2+2,0)\)-edge-antimagic total labeling for all \(t \equiv 3 \pmod{4}\) and
\(2 \leq t \leq 6\); for odd \(n \geq 5\), \(C'^n_n\) has a super \((2n + 2,1)\)-edge-antimagic total labeling for all possible values of \(t\); for even \(n \geq 6\), \(C'^n_n\) has a super \((2n + 2,1)\)-edge-antimagic total labeling for all odd \(t \geq 3\); and for even \(n \equiv 0 \pmod{4}\), \(n \geq 4\), \(C'^n_n\) has a super \((2n + 2,1)\)-edge-antimagic total labeling for all \(t \equiv 2 \pmod{4}\). They conjecture that there is a super \((2n + 2,1)\)-edge-antimagic total labeling of \(C'^n_n\) for \(n \equiv 0 \pmod{4}\) and for \(t \equiv 0 \pmod{4}\) and for \(n \equiv 2 \pmod{4}\) and for \(t\) even.

In [222] Bača, Lin, Miller, and Youssef prove: if the friendship \(C'^{(n)}_{3}\) is super \((a,d)\)\-antimagic total, then \(d < 3\); \(C'^{(n)}_{3}\) has an \((a,1)\)-edge antimagic vertex labeling if and only if \(n = 1, 3, 4, 5,\) and 7; \(C'^{(n)}_{3}\) has a super \((a,d)\)-edge-antimagic total labelings for \(d = 0\) and \(2\); \(C'^{(n)}_{3}\) has a super \((a,1)\)-edge-antimagic total labeling; if a fan \(F_n\) \((n \geq 2)\) has a super \((a,d)\)-edge-antimagic total labeling, then \(d < 3\); \(F_n\) has a super \((a,d)\)-edge-antimagic total labeling if \(2 \leq n \leq 6\) and \(d = 0, 1\) or 2; the wheel \(W_n\) has a super \((a,d)\)-edge-antimagic total labeling if and only if \(d = 1\) and \(n \neq 1 \pmod{4}\); \(K_n\), \(n \geq 3\), has a super \((a,d)\)-edge-antimagic total labeling if and only if either \(d = 0\) and \(n = 3\), or \(d = 1\) and \(n \geq 3\), or \(d = 2\) and \(n = 3\); and \(K_{n,n}\) has a super \((a,d)\)-edge antimagic total labeling if and only if \(d = 1\) and \(n \geq 2\).

Bača, Lin, and Muntaner-Batle [226] have shown that if a tree with at least two vertices has a super \((a,d)\)-edge-antimagic total labeling, then \(d\) is at most three and \(P_n\), \(n \geq 2\), has a super \((a,d)\)-edge-antimagic total labeling if and only if \(d = 0, 1, 2,\) or 3. They also characterize certain path-like graphs in a grid that have super\((a,d)\)-edge-antimagic total labelings.

In [1936] Sugeng, Miller, and Bača prove that the ladder, \(P_n \times P_2\), is super \((a,d)\)-edge-
antimagic total if \(n\) is odd and \(d = 0, 1,\) or 2 and \(P_n \times P_2\) is super \((a,1)\)-antimagic total
if \(n\) is even. They conjecture that \(P_n \times P_2\) is super \((a,0)\)- and \((a,2)\)-edge-antimagic when
\(n\) is even. Sugeng, Miller, and Bača [1936] prove that \(C_m \times P_2\) has a super \((a,d)\)-edge-
antimagic total labeling if and only if either \(d = 0, 1\) or 2 and \(m\) is odd and at least 3, or

\[ n \equiv 2 \pmod{4}, \quad n \equiv 1 \pmod{4}, \quad n \equiv 0 \pmod{4}, \quad n \equiv 3 \pmod{4}. \]
\(d = 1\) and \(m\) is even and at least 4. They conjecture that if \(m\) is even, \(m \geq 4\), \(n \geq 3\), and \(d = 0\) or 2, then \(C_m \times P_n\) has a super \((a,d)\)-edge-antimagic total labeling. In [1168] M.-J. Lee studied super \((a,1)\)-edge-antimagic properties of \(m(P_4 \times P_n)\) for \(m, n \geq 1\) and \(m(C_n \odot K_t)\) for \(n\) even and \(m, t \geq 1\). He also proved that for \(n \geq 2\) the graph \(P_4 \times P_n\) has a super \((8n + 2, 1)\)-edge antimagic total labeling.

Sugeng, Miller, and Bača [1936] define a variation of a ladder, \(L_n\), as the graph obtained from \(P_n \times P_2\) by joining each vertex \(u_i\) of one path to the vertex \(v_{i+1}\) of the other path for \(i = 1, 2, \ldots, n - 1\). They prove \(L_n\), \(n \geq 2\), has a super \((a,d)\)-edge-antimagic total labeling if and only if \(d = 0, 1,\) or 2.

In [518] Dafik, Miller, and Ryan investigate the existence of super \((a,d)\)-edge-antimagic total labelings of \(mK_{n,n,n}\) and \(K_{1,m} \cup 2sK_{1,n}\). Among their results are: for \(d = 0\) or 2, \(mK_{n,n,n}\) has a super \((a,d)\)-edge-antimagic total labeling if and only if \(n = 1\) and \(m\) is odd and at least 3; \(K_{1,m} \cup 2sK_{1,n}\) has a super \((a,d)\)-edge-antimagic labeling for \((a,d) = (4n + 5)s + 2m + 4, 0), ((2n + 5)s + m + 5, 2), ((3n + 5)s + (3m + 9)/2, 1)\) and \((5s + 7, 4)\).

In [188] Bača, Bashir, and Semaničová showed that for \(n \geq 4\) and \(d = 0, 1, 2, 3, 4, 5,\) and 6 the antiprism \(A_n\) has a super \(d\)-antimagic labeling of type \((1, 1, 1)\). The generalized antiprism \(A^m_n\) is obtained from \(C_m \times P_n\) by inserting the edges \(\{v_{i+j+1}, v_{i+1,j}\}\) for \(1 \leq i \leq m\) and \(1 \leq j \leq n - 1\) where the subscripts are taken modulo \(m\). Sugeng et al. prove that \(A^m_n\), \(m \geq 3\), \(n \geq 2\), is super \((a,d)\)-edge-antimagic total if and only if \(d = 1\).

A toroidal polyhex (toroidal fullerene) is a cubic bipartite graph embedded on the torus such that each face is a hexagon. Note that the torus is a closed surface that can carry a toroidal polyhex such that all its vertices have degree 3 and all faces of the embedding are hexagons. Bača and Shabbir [245] proved the toroidal polyhex \(H^m_n\) with \(mn\) hexagons, \(m, n \geq 2\), admits a super \((a,d)\)-edge-antimagic total labeling if and only if \(d = 1\) and \(a = 4mn + 2\).

Bača, Miller, Phanalasy, and A. Semaničová-Feňovčíková [236] investigated the existence of (super) 1-antimagic labelings of type \((1,1,1)\) for disjoint union of plane graphs. They prove that if a plane graph \(G(V,E,F)\) has a (super) 1-antimagic labeling \(h\) of type \((1,1,1)\) such that \(h(z_{ext}) = |V(G)| + |E(G)| + |F(G)|\) where \(z_{ext}\) denotes the unique external face then, for every positive integer \(m\), the graph \(mG\) also admits a (super) 1-antimagic labeling of type \((1,1,1)\); and if a plane graph \(G(V,E,F)\) has 4-sided inner faces and \(h\) is a (super) \(d\)-antimagic labeling of type \((1,1,1)\) of \(G\) such that \(h(z_{ext}) = |V(G)| + |E(G)| + |F(G)|\) where \(d = 1, 3, 5, 7, 9\) then, for every positive integer \(m\), the graph \(mG\) also admits a (super) \(d\)-antimagic labeling of type \((1,1,1)\). They also give a similar result about plane graphs with inner faces that are 3-sided.

Sugeng, Miller, Slamin, and Bača [1939] proved: the star \(S_n\) has a super \((a,d)\)-antimagic total labeling if and only if either \(d = 0, 1\) or 2, or \(d = 3\) and \(n = 1\) or 2; if a nontrivial caterpillar has a super \((a,d)\)-edge-antimagic total labeling, then \(d \leq 3\); all caterpillars have super \((a,0)\)-, \((a,1)\)- and \((a,2)\)-edge-antimagic total labelings; all caterpillars have a super \((a,1)\)-edge-antimagic total labeling; if \(m\) and \(n\) differ by at least 2 the double star \(S_{m,n}\) (that is, the graph obtained by joining the centers of \(K_{1,m}\) and \(K_{1,n}\) with an edge) has no \((a,3)\)-edge-antimagic total labeling.
Sugeng and Miller [1934] show how to manipulate adjacency matrices of graphs with \((a, d)\)-edge-antimagic vertex labelings and super \((a, d)\)-edge-antimagic total labelings to obtain new \((a, d)\)-edge-antimagic vertex labelings and super \((a, d)\)-edge-antimagic total labelings. Among their results are: every graph can be embedded in a connected \((a, d)\)-edge-antimagic vertex graph; every \((a, d)\)-edge-antimagic vertex graph has a proper \((a, d)\)-edge-antimagic vertex subgraph; if a graph has a \((a, 1)\)-edge-antimagic vertex labeling and an odd number of edges, then it has a super \((a, 1)\)-edge-antimagic total labeling; every super edge magic total graph has an \((a, 1)\)-edge-antimagic vertex labeling; and every graph can be embedded in a connected super \((a, d)\)-edge-antimagic total graph.

Rahmawati, Sugeng, Silaban, Miller, and Baća [1583] construct new larger \((a, d)\)-edge-antimagic vertex graphs from an existing \((a, d)\)-edge-antimagic vertex graph using adjacency matrix for difference \(d = 1, 2, 3\). The results are extended for super \((a, d)\)-edge-antimagic total graphs with differences \(d = 0, 1, 2, 3, 4\).

Ajitha, Arumugan, and Germina [108] show that \((p, p − 1)\) graphs with \(\alpha\)-labelings (see §3.1) and partite sets with sizes that differ by at most 1 have super \((a, d)\)-edge antimagic total labelings for \(d = 0, 1, 2\) and 3. They also show how to generate large classes of trees with super \((a, d)\)-edge-antimagic total labelings from smaller graceful trees.

Baća, Lin, Miller, and Ryan [220] define a Môbius grid, \(M^n_m\), as the graph with vertex set \(\{x_{i,j} | i = 1, 2, \ldots, m + 1, j = 1, 2, \ldots, n\}\) and edge set \(\{x_{i,j}, x_{i+1,j} | i = 1, 2, \ldots, m + 1, j = 1, 2, \ldots, n\}\). They prove that for \(n \geq 2\) and \(m \geq 4\), \(M^n_m\) has no \(d\)-antimagic vertex labeling with \(d \geq 5\) and no \(d\)-antimagic-edge labeling with \(d \geq 9\).

Ali, Baća, and Bashir, [100] investigated super \((a, d)\)-vertex-antimagic total labelings of the disjoint unions of paths. They prove: \(mP_2\) has a super \((a, d)\)-vertex-antimagic total labeling if and only if \(m\) is odd and \(d = 1\); \(mP_3\), \(m > 1\), has no super \((a, 3)\)-vertex-antimagic total labeling; \(mP_3\) has a super \((a, 2)\)-vertex-antimagic total labeling for \(m \equiv 1 \pmod{6}\); and \(mP_3\) has a super \((a, 2)\)-vertex-antimagic total labeling for \(m \equiv 3 \pmod{4}\).

Lee, Tsai, and Lin [1171] denote the subdivision of a star \(S_n\) obtained by inserting \(m\) vertices into every edge of the star \(S_n\) by \(S^n_m\). They proved that for \(n \geq 3\), the graph \(kS^n_m\) is super \((a, d)\)-edge antimagic total for certain values. In [841] Ichishima, López, Muntaner-Batle and Rius-Font proved that if \(G\) is tripartite and has a \((super)\) \((a, d)\)-edge antimagic total labeling, then \(nG\) \((n \geq 3)\) has a \((super)\) \((a, d)\)-edge antimagic total labeling for \(d = 1\) and for \(d = 0, 2\) when \(n\) is odd.

Let \(p, t_1, t_2, \ldots, t_k\) be integers such that \(1 \leq t_1 < t_2 < \cdots < t_k < p\). A Toeplitz graph, denoted by \(T_p(t_1, t_2, \ldots, t_k)\), is a graph with vertex set \(\{v_1, v_2, \ldots, v_p\}\) and edge set \(\{v_i - v_j : \left| i - j \right| \in \{t_1, t_2, \ldots, t_k\}\}\). Baća, Bashir, Nadeem, and Shabbir [187] give an upper bound on the difference \(d\) when a Toeplitz graph \(T_p(t_1, t_2, \ldots, t_k)\) is super \((a, d)\)-edge-antimagic total. They also construct a super \((a, 1)\)-edge-antimagic total labeling for an arbitrary Toeplitz graph without isolated vertices and prove that the Toeplitz graph \(T_p(t_1)\) admits a super \((a, 3)\)-edge-antimagic total labeling. Moreover, when \(p\) and \(t_1\) satisfy certain conditions \(T_p(t_1)\) also admits a super \((a, d)\)-edge-antimagic total labeling for \(d = 0\) and \(d = 2\). When \(k = 2\) they show the existence of a super \((a, 2)\)-edge-antimagic total labeling for the Toeplitz graph \(T_p(t_1, t_1 + 1)\).
Pandimadevi and Subbiah [1470] show the existence and nonexistence of \((a, d)\)-vertex antimagic total labeling for several class of digraphs and show how to construct labelings for generalized de Bruijn digraphs.

The book [235] by Bača and Miller has a wealth of material and open problems on super edge-antimagic labelings. In [195] Bača, Baskoro, Miller, Ryan, Simanjuntak, and Sugeng provide detailed survey of results on edge antimagic labelings and include many conjectures and open problems.

In Tables 14, 15, 16 and 17 we use the abbreviations

\((a, d)\)-VAT \((a, d)\)-vertex-antimagic total labeling

\((a, d)\)-SVAT super \((a, d)\)-vertex-antimagic total labeling

\((a, d)\)-EAT \((a, d)\)-edge-antimagic total labeling

\((a, d)\)-SEAT super \((a, d)\)-edge-antimagic total labeling

\((a, d)\)-EAV \((a, d)\)-edge-antimagic vertex labeling

A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The tables were prepared by Petr Kovář and Tereza Kovárová and updated by J. Gallian in 2008.
Table 14: **Summary of \((a,d)\)-Vertex-Antimagic Total and Super \((a,d)\)-Vertex-Antimagic Total Labelings**

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_n)</td>
<td>((a,d))-VAT</td>
<td>wide variety of (a) and (d) [197]</td>
</tr>
<tr>
<td>(P_n)</td>
<td>((a,d))-SVAT</td>
<td>(d = 3, d = 2, n \geq 3) odd or (d = 3, n \geq 3) [1937]</td>
</tr>
<tr>
<td>(C_n)</td>
<td>((a,d))-VAT</td>
<td>wide variety of (a) and (d) [196]</td>
</tr>
<tr>
<td>(C_n)</td>
<td>((a,d))-SVAT</td>
<td>(d = 0, 2) and (n) odd or (d = 1) [1937]</td>
</tr>
<tr>
<td>generalized Petersen graph (P(n,k))</td>
<td>((a,d))-VAT [198]</td>
<td>(n \geq 3, 1 \leq k \leq n/2) [1938]</td>
</tr>
<tr>
<td>prisms (C_n \times P_2)</td>
<td>((a,d))-VAT [198]</td>
<td></td>
</tr>
<tr>
<td>antiprisms</td>
<td>((a,d))-VAT [198]</td>
<td></td>
</tr>
<tr>
<td>(S_{n_1} \cup \ldots \cup S_{n_t})</td>
<td>((a,d))-VAT [1475], citeRahSl</td>
<td>(d = 1, 2, 3, 4, 6)</td>
</tr>
<tr>
<td>(W_n)</td>
<td>not ((a,d))-VAT</td>
<td>for (n &gt; 20) [1280]</td>
</tr>
<tr>
<td>(K_{1,n})</td>
<td>not ((a,d))-SVAT</td>
<td>(n \geq 3) [1937]</td>
</tr>
</tbody>
</table>
Table 15: Summary of \((a,d)\)-Edge-Antimagic Total Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>trees</td>
<td>((a,1))-EAT?</td>
<td>[221]</td>
</tr>
<tr>
<td>(P_n)</td>
<td>not ((a,d))-EAT</td>
<td>(d &gt; 2) [221]</td>
</tr>
<tr>
<td>(P_{2n})</td>
<td>((6n,1))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((6n + 2,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td>(P_{2n+1})</td>
<td>((3n + 4,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((3n + 4,3))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((2n + 4,4))-EAT?</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((5n + 4,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((3n + 5,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((2n + 6,4))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td>(C_n)</td>
<td>((2n + 2,1))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((3n + 2,1))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>not ((a,d))-EAT</td>
<td>(d &gt; 5) [221]</td>
</tr>
<tr>
<td>(C_{2n})</td>
<td>((4n + 2,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((4n + 3,2))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((2n + 3,4))-EAT?</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((2n + 4,4))-EAT?</td>
<td>[1841]</td>
</tr>
<tr>
<td>(C_{2n+1})</td>
<td>((3n + 4,3))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((3n + 5,3))-EAT</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((n + 4,5))-EAT?</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((n + 5,5))-EAT?</td>
<td>[1841]</td>
</tr>
<tr>
<td>(K_n)</td>
<td>not ((a,d))-EAT</td>
<td>(d &gt; 5) [221]</td>
</tr>
<tr>
<td>(K_{n,n})</td>
<td>((a,d))-EAT</td>
<td>iff (d = 1, n \geq 2) [222]</td>
</tr>
<tr>
<td>caterpillars</td>
<td>((a,d))-EAT</td>
<td>(d \leq 3) [1939]</td>
</tr>
<tr>
<td>(W_n)</td>
<td>not ((a,d))-EAT</td>
<td>(d &gt; 4) [221]</td>
</tr>
<tr>
<td>generalized Petersen</td>
<td>not ((a,d))-EAT</td>
<td>(d &gt; 4) [221]</td>
</tr>
<tr>
<td>graph (P(n,k))</td>
<td>((5n + 5)/2,2)-EAT</td>
<td>for (n) odd, (n \geq 3) and (k = 1, 2) [1446]</td>
</tr>
<tr>
<td></td>
<td>super ((4n + 2,1))-EAT</td>
<td>for (n \geq 3), and (1 \leq k \leq n/2) [1446]</td>
</tr>
</tbody>
</table>
Table 16: Summary of \((a,d)\)-Edge-Antimagic Vertex Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_n)</td>
<td>((3,2))-EAV</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>not ((a,d))-EAV</td>
<td>(d &gt; 2) [1841]</td>
</tr>
<tr>
<td>(P_{2n})</td>
<td>((n+2,1))-EAV</td>
<td>[1841]</td>
</tr>
<tr>
<td>(C_n)</td>
<td>not ((a,d))-EAV</td>
<td>(d &gt; 1) [221]</td>
</tr>
<tr>
<td>(C_{2n})</td>
<td>not ((a,d))-EAV</td>
<td>[1841]</td>
</tr>
<tr>
<td>(C_{2n+1})</td>
<td>((n+2,1))-EAV</td>
<td>[1841]</td>
</tr>
<tr>
<td></td>
<td>((n+3,1))-EAV</td>
<td>[1841]</td>
</tr>
<tr>
<td>(K_n)</td>
<td>not ((a,d))-EAV</td>
<td>for (n &gt; 1) [221]</td>
</tr>
<tr>
<td>(K_{n,n})</td>
<td>not ((a,d))-EAV</td>
<td>for (n &gt; 3) [221]</td>
</tr>
<tr>
<td>(W_n)</td>
<td>not ((a,d))-EAV</td>
<td>[221]</td>
</tr>
<tr>
<td>(C_3^{(n)}) (friendship graph)</td>
<td>((a,1))-EAV</td>
<td>iff (n = 1, 3, 4, 5, 7) [222]</td>
</tr>
<tr>
<td>generalized Petersen graph (P(n,k))</td>
<td>not ((a,d))-EAV</td>
<td>(d &gt; 1) [221]</td>
</tr>
</tbody>
</table>
Table 17: Summary of \((a,d)\)-Super-Edge-Antimagic Total Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_n^+) (see §2.2)</td>
<td>((a,d))-SEAT</td>
<td>variety of cases [177], [242]</td>
</tr>
<tr>
<td>(P_n \times P_2) (ladders)</td>
<td>((a,d))-SEAT</td>
<td>(n) odd, (d \leq 2) [1936]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(n) even, (d = 1) [1936]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT?</td>
<td>(d = 0, 2), (n) even [1936]</td>
</tr>
<tr>
<td>(C_n \times P_2)</td>
<td>((a,d))-SEAT</td>
<td>(d \leq 3) (n) odd [1936]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT?</td>
<td>(d = 1), (n \geq 4) even [1936]</td>
</tr>
<tr>
<td>(C_m \times P_n)</td>
<td>((a,d))-SEAT?</td>
<td>(m \geq 4) (even), (n \geq 3), (d = 0, 2) [1936]</td>
</tr>
<tr>
<td>caterpillars</td>
<td>((a,1))-SEAT</td>
<td>[1939]</td>
</tr>
<tr>
<td>(C_3^{(n)}) (friendship graphs)</td>
<td>((a,d))-SEAT</td>
<td>(d = 0, 1, 2) [222]</td>
</tr>
<tr>
<td>(F_n) ((n \geq 2)) (fans)</td>
<td>((a,d)) SEAT</td>
<td>only if (d &lt; 3) [222]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(2 \leq n \leq 6, d = 0, 1, 2) [222]</td>
</tr>
<tr>
<td>(W_n)</td>
<td>((a,d))-SEAT</td>
<td>iff (d = 1, n \not\equiv 1 \pmod{4}) [222]</td>
</tr>
<tr>
<td>(K_n) ((n \geq 3))</td>
<td>((a,d)) SEAT</td>
<td>iff (d = 0, n = 3) [222]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 1, n \geq 3) [222]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 2, n = 3) [222]</td>
</tr>
<tr>
<td>trees</td>
<td>((a,d))-SEAT</td>
<td>only if (d \leq 3) [226]</td>
</tr>
<tr>
<td>(P_n) ((n &gt; 1))</td>
<td>((a,d))-SEAT</td>
<td>iff (d \leq 3) [226]</td>
</tr>
<tr>
<td>(mK_n)</td>
<td>((a,d))-SEAT</td>
<td>iff (d \in {0, 2}, n \in {2, 3}, m \geq 3) odd [185]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 1, m, n \geq 2) [185]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 3) or (5, n = 2, m \geq 2) [185]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 4, n = 2, m \geq 3) odd [185]</td>
</tr>
<tr>
<td>(C_n)</td>
<td>((a,d))-SEAT</td>
<td>iff (d = 0) or (2), (n) odd [226]</td>
</tr>
<tr>
<td></td>
<td>((a,d))-SEAT</td>
<td>(d = 1) [196]</td>
</tr>
<tr>
<td>(P(m,n))</td>
<td>((a,d))-SEAT</td>
<td>many cases [196]</td>
</tr>
</tbody>
</table>
6.4 Face Antimagic Labelings and $d$-antimagic Labeling of Type (1,1,1)

Bača [179] defines a connected plane graph $G$ with edge set $E$ and face set $F$ to be $(a, d)$-face antimagic if there exist positive integers $a$ and $d$ and a bijection $g : E \to \{1, 2, \ldots, |E|\}$ such that the induced mapping $\psi_g : F \to \{a, a + d, \ldots, a + (|E(G)| - 1)d\}$, where for a face $f$, $\psi_g(f)$ is the sum of all $g(e)$ for all edges $e$ surrounding $f$ is also a bijection. In [181] Bača proves that for $\psi$ antimagic and $(4f, \psi)$ face antimagic. In [216] Bača, Lin, and Miller investigate $(a, d)$-face antimagic labelings of type $(1,1)$. They conjecture that when $m > n$ further conjecture that when $m > n$ and $d > 3$, they exist for the second case. Bača [179] and Bača and Miller [232] describe $(7n+3, 1)$ and $(7n+4, 1)$ face antimagic labelings when $m > n$ and $d > 3$. They also prove that if $m = 1$ and $n$ odd, then $P_m \times C_n$ has a $(3n(m + 1) + 3, 2)$-face antimagic labeling and if $n$ is at least 4 and even and $m$ is at least 3 and odd, or if $n = 2$ (mod 4), $n > 6$ and $m$ is even, then $P_m \times C_n$ has a $(3n(m + 1) + 3, 2)$-face antimagic labeling and a $(2n(m + 1) + 4, 4)$-face antimagic labeling. They conjecture that $P_m \times C_n$ has $(3n(m + 1) + 3, 2)$- and $(2n(m + 1) + 4, 4)$-face antimagic labelings when $m = 0$ (mod 4), $n > 4$, and for $m$ even and $n > 4$. They conjecture that $P_m \times C_n$ has a $(n(m + 1) + 5, 6)$-face antimagic labeling when $n$ is even and at least 4. Bača, Baskoro, Jendroľ, and Miller [192] proved that graphs in the shape of hexagonal honeycombs with $m$ rows, $n$ columns, and $mn$ 6-sided faces have $d$-antimagic labelings of type $(1,1,1)$ for $d = 1, 2, 3$, and 4 when $n$ odd and $mn > 1$.

In [233] Bača and Miller define the class $Q^m_n$ of convex polytopes with vertex set $\{y_{j,i} : i = 1, 2, \ldots, n; j = 1, 2, \ldots, m + 1\}$ and edge set $\{y_{j,i}, y_{j,i+1} : i = 1, 2, \ldots, n; j = 1, 2, \ldots, m\} \cup \{y_{j,i+1}, y_{j+1,i} : 1 + 1, 2, \ldots, n; j = 1, 2, \ldots, m, j \text{ odd}\} \cup \{y_{j,i}, y_{j+1,i+1} : i = 1, 2, \ldots, n; j = 1, 2, \ldots, m, j \text{ even}\}$ where $y_{j,n+1} = y_{j,1}$. They prove that for $m$ odd, $m \geq 3$, $n \geq 3$, $Q^m_n$ is $(7n(m + 1)/2 + 2, 1)$-face antimagic and when $m$ and $n$ are even, $m \geq 4$, $n \geq 4$, $Q^m_n$ is $(7n(m + 1)/2 + 2, 1)$-face antimagic. They conjecture that when $n$ is odd, $n \geq 3$, and $m$ is even, then $Q^m_n$ is $((5n(m + 1) + 5)/2, 2)$-face antimagic and $((n(m + 1) + 7)/2, 4)$-face antimagic. They further conjecture that when $n$ is even, $n > 4, m > 1$ or $n$ is odd, $n > 3$ and $m$ is odd, $m > 1$, then $Q^m_n$ is $(3n(m + 1)/2 + 3, 3)$-face antimagic. In [183] Bača proves that for the case $m = 1$ and $n \geq 3$ the only possibilities for $(a, d)$-antimagic labelings for $Q^m_n$ are $(7n + 2, 1)$ and $(3n + 3, 3)$. He provides the labelings for the first case and conjectures that they exist for the second case. Bača [179] and Bača and Miller [232] describe $(a, d)$-face antimagic labelings for a certain classes of convex polytopes.

In [191] Bača et al. provide a detailed survey of results on face antimagic labelings and include many conjectures and open problems.

For a plane graph $G$, Bača and Miller [234] call a bijection $h$ from $V(G) \cup E(G) \cup F(G)$ to $\{1, 2, \ldots, |V(G)| + |E(G)| \cup |F(G)|\}$ a $d$-antimagic labeling of type $(1,1,1)$ if for every number $s$ the set of $s$-sided face weights is $W_s = \{a_s, a_s + d, a_s + 2d, \ldots, a_s + (f_s - 1)d\}$ for some integers $a_s$ and $d$, where $f_s$ is the number of $s$-sided faces ($W_s$ varies with $s$). They show that the prisms $C_n \times P_2$ $(n \geq 3)$ have a 1-antimagic labeling of type $(1,1,1)$ and
that for $n \equiv 3 \pmod{4}$, $C_n \times P_2$ have a $d$-antimagic labeling of type $(1, 1, 1)$ for $d = 2, 3, 4,$ and $6$. They conjecture that for all $n \geq 3$, $C_n \times P_2$ has a $d$-antimagic labeling of type $(1, 1, 1)$ for $d = 2, 3, 4, 5,$ and $6$. This conjecture has been proved for the case $d = 3$ and $n \neq 4$ by Bača, Miller, and Ryan [239] (the case $d = 3$ and $n = 4$ is open). The cases for $d = 2, 4, 5,$ and $6$ were done by Lin, Slamin, Bača, and Miller [1281]. Bača, Lin, and Miller [217] prove: for $m, n > 8$, $P_m \times P_n$ has no $d$-antimagic edge labeling of type $(1, 1, 1)$ with $d \geq 9$; for $m \geq 2, n \geq 2,$ and $(m, n) \neq (2, 2)$, $P_m \times P_n$ has $d$-antimagic labelings of type $(1, 1, 1)$ for $d = 1, 2, 3, 4,$ and $6$. They conjecture the same is true for $d = 5$. Bača, Miller, and Ryan [239] also prove that for $n \geq 4$ the antiprism (see §6.1 for the definition) on $2n$ vertices has a $d$-antimagic labeling of type $(1, 1, 1)$ for $d = 1, 2, 3,$ and $4$. They conjecture the result holds for $d = 3, 5,$ and $6$ as well. Lin, Ahmad, Miller, Sugeng, and Bača [1278] did the cases that $d = 4$ for $n \geq 3$ and $d = 12$ for $n \geq 11$. Sugeng, Miller, Lin, and Bača [1938] did the cases: $d = 7, 8, 9, 10$ for $n \geq 5$; $d = 15$ for $n \geq 6$; $d = 18$ for $n \geq 7$; $d = 12, 14, 17, 20, 21, 24, 27, 30, 36$ for $n$ odd and $n \geq 7$; and $d = 16, 26$ for $n$ odd and $n \geq 9$.

Ali, Bača, Bashir, and Semaničová-Feňovčíková [101] investigated antimagic labelings for disjoint unions of prisms and cycles. They prove: for $m \geq 2$ and $n \geq 3$, $m(C_n \times P_2)$ has no super $d$-antimagic labeling of type $(1, 1, 1)$ with $d \geq 30$; for $m \geq 2$ and $n \geq 3, n \neq 4$, $m(C_n \times P_2)$ has super $d$-antimagic labeling of type $(1, 1, 1)$ for $d = 0, 1, 2, 3, 4,$ and $5$; and for $m \geq 2$ and $n \geq 3$, $mC_n$ has $(m(n + 1) + 3, 3)$- and $(2mn + 2, 2)$-vertex-antimagic total labeling. Bača and Bashir [186] proved that for $m \geq 2$ and $n \geq 3, n \neq 4$, $m(C_n \times P_2)$ has super 7-antimagic labeling of type $(1, 1, 1)$ and for $n \geq 3, n \neq 4$ and $2 \leq m \leq 2n m(C_n \times P_2)$ has super 6-antimagic labeling of type $(1, 1, 1)$.

Bača, Numan and Siddiqui [225] investigated the existence of the super $d$-antimagic labeling of type $(1, 1, 1)$ for the disjoint union of $m$ copies of antiprism $mA_n$. They proved that for $m \geq 2, n \geq 4$, $mA_n$ has super $d$-antimagic labelings of type $(1, 1, 1)$ for $d = 1, 2, 3, 5, 6$. Ahmad, Bača, Lascáková and Semaničová-Feňovčíková [66] investigated super $d$-antimagicness of type $(1, 1, 0)$ for $mG$ in a more general sense. They prove: if there exists a super 0-antimagic labeling of type $(1, 1, 0)$ of a plane graph $G$ then, for every positive integer $m$, the graph $mG$ also admits a super 0-antimagic labeling of type $(1, 1, 0)$; if a plane graph $G$ with 3-sided inner faces admits a super $d$-antimagic labeling of type $(1, 1, 0)$ for $d = 0, 6$ then, for every positive integer $m$, the graph $mG$ also admits a super $d$-antimagic labeling of type $(1, 1, 0)$; if a plane graph $G$ with 3-sided inner faces is a tripartite graph with a super $d$-antimagic labeling of type $(1, 1, 0)$ for $d = 2, 4$ then, for every positive integer $m$, the graph $mG$ also admits a super $d$-antimagic labeling of type $(1, 1, 0)$; if a plane graph $G$ with 4-sided inner faces admits a super $d$-antimagic labeling of type $(1, 1, 0)$ for $d = 0, 4, 8$ then the disjoint union of arbitrary number of copies of $G$ also admits a super $d$-antimagic labeling of type $(1, 1, 0)$; if a plane graph $G$ with $k$-sided inner faces, $k \geq 3$, admits a super $d$-antimagic labeling of type $(1, 1, 0)$ for $d = 0, 2k$ then, for every positive integer $m$, the graph $mG$ also admits a super $d$-antimagic labeling of type $(1, 1, 0)$; if a plane graph $G$ with $k$-sided inner faces admits a super $k$-antimagic labeling of type $(1, 1, 0)$ for $k \geq 3$ then, for every positive integer $m$, the graph $mG$ also admits a super $k$-antimagic labeling of type $(1, 1, 0)$.
Bača, Jendrš, Miller, and Ryan [210] prove: for \( n \) even, \( n \geq 6 \), the generalized Petersen graph \( P(n, 2) \) has a 1-antimagic labeling of type \((1, 1, 1)\); for \( n \) even, \( n \geq 6 \), \( n \neq 10 \), and \( d = 2 \) or 3, \( P(n, 2) \) has a \( d \)-antimagic labeling of type \((1, 1, 1)\); and for \( n \equiv 0 \pmod{4}, n \geq 8 \) and \( d = 6 \) or 9, \( P(n, 2) \) has a \( d \)-antimagic labeling of type \((1, 1, 1)\). They conjecture that there is an \( d \)-antimagic labeling of type \((1, 1, 1)\) for \( P(n, 2) \) when \( n \equiv 2 \pmod{4}, n \geq 6 \), and \( d = 6 \) or 9.

In [201] Bača, Branković, and A. Semaničová-Fešovčíková provide super \( d \)-antimagic labelings of type \((1,1,1)\) for friendship graphs \( F_n \) \((n \geq 2)\) and several other families of planar graphs.

Bača, Brankovic, Lascsáková, Phanalasy and Semaničová-Fešovčíková [200] provided super \( d \)-antimagic labeling of type \((1,1,0)\) for friendship graphs \( F_n \), \( n \geq 2 \), for \( d \in \{1,3,5,7,9,11,13\} \). Moreover, they show that for \( n \equiv 1 \pmod{2} \) the graph \( F_n \) also admits a super \( d \)-antimagic labeling of type \((1,1,0)\) for \( d \in \{0,2,4,6,8,10\} \).

Bača, Baskoro, and Miller [193] have proved that hexagonal planar honeycomb graphs with an even number of columns have 2-antimagic and 4-antimagic labelings of type \((1,1,1)\). They conjecture that these honeycombs also have \( d \)-antimagic labelings of type \((1,1,1)\) for \( d = 3 \) and 5. They pose the odd number of columns case for \( 1 \leq d \leq 5 \) as an open problem. Bača, Baskoro, and Miller [194] give \( d \)-antimagic labelings of a special class of plane graphs with 3-sided internal faces for \( d = 0, 2 \), and 4. Bača, Liu, Miller, and Ryan [220] prove for odd \( n \geq 3 \), \( m \geq 1 \) and \( d = 0,1,2 \) or 4, the Möbius grid \( M^m_n \) has an \( d \)-antimagic labeling of type \((1,1,1)\). Siddiqui, Numan, and Umar [1838] examined the existence of super \( d \)-antimagic labelings of type \((1,1,1)\) for Jahangir graphs for certain differences \( d \).

Bača, Numan and Shabbir [224] studied the existence of super \( d \)-antimagic labelings of type \((1,1,1)\) for the toroidal polyhex \( \mathbb{H}_m^a \). They labeled the edges of a 1-factor by consecutive integers and then in successive steps they labeled the edges of 2m-cycles (respectively 2n-cycles) in a 2-factor by consecutive integers. This technique allowed them to construct super \( d \)-antimagic labelings of type \((1,1,1)\) for \( \mathbb{H}_m^a \) with \( d = 1,3,5 \). They suppose that such labelings exist also for \( d = 0,2,4 \).

Kathiresan and Ganesan [1068] define a class of plane graphs denoted by \( P^b_a \) \((a \geq 3, b \geq 2)\) as the graph obtained by starting with vertices \( v_1, v_2, \ldots, v_a \) and for each \( i = 1,2, \ldots, a - 1 \) joining \( v_i \) and \( v_{i+1} \) with \( b \) internally disjoint paths of length \( i + 1 \). They prove that \( P^b_a \) has \( d \)-antimagic labelings of type \((1,1,1)\) for \( d = 0,1,2,3,4 \), and 6. Lin and Sugen [1282] prove that \( P^b_a \) has a \( d \)-antimagic labeling of type \((1,1,1)\) for \( d = 5,7a - 2,a + 1,a - 3,a - 7,a + 5,a - 4,a + 2,2a - 3,2a - 1,a - 1,3a - 3,a + 3,2a + 1,2a + 3,3a + 1,4a - 1,4a - 3,5a - 3,3a - 1,6a - 5,6a - 7,7a - 7, \) and \( 5a - 5 \). Similarly, Bača, Baskoro, and Cholily [190] define a class of plane graphs denoted by \( C^b_a \) as the graph obtained by starting with vertices \( v_1, v_2, \ldots, v_a \) and for each \( i = 1,2, \ldots, a \) joining \( v_i \) and \( v_{i+1} \) with \( b \) internally disjoint paths of length \( i + 1 \) (subscripts are taken modulo \( a \)). In [190] and [189] they prove that for \( a \geq 3 \) and \( b \geq 2 \), \( C^b_a \) has a \( d \)-antimagic labeling of type \((1,1,1)\) for \( d = 0,1,2,3,4,5,6,a - 1, a - 2 \), and \( a - 2 \).

In [202] Bača, Brankovic, and Semaničová-Fešovčíková investigated the existence of super \( d \)-antimagic labelings of type \((1,1,1)\) for plane graphs containing a special kind.
of Hamilton path. They proved: if there exists a Hamilton path in a plane graph $G$ such that for every face except the external face, the Hamilton path contains all but one of the edges surrounding that face, then $G$ is super $d$-antimagic of type $(1,1,1)$ for $d = 0, 1, 2, 3, 5$; if there exists a Hamilton path in a plane graph $G$ such that for every face except the external face, the Hamilton path contains all but one of the edges surrounding that face and if $2(|F(G)| - 1) \leq |V(G)|$, then $G$ is super $d$-antimagic of type $(1,1,1)$ for $d = 0, 1, 2, 3, 4, 5, 6$; if $G$ is a plane graph with $M = \left\lfloor \frac{|V(G)|}{|F(G)| - 1} \right\rfloor$ and a Hamilton path such that for every face, except the external face, the Hamilton path contains all but one of the edges surrounding that face, then for $M = 1$, $G$ admits a super $d$-antimagic labeling of type $(1,1,1)$ for $d = 0, 1, 2, 3, 5$; and for $M \geq 2$, $G$ admits a super $d$-antimagic labeling of type $(1,1,1)$ for $d = 0, 1, 2, 3, \ldots, M + 4$. They also proved that $P_n \times P_2$ ($n \geq 3$) admits a super $d$-antimagic labeling of type $(1,1,1)$ for $d \in \{0, 1, 2, \ldots, 15\}$ and the graph obtained from $P_n \times P_m$ ($n \geq 2$) by adding a new edge in every 4-sided face such that the added edges are “parallel” admits a super $d$-antimagic labeling of type $(1,1,1)$ for $d \in \{0, 1, 2, \ldots, 9\}$.

In [853] Imran, Siddiqui, and Numan examine the existence of super $d$-antimagic labelings of type $(1,1,1)$ for uniform subdivision of wheel for certain differences $d$.

In the following tables we use the abbreviations

$(a,d)$-FA $(a,d)$-face antimagic labeling

$d$-AT$(1,1,1) \quad d$-antimagic labeling of type $(1,1,1)$.

A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property. The tables were prepared by Petr Kovář and Tereza Kovářová and updated by J. Gallian in 2008.
Table 18: Summary of Face Antimagic Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_n^m$ (see §6.4)</td>
<td>$(7n(m + 1)/2 + 2, 1)$-FA</td>
<td>$m \geq 3, n \geq 3, m$ odd [233]</td>
</tr>
<tr>
<td></td>
<td>$(7n(m + 1)/2 + 2, 1)$-FA</td>
<td>$m \geq 4, n \geq 4, m, n$ even [233]</td>
</tr>
<tr>
<td></td>
<td>$((5n(m + 1) + 5)/2, 2)$-FA?</td>
<td>$m \geq 2, n \geq 3, m$ even, $n$ odd [233]</td>
</tr>
<tr>
<td></td>
<td>$((n(m + 1) + 7)/2, 4)$-FA?</td>
<td>$m \geq 2, n \geq 3, m$ even, $n$ odd [233]</td>
</tr>
<tr>
<td></td>
<td>$(3n(m + 1)/2 + 3, 3)$-FA?</td>
<td>$m &gt; 1, n &gt; 4, n$ even [233]</td>
</tr>
<tr>
<td></td>
<td>$(3n(m + 1)/2 + 3, 3)$-FA?</td>
<td>$m &gt; 1, n &gt; 3, m$ odd, $n$ odd [233]</td>
</tr>
<tr>
<td>$C_n \times P_2$</td>
<td>$(6n + 3, 2)$-FA</td>
<td>$n \geq 4, n$ even [181]</td>
</tr>
<tr>
<td></td>
<td>$(4n + 4, 4)$-FA</td>
<td>$n \geq 4, n$ even [181]</td>
</tr>
<tr>
<td></td>
<td>$(2n + 5, 6)$-FA?</td>
<td>[181]</td>
</tr>
<tr>
<td>$P_{m+1} \times C_n$</td>
<td>$(3n(m + 1) + 3, 2)$-FA</td>
<td>$n \geq 4, n$ even and [216]</td>
</tr>
<tr>
<td></td>
<td>$(3n(m + 1) + 3, 2)$-FA and</td>
<td>$m \geq 3, m \equiv 1 \pmod{4}$,</td>
</tr>
<tr>
<td></td>
<td>$(2n(m + 1) + 4, 4)$-FA</td>
<td>$n \geq 4, n$ even and [216]</td>
</tr>
<tr>
<td></td>
<td>or $n \geq 6, n \equiv 2 \pmod{4}$ and</td>
<td>$m \geq 3, m$ odd [216],</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n \geq 4, m$ even</td>
</tr>
<tr>
<td></td>
<td>$(3n(m + 1) + 3, 2)$-FA?</td>
<td>$m \geq 4, n \geq 4, m \equiv 0 \pmod{4}$ [216]</td>
</tr>
<tr>
<td></td>
<td>$(2n(m + 1) + 4, 4)$-FA?</td>
<td>$m \geq 4, n \geq 4, m \equiv 0 \pmod{4}$ [216]</td>
</tr>
<tr>
<td></td>
<td>$(n(m + 1) + 5, 6)$-FA?</td>
<td>$n \geq 4, n$ even [216]</td>
</tr>
</tbody>
</table>

Table 19: Summary of $d$-antimagic Labelings of Type (1,1,1)

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_m \times P_n$</td>
<td>not $d$-AT(1,1,1)</td>
<td>$m, n, d \geq 9$, [217]</td>
</tr>
<tr>
<td>$P_m \times P_n$</td>
<td>$d$-AT(1,1,1)</td>
<td>$d = 1, 2, 3, 4, 6$; $m, n \geq 2, (m, n) \neq (2, 2)$ [217]</td>
</tr>
<tr>
<td>$P_m \times P_n$</td>
<td>5-AT(1,1,1)</td>
<td>$m, n \geq 2, (m, n) \neq (2, 2)$ [217]</td>
</tr>
<tr>
<td>$C_n \times P_2$</td>
<td>1-AT(1,1,1)</td>
<td>[234]</td>
</tr>
<tr>
<td></td>
<td>$d$-AT(1,1,1)</td>
<td>$d = 2, 3, 4$ and 6 [234] for $n \equiv 3 \pmod{4}$</td>
</tr>
<tr>
<td></td>
<td>$d$-AT(1,1,1)</td>
<td>$d = 2, 4, 5, 6$ for $n \geq 3$ [1281]</td>
</tr>
<tr>
<td></td>
<td>$d$-AT(1,1,1)</td>
<td>$d = 3$ for $n \geq 5$ [239]</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labeling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_m \times P_n$</td>
<td>5-AT(1,1,1)?</td>
<td>$[1281]\quad m, n &gt; 8, \quad d \geq 9$ $[1281]$</td>
</tr>
<tr>
<td>antiprism on 2n vertices</td>
<td>not d-AT</td>
<td>$d = 1, 2$ and 4 for $n \geq 4$ $[239]$</td>
</tr>
<tr>
<td>$M^m_n$ (Möbius grids)</td>
<td>d-AT(1,1,1)</td>
<td>$d = 3, 5$ and 6 for $n \geq 4$ $[239]$</td>
</tr>
<tr>
<td>$P(n,2)$</td>
<td>d-AT(1,1,1)</td>
<td>$d = 1$; $d = 2, 3, \quad n \geq 6, \quad n \neq 10$ $[210]$</td>
</tr>
<tr>
<td>$P(4n,2)$</td>
<td>d-AT(1,1,1)</td>
<td>$d = 6, 9, \quad n \geq 2, \quad n \neq 10$ $[210]$</td>
</tr>
<tr>
<td>$P(4n + 2,2)$</td>
<td>d-AT(1,1,1)?</td>
<td>$d = 6, 9, \quad n \geq 1, \quad n \neq 10$ $[210]$</td>
</tr>
<tr>
<td>honeycomb graphs with even</td>
<td>d-AT(1,1,1)</td>
<td>$d = 2, 4$ $[193]$</td>
</tr>
<tr>
<td>number of columns</td>
<td>d-AT(1,1,1)?</td>
<td>$d = 3, 5$ $[193]$</td>
</tr>
<tr>
<td>$C_n \times P_2$</td>
<td>d-AT(1,1,1)</td>
<td>$d = 1, 2, 4, 5, 6$ $[1281], \quad [234]$</td>
</tr>
<tr>
<td>$C_n \times P_2$</td>
<td>3-AT(1,1,1)</td>
<td>$n \neq 4$ $[239]$</td>
</tr>
</tbody>
</table>

### 6.5 Product Antimagic Labelings

Figueroa-Centeno, Ichishima, and Muntaner-Batle [612] have introduced multiplicative analogs of magic and antimagic labelings. They define a graph $G$ of size $q$ to be **product magic** if there is a labeling from $E(G)$ onto $\{1, 2, \ldots, q\}$ such that, at each vertex $v$, the product of the labels on the edges incident with $v$ is the same. They call a graph $G$ of size $q$ **product antimagic** if there is a labeling $f$ from $E(G)$ onto $\{1, 2, \ldots, q\}$ such that the products of the labels on the edges incident at each vertex $v$ are distinct. They prove: a graph of size $q$ is product magic if and only if $q \leq 1$ (that is, if and only if it is $K_2, \overline{K_n}$ or $K_2 \cup \overline{K_n}$); $P_n$ ($n \geq 4$) is product antimagic; every 2-regular graph is product antimagic; and, if $G$ is product antimagic, then so are $G + K_1$ and $G \odot \overline{K_n}$. They conjecture that a connected graph of size $q$ is product antimagic if and only if $q \geq 3$. Kaplan, Lev, and
Roditty [1059] proved the following graphs are product antimagic: the disjoint union of cycles and paths where each path has least three edges; connected graphs with $n$ vertices and $m$ edges where $m \geq 4n \ln n$; graphs $G = (V, E)$ where each component has at least two edges and the minimum degree of $G$ is at least $8\sqrt{\ln |E| \ln (\ln |E|)}$; all complete $k$-partite graphs except $K_2$ and $K_{1,2}$; and $G \odot H$ where $G$ has no isolated vertices and $H$ is regular.

In [1501] Pikhurko characterizes all large graphs that are product antimagic graphs. More precisely, it is shown that there is an $n_0$ such that a graph with $n \geq n_0$ vertices is product antimagic if and only if it does not belong to any of the following four classes: graphs that have at least one isolated edge; graphs that have at least two isolated vertices; unions of vertex-disjoint of copies of $K_{1,2}$; graphs consisting of one isolated vertex; and graphs obtained by subdividing some edges of the star $K_{1,k+1}$.

In [612] Figueroa-Centeno, Ichishima, and Muntaner-Batle also define a graph $G$ with $p$ vertices and $q$ edges to be product edge-magic if there is a labeling $f$ from $V(G) \cup E(G)$ onto $\{1, 2, \ldots, p+q\}$ such that $f(u) \cdot f(v) \cdot f(uv)$ is a constant for all edges $uv$ and product edge-antimagic if there is a labeling $f$ from $V(G) \cup E(G)$ onto $\{1, 2, \ldots, p+q\}$ such that for all edges $uv$ the products $f(u) \cdot f(v) \cdot f(uv)$ are distinct. They prove $K_2 \cup \overline{K}_n$ is product edge-magic, a graph of size $q$ without isolated vertices is product edge-magic if and only if $q \leq 1$ and every graph other than $K_2$ and $K_2 \cup \overline{K}_n$ is product edge-antimagic.
7 Miscellaneous Labelings

7.1 Sum Graphs

In 1990, Harary [766] introduced the notion of a sum graph. A graph \( G(V, E) \) is called a sum graph if there is an bijection \( f \) from \( V \) to a set of positive integers \( S \) such that \( xy \in E \) if and only if \( f(x) + f(y) \in S \). Since the vertex with the highest label in a sum graph cannot be adjacent to any other vertex, every sum graph must contain isolated vertices. In 1991 Harary, Hentzel, and Jacobs [768] defined a real sum graph in an analogous way by allowing \( S \) to be any finite set of positive real numbers. However, they proved that every real sum graph is a sum graph. Bergstrand, Hodges, Jennings, Kuklinski, Wiener, and Harary [344] defined a product graph analogous to a sum graph except that 1 is not permitted to belong to \( S \). They proved that every product graph is a sum graph and vice versa.

For a connected graph \( G \), let \( \sigma(G) \), the sum number of \( G \), denote the minimum number of isolated vertices that must be added to \( G \) so that the resulting graph is a sum graph (some authors use \( s(G) \) for the sum number of \( G \)). A labeling that makes \( G \) together with \( \sigma(G) \) isolated points a sum graph is called an optimal sum graph labeling. Ellingham [571] proved the conjecture of Harary [766] that \( \sigma(T) = 1 \) for every tree \( T \neq K_1 \). Smyth [1882] proved that there is no graph \( G \) with \( e \) edges and \( \sigma(G) = 1 \) when \( n^2/4 < e \leq n(n - 1)/2 \). Smyth [1883] conjectures that the disjoint union of graphs with sum number 1 has sum number 1. More generally, Kratochvil, Miller, and Nguyen [1129] conjecture that \( \sigma(G \cup H) \leq \sigma(G) + \sigma(H) - 1 \). Hao [760] has shown that if \( d_1 \leq d_2 \leq \cdots \leq d_n \) is the degree sequence of a graph \( G \), then \( \sigma(G) \geq \max(d_i - i) \) where the maximum is taken over all \( i \). Bergstand et al. [343] proved that \( \sigma(K_n) = 2n - 3 \). Hartsfield and Smyth [773] claimed to have proved that \( \sigma(K_m, n) = \lceil 3m + n - 3 \rceil / 2 \) when \( n \geq m \) but Yan and Liu [2202] found counterexamples to this assertion when \( m \neq n \). Pyatkin [1571], Liaw, Kuo, and Chang [1274], Wang and Liu [2160], and He, Shen, Wang, Chang, Kang, and Yu [778] have shown that for \( 2 \leq m \leq n \), \( \sigma(K_m, n) = \lceil n p + (p+1)(m-1) \rceil / 2 \) where \( p = \lceil \sqrt{2n/m-1} + 1/4 - 1/2 \rceil \) is the unique integer such that \( (p-1)p(m-1)/2 < n \leq (p+1)p(m-1)/2 \).

Miller, Ryan, Slamin, and Smyth [1400] proved that \( \sigma(W_n) = n/2 + 2 \) for \( n \) even and \( \sigma(W_n) = n \) for \( n \geq 5 \) and \( n \) odd (see also [1963]). Miller, Ryan, and Smyth [1402] prove that the complete \( n \)-partite graph on \( n \) sets of 2 nonadjacent vertices has sum number \( 4n - 5 \) and obtain upper and lower bounds on the complete \( n \)-partite graph on \( n \) sets of \( m \) nonadjacent vertices. Fernau, Ryan, and Sugeng [609] proved that the generalized friendship graphs \( C_n^{(t)} \) (see §2.2) has sum number 2 except for \( C_4 \). Gould and Rödl [732] investigated bounds on the number of isolated points in a sum graph. A group of six undergraduate students [731] proved that \( \sigma(K_n - \text{edge}) \leq 2n - 4 \). The same group of six students also investigated the difference between the largest and smallest labels in a sum graph, which they called the spum. They proved spum of \( K_n \) is \( 4n - 6 \) and the spum of \( C_n \) is at most \( 4n - 10 \). Kratochvil, Miller, and Nguyen [1129] have proved that every sum graph on \( n \) vertices has a sum labeling such that every label is at most \( 4^h \).

At a conference in 2000 Miller [1389] posed the following two problems: Given any
graph \( G \), does there exist an optimal sum graph labeling that uses the label 1; Find a class of graphs \( G \) that have sum number of the order \(|V(G)|^s\) for \( s > 1 \). (Such graphs were shown to exist for \( s = 2 \) by Gould and Rödl in [732]).

In [1869] Slamet, Sugeng, and Miller show how one can use sum graph labelings to distribute secret information to set of people so that only authorized subsets can reconstruct the secret.

Chang [445] generalized the notion of sum graph by permitting \( x = y \) in the definition of sum graph. He calls graphs that have this kind of labeling strong sum graphs and uses \( i^*(G) \) to denote the minimum positive integer \( m \) such that \( G \cup mK_1 \) is a strong sum graph. Chang proves that \( i^*(K_n) = \sigma(K_n) \) for \( n = 2, 3, \) and 4 and \( i^*(K_n) > \sigma(K_n) \) for \( n \geq 5 \). He further shows that for \( n \geq 5 \), \( 3n \log_3 n > i^*(K_n) \geq 12\lfloor n/5 \rfloor - 3 \).

In 1994 Harary [767] generalized sum graphs by permitting \( S \) to be any set of integers. He calls these graphs integral sum graphs. Unlike sum graphs, integral sum graphs need not have isolated vertices. Sharary [1785] has shown that \( C_n \) and \( W_n \) are integral sum graphs for all \( n \neq 4 \). Chen [467] proved that trees obtained from a star by extending each edge to a path and trees all of whose vertices of degree not 2 are at least distance 4 apart are integral sum graphs. He conjectures that all trees are integral sum graphs. In [467] and [469] Chen gives methods for constructing new connected integral sum graphs from given integral sum graphs by identifying vertices. Chen [469] has shown that every graph is an induced subgraph of a connected integral sum graph. Chen [469] calls a vertex of a graph saturated if it is adjacent to every other vertex of the graph. He proves that every integral sum graph except \( K_3 \) has at most two saturated vertices and gives the exact structure of all integral sum graphs that have exactly two saturated vertices. Chen [469] also proves that a connected integral sum graph with \( p > 1 \) vertices and \( q \) edges and no saturated vertices satisfies \( q \leq p(3p - 2)/8 - 2 \). Wu, Mao, and Le [2180] proved that \( mP_n \) are integral sum graphs. They also show that the conjecture of Harary [767] that the sum number of \( C_n \) equals the integral sum number of \( C_n \) if and only if \( n \neq 3 \) or 5 is false and that for \( n \neq 4 \) or 6 the integral sum number of \( C_n \) is at most 1. Vilfred and Nicholas [2106] prove that graphs \( G \) of order \( n \) with \( \Delta(G) = n - 1 \) and \( |V(\Delta(G))| \geq 2 \) are not integral sum graphs, except \( K_3 \), and that integral sum graphs \( G \) of order \( n \) with \( \Delta(G) = n - 1 \) and \( |V(\Delta(G))| = 2 \) exist and are unique up to isomorphism. Chen [471] proved that if \( G(V, E) \) is an integral sum other than \( K_3 \) that has vertex of degree \( |V| - 1 \), then the edge-chromatic number of \( G \) is \( |V| - 1 \).

He, Wang, Mi, Shen, and Yu [776] say that a graph has a tail if the graph contains a path for which each interior vertex has degree 2 and an end vertex of degree at least 3. They prove that every tree with a tail of length at least 3 is an integral sum graph.

B. Xu [2190] has shown that the following are integral sum graphs: the union of any three stars; \( T \cup K_1,n \) for all trees \( T \); \( mK_3 \) for all \( m \); and the union of any number of integral sum trees. Xu also proved that if \( 2G \) and \( 3G \) are integral sum graphs, then so is \( mG \) for all \( m > 1 \). Xu poses the question as to whether all disconnected forests are integral sum graphs. Nicholas and Somasundaram [1455] prove that all banana trees (see Section 2.1 for the definition) and the union of any number of stars are integral sum graphs.

Liaw, Kuo, and Chang [1274] proved that all caterpillars are integral sum graphs (see
Also [2180] and [2190] for some special cases of caterpillars). This shows that the assertion by Harary in [767] that $K(1, 3)$ and $S(2, 2)$ are not integral sum graphs is incorrect. They also prove that all cycles except $C_4$ are integral sum graphs and they conjecture that every tree is an integral sum graph. Singh and Santhosh show that the crowns $C_n \odot K_1$ are integral sum graphs for $n \geq 4$ [1853] and that the subdivision graphs of $C_n \odot K_1$ are integral sum graphs for $n \geq 3$ [1680]. Wang, Li, and Wei [2136] proved that there exists a connected integral sum graph with any minimum degree and give an upper bound for the relation between the vertex number and the edge number of a connected integral sum graph with no saturated vertex.

For graphs with $n$ vertices, Tiwari and Tripathi [1985] show that there exist sum graphs with $m$ edges if and only if $m \leq \lfloor (n - 1^2)/4 \rfloor$ and that there exists integral sum graphs with $m$ edges if and only if $m \leq [3(n - 1)^2/8] + [(n - 1)/2]$, except for $m = [3(n - 1)^2/8] + [(n - 1)/2] - 1$ when $n$ is of the form $4k + 1$. They also characterize sets of positive integers (respectively, integers) that are in bijection with sum graphs (respectively, integral sum graphs) of maximum size for a given order.

The integral sum number, $\zeta(G)$, of $G$ is the minimum number of isolated vertices that must be added to $G$ so that the resulting graph is an integral sum graph. Thus, by definition, $G$ is an integral sum graph if and only if $\zeta(G) = 0$. Harary [767] conjectured that $\zeta(K_n) = 2n - 3$ for $n \geq 4$. This conjecture was verified by Chen [466], by Sharary [1785], and by B. Xu [2190]. Yan and Liu proved: $\zeta(K_n - E(K_r)) = n - 1$ when $n \geq 6$, $n \equiv 0 \pmod{3}$ and $r = 2n/3 - 1$ [2203]; $\zeta(K_{m,m}) = 2m - 1$ for $m \geq 2$ [2203]; $\zeta(K_n \setminus \text{edge}) = 2n - 4$ for $n \geq 4$ [2203], [2190]; if $n \geq 5$ and $n - 3 \geq r$, then $\zeta(K_n \setminus E(K_r)) \geq n - 1$ [2203]; if $\lceil 2n/3 \rceil - 1 > r \geq 2$, then $\zeta(K_n \setminus E(K_r)) \geq 2n - r - 2$ [2203]; and if $2 \leq m < n$, and $n = (i + 1)(im - i + 2)/2$, then $\sigma(K_{m,n}) = \zeta(K_{m,n}) = (m - 1)(i + 1) + 1$ while if $(i + 1)(im - i + 2)/2 < n < (i + 2)((i + 1)m - i + 1)/2$, then $\sigma(K_{m,n}) = \zeta(K_{m,n}) = \lceil ((m - 1)(i + 1)(i + 2) + 2n)/(2i + 2) \rceil$ [2203]. Wang [2131] proved that $\sigma(K_{n+1} \setminus E(K_{1,r})) = \zeta(K_{n+1} \setminus (E(K_r)) = 2n - 2$ when $r = 1$, $2n - 3$ when $2 \leq r \leq n - 1$, and $2n - 4$ when $r = n$.

Nagamochi, Miller, and Slamin [1437] have determined upper and lower bounds on the sum number a graph. For most graphs $G(V, E)$ they show that $\sigma(G) = \Omega(|E|)$. He, Yu, Mi, Sheng, and Wang [777] investigated $\zeta(K_n \setminus E(K_r))$ where $n \geq 5$ and $r \geq 2$. They proved that $\zeta(K_n \setminus E(K_r)) = 0$ when $r = n$ or $n - 1$;

$\zeta(K_n \setminus E(K_r)) = n - 2$ when $r = n - 2$;

$\zeta(K_n \setminus E(K_r)) = n - 1$ when $n - 3 \geq r \geq \lceil 2n/3 \rceil - 1$;

$\zeta(K_n \setminus E(K_r)) = 3n - 2r - 4$ when $\lceil 2n/3 \rceil - 1 > r \geq n/2$;

$\zeta(K_n \setminus E(K_r)) = 2n - 4$ when $\lceil 2n/3 \rceil - 1 \geq n/2 > r \geq 2$. Moreover, they prove that if $n \geq 5, r \geq 2$, and $r \neq n - 1$, then $\sigma(K_n \setminus E(K_r)) = \zeta(K_n \setminus E(K_r))$.

Dou and Gao [559] prove that for $n \geq 3$, the fan $F_n = P_n + K_1$ is an integral sum graph, $\rho(F_4) = 1, \rho(F_n) = 2$ for $n \neq 4$, and $\sigma(F_4) = 2, \sigma(F_n) = 3$ for $n = 3$ or $n \geq 6$ and $n$ even, and $\sigma(F_4) = 4$ for $n \geq 6$ and $n$ odd.

Wang and Gao [2132] and [2133] determined the sum numbers and the integral sum numbers of the complements of paths, cycles, wheels, and fans as follows: $0 = \zeta(P_4) < \sigma(P_4) = 1; 1 = \zeta(P_5) < \sigma(P_5) = 2; 3 = \zeta(P_6) < \sigma(P_6) = 4; \zeta(P_n) = \sigma(P_n) = 0, n = 1, 2, 3; \zeta(P_n) = \sigma(P_n) = 2n - 7, n \geq 7$. $\zeta(C_n) = \sigma(C_n) = 2n - 7, n \geq 7$. $\zeta(W_n) =$
\(\sigma(W_n) = 2n - 8, \, n \geq 7. \, 0 = \zeta(F_3) < \sigma(F_5) = 1; \, 2 = \zeta(F_6) < \sigma(F_6) = 3; \, \zeta(F_n) = \sigma(F_n) = 0, \, n = 3, 4; \, \zeta(F_n) = \sigma(F_n) = 2n - 8, \, n \geq 7.\)

Wang, Yang and Li [2137] proved: \(\zeta(K_n \setminus E(C_{n-1})) = 0 \) for \(n = 4, 5, 6, 7; \, \zeta(K_n \setminus E(C_{n-1})) = 2n - 7 \) for \(n \geq 8; \, \sigma(K_4 \setminus E(C_{n-1})) = 1; \, \sigma(K_5 \setminus E(C_{n-1})) = 2; \, \sigma(K_6 \setminus E(C_{n-1})) = 5; \, \sigma(K_7 \setminus E(C_{n-1})) = 7; \, \sigma(K_n \setminus E(C_{n-1})) = 2n - 7 \) for \(n \geq 8.\)

Wang and Li [2135] proved: a graph with \(n \geq 6\) vertices and degree greater than \((n + 1)/2)\) is not an integral sum graph; for \(n \geq 8, \, \zeta(K_n \setminus E(2P_3)) = \sigma(K_n \setminus E(2P_3)) = \epsilon(K_n \setminus E(2P_3)) = \epsilon(K_n \setminus E(2P_3)) = 2n - 7; \) for \(n \geq 7, \, \zeta(K_n \setminus E(K_2)) = \sigma(K_n \setminus E(K_2)) = 2n - 4; \) and for \(n \geq 7\) and \(1 \leq r \leq \lceil n/2 \rceil, \, \zeta(K_n \setminus E(rK_2)) = \sigma(K_n \setminus E(rK_2)) = 2n - 5.\)

Chen [466] has given some properties of integral sum labelings of graphs \(G\) with \(\Delta(G) < |V(G)| - 1\) whereas Nicholas, Somasundaram, and Vilfred [1457] provided some general properties of connected integral sum graphs \(G\) with \(\Delta(G) = |V(G)| - 1.\) They have shown that connected integral sum graphs \(G\) other than \(K_3\) with the property that \(G\) has exactly two vertices of maximum degree are unique and that a connected integral sum graph \(G\) other than \(K_3\) can have at most two vertices with degree \(|V(G)| - 1\) (see also [2119]).

Vilfred and Florida [2116] have examined one-point unions of pairs of small complete graphs. They show that the one-point union of \(K_3\) and \(K_2\) and the one-point union of \(K_3\) and \(K_3\) are integral sum graphs whereas the one-point union of \(K_4\) and \(K_2\) and the one-point union of \(K_4\) and \(K_3\) are not integral sum graphs. In [2117] Vilfred and Florida defined and investigated properties of maximal integral sum graphs.

Vilfred and Nicholas [2120] have shown that the following graphs are integral sum graphs: banana trees, the union of any number of stars, fans \(P_n + K_1, \, n \geq 2\), Dutch windmills \(K_4^{(m)}, \) and the graph obtained by starting with any finite number of integral sum graphs \(G_1, G_2, \ldots , G_n\) and any collections of \(n\) vertices with \(v_i \in G_i\) and creating a graph by identifying \(v_1, v_2, \ldots , v_n.\) The same authors [2121] also proved that \(G + v\) where \(G\) is a union of stars is an integral sum graph.

Melnikov and Pyatkin [1384] have shown that every 2-regular graph except \(C_4\) is an integral sum graph and that for every positive integer \(r\) there exists an \(r\)-regular integral sum graph. They also show that the cube is not an integral sum graph. For any integral sum graph \(G, \) Melnikov and Pyatkin define the \textit{integral radius of} \(G\) as the smallest natural number \(r(G)\) that has all its vertex labels in the interval \([-r(G), r(G)].\) For the family of all integral sum graphs of order \(n\) they use \(r(n)\) to denote maximum integral radius among all members of the family. Two questions they raise are: Is there a constant \(C\) such that \(r(n) \leq C_n\) and for \(n > 2, \) is \(r(n)\) equal to the \((n - 2)\)th prime?

The concepts of sum number and integral sum number have been extended to hypergraphs. Sonntag and Teichert [1904] prove that every hypertree (i.e., every connected, non-trivial, cycle-free hypergraph) has sum number 1 provided that a certain cardinality condition for the number of edges is fulfilled. In [1905] the same authors prove that for \(d \geq 3\) every \(d\)-uniform hypertree is an integral sum graph and that for \(n \geq d + 2\) the sum number of the complete \(d\)-uniform hypergraph on \(n\) vertices is \(d(n - d) + 1.\) They also prove that the integral sum number for the complete \(d\)-uniform hypergraph on \(n\) vertices is 0 when \(d = n\) or \(n - 1\) and is between \((d - 1)(n - d - 1)\) and \(d(n - d) + 1.\)
for \( d \leq n - 2 \). They conjecture that for \( d \leq n - 2 \) the sum number and the integral sum number of the complete \( d \)-uniform hypergraph are equal. Teichert [1977] proves that hypercycles have sum number 1 when each edge has cardinality at least 3 and that hyperwheels have sum number 1 under certain restrictions for the edge cardinalities.

(A hypercycle \( C_n = (V_n, E_n) \) has \( V_n = \bigcup_{i=1}^{n} \{ v_i, v_{i+1}, \ldots, v_{i+d-1} \} \), \( E_n = \{ e_1, e_2, \ldots, e_n \} \) with \( e_i = \{ v_i, v_{i+1}, \ldots, v_{i+d-1} \} \) where \( i + 1 \) is taken modulo \( n \). A hyperwheel \( W_n = (V_n', E_n') \) has \( V_n' = V_n \cup \{ c \} \cup_{i=1}^{n} \{ v_{2n+i}, \ldots, v_{2n+i+1} \} \), \( E_n' = E_n \cup \{ e_{n+1}, \ldots, e_{2n} \} \) with \( e_{n+i} = \{ v_1, v_{2n+i}, \ldots, v_{2n+i+1}, v_{2n+i+1} = v_1 \} \).

Teichert [1976] determined an upper bound for the sum number of the \( d \)-partite complete hypergraph \( K^d_{n_1, \ldots, n_d} \). In [1978] Teichert defines the strong hypercycle \( C_n^d \) to be the \( d \)-uniform hypergraph with the same vertices as \( C_n \) where any \( d \) consecutive vertices of \( C_n \) form an edge of \( C_n^d \). He proves that for \( n \geq 2d + 1 \geq 5 \), \( \sigma(C_n^d) = d \) and for \( d \geq 2 \), \( \sigma(C_{d+1}^d) = d \). He also shows that \( \sigma(C_3^3) = 3 \); \( \sigma(C_6^3) = 2 \), and he conjectures that \( \sigma(C_n^d) < d \) for \( d \geq 4 \) and \( d + 2 \leq n \leq 2d \).

In [1458] Nicholas and Vilfred define the edge reduced sum number of a graph as the minimum number of edges whose removal from the graph results in a sum graph. They show that for \( K_n \), \( n \geq 3 \), this number is \((n(n-1)/2 + \lfloor n/2 \rfloor)/2 \). They ask for a characterization of graphs for which the edge reduced sum number is the same as its sum number. They conjecture that an integral sum graph of order \( n \) exists if and only if \( q \leq 3(p^2 - 1)/8 - \lfloor (p - 1)/4 \rfloor \) when \( p \) is odd and \( q \leq 3(3p - 2)/8 \) when \( p \) is even. They also define the edge reduced integral sum number in an analogous way and conjecture that for \( K_n \) this number is \((n - 1)(n - 3)/8 + \lfloor (n - 1)/4 \rfloor \) when \( n \) is odd and \((n - n - 2)/8 \) when \( n \) is even.

For certain graphs \( G \) Vilfred and Florida [2115] investigated the relationships among \( \sigma(G), \zeta(G), \chi(G) \), and \( \chi'(G) \) where \( \chi(G) \) is the chromatic number of \( G \) and \( \chi'(G) \) is the edge chromatic number of \( G \). They prove: \( \sigma(C_4) = \zeta(C_4) > \chi(C_4) = \chi'(C_4) \); \( \sigma(C_{2n}) < \zeta(C_{2n}) = \chi(C_{2n}) = \chi'(C_{2n}) \); \( \zeta(C_{2n+1}) < \sigma(C_{2n+1}) < \chi(C_{2n+1}) = \chi'(C_{2n+1}) \); for \( n \geq 4 \), \( \chi'(K_n) \leq \chi(K_n) < \zeta(K_n) = \sigma(K_n) \); and for \( n \geq 2 \), \( \chi(P_n \times P_2) < \chi'(P_n \times P_2) = \zeta(P_n \times P_2) = \sigma(P_n \times P_2) \).

Alon and Scheinerman [113] generalized sum graphs by replacing the condition \( f(x) + f(y) \in S \) with \( g(f(x), f(y)) \in S \) where \( g \) is an arbitrary symmetric polynomial. They called a graph with this property a \( g \)-graph and proved that for a given symmetric polynomial \( g \) not all graphs are \( g \)-graphs. On the other hand, for every symmetric polynomial \( g \) and every graph \( G \) there is some vertex labeling such that \( G \) together with at most \( |E(G)| \) isolated vertices is a \( g \)-graph.

Boland, Laskar, Turner, and Domke [389] investigated a modular version of sum graphs. They call a graph \( G(V, E) \) a mod sum graph (MSG) if there exists a positive integer \( n \) and an injective labeling from \( V \) to \( \{1, 2, \ldots, n - 1\} \) such that \( xy \in E \) if and only if \( (f(x) + f(y)) \mod n = f(z) \) for some vertex \( z \). Obviously, all sum graphs are mod sum graphs. However, not all mod sum graphs are sum graphs. Boland et al. [389] have shown the following graphs are MSG: all trees on 3 or more vertices; all cycles on 4 or more vertices; and \( K_{2,n} \). They further proved that \( K_p \) \((p \geq 2) \) is not MSG (see also [720]) and that \( W_4 \) is MSG. They conjecture that \( W_p \) is MSG for \( p \geq 4 \). This conjecture
was refuted by Sutton, Miller, Ryan, and Slamin [1964] who proved that for \( n \neq 4 \), \( W_n \) is not MSG (the case where \( n \) is prime had been proved in 1994 by Ghoshal, Laskar, Pillone, and Fricke [720]. In the same paper Sutton et al. also showed that for \( n \geq 3 \), \( K_{n,n} \) is not MSG. Ghoshal, Laskar, Pillone, and Fricke [720] proved that every connected graph is an induced subgraph of a connected MSG graph and any graph with \( n \) vertices and at least two vertices of degree \( n - 1 \) is not MSG.

Sutton, Miller, Ryan, and Slamin [1964] define the \textit{mod sum number}, \( \rho(G) \), of a connected graph \( G \) to be the least integer \( r \) such that \( G \cup \overline{K_r} \) is MSG. Recall the cocktail party graph \( H_{m,n} \), \( m,n \geq 2 \), as the graph with a vertex set \( V = \{v_1, v_2, \ldots, v_{mn}\} \) partitioned into \( n \) independent sets \( V = \{I_1, I_2, \ldots, I_n\} \) each of size \( m \) such that \( v_i v_j \in E \) for all \( i,j \in \{1, 2, \ldots, mn\} \) where \( i \in I_p \), \( j \in I_q \), \( p \neq q \). The graphs \( H_{m,n} \) can be used to model relational database management systems (see [1960]). Sutton and Miller [1962] prove that \( H_{m,n} \) is not MSG for \( n > m \geq 3 \) and \( \rho(K_n) = n \) for \( n \geq 4 \). In [1961] Sutton, Draganova, and Miller prove that for odd \( n \geq 5 \), \( \rho(W_n) = n \) and when \( n \) is even, \( \rho(W_n) = 2 \). Wang, Zhang, Yu, and Shi [2158] proved that fan \( F_n(n \geq 2) \) are not mod sum graphs and \( \rho(F_n) = 2 \) for even \( n \) at least 6. They also prove that \( \rho(K_{n,n}) = n \) for \( n \geq 3 \).

Dou and Gao [560] obtained exact values for \( \rho(K_{m,n}) \) and \( \rho(K_m - E(K_n)) \) for some cases of \( m \) and \( n \) and bounds in the remaining cases. They call a graph \( G(V,E) \) a \textit{mod integral sum graph} if there exists a positive integer \( n \) and an injective labeling from \( V \) to \( \{0, 1, 2, \ldots, n - 1\} \) (note that 0 is included) such that \( xy \in E \) if and only if \( (f(x) + f(y)) \mod n \) for some vertex \( z \). They define the \textit{mod integral sum number}, \( \psi(G) \), of a connected graph \( G \) to be the least integer \( r \) such that \( G \cup \overline{K_r} \) is a mod integral sum graph. They prove that for \( m + n \geq 3 \), \( \psi(K_{m,n}) = \rho(K_{m,n}) \) and obtained exact values for \( \psi(K_m - E(K_n)) \) for some cases of \( m \) and \( n \) and bounds in the remaining cases.

Wallace [2124] has proved that \( K_{m,n} \) is MSG when \( n \) is even and \( n \geq 2m \) or when \( n \) is odd and \( n \geq 3m - 3 \) and that \( \rho(K_{m,n}) = m \) when \( 3 \leq m \leq n < 2m \). He also proves that the complete \( m \)-partite \( K_{n_1,n_2,\ldots,n_m} \) is not MSG when there exist \( n_i \) and \( n_j \) such that \( n_i < n_j < 2n_i \). He poses the following conjectures: \( \rho(K_{m,n}) = n \) when \( 3m - 3 > n \geq m \geq 3 \); if \( K_{n_1,n_2,\ldots,n_m} \) where \( n_1 > n_2 > \cdots > n_m \), is not MSG, then \( (m - 1)n_m \leq \rho(K_{n_1,n_2,\ldots,n_m}) \leq (m - 1)n_1 \); if \( G \) has \( n \) vertices, then \( \rho(G) \leq n \); and determining the mod sum number of a graph is \( NP \)-complete (Sutton has observed that Wallace probably meant to say ‘\( NP \)-hard’). Miller [1389] has asked if it is possible for the mod sum number of a graph \( G \) be of the order \( |V(G)|^2 \).

In a sum graph \( G \), a vertex \( w \) is called a \textit{working vertex} if there is an edge \( uv \) in \( G \) such that \( w = u + v \). If \( G = H \cup \overline{H_r} \) has a sum labeling such that \( H \) has no working vertex the labeling is called an \textit{exclusive sum labeling of \( H \) with respect \( G \)}. The \textit{exclusive sum number}, \( \epsilon(H) \), of a graph \( H \) is the smallest integer \( r \) such that \( G \cup \overline{K_r} \) has an exclusive sum labeling. The exclusive sum number is known in the following cases (see [1393] and [1401]): for \( n \geq 3 \), \( \epsilon(P_n) = 2 \); for \( n \geq 3 \), \( \epsilon(C_n) = 3 \); for \( n \geq 3 \), \( \epsilon(K_n) = 2n - 3 \); for \( n \geq 4 \), \( \epsilon(F_n) = n \) (fan of order \( n + 1 \)); for \( n \geq 4 \), \( \epsilon(W_n) = n \); \( \epsilon(C_3^{(n)}) = 2n \) (friendship graph—see §2.2); \( m \geq 2 \), \( n \geq 2 \), \( \epsilon(K_{m,n}) = m + n - 1 \); for \( n \geq 2 \), \( S_n = n \) (star of order \( n + 1 \)); \( \epsilon(S_{m,n}) = \max\{m, n\} \) (double star); \( H_{2,n} = 4n - 5 \) (cocktail party graph); and
\(\epsilon(\text{caterpillar } G) = \Delta(G)\). Dou [558] showed that \(H_{m,n}\) is not a mod sum graph for \(m \geq 3\) and \(n \geq 3\); \(\rho(H_{m,3}) = m\) for \(m \geq 3\); \(H_{m,n} \cup \rho(H_{m,n})K_1\) is exclusive for \(m \geq 3\) and \(\geq 4\); and \(m(n - 1) \leq \rho(H_{m,n}) \leq mn(n - 1)/2\) for \(m \geq 3\) and \(n \geq 4\). Vilfred and Florida [2118] proved that \(\epsilon(P_3 \times P_3) = 4\) and \(\epsilon(P_n \times P_3) = 3\). In [811] Hegde and Vasudeva provide an \(O(n^2)\) algorithm that produces an exclusive sum labeling of a graph with \(n\) vertices given its adjacency matrix.

In 2001 Kratochvil, Miller, and Nguyen proved that \(\sigma(G \cup H) \leq \sigma(G) + \sigma(H) - 1\). In 2003 Miller, Ryan, Slamin, Sugeng, and Tuga [1397] posed the problem of finding the exclusive sum number of the disjoint union of graphs. In 2010 Wang and Li [2134] proved the following. Let \(G_1\) and \(G_2\) be graphs without isolated vertices, \(L_i\) be an exclusive sum labeling of \(G_i \cup \epsilon(G_i)K_1\), and \(C_i\) be the isolated set of \(L_i\) for \(i = 1\) and \(2\). If \(\max C_1\) and \(\min C_2\) are relatively prime, then \(\epsilon(G_1 \cup G_2) \leq \epsilon(G_1) + \epsilon(G_2) - 1\). Wang and Li also proved the following: \(\epsilon(K_{r,s}) = s + r - 1\); \(\epsilon(K_{r,s} - E(K_2)) = s - 1\); for \(s \geq r \geq 2\), \(\epsilon(K_{r,s} - E(rK_2)) = s + r - 3\). For \(n \geq 5\) they prove: \(\epsilon(K_n - E(K_n)) = 0\); \(\epsilon(K_n - E(K_{n-1})) = n - 1\); for \(2 \leq r < n/2\), \(\epsilon(K_n - E(K_r)) = 2n - 4\); for \(n/2 \leq r \leq n - 2\), \(\epsilon(K_n - E(K_r)) = 3n - 2r - 4\), and \(\epsilon(C_n \odot K_1) = 3\) or 4. They show that \(\epsilon(C_3 \odot K_1) = 3\) and guess that for \(n \geq 4\), \(\epsilon(C_n \odot K_1) = 4\). A survey of exclusive sum labelings of graphs is given by Ryan in [1651].

If \(\epsilon(G) = \Delta(G)\), then \(G\) is said to be an \(\Delta\)-optimum summable graph. An exclusive sum labeling of a graph \(G\) using \(\Delta(G)\) isolates is called a \(\Delta\)-optimum exclusive sum labeling of \(G\). Tuga, Miller, Ryan, and Ryjáček [1997] show that some families of trees that are \(\Delta\)-optimum summable and some that are not. They prove that if \(G\) is a tree that has at least one vertex that has two or more neighbors that are not leaves then \(\epsilon(G) = \Delta(G)\).

Koh, Miller, Smyth, and Wang [1090] show the following: the graphs obtained by identifying one end of a \(q\)-path with a vertex of a \(p\)-cycle are 1-optimum summable, and that two of these graphs can be joined via a new edge to create a 2-optimum summable graph; generalized \(\theta\)-graphs are 2-optimum summable; \(\theta(p, q, r)\) which consists of a pair of vertices joined by 3 independent paths of lengths \(p, q\) and \(r\) (with a few small exceptions) are 2-optimum summable; there exists a 3-optimum summable graph of order \(4l + 3\) for all \(l \geq 1\); how to construct for all \(k \geq 4\) a \(k\)-optimum summable graph; and if \(G\) is a \(k\)-optimum summable graph of order \(n\), then \(n \geq 2k\).

In [875] Javaid, Khalid, Ahmad, and Imran introduce a weaker version of sum labeling of graphs as follows. Let \(H = (V, E)\) be a simple, finite, undirected graph with \(|V| = p\). \(H\) is a weak sum graph if there exists a labeling \(L\) (called a \(w\)-sum) of the vertices of \(V\) by distinct positive integers such that \((u, v) \in E\) if there exists a vertex \(w \in V\) such that \(L(w) = L(u) + L(v)\). (A sum graph also requires the “only if” condition). If \(H\) is a \(w\)-sum graph with the additional constraint that the labels \(L\) all fall in the range \(1, \ldots, p\), then \(H\) is called a super weak sumgraph (\(sw\)-sumgraph). Because sumgraphs must have isolated vertices we may write \(H = G + K_\delta\), where \(G\) is connected and \(K_\delta\) denotes \(\delta\) isolated vertices If \(\delta\) is a minimum with respect to \(G\), we say that the sumgraph (respectively, \(w\)-sumgraph, \(sw\)-sumgraph) \(H\) is \(\delta\)-optimal and that \(G\) is \(\delta\)-optimal summable (respectively, \(w\)-summable, \(sw\)-summable). Javaid et al. prove: paths are 1-optimal \(sw\)-summable; cycles are 2-optimal \(sw\)-summable; wheels are 3-optimal \(sw\)-summable; \(K_n\) is \((n - 1)-\)
optimal $sw$-summable; and $G = K_{n_1,n_2,...,n_q}$ are $t$-optimal $sw$-summable, where $t$ is the minimum degree of any vertex in $G$. They also prove that for $n \geq 5$, the Cayley graph $\text{Cay}(\mathbb{Z}_n, \pm 1, \pm 2)$ is 4-optimal $w$-summable. They conjecture that all connected graphs are $\delta$-optimal $w$-summable for some $\delta$. See also [1090] and [1397].

Grimaldi [750] has investigated labeling the vertices of a graph $G(V, E)$ with $n$ vertices with distinct elements of the ring $\mathbb{Z}_n$ so that $xy \in E$ whenever $(x + y)^{-1}$ exists in $\mathbb{Z}_n$.

In his 2001 Ph. D. thesis Sutton [1960] introduced two methods of graph labelings with applications to storage and manipulation of relational database links specifically in mind. He calls a graph $G = (V_p \cup V_i, E)$ a sum* graph of $G_p = (V_p, E_p)$ if there is an injective labeling $\lambda$ of the vertices of $G$ with non-negative integers with the property that $uv \in E_p$ if and only if $\lambda(u) + \lambda(v) = \lambda(z)$ for some vertex $z \in G$. The sum* number, $\sigma^*(G_p)$, is the minimum cardinality of a set of new vertices $V_i$ such that there exists a sum* graph of $G_p$ on the set of vertices $V_p \cup V_i$. A mod sum* graph of $G_p$ is defined in the identical fashion except the sum $\lambda(u) + \lambda(v)$ is taken modulo $n$ where the vertex labels of $G$ are restricted to $\{0, 1, 2, \ldots, n-1\}$. The mod sum* number, $\rho^*(G_p)$, of a graph $G_p$ is defined in the analogous way. Sum* graphs are a generalization of sum graphs and mod sum* graphs are a generalization of mod sum graphs. Sutton shows that every graph is an induced subgraph of a connected sum* graph. Sutton [1960] poses the following conjectures: $\rho(H_{m,n}) \leq mn$ for $m, n \geq 2$; $\sigma^*(G_p) \leq |V_p|$; and $\rho^*(G_p) \leq |V_p|$.

The following table summarizes what is known about sum graphs, mod sum graphs, sum* graphs, and mod sum* graphs is reproduced from Sutton’s Ph. D. thesis [1960]. It was updated by J. Gallian in 2006. A question mark indicates the value is unknown. The results on sum* and mod sum* graphs are found in [1960].
Table 20: Summary of Sum Graph Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>$\sigma(G)$</th>
<th>$\rho(G)$</th>
<th>$\sigma^*(G)$</th>
<th>$\rho^*(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_2 = S_1$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>stars, $S_n$, $n \geq 2$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>trees $T_n$, ne-cordial $\geq 3$ when $T_n \neq S_n$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$C_3$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$C_4$</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$C_n$, $n &gt; 4$</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$W_4$</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$W_n$, $n \geq 5$, $n$ odd</td>
<td>$n$</td>
<td>$n$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$W_n$, $n \geq 6$, $n$ even</td>
<td>$\frac{n}{2} + 2$</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>fan, $F_4$,</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fans, $F_n$, $n \geq 5$, $n$ odd</td>
<td>?</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fans, $F_n$, $n \geq 6$, $n$ even</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$K_n$, $n \geq 4$</td>
<td>$2n - 3$</td>
<td>$n$</td>
<td>$n - 2$</td>
<td>0</td>
</tr>
<tr>
<td>cocktail party graphs, $H_{2,n}$</td>
<td>$4n - 5$</td>
<td>0</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>$C_n^{(t)}(n,t)$ $\neq (4,1)$ (see §2.2)</td>
<td>2</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$K_{n,n}$</td>
<td>$\lceil \frac{4n-3}{2} \rceil$</td>
<td>$n(n \geq 3)$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$K_{m,n}$, $2nm \geq n \geq 3$</td>
<td>?</td>
<td>$n$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$K_{m,n}$, $m \geq 3n - 3$, $n \geq 3$, $m$ odd</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>$K_{m,n}$, $m \geq 2n$, $n \geq 3$, $m$ even</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>$K_{m,n}$, $m &lt; n$</td>
<td>$\lceil \frac{kn-k}{2} + \frac{m}{k-1} \rceil$</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$k = \lceil \sqrt{1 + (8m + n - 1)(n-1)/2} \rceil$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{n,n} - E(nK_2)$, $n \geq 6$</td>
<td>$2n - 3$</td>
<td>$n - 2$</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
7.2 Prime and Vertex Prime Labelings

The notion of a prime labeling originated with Entringer and was introduced in a paper by Tout, Dabboucy, and Howalla [1988]. A graph with vertex set $V$ is said to have a prime labeling if its vertices are labeled with distinct integers $1, 2, \ldots, |V|$ such that for each edge $xy$ the labels assigned to $x$ and $y$ are relatively prime. Around 1980, Entringer conjectured that all trees have a prime labeling. Little progress was made on this conjecture until 2011 when Haxell, Pikhurko, Taraz [774] proved that all large trees are prime. Also, their method allowed them to determine the smallest size of a non-prime connected order-$n$ graph for all large $n$, proving a conjecture of Rao [1616] in this range. Among the classes of trees known to have prime labelings are: paths, stars, caterpillars, complete binary trees, spiders (i.e., trees with one vertex of degree at least 3 and with all other vertices with degree at most 2), olive trees (i.e., a rooted tree consisting of $k$ branches such that the $i$th branch is a path of length $i$), all trees of order up to 50, palm trees (i.e., trees obtained by appending identical stars to each vertex of a path), banana trees, and binomial trees (the binomial tree $B_0$ of order 0 consists of a single vertex; the binomial tree $B_n$ of order $n$ has a root vertex whose children are the roots of the binomial trees of order $0, 1, 2, \ldots, n - 1$ (see [1498], [1500], [1988], [644], and [1637]). Seoud, Sonbaty, and Mahran [1734] provide necessary and sufficient conditions for a graph to be prime. They also give a procedure to determine whether or not a graph is prime.

Other graphs with prime labelings include all cycles and the disjoint union of $C_{2k}$ and $C_n$ [536]. The complete graph $K_n$ does not have a prime labeling for $n \geq 4$ and $W_n$ is prime if and only if $n$ is even (see [1256]). Diefenderfer et al. [549] give prime vertex labelings cycle pendent stars, cycle chains, prisms, and generalized books.

Seoud, Diab, and Elsakhawi [1712] have shown the following graphs are prime: fans; helms; flowers (see §2.2); stars; $K_{2n}$; and $K_{3n}$ unless $n = 3$ or 7. They also shown that $P_n + K_m$ ($m \geq 3$) is not prime. Berliner, Dean, Hook, Marr, Mbirka, and McBee give consecutive cyclic prime labelings of certain classes of ladders. Although $K_{n,n}$ does not have a prime labeling when $n > 2$, Berliner et al. give minimal coprime labelings for all $n$-values $1 \leq n \leq 23$ and give conditions on $m$ and $n$ for which $K_{m,n}$ are prime. They provide specific values of $n$ for $m$ up to 13.

Tout, Dabboucy, and Howalla [1988] proved that $C_m \odot K_n$ is prime for all $m$ and $n$. Vaidya and Prajapati [2049] proved that the graphs obtained by duplication of a vertex by a vertex in $P_n$ and $K_{1,n}$ are prime graphs and the graphs obtained by duplication of a vertex by an edge, duplication of an edge by a vertex, duplication of an edge by an edge in $P_n$, $K_{1,n}$, and $C_n$ are prime graphs. They also proved that graph obtained by duplication of every vertex by an edge in $P_n$, $K_{1,n}$, and $C_n$ are not prime graphs.

For $m$ and $n$ at least 3, Seoud and Youssef [1737] define $S_n^{(m)}$, the $(m, n)$-gon star, as the graph obtained from the cycle $C_n$ by joining the two end vertices of the path $P_{m-2}$ to every pair of consecutive vertices of the cycle such that each of the end vertices of the path is connected to exactly one vertex of the cycle. Seoud and Youssef [1737] have proved the following graphs have prime labelings: books; $S_n^{(m)}$; $C_n \odot P_m$; $P_n + K_2$ if and only if $n = 2$ or $n$ is odd; and $C_n \odot K_1$ with a complete binary tree of order $2^k - 1$ ($k \geq 2$)
attached at each pendent vertex. They also prove that every spanning subgraph of a prime graph is prime and every graph is a subgraph of a prime graph. They conjecture that all unicycle graphs have prime labelings. Diefenderfer, Hastings, Heath, Prawzinsky, Preston, White, and Whitteemore [549] proved that certain families of graphs that are special cases of Seoud and Youssef’s conjecture [1737] have prime labelings. Seoud and Youssef [1737] proved the following graphs are not prime: \( C_m + C_n; \) \( C_n^2 \) for \( n \geq 4; \) \( P_n^2 \) for \( n = 6 \) and for \( n \geq 8; \) and Möbius ladders \( M_n \) for \( n \) even (see §2.3 for the definition).

They also give an exact formula for the maximum number of edges in a prime graph of order \( n \) and an upper bound for the chromatic number of a prime graph.

Youssef and Elsakhawi [2239] have shown: the union of stars \( S_m \cup S_n \), are prime; the union of cycles and stars \( C_m \cup S_n \) are prime; \( K_m \cup P_n \) is prime if and only if \( m \) is at most 3 or if \( m = 4 \) and \( n \) is odd; \( K_n \circ K_1 \) is prime if and only if \( n \leq 7; \) \( K_n \circ K_2 \) is prime if and only if \( n \leq 16; \) \( 6K_m \cup S_n \) is prime if and only if the number of primes less than or equal to \( m + n + 1 \) is at least \( m \); and that the complement of every prime graph with order at least 20 is not prime. Michael and Youssef [1388] determined all self-complementary graphs that have prime labelings.

Salmasian [1670] has shown that every tree with \( n \) vertices \( (n \geq 50) \) can be labeled with \( n \) integers between 1 and 4\( n \) such that every two adjacent vertices have relatively prime labels. Pikhurko [1500] has improved this by showing that for any \( c > 0 \) there is an \( N \) such that any tree of order \( n > N \) can be labeled with \( n \) integers between 1 and \( (1 + c)n \) such that labels of adjacent vertices are relatively prime.

Varkey and Singh (see [2091]) have shown the following graphs have prime labelings: crowns, cycles with a chord, books, and one point unions of \( C_n \). They conjecture that ladders have prime labelings. This conjecture was proved by Ghorbani and Kamali [717]. Varkey [2091] has shown that graph obtained by connecting two points with internally disjoint paths of equal length are prime. Varkey defines a twig as a graph obtained from a path by attaching exactly two pendent edges to each internal vertex of the path. He proves that twigs obtained from a path of odd length (at least 3) and lotus inside a circle (see §5.1 for the definition) are prime.

Baskar Babujee and Vishnupriya [321] proved the following graphs have prime labelings: \( nP_2 \), \( P_n \cup P_n \cup \cdots \cup P_n \), bistars (that is, the graphs obtained by joining the centers of two identical stars with an edge), and the graph obtained by subdividing the edge joining edge of a bistar. Baskar Babujee [303] obtained prime labelings for the graphs: \( (P_m \cup nK_1) + \overline{K_2}, (C_m \cup nK_1) + \overline{K_2}, (P_m \cup C_n \cup \overline{K_r}) + \overline{K_2}, C_n \cup C_{n+1}, (2n-2)C_{2n} (n > 1), C_n \cup mP_k \) and the graph obtained by subdividing each edge of a star once. In [312] Baskar Babujee and Jagadess prove the following graphs have prime labelings: bistars \( B_m, n; P_3 \circ \overline{K_1,n} \); the union of \( K_{1,n} \) and the graph obtained from \( K_{1,n} \) by appending a pendent edge to every pendent edge of \( K_{1,n} \); and the graph obtained by identifying the center of \( K_{1,n} \) with the two endpoints and the middle vertex of \( P_3 \).

In [2045] Vaidya and Prajapati prove the following graphs have prime labelings: a \( t \)-ply graph of prime order; graphs obtained by joining center vertices of wheels \( W_m \) and \( W_n \) to a new vertex \( w \) where \( m \) and \( n \) are even positive integers such that \( m + n + 3 = p \) and \( p \) and \( p - 2 \) are twin primes; the disjoint union of the wheel \( W_{2n} \) and a path; the
The Knödel graphs $W_{\Delta,n}$ with $n$ even and degree $\Delta$, where $1 \leq \Delta \leq \lfloor \log_2 n \rfloor$ have vertices pairs $(i,j)$ with $i = 1,2$ and $0 \leq j \leq n/2 - 1$ where for every $0 \leq j \leq n/2 - 1$ and there is an edge between vertex $(1,j)$ and every vertex $(2,(j + 2^k - 1) \mod n/2)$, for $k = 0,1,\ldots,\Delta - 1$. Haque, Lin, Yang, and Zhao [765] have shown that $W_{3,n}$ is prime when $n \leq 130$.

Sundaram, Ponraj, and Somasundaram [1953] investigated the prime labeling behavior of all graphs of order at most 6 and established that only one graph of order 4, one graph of order 5, and 42 graphs of order 6 are not prime.

Given a collection of graphs $G_1, \ldots, G_n$ and some fixed vertex $v_i$ from each $G_i$, Lee, Wui, and Yeh [1256] define $Ama\{\{G_i,v_i\} \mid i = 1,\ldots,n\}$, the amalgamation of $\{\{G_i,v_i\} \mid i = 1,\ldots,n\}$, as the graph obtained by taking the union of the $G_i$ and identifying $v_1,v_2,\ldots,v_n$. Lee, Wui, and Yeh [1256] have shown $Ama\{\{G_i,v_i\}\}$ has a prime labeling when $G_i$ are paths and when $G_i$ are cycles. They also showed that the amalgamation of any number of copies of $W_n$, $n$ odd, with a common vertex is not prime. They conjecture that for any tree $T$ and any vertex $v$ from $T$, the amalgamation of two or more copies of $T$ with $v$ in common is prime. They further conjecture that the amalgamation of two or more copies of $W_n$ that share a common point is prime when $n$ is even ($n \neq 4$). Vilfred, Somasundaram, and Nicholas [2112] have proved this conjecture for the case that $n \equiv 2 \pmod 4$ where the central vertices are identified.

Vilfred, Somasundaram, and Nicholas [2112] have also proved the following graphs are prime: helms; $P_m \times P_n$ where $n$ is prime, $m \leq 3$ and $m \leq n$; $C_n + K_2$ if and only if $n \leq 3$; double fans $P_n + [\overline{K}_2]$ if and only if $n$ is odd; and cycles with a $P_k$-chord. They conjecture that $P_m \times P_n$ where $m < n$ and $n$ is prime is prime and ladders $P_n \times P_2$ are prime. The conjecture about grids was proved by Sundaram, Ponraj, and Somasundaram [1951]. In the same article they also showed that $P_n \times P_n$ is prime when $n$ is prime. Kanetkar [1052] proved: $P_6 \times P_6$ is prime; $P_{n+1} \times P_{n+1}$ is prime when $n$ is a prime with $n \equiv 3$ or 9 (mod 10) and $(n + 1)^2 + 1$ is also prime; and $P_n \times P_{n+2}$ is prime when $n$ is an odd prime with $n \neq 2$ (mod 7).

Varkey [2091] proved the following graphs are prime: $P_n \circ K_1 (n \geq 2)$; $P_m \circ P_n (m,n \geq 2)$; subdivisions of double stars; triangular snakes; books with triangular pages; quadrilateral snakes; pentagonal cacti; one point unions of 2 or more copies of $C_n$; parachutes $P_{g,b}$ if $g$ and $b$ have the same parity and $g \geq 3$; $L_n \circ K_1$ for $n \geq 3$ and $2n + 1$ prime; $C_n \times P_2$ if $2n + 1$ is prime; $P_1 \cup P_2 \cup \cdots \cup P_n$; $C_{2n} \cup K_{1,2m}$; $C_n \cup P_m (m \geq 2)$; one point unions of any number of copies of a fan; $K_{1,n} \cup P_m$ for $n \geq 2$; $B_{n+1} + K_1$ if $2n + 3$ is prime ($B_n$ is a book with $n$ pages); $L_n + K_1$ if $2n + 1$ is prime ($n \geq 3$); and $K_{1,1,n}$.

Seoud, El Sonbaty, and Abd El Rehim [1713] proved that for $m = p_{n+t-1} - (t + n)$
where \( p_i \) is the \( i^{th} \) prime number in the natural order \( K_n \cup K_{2,m} \) is prime and graphs obtained from \( K_{2,n} \), \( n \geq 2 \) by adding \( p \) and \( q \) edges out from the two vertices of degree \( n \) of \( K_{2,n} \) are prime. They also proved that if \( G \) is not prime, then \( G \cup K_{1,n} \) is prime if \( \pi(n + m + 1) \geq m \) where \( m \) is the order of \( G \) and \( \pi(x) \) is the number of primes less than or equal to \( x \).

For any finite collection \( \{G_i, u_i, v_i\} \) of graphs \( G_i \), each with a fixed edge \( u_i, v_i \), Carlson [438] defines the edge amalgamation \( Edgeamalg(\{G_i, u_i, v_i\}) \) as the graph obtained by taking the union of all the \( G_i \) and identifying their fixed edges. The case where all the graphs are cycles she calls generalized books. She proves that all generalized books are prime graphs. Moreover, she shows that graphs obtained by taking the union of cycles and identifying in each cycle the path \( P_n \) are also prime. Carlson also proves that \( C_m \)-snakes are prime (see §2.2 for the definition).

In [302] Baskar Babujee proves that the maximum number of edges in a simple graph with \( n \) vertices that has a prime labeling is \( \sum_{k=2}^{n} \phi(k) \). He also shows that the planar graphs having \( n \) vertices and \( 3(n-2) \) edges (i.e., the maximum number of edges for a planar graph with \( n \) vertices) obtained from \( K_n \) \((n \geq 5)\) with vertices \( v_1, v_2, \ldots, v_n \) by deleting the edges joining \( v_s \) and \( v_t \) for all \( s \) and \( t \) satisfying \( 3 \leq s \leq n-2 \) and \( s+2 \leq t \leq n \) has a prime labeling if and only if \( n \) is odd.

By showing that for every even \( n \leq 2.468 \times 10^9 \) there exists \( 1 \leq s \leq n-1 \) such that both \( n+s \) and \( 2n+s \) are prime, Schluchter, Schroeder, Cokus, Ellingson, Harris, Rarity, and Wilson [1685] prove the generalized Peterson graph \( P(n, 1) \) (which is isomorphic to \( C_n \times P_2 \)) is prime for all even \( 4 \leq n \leq 2.468 \times 10^9 \). For a fixed \( n \) they also describe a method for labeling \( P(n, k) \) that is a prime labeling for multiple values of \( k \). Using this method, they prove \( P(n, k) \) is prime for all even \( n \leq 50 \) and odd \( k < n/2 \).

In [1381] Meena and Vaithilingam investigated prime labelings for graphs related to friendship graphs and in [1382] they provided some results for graphs related to helms, gears, crowns, and stars.

Yao, Cheng, Zhongfu, and Yao [2215] have shown: a tree of order \( p \) with maximum degree at least \( p/2 \) is prime; a tree of order \( p \) with maximum degree at least \( p/2 \) has a vertex subdivision that is prime; if a tree \( T \) has an edge \( u_1u_2 \) such that the two components \( T_1 \) and \( T_2 \) of \( T - u_1u_2 \) have the properties that \( d_{T_1}(u_1) \geq |T_1|/2 \) and \( d_{T_2}(u_2) \geq |T_2|/2 \), then \( T \) is prime when \( |T_1| + |T_2| \) is prime; if a tree \( T \) has two edges \( u_1u_2 \) and \( u_2u_3 \) such that the three components \( T_1, T_2, \) and \( T_3 \) of \( T - \{u_1u_2, u_2u_3\} \) have the properties that \( d_{T_1}(u_1) \geq |T_1|/2, d_{T_2}(u_2) \geq |T_2|/2, \) and \( d_{T_3}(u_3) \geq |T_3|/2 \), then \( T \) is prime when \( |T_1| + |T_2| + |T_3| \) is prime.

Vaidya and Prajapati [2046] define a vertex switching \( G_v \) of a graph \( G \) as the graph obtained by taking a vertex \( v \) of \( G \), removing all the edges incident to \( v \) and adding edges joining \( v \) to every other vertex that is not adjacent to \( v \) in \( G \). They say a prime graph \( G \) is switching invariant if for every vertex \( v \) of \( G \), the graph \( G_v \) obtained by switching the vertex \( v \) in \( G \) is also a prime graph. They prove: \( P_n \) and \( K_{1,n} \) are switching invariant; the graph obtained by switching the center of a wheel is a prime graph; and the graph obtained by switching a rim vertex of \( W_n \) is a prime graph if \( n+1 \) is a prime. They also prove that the graph obtained by switching a rim vertex in \( W_n \) is not a prime graph if
$n + 1$ is an even integer greater than 9.

Prajapati and Gajjar [1562] prove the following graphs are prime: graphs obtained from $P_{m+1}$ and $m$ copies of $C_n$ by identifying each edge of $P_{m+1}$ with an edge of a corresponding copy of $C_n$; graphs obtained from $C_m$ and $m$ copies of $C_n$ by identifying each edge of $C_m$ with an edge of corresponding copy of $C_n$; for a prime $p \geq 3$ and $p - 2$ copies of $C_{p+1}$, the graph obtained by identifying one vertex of each copy of $C_{p+1}$ with corresponding pendent vertex of $K_{1,p-2}$; for a prime $p \geq 3$, $C_{p-1} \times P_2$; and for a prime $p \geq 3$, the graphs obtained by joining every rim vertex of a wheel graph $W_{p-1}$ with the corresponding vertex of $C_{p-1}$. They also prove that the complement of $W_n$ is prime if and only if $3 \leq n \leq 6$; for odd $n \geq 3$, $C_n \times P_2$ is not prime; and $W_{2n}$ is switching invariant.

In [1563] Prajapati and Gajjar [1563] proved that a necessary condition for generalized Petersen graph $P(n, k)$ to be prime is that $n$ is even and $k$ is odd. They also give some classes of generalized Petersen graphs that admits prime labelings.

Haque, Xiaohui, Yuansheng and Pingzhong proved that the generalized Petersen graph $P(n, k)$ is prime for all even $n \leq 2500$ when $k = 1$ [762] and for all even $n \leq 100$ when $k = 3$ [764]. They show $P(n, 3)$ is not prime for odd $n$ and conjecture that $P(n, 3)$ are prime for all even $n$.

In [1718] Seoud, El-Sonbaty, and Mahran discuss the primality of some corona graphs $G \odot H$ and conjecture that $K_n \odot \overline{K_m}$ is prime if and only if $n \leq \pi(nm + n) + 1$, where $\pi(x)$ is the number of primes less than or equal to $x$. For $m \leq 20$ they give the exact values of $n$ for which $K_n \odot K_m$ is prime. They also show that $K_{m,n}$ is prime if and only if $\min\{m, n\} \leq \pi(m + n) - \pi((m + n)/2) + 1$.

Given a finite, simple graph $G$ with $n$ vertices and a bijection $f : V(G) \rightarrow \{1, 2, \ldots, n\}$, for each edge $uv$ let $S = f(u) + f(v)$ and $D = |f(u) - f(v)|$. For each edge $uv$ define $f'$ induced by $f$ by assigning $f'(uv) = 1$ if $\gcd(S, D) = 1$ and $f'(uv) = 0$ otherwise. Then $f'$ is said to be SD-prime if $f'(uv) = 1$ for all edges $uv$. Lau, Shiu, Ng, and Jeyanthi [1159] give sufficient conditions for a theta graph to have an SD-prime labeling, provide a way to construct new SD-prime graphs from existing ones, and investigate SD-primality of some general graphs.

Vaidya and Prajapati [2045] have introduced the notion of $k$-prime labeling. A $k$-prime labeling of a graph $G$ is an injective function $f : V(G) \rightarrow \{k + 1, k + 2, k + 3, \ldots, k + |V(G)| - 1\}$ for some positive integer $k$ that induces a function $f^+$ on the edges of $G$ defined by $f^+(uv) = \gcd(f(u), f(v))$ such that $\gcd(f(u), f(v)) = 1$ for all edges $uv$. A graph that admits a $k$-prime labeling is called a $k$-prime graph. They prove the following are prime graphs: a tadpole (that is, a graph obtained by identifying a vertex of a cycle to an end vertex of a path); the union of a prime graph of order $n$ and a $(n + 1)$-prime graph; the graph obtained by identifying the vertex labeled with $n$ in an $n$-prime graph with either of the vertices labeled with 1 or $n$ in a prime graph of order $n$.

A dual of prime labelings has been introduced by Deretsky, Lee, and Mitchem [536]. They say a graph with edge set $E$ has a vertex prime labeling if its edges can be labeled with distinct integers $1, \ldots, |E|$ such that for each vertex of degree at least 2 the greatest common divisor of the labels on its incident edges is 1. Deretsky, Lee, and Mitchem show the following graphs have vertex prime labelings: forests; all connected graphs;
$C_{2k} \cup C_n; C_{2m} \cup C_{2n} \cup C_{2k+1}; C_{2m} \cup C_{2n} \cup C_2 \cup C_k; \text{ and } 5C_{2m}$. They further prove that a graph with exactly two components, one of which is not an odd cycle, has a vertex prime labeling and a 2-regular graph with at least two odd cycles does not have a vertex prime labeling. They conjecture that a 2-regular graph has a vertex prime labeling if and only if it does not have two odd cycles. Let $G = \bigcup_{i=1}^t C_{2n_i}$ and $N = \sum_{i=1}^t n_i$. In [391] Borosh, Hensley and Hobbs proved that there is a positive constant $n_0$ such that the conjecture of Deretsky et al. is true for the following cases: $G$ is the disjoint union of at most seven cycles; $G$ is a union of cycles all of the same even length $2n$ where $n \leq 150,000$ or where $n \geq n_0$; $n_i \geq (\log N)^4 \log \log \log n$ for all $i = 1, \ldots, t$; and when each $C_{2n_i}$ is repeated at most $n_i$ times. They end their paper with a discussion of graphs whose components are all even cycles, and of graphs with some components that are not cycles and some components that are odd cycles.

Jothi [1001] calls a graph $G$ highly vertex prime if its edges can be labeled with distinct integers \{1, 2, \ldots, |E|\} such that the labels assigned to any two adjacent edges are relatively prime. Such labeling is called a highly vertex prime labeling. He proves: if $G$ is highly vertex prime then the line graph of $G$ is prime; cycles are highly vertex prime; paths are highly vertex prime; $K_n$ is highly vertex prime if and only if $n \leq 3$; $K_{1,n}$ is highly vertex prime if and only if $n \leq 2$; even cycles with a chord are highly vertex prime; $C_p \cup C_q$ is not highly vertex prime when both $p$ and $q$ are odd; and crowns $C_n \odot K_1$ are highly vertex prime.

For a finite simple graph $G(V, E)$ with $n$ vertices and $v \in V$ let $N(v)$ denote the open neighborhood of $v$. Patel and Shrimali [1482] say a bijective function $f : V \rightarrow \{1, 2, 3, \ldots, n\}$ is a neighborhood-prime labeling of $G$, if for every vertex $v \in V$ with $\deg(v) > 1$, \text{gcd} \{f(u) : u \in N(v)\} = 1. A graph that admits a neighborhood-prime labeling is called a neighborhood-prime graph. In [1482], [1483], and [1484] they prove the following graphs have a prime-neighborhood labeling: graphs with a vertex of degree $|V| - 1$; paths; $C_n$ if and only if $n \not\equiv 2 \pmod{4}$; helms; closed helms; flowers; graphs obtained by the duplication of an arbitrary vertex of cycle or path; $G_1 + G_2$ where each of $G_1$ and $G_2$ have at least 2 vertices; $C_n \cup C_m$ is a neighborhood-prime graph if and only if $n \equiv 0 \pmod{4}$ and $m \equiv 0 \pmod{4}$, or $n \equiv 0 \pmod{4}$ and $m \equiv 1 \pmod{2}$; $W_m \cup W_n$; the union of a finite number of paths; $P_m \times P_n$; and the tensor product of two paths of the same order. They also prove that if $G$ is neighborhood-prime graph and $v$ is a vertex in $G$ that is not adjacent to any pendant vertices, then the graph obtained by duplicating the vertex $v$ is neighborhood-prime [1482].

The tables following summarize the state of knowledge about prime labelings and vertex prime labelings. In the table, $P$ means prime labeling exists, and $VP$ means vertex prime labeling exists. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property.
### Table 21: Summary of Prime Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n$</td>
<td>P</td>
<td>[644]</td>
</tr>
<tr>
<td>stars</td>
<td>P</td>
<td>[644]</td>
</tr>
<tr>
<td>caterpillars</td>
<td>P</td>
<td>[644]</td>
</tr>
<tr>
<td>complete binary trees</td>
<td>P</td>
<td>[644]</td>
</tr>
<tr>
<td>spiders</td>
<td>P</td>
<td>[644]</td>
</tr>
<tr>
<td>trees</td>
<td>P?</td>
<td>[1256]</td>
</tr>
<tr>
<td>$C_n$</td>
<td>P</td>
<td>[536]</td>
</tr>
<tr>
<td>$C_n \cup C_{2m}$</td>
<td>P</td>
<td>[536]</td>
</tr>
<tr>
<td>$K_n$</td>
<td>P</td>
<td>iff $n \leq 3$ [1256]</td>
</tr>
<tr>
<td>$W_n$</td>
<td>P</td>
<td>iff $n$ is even [1256]</td>
</tr>
<tr>
<td>helms</td>
<td>P</td>
<td>[1712], [2112]</td>
</tr>
<tr>
<td>fans</td>
<td>P</td>
<td>[1712]</td>
</tr>
<tr>
<td>flowers</td>
<td>P</td>
<td>[1712]</td>
</tr>
<tr>
<td>$K_{2,n}$</td>
<td>P</td>
<td>[1712]</td>
</tr>
<tr>
<td>$K_{3,n}$</td>
<td>P</td>
<td>$n \neq 3, 7$ [1712]</td>
</tr>
<tr>
<td>$P_n + K_m$</td>
<td>not P</td>
<td>$n \geq 3$ [1712]</td>
</tr>
<tr>
<td>$P_n + K_2$</td>
<td>P</td>
<td>iff $n = 2$ or $n$ is odd [1712]</td>
</tr>
<tr>
<td>books</td>
<td>P</td>
<td>[1737]</td>
</tr>
<tr>
<td>$C_n \odot P_m$</td>
<td>P</td>
<td>[1737]</td>
</tr>
<tr>
<td>unicyclic graphs</td>
<td>P?</td>
<td>[1737]</td>
</tr>
</tbody>
</table>

*Continued on next page*
<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_m + C_n$</td>
<td>not P</td>
<td>[1737]</td>
</tr>
<tr>
<td>$C_n^2$</td>
<td>not P</td>
<td>$n \geq 4$ [1737]</td>
</tr>
<tr>
<td>$P_n^2$</td>
<td>not P</td>
<td>$n \geq 6$, $n \neq 7$ [1737]</td>
</tr>
<tr>
<td>$M_n$ (Möbius ladders)</td>
<td>not P</td>
<td>$n$ even [1737]</td>
</tr>
<tr>
<td>$S_m \cup S_n$</td>
<td>P</td>
<td>[2239]</td>
</tr>
<tr>
<td>$C_m \cup S_n$</td>
<td>P</td>
<td>[2239]</td>
</tr>
<tr>
<td>$K_m \cup S_n$</td>
<td>P</td>
<td>iff number of primes $\leq m + n + 1$ is at least $m$ [2239]</td>
</tr>
<tr>
<td>$K_n \cdot K_1$</td>
<td>P</td>
<td>iff $n \leq 7$ [2239]</td>
</tr>
<tr>
<td>$P_m \times P_n$ (grids)</td>
<td>P</td>
<td>$m \leq 3$, $m &gt; n$, $n$ prime [2112]</td>
</tr>
<tr>
<td>cycles with a cord</td>
<td>P</td>
<td>[2091]</td>
</tr>
<tr>
<td>$C_n \circ \overline{K}_1$ (crowns)</td>
<td>P</td>
<td>[2091]</td>
</tr>
<tr>
<td>$C_n \circ \overline{K}_2$</td>
<td>P</td>
<td>iff $n = 3$ [2112]</td>
</tr>
<tr>
<td>$P_n \circ \overline{K}_2$</td>
<td>P</td>
<td>iff $n \neq 2$ [2112]</td>
</tr>
<tr>
<td>$C_m$-snakes (see §2.2)</td>
<td>P</td>
<td>[438]</td>
</tr>
<tr>
<td>unicyclic</td>
<td>P?</td>
<td>[1712]</td>
</tr>
<tr>
<td>$C_m \circ P_n$</td>
<td>P</td>
<td>[1737]</td>
</tr>
<tr>
<td>$K_{1,n} + \overline{K}_2$</td>
<td>P</td>
<td>[1855]</td>
</tr>
<tr>
<td>$K_{1,n} + K_2$</td>
<td>P</td>
<td>$n$ prime, $n \geq 4$ [1855]</td>
</tr>
<tr>
<td>$P_n \circ K_1$ (combs)</td>
<td>P</td>
<td>$n \geq 2$ [1855]</td>
</tr>
</tbody>
</table>

Continued on next page
Table 21 – Continued from previous page

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 \cup P_2 \cup \cdots \cup P_n$</td>
<td>P</td>
<td>[1855]</td>
</tr>
<tr>
<td>$C_m^{(n)}$ (see §2.2) triangular snakes</td>
<td>P</td>
<td>[1855]</td>
</tr>
<tr>
<td>quadrilateral snakes</td>
<td>P</td>
<td>[1855]</td>
</tr>
</tbody>
</table>

Table 22: Summary of Vertex Prime Labelings

<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_m + C_n$</td>
<td>not P</td>
<td>[1737]</td>
</tr>
<tr>
<td>$C_n^2$</td>
<td>not P</td>
<td>$n \geq 4$ [1737]</td>
</tr>
<tr>
<td>$P_n$</td>
<td>not P</td>
<td>$n = 6, n \geq 8$ [1737]</td>
</tr>
<tr>
<td>$M_{2n}$ (Möbius ladders)</td>
<td>not P</td>
<td>[1737]</td>
</tr>
<tr>
<td>connected graphs</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>forests</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>$C_{2m} \cup C_n$</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>$C_{2m} \cup C_{2n} \cup C_{2k+1}$</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>$C_{2m} \cup C_{2n} \cup C_{2t} \cup C_k$</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>$5C_{2m}$</td>
<td>VP</td>
<td>[536]</td>
</tr>
<tr>
<td>$G \cup H$</td>
<td>VP</td>
<td>if $G$, $H$ are connected and one is not an odd cycle [536]</td>
</tr>
<tr>
<td>2-regular graph $G$</td>
<td>not VP</td>
<td>$G$ has at least 2 odd cycles [536]</td>
</tr>
<tr>
<td>VP?</td>
<td></td>
<td>iff $G$ has at most 1 odd cycle [536]</td>
</tr>
</tbody>
</table>
7.3 Edge-graceful Labelings

In 1985, Lo [1307] introduced the notion of edge-graceful graphs. A graph $G(V,E)$ is said to be edge-graceful if there exists a bijection $f$ from $E$ to $\{1,2,\ldots,|E|\}$ such that the induced mapping $f^+$ from $V$ to $\{0,1,\ldots,|V|-1\}$ given by $f^+(x) = (\sum f(xy)) \pmod{|V|}$ taken over all edges $xy$ is a bijection. Note that an edge-graceful graph is antimagic (see §6.1). A necessary condition for a graph with $p$ vertices and $q$ edges to be edge-graceful is that $q(q+1) \equiv p(p+1)/2 \pmod{p}$. Lee [1175] notes that this necessary condition extends to any multigraph with $p$ vertices and $q$ edges. It was conjectured by Lee [1175] that any connected simple $(p,q)$-graph with $q(q+1) \equiv p(p-1)/2 \pmod{p}$ vertices is edge-graceful. Lee, Kitagaki, Young, and Kocay [1180] prove that the conjecture is true for maximal outerplanar graphs. Lee and Murthy [1167] proved that $K_n$ is edge-graceful if and only if $n \not\equiv 2 \pmod{4}$. (An edge-graceful labeling given in [1307] for $K_n$ for $n \not\equiv 2 \pmod{4}$ is incorrect.) Lee [1175] notes that a multigraph with $p \equiv 2 \pmod{4}$ vertices is not edge-graceful and conjectures that this condition is sufficient for the edge-gracefulness of connected graphs. Lee [1174] has conjectured that all trees of odd order are edge-graceful. Small [1880] has proved that spiders for which every vertex has odd degree with the property that the distance from the vertex of degree greater than 2 to each end vertex is the same are edge-graceful. Keene and Simoson [1077] proved that all spiders of odd order with exactly three end vertices are edge-graceful. Cabaniss, Low, and Mitchem [419] have shown that regular spiders of odd order are edge-graceful.

Lee and Seah [1217] have also proved that $C_n^k$ (the $k$th power of $C_n$) is edge-graceful for $k < [n/2]$ if and only if $n$ is odd and $C_n^k$ is edge-graceful for $k \geq [n/2]$ if and only if $n \not\equiv 2 \pmod{4}$ (see also [419]). Lee, Seah, and Wang [1223] gave a complete characterization of edge-graceful $P_n^k$ graphs. Shiu, Lam, and Wang [1806] proved that the composition of the path $P_3$ and any null graph of odd order is edge-graceful.

Lo [1307] proved that all odd cycles are edge-graceful and Wilson and Riskin [2175] proved the Cartesian product of any number of odd cycles is edge-graceful. Lee, Ma, Valdes, and Tong [1193] investigated the edge-gracefulness of grids $P_m \times P_n$. The necessity condition of Lo [1307] that a $(p,q)$ graph must satisfy $q(q+1) \equiv 0 \pmod{p}$ severely limits the possibilities. Lee et al. prove the following: $P_2 \times P_n$ is not edge-graceful for all $n > 1$; $P_3 \times P_n$ is edge-graceful if and only if $n = 1$ or $n = 4$; $P_4 \times P_n$ is edge-graceful if and only if $n = 3$ or $n = 4$; $P_5 \times P_n$ is edge-graceful if and only if $n = 1$; $P_2m \times P_2n$ is edge-graceful if and only if $m = n = 2$. They conjecture that for all $m, n \geq 10$ of the form $m = (2k+1)(4k+1)$, $n = (2k+1)(4k+3)$, the grids $P_m \times P_n$ are edge-graceful. Riskin and Weidman [1635] proved: if $G$ is an edge-graceful $2r$-regular graph with $p$ vertices and $q$ edges and $(r,kp)=1$, then $kG$ is edge-graceful when $k$ is odd; when $n$ and $k$ are odd, $kC_n^k$ is edge-graceful; and if $G$ is the cartesian product of an odd number of odd cycles and $k$ is odd, then $kG$ is edge-graceful. They conjecture that the disjoint union of an odd number of copies of a $2r$-regular edge-graceful graph is edge-graceful.

Shiu, Lee, and Schaffer [1815] investigated the edge-gracefulness of multigraphs derived...
investigated edge-gracefulness of various multigraphs. Lee, Ng, Ho, and Saba [1203] construct edge-graceful multigraphs starting with paths and spiders by adding certain edges to the original graphs. Lee and Seah [1219] have also investigated edge-gracefulness of various multigraphs.

Lee and Seah (see [1175]) define a sunflower graph $SF(n)$ as the graph obtained by starting with an $n$-cycle with consecutive vertices $v_1, v_2, \ldots, v_n$ and creating new vertices $w_1, w_2, \ldots, w_n$ with $w_i$ connected to $v_i$ and $v_{i+1}$ ($v_{n+1}$ is $v_1$). In [1220] they prove that $SF(n)$ is edge-graceful if and only if $n$ is even. In the same paper they prove that $C_3$ is the only triangular snake that is edge-graceful. Lee and Seah [1217] prove that for $k \leq n/2$, $C_n^k$ is edge-graceful if and only if $n$ is odd, and for $k \geq n/2$, $C_n^k$ is edge-graceful if and only if $n \equiv 2 \pmod 4$. Lee, Seah, and Lo (see [1175]) prove that the generalized Petersen graph $P(n, k)$ (see Section 2.7 for the definition) is edge-graceful if and only if $n$ is even and $k < n/2$. In particular, $P(n, 1) = C_n \times P_2$ is edge-graceful if and only if $n$ is even.

Schaffer and Lee [1684] proved that $C_m \times C_n (m > 2, n > 2)$ is edge-graceful if and only if $m$ and $n$ are odd. They also showed that if $G$ and $H$ are edge-graceful regular graphs of odd order then $G \times H$ is edge-graceful and that if $G$ and $H$ are edge-graceful graphs where $G$ is $c$-regular of odd order $m$ and $H$ is $d$-regular of odd order $n$, then $G \times H$ is edge-magic if $\gcd(c, n) = \gcd(d, m) = 1$. They further show that if $H$ has odd order, is $2d$-regular and edge-graceful with $\gcd(d, m) = 1$, then $C_{2m} \times H$ is edge-magic, and if $G$ is odd-regular, edge-graceful of even order $m$ that is not divisible by 3, and $G$ can be partitioned into 1-factors, then $G \times C_m$ is edge-graceful.

In 1987 Lee (see [1221]) conjectured that $C_{2m} \cup C_{2n+1}$ is edge-graceful for all $m$ and $n$ except for $C_4 \cup C_3$. Lee, Seah, and Lo [1221] have proved this for the case that $m = n$ and $m$ is odd. They also prove: the disjoint union of an odd number copies of $C_n$ is edge-graceful when $m$ is odd; $C_n \cup C_{2n+2}$ is edge-graceful; and $C_n \cup C_{4n}$ is edge-graceful for $n$ odd. Bu [403] gave necessary and sufficient conditions for graphs of the form $mC_n \cup P_{n-1}$ to be edge-graceful.

Kendrick and Lee (see [1175]) proved that there are only finitely many $n$ for which $K_{m,n}$ is edge-graceful and they completely solve the problem for $m = 2$ and $m = 3$. Ho, Lee, and Seah [816] use $S(n; a_1, a_2, \ldots, a_k)$ where $n$ is odd and $1 \leq a_1 \leq a_2 \leq \cdots \leq a_k < n/2$ to denote the $(n, nk)$-multigraph with vertices $v_0, v_1, \ldots, v_{n-1}$ and edge set $\{v_iv_j \mid i \neq j, i - j \equiv a_t \pmod n\}$ for $t = 1, 2, \ldots, k$. They prove that all such multigraphs are edge-graceful. Lee and Pritikin (see [1175]) prove that the Möbius ladders (see §2.2 for definition) of order $4n$ are edge-graceful. Lee, Tong, and Seah [1238] have conjectured that the total graph of a $(p, p)$-graph is edge-graceful if and only if $p$ is even. They have proved this conjecture for cycles. In [1081] Khodkar and Vinhage proved that there exists a super edge-graceful labeling of the total graph of $K_{1,n}$ and the total graph of $C_n$.

Kuang, Lee, Mitchem, and Wang [1414] have conjectured that unicyclic graphs of odd order are edge-graceful. They have verified this conjecture in the following cases: graphs obtained by identifying an endpoint of a path $P_m$ with a vertex of $C_n$ when $m + n$ is
even; crowns with one pendent edge deleted; graphs obtained from crowns by identifying an endpoint of $P_m$, $m$ odd, with a vertex of degree 1; amalgamations of a cycle and a star obtained by identifying the center of the star with a cycle vertex where the resulting graph has odd order; graphs obtained from $C_n$ by joining a pendent edge to $n - 1$ of the cycle vertices and two pendent edges to the remaining cycle vertex.

Gayathri and Subbiah [695] say a graph $G(V, E)$ has a strong edge-graceful labeling if there is an injection $f$ from the $E$ to $\{1, 2, 3, \ldots, |E|/2\}$ such that the induced mapping $f^+$ from $V$ defined by $f^+(u) = (\Sigma f(uv)) \pmod {2|V|}$ taken all edges $uv$ is an injection. They proved the following graphs have strong edge graceful labelings: $P_n(n \geq 3), C_n, K_{1,n}(n \geq 2)$, crowns $C_n \odot K_1$, and fans $P_n + K_1(n \geq 2)$. In his Ph.D. thesis [1918] Subbiah provided edge-graceful and strong edge-graceful labelings for a large variety of graphs. Among them are bistars, twigs, $y$-trees, spiders, flags, kites, friendship graphs, mirror of paths, flowers, sunflowers, graphs obtained by identifying a vertex of a cycle with an endpoint of a star, and $K_2 \odot C_n$, and various disjoint unions of path, cycles, and stars.

Hefetz [780] has shown that a graph $G(V, E)$ of the form $G = H \cup f_1 \cup f_2 \cup \cdots \cup f_r$ where $H = (V, E')$ is edge-graceful and the $f_i$'s are 2-factors is also edge-graceful and that a regular graph of even degree that has a 2-factor consisting of $k$ cycles each of length $t$ where $k$ and $t$ are odd is edge-graceful.

Bača and Holländer [208] investigated a generalization of edge-graceful labeling called $(a, b)$-consecutive labelings. A connected graph $G(V, E)$ is said to have an $(a, b)$-consecutive labeling where $a$ is a nonnegative integer and $b$ is a positive proper divisor of $|V|$, if there is a bijection from $E$ to $\{1, 2, \ldots, |E|\}$ such that if each vertex $v$ is assigned the sum of all edges incident to $v$ the vertex labels are distinct and they can be partitioned into $|V|/b$ intervals

$$W_j = [w_{\min} + (j - 1)b + (j - 1)a, w_{\min} + jb + (j - 1)a - 1],$$

where $1 \leq j \leq p/b$ and $w_{\min}$ is the minimum value of the vertices. They present necessary conditions for $(a, b)$-consecutive labelings and describe $(a, b)$-consecutive labelings of the generalized Petersen graphs for some values of $a$ and $b$.

A graph with $p$ vertices and $q$ edges is said to be $k$-edge-graceful if its edges can be labeled with $k, k + 1, \ldots, k + q - 1$ such that the sums of the edges incident to each vertex are distinct modulo $p$. In [1241] Lee and Wang show that for each $k \neq 1$ there are only finitely many trees that are $k$-edge graceful (there are infinitely many 1-edge graceful trees). They describe completely the $k$-edge-graceful trees for $k = 0, 2, 3, 4,$ and $5$. Gayathri and Sarada Devi [679] obtained some necessary conditions and characterizations for $k$-edge-gracefulness of trees. They also proved that specific families of trees are edge-graceful and $k$-edge-graceful and conjecture that all odd trees are $k$-edge-graceful.

Gayathri and Sarada Devi [541] defined a $k$-even edge-graceful labeling of a $(p, q)$ graph $G(V, E)$ as an injection $f$ from $E$ to $\{2k - 1, 2k, 2k + 1, \ldots, 2k + 2q - 2\}$ such that the induced mapping $f^+$ of $V$ defined by $f^+ (x) = \sum f(xy) \pmod {2s}$ taken over all edges $xy$, are distinct and even, where $s = \max \{p, q\}$ and $k$ is a positive integer. A graph $G$ that admits a $k$-even-edge-graceful labeling is called a $k$-even-edge-graceful graph. In [541], [680], [681], and [682] Gayathri and Sarada Devi investigate the $k$-even edge-gracefulness
of a wide variety of graphs. Among them are: paths; stars; bistars; cycles with a pendent edge; cycles with a cord; crowns $C_n \circ K_1$; graphs obtained from $P_n$ by replacing each edge by a fixed number of parallel edges; and sparklers (paths with a star appended at an endpoint of the path).

In 1991 Lee [1175] defined the edge-graceful spectrum of a graph $G$ as the set of all nonnegative integers $k$ such that $G$ has a $k$-edge graceful labeling. In [1245] Lee, Wang, Ng, and Wang determine the edge-graceful spectrum of the following graphs: $G \circ K_1$ where $G$ is an even cycle with one chord; two even cycles of the same order joined by an edge; and two even cycles of the same order sharing a common vertex with an arbitrary number of pendent edges attached at the common vertex (butterfly graph). Lee, Chen, and Wang [1178] have determined the edge-graceful spectra for various cases of cycles with a chord and for certain cases of graphs obtained by joining two disjoint cycles with an edge (i.e., dumbbell graphs). More generally, Shiu, Ling, and Low [1817] call a connected with $p$ vertices and $p + 1$ edges bicyclic. In particular, the family of bicyclic graphs includes the one-point union of two cycles, two cycles joined by a path and cycles with one cord. In [1818] they determine the edge-graceful spectra of bicyclic graphs that do not have pendent edges. Kang, Lee, and Wang [1055] determined the edge-graceful spectra of wheels and Wang, Hsiao, and Lee [2143] determined the edge-graceful spectra of the square of $P_n$ for odd $n$ (see also Lee, Wang, and Hsiao [1243]). Results about the edge-graceful spectra of three types of $(p, p + 1)$-graphs are given by Chen, Lee, and Wang [463]. In [2144] Wang and Lee determine the edge-graceful spectra of the one-point union of two cycles, the corona product of the one-point union of two cycles with $K_1$, and the cycles with one chord.

Lee, Levesque, Lo, and Schaffer [1188] investigate the edge-graceful spectra of cylinders. They prove: for odd $n \geq 3$ and $m \equiv 2 \pmod{4}$, the spectra of $C_n \times P_m$ is $\emptyset$; for $m = 3$ and $m \equiv 0, 1 \pmod{4}$, the spectra of $C_4 \times P_m$ is $\emptyset$; for even $n \geq 4$, the spectra of $C_n \times P_2$ is all natural numbers; the spectra of $C_n \times P_4$ is all odd positive integers if and only if $n \equiv 3 \pmod{4}$; and $C_n \times P_4$ is all even positive integers if and only if $n \equiv 1 \pmod{4}$. They conjecture that $C_4 \times P_m$ is $k$-edge-graceful for some $k$ if and only if $m \equiv 2 \pmod{4}$. Shiu, Ling, and Low [1818] determine the edge-graceful spectra of all connected bicyclic graphs without pendent edges.

A graph $G(V, E)$ is called super edge-graceful if there is a bijection $f$ from $E$ to \{0, 1, 2, \ldots, \pm(|E| - 1)/2\} when $|E|$ is odd and from $E$ to \{1, 2, \ldots, \pm|E|/2\} when $|E|$ is even such that the induced vertex labeling $f^*$ defined by $f^*(w) = \Sigma f(uw)$ over all edges $uv$ is a bijection from $V$ to \{0, 1, 2, \ldots, \pm(p - 1)/2\} when $p$ is odd and from $V$ to \{1, 2, \ldots, \pm p/2\} when $p$ is even. Lee, Wang, Nowak, and Wei [1246] proved the following: $K_{1,n}$ is super-edge-magic if and only if $n$ is even; the double star $DS(m, n)$ (that is, the graph obtained by joining the centers of $K_{1,m}$ and $K_{1,n}$ by an edge) is super edge-graceful if and only if $m$ and $n$ are both odd. They conjecture that all trees of odd order are super edge-graceful. In [495] Chung, Lee, Gao, and Schaffer pose the problems of characterizing the paths and tress of diameter 4 that are super edge-graceful.

In [494] Chung, Lee, Gao, prove various classes of caterpillars, combs, and amalgamations of combs and stars of even order are super edge-graceful. Lee, Sun, Wei, Wen,
and Yiu [1234] proved that trees obtained by starting with the paths the $P_{2n+2}$ or $P_{2n+3}$ and identifying each internal vertex with an endpoint of a path of length 2 are super edge-graceful.

Shiu [1794] has shown that $C_n \times P_2$ is super-edge-graceful for all $n \geq 2$. More generally, he defines a family of graphs that includes $C_n \times P_2$ and generalized Petersen graphs are follows. For any permutation $\theta$ he defines a family of graphs that includes $C$ edge-graceful.

The electronic journal of combinatorics (2016), #DS6

225

three conjectures about rooted trees of height 2 and diameter 4. They show that certain lobsters in these families are super-edge graceful. They conclude with labelings for a few families of odd size lobsters of diameter 4, although they are able to show that certain lobsters in these families are super-edge graceful. They also provide super edge-graceful labelings for several families of odd size lobsters of diameter 4. They were unable to find general methods that describe super edge-graceful labelings for a few families of odd size lobsters of diameter 4, although they are able to show that certain lobsters in these families are super-edge graceful. They conclude with three conjectures about rooted trees of height 2 and diameter 4.
Although it is not the case that a super edge-graceful graph is edge-graceful, Lee, Chen, Yera, and Wang [1177] proved that if \( G \) is a super edge-graceful with \( p \) vertices and \( q \) edges and \( q \equiv -1 \pmod{p} \) when \( q \) is even, or \( q \equiv 0 \pmod{p} \) when \( q \) is odd, then \( G \) is also edge-graceful. They also prove: the graph obtained from a connected super edge-graceful unicyclic graph of even order by joining any two nonadjacent vertices by an edge is super edge-graceful; the graph obtained from a super edge-graceful graph with \( p \) vertices and \( p+1 \) edges by appending two edges to any vertex is super edge-graceful; and the one-point union of two identical cycles is super edge-graceful. Collins, Magnant, and Wang [512] present a stronger concept of “tight” super-edge-graceful labeling. Such a super-edge graceful labeling has an additional constraint on the edge and vertices with the largest and smallest labels. They use this concept to recursively construct tight super-edge graceful trees of any order.

Gayathri, Duraisamy, and Tamilselvi [684] calls a \((p,q)\)-graph with \( q \geq p \) even edge-graceful if there is an injection \( f \) from the set of edges to \( \{1, 2, 3, \ldots, 2q\} \) such that the values of the induced mapping \( f^+ \) from the vertex set to \( \{0, 1, 2, 3, \ldots, 2q-1\} \) given by \( f^+(x) = (\Sigma f(xy)) \pmod{2q} \) over all edges \( xy \) are distinct and even. In [684] and [683] Gayathri et al. prove the following: cycles are even edge-graceful if and only if the cycles are odd; even cycles with one pendent edge are even edge-graceful; wheels are even edge-graceful; gears (see §2.2 for the definition) are not even edge-graceful; fans \( P_n + K_1 \) are even edge-graceful; \( C_4 \cup P_m \) for all \( m \) are even edge-graceful; \( C_{2n+1} \cup P_{2n+1} \) are even edge-graceful; crowns \( C_n \circ K_1 \) are even edge-graceful; \( C_n^{(m)} \) (see §2.2 for the definition) are even edge-graceful; sunflowers (see §3.7 for the definition) are even edge-graceful; triangular snakes (see §2.2 for the definition) are even edge-graceful; closed helms (see §2.2 for the definition) with the center vertex removed are even edge-graceful; graphs decomposable into two odd Hamiltonian cycles are even edge-graceful; and odd order graphs that are decomposable into three Hamiltonian cycles are even edge-graceful.

In [683] Gayathri and Duraisamy generalized the definition of even edge-graceful to include \((p,q)\)-graphs with \( q < p \) by changing the modulus from \( 2q \) the maximum of \( 2q \) and \( 2p \). With this version of the definition, they have shown that trees of even order are not even edge-graceful whereas, for odd order graphs, the following are even edge-graceful: banana trees (see §2.1 for the definition); graphs obtained joining the centers of two stars by a path; \( P_n \circ K_{1,m} \); graphs obtained by identifying an endpoint from each of any number of copies of \( P_3 \) and \( P_2 \); bistars (that is, graphs obtained by joining the centers of two stars with an edge); and graphs obtained by appending the endpoint of a path to the center of a star. They define odd edge-graceful graphs in the analogous way and provide a few results about such graphs.

Lee, Pan, and Tsai [1209] call a graph \( G \) with \( p \) vertices and \( q \) edges vertex-graceful if there exists a labeling \( f \) \( V(G) \to \{1, 2, \ldots, p\} \) such that the induced labeling \( f^+ \) from \( E(G) \to Z_q \) defined by \( f^+(uv) = f(u)+f(v) \pmod{q} \) is a bijection. Vertex-graceful graphs can be viewed the dual of edge-graceful graphs. They call a vertex-graceful graph strong vertex-graceful if the values of \( f^+(E(G)) \) are consecutive. They observe that the class of vertex-graceful graphs properly contains the super edge-magic graphs and strong vertex-graceful graphs are super edge-magic. They provide vertex-graceful and strong vertex-
graceful labelings for various \((p,p+1)\)-graphs of small order and their amalgamations.

Shiu and Wong [1828] proved the one-point union of an \(m\)-cycle and an \(n\)-cycle is vertex-graceful only if \(m+n \equiv 0 \pmod{4}\); for \(k \geq 2\), \(C(3,4k-3)\) is strong vertex-graceful; \(C(2n+3,2n+1)\) is strong vertex-graceful for \(n \geq 1\); and if the one-point union of two cycles is vertex-graceful, then it is also strong vertex-graceful. In [1893] Somashekara and Veena find the number of \((n,2n-3)\) strong vertex graceful graphs.

As a dual to super edge-graceful graphs Lee and Wei [1249] define a graph \(G(V,E)\) to be super vertex-graceful if there is a bijection \(f\) from \(V\) to \(\{\pm 1, \pm 2, \ldots, \pm (|V|-1)/2\}\) when \(|V|\) is odd and from \(V\) to \(\{\pm 1, \pm 2, \ldots, \pm (|V|/2)\}\) when \(|V|\) is even such that the induced edge labeling \(f^*\) defined by \(f^*(uv) = f(u)+f(v)\) over all edges \(uv\) is a bijection from \(E\) to \(\{0, \pm 1, \pm 2, \ldots, \pm (|E|-1)/2\}\) when \(|E|\) is odd and from \(E\) to \(\{\pm 1, \pm 2, \ldots, \pm |E|/2\}\) when \(|E|\) is even. They show: for \(m\) and \(n_1, n_2, \ldots, n_m\) each at least 3, \(P_{n_1} \times P_{n_2} \times \cdots \times P_{n_m}\) is not super vertex-graceful; for \(n\) odd, books \(K_{1,n} \times P_2\) are not super vertex-graceful; for \(n \geq 3\), \(P_n^2 \times P_2\) is super vertex-graceful if and only if \(n = 3, 4,\) or 5; and \(C_m \times C_n\) is not super vertex-graceful. They conjecture that \(P_n \times P_n\) is super vertex-graceful for \(n \geq 3\).

In [1253] Lee and Wong generalize super edge-vertex graphs by defining a graph \(G(V,E)\) to be \(P(a)Q(1)\)-super vertex-graceful if there is a bijection \(f\) from \(V\) to \(\{0, \pm a, \pm (a+1), \ldots, \pm (a-1+|V|/2)\}\) when \(|V|\) is odd and from \(V\) to \(\{\pm a, \pm (a+1), \ldots, \pm (a+|V|/2)\}\) when \(|V|\) is even such that the induced edge labeling \(f^*\) defined by \(f^*(uv) = f(u)+f(v)\) over all edges \(uv\) is a bijection from \(E\) to \(\{0, \pm 1, \pm 2, \ldots, \pm (|E|-1)/2\}\) when \(|E|\) is odd and from \(E\) to \(\{\pm 1, \pm 2, \ldots, \pm |E|/2\}\) when \(|E|\) is even. They show various classes of unicyclic graphs are \(P(a)Q(1)\)-super vertex-graceful. In [1187] Lee, Leung, and Ng more simply refer to \(P(1)Q(1)\)-super vertex-graceful graphs as super vertex-graceful and show how to construct a variety of unicyclic graphs that are super vertex-graceful. They conjecture that every unicyclic graph is an induced subgraph of a super vertex-graceful unicyclic graph. Lee and Leung [1186] determine which trees of diameter at most 6 are super vertex-graceful graphs and propose two conjectures. Lee, Ng, and Sun [1205] found many classes of caterpillars that are super vertex-graceful. In [672] Gao shows that the generalized butterfly graph \(B_n^t\) is super vertex-graceful when \(t > 0\) is even, \(B_n^n\) is super vertex-graceful when \(n \equiv 0\) or 3 \((\pmod{4})\), and \(C_3^{(t)}\) is super vertex-graceful if and only if \(t = 1, 2, 3, 5,\) or 7.

In [481] Chopra and Lee define a graph \(G(V,E)\) to be \(Q(a)P(b)\)-super edge-graceful if there is a bijection \(f\) from \(E\) to \(\{\pm a, \pm (a+1), \ldots, \pm (a+(|E|-2)/2)\}\) when \(|E|\) is even and from \(E\) to \(\{0, \pm a, \pm (a+1), \ldots, \pm (a+(|E|-3)/2)\}\) when \(|E|\) is odd and \(f^*(u)\) is equal to the sum of \(f(uv)\) over all edges \(uv\) is a bijection from \(V\) to \(\{\pm b, \pm (b+1), \ldots, (|V|-2)/2\}\) when \(|V|\) is even and from \(V\) to \(\{0, \pm b, \pm (b+1), \ldots, (|V|-3)/2\}\) when \(|V|\) is odd. They say a graph is strongly super edge-graceful if it is \(Q(a)P(b)\)-super edge-graceful for all \(a \geq 1\). Among their results are: a star with \(n\) pendant edges is strongly super edge-graceful if and only if \(n\) is even; wheels with \(n\) spokes are strongly super edge-graceful if and only if \(n\) is even; coronas \(C_n \odot K_1\) are strongly super edge-graceful for all \(n \geq 3\); and double stars \(DS(m,n)\) are strongly super edge-graceful in the case that \(m\) is odd and at least 3 and \(n\) is even and at least 2 and in the case that both \(m\) and \(n\) are odd and one of them is at least 3. Lee, Song, and Valdés [1226] investigate the \(Q(a)P(b)\)-super
edge-gracefulness of wheels $W_n$ for $n = 3, 4, 5,$ and $6$.

In [1250] Lee, Wang, and Yera proved that some Eulerian graphs are super edge-graceful, but not edge-graceful, and that some are edge-graceful, but not super edge-graceful. They also showed that a Rosa-type condition for Eulerian super edge-graceful graphs does not exist and pose some conjectures, one of which was: For which $n$, is $K_n$ is super edge-graceful? It was known that the complete graphs $K_n$ for $n = 3, 5, 6, 7, 8$ are super edge-graceful and $K_4$ is not super edge-graceful. Khodkar, Rasi, and Sheikholeslami, [1080] answered this question by proving that all complete graphs of order $n \geq 3$, except 4, are super edge-graceful.

In 1997 Yilmaz and Cahit [2221] introduced a weaker version of edge-graceful called $E$-cordial. Let $G$ be a graph with vertex set $V$ and edge set $E$ and let $f$ a function from $E$ to $\{0, 1\}$. Define $f$ on $V$ by $f(v) = \sum \{f(uv) | uv \in E\}$ (mod 2). The function $f$ is called an $E$-cordial labeling of $G$ if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 and the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1. A graph that admits an $E$-cordial labeling is called $E$-cordial. Yilmaz and Cahit prove the following graphs are $E$-cordial: trees with $n$ vertices if and only if $n \not\equiv 2 \pmod{4}$; $K_n$ if and only if $n \not\equiv 2 \pmod{4}$; $K_{m,n}$ if and only if $m + n \not\equiv 2 \pmod{4}$; $C_n$ if and only if $n \not\equiv 2 \pmod{4}$; regular graphs of degree 1 on $2n$ vertices if and only if $n$ is even; friendship graphs $C_3(n)$ for all $n$ (see §2.2 for the definition); fans $F_n$ if and only if $n \not\equiv 1 \pmod{4}$; and wheels $W_n$ if and only if $n \not\equiv 1 \pmod{4}$. They observe that graphs with $n \equiv 2 \pmod{4}$ vertices can not be $E$-cordial. They generalized $E$-cordial labelings to $E_k$-cordial ($k > 1$) labelings by replacing $\{0, 1\}$ by $\{0, 1, 2, \ldots, k - 1\}$. Of course, $E_2$-cordial is the same as $E$-cordial (see §3.7).

Liu, liu, and Wu [1303] provide two necessary conditions for a graph to be $E_k$-cordial and prove that $P_n$ ($n \geq 3$) is $E_{p}$-cordial for odd $p$. They also discuss the $E_2$-cordiality of graphs that have a subgraph that is a 1-factor.

In [2076] Vaidya and Vyas prove that the following graphs are $E$-cordial: the mirror graphs (see §2.3 for the definition) even paths, even cycles, and the hypercube are $E$-cordial. In [2042] they show that the middle graph, the total graph, and the splitting graph of a path are $E$-cordial and the composition of $P_{2n}$ with $P_2$. (See §2.7 for the definitions of middle, total and splitting graphs.) In [2043] Vaidya and Lekha [2043] prove the following graphs are $E$-cordial: the graph obtained by duplication of a vertex (see §2.7 for the definition) of a cycle; the graph obtained by duplication of an edge (see §2.7 for the definition) of a cycle; the graph obtained by joining of two copies of even cycle by an edge; the splitting graph of an even cycle; and the shadow graph (see §3.8 for the definition) of a path of even order.

Vaidya and Vyas [2077] proved the following graphs have $E$-cordial labelings: $K_{2n} \times P_2$; $P_{2n} \times P_2$; $W_n \times P_2$ for odd $n$; and $K_{1,n} \times P_2$ for odd $n$. Vaidya and Vyas [2078] proved that the Möbius ladders, the middle graph of $C_n$, and crowns $C_n \circ K_1$ are $E$-cordial graphs for even $n$ while bistars $B_{n,n}$ and its square graph $B_{n,n}^2$ are $E$-cordial graphs for odd $n$. In [2080] and [2081] Vaidya and Vyas proved the following graphs are $E$-cordial: flowers, closed helms, double triangular snakes, gears, graphs obtained by switching of an arbitrary vertex in $C_n$ except $n \equiv 2 \pmod{4}$, switching of rim vertex in wheel $W_n$ except
\( n \equiv 1 \pmod{4} \), switching of an apex vertex in helms, and switching of an apex vertex in closed helms.

In her PhD thesis [2088] Vanitha defines a \((p, q)\) graph \( G \) to be \textit{directed edge-graceful} if there exists an orientation of \( G \) and a labeling of the arcs of \( G \) with \( \{1, 2, \ldots, q\} \) such that the induced mapping \( g \) on \( V \) defined by \( g(v) = |f^+(v) - f^-(v)| \pmod{p} \) is a bijection where, \( f^+(v) \) is the sum of the labels of all arcs with head \( v \) and \( f^-(v) \) is the sum of the labels of all arcs with tail \( v \). She proves that a necessary condition for a graph with \( p \) vertices to be directed edge-graceful is that \( p \) is odd. Among the numerous graphs that she proved to be directed edge-graceful are: odd paths, odd cycles, fans \( F_{2n} \) \((n \geq 2)\), wheels \( W_{2n} \), \( nC_3 \)-snakes, butterfly graphs \( B_n \) (two even cycles of the same order sharing a common vertex with an arbitrary number of pendent edges attached at the common vertex), \( K_{1,2n} \) \((n \geq 2)\), odd order \( y \)-trees with at least 5 vertices, flags \( Fl_{2n} \) (the cycle \( C_{2n} \) with one pendent edge), festoon graphs \( P_n \odot mK_1 \), the graphs \( T_{m,n,t} \) obtained from a path \( P_t \) \((t \geq 2)\) by appending \( m \) edges at one endpoint of \( P_t \) and \( n \) edges at the other endpoint of \( P_t \), \( C_{3}^{n} \), \( P_3 \cup K_{1,2n+1} \), \( P_5 \cup K_{1,2n+1} \), and \( K_{1,2n} \cup K_{1,2n+1} \).

Devaraj [539] has shown that \( M(m, n) \), the mirror graph of \( K(m, n) \), is \( E \)-cordial when \( m + n \) is even and the generalized Petersen graph \( P(n, k) \) is \( E \)-cordial when \( n \) is even. (Recall that \( P(n, 1) \) is \( C_n \times P_2 \).)

The table following summarizes the state of knowledge about edge-graceful labelings. In the table \textbf{EG} means edge-graceful labeling exists. A question mark following an abbreviation indicates that the graph is conjectured to have the corresponding property.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|l|}
\hline
\textbf{Graph} & \textbf{Types} & \textbf{Notes} \\
\hline
\( K_n \) & \textbf{EG} & iff \( n \not\equiv 2 \pmod{4} \) [1167] \\
odd order trees & \textbf{EG} & \[1174] \\
\( K_{n,n,...,n} \) \((k \text{ terms})\) & \textbf{EG} & iff \( n \) is odd or \( k \not\equiv 2 \pmod{4} \) [1218] \\
\( C_{n}^{k} \), \( k < [n/2] \) & \textbf{EG} & iff \( n \) is odd [1217] \\
\( C_{n}^{k} \), \( k \geq [n/2] \) & \textbf{EG} & iff \( n \not\equiv 2 \pmod{4} \) [1217] \\
\( P_{3}[K_n] \) & \textbf{EG} & \( n \) is odd [1217] \\
\( M_{4n} \) \((\text{Möbius ladders})\) & \textbf{EG} & \[1175] \\
odd order dragons & \textbf{EG} & \[1141] \\
odd order unicyclic graphs & \textbf{EG}? & \[1141] \\
\hline
\end{tabular}
\caption{Summary of Edge-graceful Labelings}
\end{table}

\textit{Continued on next page}
<table>
<thead>
<tr>
<th>Graph</th>
<th>Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{2m} \times P_{2n}$</td>
<td>EG</td>
<td>iff $m = n = 2$ [1193]</td>
</tr>
<tr>
<td>$C_n \cup P_2$</td>
<td>EG</td>
<td>$n$ even [1221]</td>
</tr>
<tr>
<td>$C_{2n} \cup C_{2n+1}$</td>
<td>EG</td>
<td>$n$ odd [1221]</td>
</tr>
<tr>
<td>$C_n \cup C_{2n+2}$</td>
<td>EG</td>
<td>[1221]</td>
</tr>
<tr>
<td>$C_n \cup C_{4n}$</td>
<td>EG</td>
<td>$n$ odd [1221]</td>
</tr>
<tr>
<td>$C_{2m} \cup C_{2n+1}$</td>
<td>EG?</td>
<td>$(m,n) \neq (4,3)$ odd [1222]</td>
</tr>
<tr>
<td>$P(n,k)$ generalized Petersen graph</td>
<td>EG</td>
<td>$n$ even, $k &lt; n/2$ [1175]</td>
</tr>
<tr>
<td>$C_m \times C_n$</td>
<td>EG?</td>
<td>$(m,n) \neq (4,3)$ [1222]</td>
</tr>
</tbody>
</table>
7.4 Radio Labelings

In 2001 Chartrand, Erwin, Zhang, and Harary [452] were motivated by regulations for channel assignments of FM radio stations to introduce radio labelings of graphs. A radio labeling of a connected graph $G$ is an injection $c$ from the vertices of $G$ to the natural numbers such that 
$$d(u, v) + |c(u) - c(v)| \geq 1 + \text{diam}(G)$$
for every two distinct vertices $u$ and $v$ of $G$. The radio number of $c$, $rn(c)$, is the maximum number assigned to any vertex of $G$. The radio number of $G$, $rn(G)$, is the minimum value of $rn(c)$ taken over all radio labelings $c$ of $G$. Chartrand et al. and Zhang [2250] gave bounds for the radio numbers of cycles. The exact values for the radio numbers for paths and cycles were reported by Liu and Zhu [1293] as follows: for odd $n \geq 3$, $rn(P_n) = (n - 1)^2/2 + 2$; for even $n \geq 4$, $rn(P_n) = n^2/2 - n + 1$; $rn(C_{4k}) = (k + 2)(k - 2)/2 + 1$; $rn(C_{4k+1}) = (k + 1)(k - 1)/2$; $rn(C_{4k+2}) = (k + 2)(k - 2)/2 + 1$; and $rn(C_{4k+3}) = (k + 2)(k - 1)/2$. However, Chartrand, Erwin, and Zhang [451] obtained different values than Liu and Zhu for $P_4$ and $P_5$. Chartrand, Erwin, and Zhang [451] proved: $rn(P_n) \leq (n - 1)(n - 2)/2 + n/2 + 1$ when $n$ is even; $rn(P_n) \leq n(n - 1)/2 + 1$ when $n$ is odd; $rn(P_n) < rn(P_{n+1})$ ($n > 1$); for a connected graph $G$ of diameter $d$, $rn(G) \geq (d + 1)^2/4 + 1$ when $d$ is odd; and $rn(G) \geq d(d + 2)/4 + 1$ when $d$ is even. Benson, Porter, and Tomova [339] have determined the radio numbers of all graphs of order $n$ and diameter $n - 2$. In [1289] Liu obtained lower bounds for the radio number of trees and the radio number of spiders (trees with at most one vertex of degree greater than 2) and characterized the graphs that achieve these bounds.

Chartrand, Erwin, Zhang, and Harary [452] proved: $rn(K_{n_1,n_2,\ldots,n_k}) = n_1 + n_2 + \cdots + n_k + k - 1$; if $G$ is a connected graph of order $n$ and diameter 2, then $n \leq rn(G) \leq 2n - 2$; and for every pair of integers $k$ and $n$ with $n \leq k \leq 2n - 2$, there exists a connected graph of order $n$ and diameter 2 with $rn(G) = k$. They further provide a characterization of connected graphs of order $n$ and diameter 2 with prescribed radio number.

Fernandez, Flores, Tomova, and Wyels [608] proved $rn(K_n) = n$; $rn(W_n) = n + 2$; and the radio number of the gear graph obtained from $W_n$ by inserting a vertex between each vertex of the rim is $4n + 2$. Morris-Rivera, Tomova, Wyels, and Yeager [1419] determine the radio number of $C_n \times C_n$. Martinez, Ortiz, Tomova, and Wyels [1364] define generalized prisms, denoted $Z_{n,s}$, $s \geq 1$, $n \geq s$, as the graphs with vertex set $\{(i,j) | i = 1, 2 \text{ and } j = 1, \ldots, n\}$ and edge set $\{((i,j),(i,j\pm1)) | \sigma = -\left[\frac{s-1}{2}\right], \ldots, 0, \ldots, \left[\frac{s}{2}\right]\}$. They determine the radio number of $Z_{n,s}$ for $s = 1, 2$ and 3.

The generalized gear graph $J_{t,n}$ is obtained from a wheel $W_n$ by introducing $t$-vertices between every pair $(v_i,v_{i+1})$ of adjacent vertices on the $n$-cycle of wheel. Ali, Rahim, Ali, and Farooq [106] gave an upper bound for the radio number of generalized gear graph, which coincided with the lower bound found in [1578]. They proved for $t < n - 1$ and $n \geq 7$, $rn(J_{t,n}) = (nt^2 + 4nt + 3n + 4)/2$. They pose the determination of the radio number of $J_{t,n}$ when $n \leq 7$ and $t > n - 1$ as an open problem.

Saha and Panigrahi [1657] determined the radio number of the toroidal grid $C_m \times C_n$ when at least one of $m$ and $n$ is an even integer and gave a lower bound for the radio number when both $m$ and $n$ are odd integers. Liu and Xie [1291] determined the radio
numbers of squares of cycles for most values of \( n \). In [1292] Liu and Xie proved that \( \text{rn}(P_n^2) = \lfloor n/2 \rfloor + 2 \) if \( n \equiv 1 \pmod{4} \) and \( n \geq 9 \) and \( \text{rn}(P_n^2) = \lfloor n/2 + 1 \rfloor \) otherwise. In [1290] Liu found a lower bound for the radio number of trees and characterizes the trees that achieve the bound. She also provides a lower bound for the radio number of spiders in terms of the lengths of their legs and characterizes the spiders that achieve this bound. Sweetly and Joseph [1972] prove that the radio number of the graph obtained from the wheel \( W_n \) by subdividing each edge of the rim exactly twice is \( 5n - 3 \). Marinescu-Ghemeci [1360] determined the radio number of the caterpillar obtained from a path by attaching a new terminal vertex to each non-terminal vertex of the path and the graph obtained from a star by attaching \( k \) new terminal vertices to each terminal vertex of the star.

Sooryanarayana and Raghunath [1906] determined the radio number of \( C_n^3 \), for \( n \leq 20 \) and for \( n \equiv 0 \) or \( 2 \) or \( 4 \pmod{6} \). Sooryanarayana, Vishu Kumar, Manjula [1907] determine the radio number of \( P_n^3 \), for \( n \geq 4 \). Lo and Alegria [1306] completely determine the radio number for the fourth-power of \( P_n \) for \( n \geq 6 \), except when \( n \equiv 1 \pmod{8} \). Wang, Xu, Yang, Zhang, Luo, and Wang [2138] determine the radio number of ladder graphs. Jiang [988] completely determined the radio number of the grid graph \( P_m \times P_n \ (m, n > 2) \). In [2074] Vaidya and Vihol determined upper bounds on radio numbers of cycles with chords and determined the exact radio numbers for the splitting graph and the middle graph of \( C_n \). Kim, Hwang, and Song [1082] determine the radio numbers of \( P_n \) with \( n \geq 4 \) and \( K_m \) with \( m \geq 3 \). In [1441] Nazeer, Kousar, and Nazeer give radio and radio antipodal labelings for certain circulant graphs. Shen, Dong, Zheng, and Guo [1791] use \( C(m, t) \) to denote the caterpillar consisting of a path \( x_1 x_2 \cdots x_m \) with \( t \) pendant edges at each inner vertex. They determine the exact value of the radio number of \( C(m, t) \) for all integers \( m \geq 4 \) and \( t \geq 2 \), and explicitly construct an optimal radio labeling. They also show that the radio number and the construction of optimal radio labelings of paths are the special cases of \( C(m, t) \) with \( t = 2 \).

In [437] Canales, Tomova, and Wyels investigated the question of which radio numbers of graphs of order \( n \) are achievable. They proved that the achievable radio numbers of graphs of order \( n \) must lie in the interval \([n, \text{rn}(P_n)]\), and that these bounds are the best possible. They also show that for odd \( n \), the integer \( \text{rn}(P_n) - 1 = \frac{(n-1)^2}{2} + 2 \) is an unachievable radio number for any graph of order \( n \). In [1886] Sokolowsky settled the question of exactly which radio numbers are achievable for a graph of order \( n \).

For any connected graph \( G \) and positive integer \( k \), Chartrand, Erwin, and Zhang, [450] define a radio \( k \)-coloring as an injection \( f \) from the vertices of \( G \) to the natural numbers such that \( d(u, v) + |f(u) - f(v)| \geq 1 + k \) for every two distinct vertices \( u \) and \( v \) of \( G \). Using \( \text{rc}_k(f) \) to denote the maximum number assigned to any vertex of \( G \) by \( f \), the radio \( k \)-chromatic number of \( G \), \( \text{rc}_k(G) \), is the minimum value of \( \text{rc}_k(f) \) taken over all radio \( k \)-colorings of \( G \). Note that \( \text{rc}_1(G) \) is \( \chi(G) \), the chromatic number of \( G \), and when \( k = \text{diam}(G) \), \( \text{rc}_k(G) \) is \( \text{rn}(G) \), the radio number of \( G \). Chartrand, Nebesky, and Zang [458] gave upper and lower bounds for \( \text{rc}_k(P_n) \) for \( 1 \leq k \leq n - 1 \). Khickle, Khennoufa, and Togni [1073] improved Chartrand et al.’s lower bound for \( \text{rc}_k(P_n) \) and Kola and Panigrahi [1105] improved the upper bound for certain special cases of \( n \). The exact value of \( \text{rc}_{n-2}(P_n) \) for \( n \geq 5 \) was
given by Khennoufa and Togni in [1079] and the exact value of $rc_{n-3}(P_n)$ for $n \geq 8$ was given by Kola and Panigrahi in [1105]. Kola and Panigrahi [1105] gave the exact value of $rc_{n-4}(P_n)$ when $n$ is odd and $n \geq 11$ and an upper bound for $rc_{n-4}(P_n)$ when $n$ is even and $n \geq 12$. In [1656] Saha and Panigrahi provided an upper and a lower bound for $rc_k(C_n^r)$ for all possible values of $n, k$ and $r$ and showed that these bounds are sharp for antipodal number of $C_n^r$ for several values of $n$ and $r$. Kchikech, Khennoufa, and Togni [1074] gave upper and lower bounds for $rc_k(G \times H)$ and $rc_k(Q_n)$. In [1073] the same authors proved that $rc_k(K_{1,n}) = n(k - 1) + 2$ and for any tree $T$ and $k \geq 2$, $rc_k(T) \leq (n - 1)(k - 1)$.

A radio $k$-coloring of $G$ when $k = \text{diam}(G) - 1$ is called a radio antipodal labeling. The minimum span of a radio antipodal labeling of $G$ is called the radio antipodal number of $G$ and is denoted by $an(G)$. Khennoufa and Togni [1076] determined the radio number and the radio antipodal number of the hypercube by using a generalization of binary Gray codes. They proved that $rn(Q_n) = (2^{n-1} - 1)\left\lceil \frac{n+3}{2} \right\rceil + 1$ and $an(Q_n) = (2^{n-1} - 1)\left\lceil \frac{n}{2} \right\rceil + \varepsilon(n)$, with $\varepsilon(n) = 1$ if $n \equiv 0 \mod 4$, and $\varepsilon(n) = 0$ otherwise.

Sooryanarayana and Raghunath [1906] say a graph with $n$ vertices is radio graceful if $rn(G) = n$. They determine the values of $n$ for which $C_n^3$ is radio graceful.

The survey article by Panigrahi [1471] includes background information and further results about radio $k$-colorings.

### 7.5 Line-graceful Labelings

Gnanajothi [721] has defined a concept similar to edge-graceful. She calls a graph with $n$ vertices line-graceful if it is possible to label its edges with $0, 1, 2, \ldots, n$ such that when each vertex is assigned the sum modulo $n$ of all the edge labels incident with that vertex the resulting vertex labels are $0, 1, \ldots, n - 1$. A necessary condition for the line-gracefulness of a graph is that its order is not congruent to 2 (mod 4). Among line-graceful graphs are (see [721, pp. 132–181]) $P_n$ if and only if $n \neq 2$ (mod 4); $C_n$ if and only if $n \neq 2$ (mod 4); $K_{1,n}$ if and only if $n \neq 1$ (mod 4); $P_n \circ K_1$ (combs) if and only if $n$ is even; $(P_n \circ K_1) \circ K_1$ if and only if $n \neq 2$ (mod 4); (in general, if $G$ has order $n$, $G \circ H$ is the graph obtained by taking one copy of $G$ and $n$ copies of $H$ and joining the $i$th vertex of $G$ with an edge to every vertex in the $i$th copy of $H$); $mC_n$ when $mn$ is odd; $C_n \circ K_1$ (crowns) if and only if $n$ is even; $mC_4$ for all $m$; complete $n$-ary trees when $n$ is even; $K_{1,n} \cup K_{1,n}$ if and only if $n$ is odd; odd cycles with a chord; even cycles with a tail; even cycles with a tail of length 1 and a chord; graphs consisting of two triangles having a common vertex and tails of equal length attached to a vertex other than the common one; the complete $n$-ary tree when $n$ is even; trees for which exactly one vertex has even degree. She conjectures that all trees with $p \neq 2$ (mod 4) vertices are line-graceful and proved this conjecture for $p \leq 9$.

Gnanajothi [721] has investigated the line-gracefulness of several graphs obtained from stars. In particular, the graph obtained from $K_{1,4}$ by subdividing one spoke to form a path of even order (counting the center of the star) is line-graceful; the graph obtained from a star by inserting one vertex in a single spoke is line-graceful if and only if the star has $p \neq 2$ (mod 4) vertices; the graph obtained from $K_{1,n}$ by replacing each spoke with
a path of length \( m \) (counting the center vertex) is line-graceful in the following cases: 
\( n = 2; \ n = 3 \) and \( m \neq 3 \) (mod 4); and \( m \) is even and \( mn + 1 \equiv 0 \) (mod 4).

Gnanajothi studied graphs obtained by joining disjoint graphs \( G \) and \( H \) with an edge. She proved such graphs are line-graceful in the following circumstances: \( G = H; \ G = P_n, H = P_m \) and \( m + n \neq 0 \) (mod 4); and \( G = P_n \odot K_1, H = P_m \odot K_1 \) and \( m + n \neq 0 \) (mod 4).

In [2036] and [2037] Vaidya and Kothari proved following graphs are line graceful: fans \( F_n \) for \( n \neq 1 \) (mod 4); \( W_n \) for \( n \neq 1 \) (mod 4); bistars \( B_{n,n} \) if and only if for \( n = 1,3 \) (mod 4); helms \( H_n \) for all \( n \); \( S'(P_n) \) for \( n \equiv 0,2 \) (mod 4); \( D_2(P_n) \) for \( n \equiv 0,2 \) (mod 4); \( T(P_n) \), \( M(P_n) \), alternate triangular snakes, and graphs obtained by duplication of each edge of \( P_n \) by a vertex are line graceful graphs.

### 7.6 Representations of Graphs modulo \( n \)

In 1989 Erdős and Evans [587] defined a representation modulo \( n \) of a graph \( G \) with vertices \( v_1, v_2, \ldots, v_r \) as a set \( \{a_1, \ldots, a_r \} \) of distinct, nonnegative integers each less than \( n \) satisfying \( \gcd(a_i - a_j, n) = 1 \) if and only if \( v_i \) is adjacent to \( v_j \). They proved that every finite graph can be represented modulo some positive integer. The representation number, \( \text{Rep}(G) \), is smallest such integer. Obviously the representation number of a graph is prime if and only if a graph is complete. Evans, Fricke, Maneri, McKee, and Perkel [596] have shown that a graph is representable modulo a product of a pair of distinct primes if and only if the graph does not contain an induced subgraph isomorphic to \( K_2 \cup 2K_1, K_3 \cup K_1 \), or the complement of a chordless cycle of length at least five. Nešetril and Pultr [1442] showed that every graph can be represented modulo a product of some set of distinct primes. Evans et al. [596] proved that if \( G \) is representable modulo \( n \) and \( p \) is a prime divisor of \( n \), then \( p \geq \chi(G) \). Evans, Isaak, and Narayan [597] determined representation numbers for specific families as follows (here we use \( q_i \) to denote the \( i \)-th prime and for any prime \( p_i \) we use \( p_{i+1}, p_{i+2}, \ldots, p_{i+k} \) to denote the next \( k \) primes larger than \( p_i \)):

- \( \text{Rep}(P_n) = 2 \cdot 3 \cdot \cdots \cdot q_{\lfloor \log_2(n-1) \rfloor} \), \( \text{Rep}(C_4) = 4 \) and for \( n \geq 3 \), \( \text{Rep}(C_{2n}) = 2 \cdot 3 \cdot \cdots \cdot q_{\lfloor \log_2(n-1) \rfloor+1} \), \( \text{Rep}(C_5) = 3 \cdot 5 \cdot 7 = 105 \) and for \( n \geq 4 \) and not a power of 2, \( \text{Rep}(C_{2n+1}) = 3 \cdot 5 \cdot \cdots \cdot q_{\lfloor \log_2(n) \rfloor+1} \), if \( m \geq n \geq 3 \), then \( \text{Rep}(K_m - P_n) = p_i p_{i+1} \) where \( p_i \) is the smallest prime greater than or equal to \( m - n + \lceil n/2 \rceil \); if \( m \geq n \geq 4 \), and \( p_i \) is the smallest prime greater than or equal to \( m - n + \lceil n/2 \rceil \), then \( \text{Rep}(C_{2n}) = q_i q_{i+1} \) if \( n \) is even and \( \text{Rep}(K_m - C_n) = q_i q_{i+1} q_{i+2} \) if \( n \) is odd; if \( n \leq m - 1 \), then \( \text{Rep}(K_m - K_{1,n}) = p_s p_{s+1} \cdots p_{s+n-1} \) where \( p_s \) is the smallest prime greater than or equal to \( m - 1 \); \( \text{Rep}(K_m) \) is the smallest prime greater than or equal to \( m \); \( \text{Rep}(nK_2) = 2 \cdot 3 \cdot \cdots \cdot q_{\lfloor \log_2(n) \rfloor+1} \), if \( n, m \geq 2 \), then \( \text{Rep}(nK_m) = p_i p_{i+1} \cdots p_{i+m-1} \), where \( p_i \) is the smallest prime satisfying \( p_i \geq m \), if and only if there exists a set of \( n - 1 \) mutually orthogonal Latin squares of order \( m \); \( \text{Rep}(mK_1) = 2m \); and if \( t \leq (m - 1)! \), then \( \text{Rep}(mK_1 + tK_1) = p_s p_{s+1} \cdots p_{s+t-1} \) where \( p_s \) is the smallest prime greater than or equal to \( m \). Narayan [1440] proved that for \( r \geq 3 \) the maximum value for \( \text{Rep}(G) \) over all graphs of order \( r \) is \( p_s p_{s+1} \cdots p_{s+t-2} \), where \( p_s \) is the smallest prime that is greater than or equal to \( r - 1 \). Agarwal and Lopez
[51] determined the representation numbers for complete graphs minus a set of stars.

Evans [595] used matrices over the additive group of a finite field to obtain various bounds for the representation number of graphs of the form $nK_m$. Among them are $\text{Rep}(4K_3) = 3 \cdot 5 \cdot 7 \cdot 11$; $\text{Rep}(7K_3) = 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$; and $\text{Rep}(3q - 1)/2 K_q \leq p_q p_{q+1} \cdots p_{(3q-1)/2}$ where $q$ is a prime power with $q \equiv 3 \pmod{4}$, $p_q$ is the smallest prime greater than or equal to $q$, and the remaining terms are the next consecutive $(3q - 3)/2$ primes; $\text{Rep}(2q - 2) K_q \leq p_q p_{q+1} \cdots p_{(3q-3)/2}$ where $q$ is a prime power with $q \equiv 3 \pmod{4}$, and $p_q$ is the smallest prime greater than or equal to $q$; $\text{Rep}((2q - 2) K_q) \leq p_q p_{q+1} \cdots p_{2q-3}$.

In [1439] Narayan asked for the values of $\text{Rep}(C_{2k+1})$ when $k \geq 3$ and $\text{Rep}(G)$ when $G$ is a complete multipartite graph or a disjoint union of complete graphs. He also asked about the behavior of the representation number for random graphs.

Akhtar, Evans, and Pritikin [88] characterized the representation number of $K_{1,n}$ using Euler’s phi function, and conjectured that this representation number is always of the form $2^a$ or $2^a p$, where $a \geq 1$ and $p$ is a prime. They proved this conjecture for “small” $n$ and proved that for sufficiently large $n$, the representation number of $K_{1,n}$ is of the form $2^a$, $2^a p$, or $2^a p q$, where $a \geq 1$ and $p$ and $q$ are primes. In [89] they showed that for sufficiently large $n \geq m$, $\text{Rep}(K_{m,n}) = 2^a$, $3^a$, $2^a p^b$, or $2^a p q$, where $a, b \geq 1$ and $p$ and $q$ are primes; and for sufficiently large order, $\text{Rep}(K_{n_1,n_2,\ldots,n_t}) = p^a, p^a q^b$, or $p^a q^b u$, where $p, q, u$ are primes with $p, q < u$. Akhtar [90] determined the representation number of graphs of the form $K_2 \cup n K_1$ (he uses the notation $K_2 + n K_1$) and studies their prime decompositions. Using relations between representation modulo $r$ and product representations, he determined representation number of binary trees and gave an improved lower bound for hypercubes.

### 7.7 $k$-sequential Labelings

In 1981 Bange, Barkauskas, and Slater [268] defined a $k$-sequential labeling $f$ of a graph $G(V, E)$ as one for which $f$ is a bijection from $V \cup E$ to $\{k, k+1, \ldots, |V \cup E| + k - 1\}$ such that for each edge $xy$ in $E$, $f(xy) = |f(x) - f(y)|$. This generalized the notion of simply sequential where $k = 1$ introduced by Slater. Bange, Barkauskas, and Slater showed that cycles are 1-sequential and if $G$ is 1-sequential, then $G + K_1$ is graceful. Hegde and Shetty [797] have shown that every $T_p$-tree (see §4.4 for the definition) is 1-sequential. In [1874], Slater proved: $K_n$ is 1-sequential if and only if $n \leq 3$; for $n \geq 2$, $K_n$ is not $k$-sequential for any $k \geq 2$; and $K_{1,n}$ is k-sequential if and only if $k$ divides $n$. Acharya and Hegde [36] proved: if $G$ is $k$-sequential, then $k$ is at most the independence number of $G$; $P_{2n}$ is $n$-sequential for all $n$ and $P_{2n+1}$ is both $n$-sequential and $(n+1)$-sequential for all $n$; $K_{m,n}$ is $k$-sequential for $k = 1, m$, and $n$; $K_{m,n,1}$ is 1-sequential; and the join of any caterpillar and $K_1$ is 1-sequential. Acharya [23] showed that if $G(E, V)$ is an odd graph with $|E| + |V| \equiv 1$ or $2 \pmod{4}$ when $k$ is odd or $|E| + |V| \equiv 2$ or $3 \pmod{4}$ when $k$ is even, then $G$ is not $k$-sequential. Acharya also observed that as a consequence of results of Bermond, Kotzig, and Turgeon [350] we have: $m K_1$ is not $k$-sequential for any $k$ when $m$ is odd and $m K_2$ is not $k$-sequential for any odd $k$ when $m \equiv 2$ or $3 \pmod{4}$ or for any even $k$ when $m \equiv 1$ or $2 \pmod{4}$. He further noted that $K_{m,n}$ is not $k$-sequential when $k$ is even and $m$ and
n are odd, whereas $K_{m,k}$ is k-sequential for all k. Acharya points out that the following result of Slater’s [1875] for $k = 1$ linking k-graceful graphs and k-sequential graphs holds in general: A graph is k-sequential if and only if $G + v$ has a k-graceful labeling $f$ with $f(v) = 0$. Slater [1874] also proved that a k-sequential graph with $p$ vertices and $q > 0$ edges must satisfy $k \leq p - 1$. Hegde [785] proved that every graph can be embedded as an induced subgraph of a simply sequential graph. In [23] Acharya conjectured that if $G$ is a connected k-sequential graph of order $p$ with $k > \lfloor p/2 \rfloor$, then $k = p - 1$ and $G = K_{1,p-1}$ and that, except for $K_{1,p-1}$, every tree in which all vertices are odd is k-sequential for all odd positive integers $k \leq p/2$. In [785] Hegde gave counterexamples for both of these conjectures.

In [795] Hegde and Miller prove the following: for $n > 1$, $K_n$ is k-sequentially additive if and only if $(n,k) = (2,1),(3,1)$ or $(3,2)$; $K_{1,n}$ is k-sequentially additive if and only if $k$ divides $n$; caterpillars with bipartition sets of sizes $m$ and $n$ are k-sequentially additive for $k = m$ and $k = n$; and if an odd-degree $(p,q)$-graph is k-sequentially additive, then $(p+q)(2k+p+q-1) \equiv 0 \pmod{4}$. As corollaries of the last result they observe that when $m$ and $n$ are odd and $k$ is even $K_{m,n}$ is not k-sequentially additive and if an odd-degree tree is k-sequentially additive then $k$ is odd.

In [1722] Seoud and Jaber proved the following graphs are 1-sequentially additive: graphs obtained by joining the centers of two identical stars with an edge; $S_n \cup S_m$ if and only if $nm$ is even; $C_n \cup K_m$; $P_n \cup K_m$; $kP_3$; graphs obtained by joining the centers of $k$ copies of $P_3$ to each vertex in $\overline{K_m}$; and trees obtained from $K_{1,n}$ by replacing each edge by a path of length 2 when $n \equiv 0,1 \pmod{4}$. They also determined all 1-sequentially additive graphs of order 6.

### 7.8 IC-colorings

For a subgraph $H$ of a graph $G$ with vertex set $V$ and a coloring $f$ from $V$ to the natural numbers define $f_s(H) = \sum f(v)$ over all $v \in H$. The coloring $f$ is called an IC-coloring if for any integer $k$ between 1 and $f_s(G)$ there is a connected subgraph $H$ of $G$ such that $f_s(H) = k$. The IC-index of a graph $G$, $M(G)$, is $\max\{f_s| f_s \text{ is an IC-coloring of } G\}$. Salehi, Lee, and Khatirinejad [1666] obtained the following: $M(K_n) = 2^n - 1$; for $n \geq 2$, $M(K_{1,n}) = 2^n + 2$; if $\Delta$ is the maximum degree of a connected graph $G$, then $M(G) \geq 2^\Delta + 2$; if $ST(n;3^n)$ is the graph obtained by identifying the end points of $n$ paths of length 3, then $ST(n;3^n)$ is at least $3^n + 3$ (they conjecture that equality holds for $n \geq 4$); for $n \geq 2$, $M(K_{2,n}) = 3 \cdot 2^n + 1$; $M(P_n) \geq (2 + \lfloor n/2 \rfloor)(n - \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor - 1$; for $m,n \geq 2$, the IC-index of the double star $DS(m,n)$ is at least $(2^{m-1}+1)(2^{n-1}+1)$ (they conjecture that equality holds); for $n \geq 3$, $n(n+1)/2 \leq M(C_n) \leq n(n-1)+1$; and for $n \geq 3$, $2^n + 2 \leq M(W_n) \leq 2^n + n(n-1)+1$. They pose the following open problems: find the IC-index of the graph obtained by identifying the endpoints of $n$ paths of length $b$; find the IC-index of the graph obtained by identifying the endpoints of $n$ paths; and find the IC-index of $K_{m,n}$. Shiue and Fu [1831] completed the partial results by Penrice [1486] Salehi, Lee, and Khatirinejad [1666] by proving $M(K_{m,n}) = 3 \cdot 2^{m+n-2} - 2^{m-2} + 2$ for any $2 \leq m \leq n$. 

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 236
7.9 Product and Divisor Cordial Labelings

Sundaram, Ponraj, and Somasundaram [1948] introduced the notion of product cordial labelings. A product cordial labeling of a graph $G$ with vertex set $V$ is a function $f$ from $V$ to $\{0, 1\}$ such that if each edge $uv$ is assigned the label $f(u)f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a product cordial labeling is called a product cordial graph.

In [2031] Vaidya and Kanani prove the following graphs are product cordial: trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; $P_m \cup P_n$; $C_m \cup P_n$; $P_m \cup K_{1,n}$; $W_m \cup F_n$ ($F_n$ is the fan $P_n + K_1$); $K_{1,m} \cup K_{1,n}$; $W_m \cup K_{1,n}$; $W_m \cup P_n$; $W_m \cup C_n$; the total graph of $P_n$ (the total graph of $P_n$ has vertex set $V(P_n) \cup E(P_n)$ with two vertices adjacent whenever they are neighbors in $P_n$); $C_n$ if and only if $n$ is odd; $C_n^t$, the one-point union of $t$ copies of $C_n$, provided $t$ is even or both $t$ and $n$ are even; $K_2 + mK_1$ if and only if $m$ is odd; $C_m \cup P_n$ if and only if $m + n$ is odd; $K_{m,n} \cup P_s$ if $s > mn$; $C_{m+2} \cup K_{1,n}$; $K_s \cup K_{n,(n-1)/2}$ when $n$ is odd; $K_n \cup K_{n-1,n/2}$ when $n$ is even; and $P_n^2$ if and only if $n$ is odd. They also prove that $K_{m,n}$ ($m, n > 2$), $P_m \times P_n$ ($m, n > 2$) and wheels are not product cordial and if a $(p, q)$-graph is product cordial graph, then $q \leq (p - 1)(p + 1)/4 + 1$.

In [1719] Seoud and Helmi obtained the following results: $K_n$ is not product cordial for all $n \geq 4$; $C_m$ is product cordial if and only if $m$ is odd; the gear graph $G_m$ is product cordial if and only if $m$ is odd; all web graphs are product cordial; the corona of a triangular snake with at least two triangles is product cordial; the $C_4$-snake is product cordial if and only if the number of 4-cycles is odd; $C_m \odot \overline{K_n}$ is product cordial; and they determine all graphs of order less than 7 that are not product cordial. Seoud and Helmi define the conjunction $G_1 \odot G_2$ of graphs $G_1$ and $G_2$ as the graph with vertex set $V(G_1) \times V(G_2)$ and edge set $\{(u_1, v_1)(u_2, v_2) | u_1u_2 \in E(G_1), v_1v_2 \in E(G_2)\}$. They prove: $P_m \odot P_n$ ($m, n \geq 2$) and $P_m \odot S_n$ ($m, n \geq 2$) are product cordial.

Vaidya and Kanani [2028] prove the following graphs are product cordial: the path union of $k$ copies of $C_n$ except when $k$ is odd and $n$ is even; the graph obtained by joining two copies of a cycle by path; the path union of an odd number copies of the shadow of a cycle (see §3.8 for the definition); and the graph obtained by joining two copies of the shadow of a cycle by a path of arbitrary length. In [2031] Vaidya and Kanani prove the following graphs are product cordial: the path union of an even number of copies of $C_n(C_n)$; the graph obtained by joining two copies of $C_n(C_n)$ by a path of arbitrary length; the path union of any number of copies of the Petersen graph; and the graph obtained by joining two copies of the Petersen graph by a path of arbitrary length.

Vaidya and Barasara [1998] prove that the following graphs are product cordial: friend-ship graphs; the middle graph of a path; odd cycles with one chord except when the chord joins the vertices at a diameter distance apart; and odd cycles with two chords that share a common vertex and form a triangle with an edge of the cycle and neither chord joins vertices at a diameter apart.

In [2017] Vaidya and Dani prove the following graphs are product cordial:
<S_n^{(1)}: S_n^{(2)}: \ldots : S_n^{(k)}> \text{ except when } k \text{ odd and } n \text{ even}; <K_{1,n}^{(1)}: K_{1,n}^{(2)}: \ldots : K_{1,n}^{(k)}>; \text{ and }
<S_n^{(1)}: W_n^{(2)}: \ldots : W_n^{(k)}> \text{ if and only if } k \text{ is even or } k \text{ is odd and } n \text{ is even with } k > n.
(See §3.7 for the definitions.)

Vaidya and Barasara [1999] proved the following graphs are product cordial: closed helms, web graphs, flower graphs, double triangular snakes obtained from the path \( P_n \) if and only if \( n \) is odd, and gear graphs obtained from the wheel \( W_n \) if and only if \( n \) is odd. Vaidya and Barasara [2000] proved that the graphs obtained by the duplication of an edge of a cycle, the mutual duplication of pair of edges of a cycle, and mutual duplication of pair of vertices between two copies of \( C_n \) admit product cordial labelings. Moreover, if \( G \) and \( G' \) are the graphs such that their orders or sizes differ at most by 1 then the new graph obtained by joining \( G \) and \( G' \) by a path \( P_k \) of arbitrary length admits product cordial labeling.

Vaidya and Barasara [2001] define the duplication of a vertex \( v \) of a graph \( G \) by a new edge \( uu' \) as the graph \( G' \) obtained from \( G \) by adding the edges \( uu', vv' \) and \( vv' \) to \( G \). They define the duplication of an edge \( uv \) of a graph \( G \) by a new vertex \( w \) as the graph \( G' \) obtained from \( G \) by adding the edges \( uv' \) and \( vv' \) to \( G \). They proved the following graphs have product cordial labelings: the graph obtained by duplication of an arbitrary vertex by a new edge in \( C_n \) or \( P_n \) \((n > 2)\); the graph obtained by duplication of an arbitrary edge by a new vertex in \( C_n \) \((n > 3)\) or \( P_n \) \((n > 3)\); and the graph obtained by duplicating all the vertices by edges in path \( P_n \). They also proved that the graph obtained by duplicating all the vertices by edges in \( C_n \) \((n > 3)\) and the graph obtained by duplicating all the edges by vertices in \( C_n \) are not product cordial.

The following definitions appear in [1531], [1519], [1520], and [1521]. A double triangular snake \( DT_n \) consists of two triangular snakes that have a common path; a double quadrilateral snake \( DQ_n \) consists of two quadrilateral snakes that have a common path; an alternate triangular snake \( A(T_n) \) is the graph obtained from a path \( u_1, u_2, \ldots, u_n \) by joining \( u_i \) and \( u_{i+1} \) (alternatively) to new vertex \( v_i \) (that is, every alternate edge of a path is replaced by \( C_3 \)); a double alternate triangular snake \( DA(T_n) \) is obtained from a path \( u_1, u_2, \ldots, u_n \) by joining \( u_i \) and \( u_{i+1} \) (alternatively) to two new vertices \( v_i \) and \( w_i \); an alternate quadrilateral snake \( A(Q_n) \) is obtained from a path \( u_1, u_2, \ldots, u_n \) by joining \( u_i \) and \( u_{i+1} \) (alternatively) to new vertices \( v_i \) and \( w_i \) respectively and then joining \( v_i \) and \( w_i \) (that is, every alternate edge of a path is replaced by a cycle \( C_4 \)); a double alternate quadrilateral snake \( DA(Q_n) \) is obtained from a path \( u_1, u_2, \ldots, u_n \) by joining \( u_i \) and \( u_{i+1} \) (alternatively) to new vertices \( v_i, x_i \) and \( w_i \) and \( y_i \) respectively and then joining \( v_i \) and \( w_i \) and \( x_i \) and \( y_i \).

Vaidya and Barasara [2003] prove that the shell graph \( S_n \) is product cordial for odd \( n \) and not product cordial for even \( n \). They also show that \( D_2(C_n); D_2(P_n); C_n^2; M(C_n); S'(C_n); \) circular ladder \( CL_n \); Möbius ladder \( M_n \); step ladder \( S(T_n) \) and \( H_{n,n} \) does not admit product cordial labeling.

Vaidya and Vyas [2084] prove the following graphs are product cordial: alternate triangular snakes \( A(T_n) \) except \( n \equiv 3 (\mod 4) \); alternate quadrilateral snakes \( A(QS_n) \) except except \( n \equiv 2 (\mod 4) \); double alternate triangular snakes \( DA(T_n) \) and double alternate quadrilateral snakes \( DA(QS_n) \).
Vaidya and Vyas [2085] prove the following graphs are product cordial: the splitting graph of bistar $S'(B_{n,n})$, duplicating each edge by a vertex in bistar $B_{n,n}$ and duplicating each vertex by an edge in bistar $B_{n,n}$. Also they proved that $D_2(B_{n,n})$ is not product cordial.

Ghodasara and Vaghasiya [715] prove the following graphs admit product cordial labelings: the path union of an odd number of copies of $C_n$ with a chord except for $n = 4$, the path union of an odd number of copies of $C_n$ with twin chords except when $n = 6$, the path union of $C_n$ $(n > 6)$ with three cords that form two triangles and a cycle of length $n - 3$, the graph obtained by joining two copies of the same cycle that has one chord by a path, the graph obtained by joining two copies of same cycle that has twin chords by a path, and the graph obtained by joining two copies of $C_n$ $(n \geq 7)$ with three cords that form two triangles and a cycle of length $n - 3$ by a path. Ghodasara and Vaghasiya [716] prove the following graphs are product cordial: the path union of helms, the path union of closed helms, the path union of gear graphs $G_n$ for odd $n$, the graph obtained by joining two copies of the same helm by a path, the graph obtained by joining two copies of the same closed helm by a path, and the graph obtained by joining two copies of the same gear graph by a path.

Kwong, Lee, and Ng [1152] determine the product-cordial index sets of Möbius ladders and the graphs obtained by subdividing an edge of $K_4$ and an edge of a Möbius ladder that is not a rung and joining the two new vertices by an edge. They show that no Möbius ladder is product cordial. Gao, Sun, Zhang, Meng, and Lau [670] prove that $P_m \times P_n + 1$ is total product cordial and provide sufficient conditions for a graph to admit (or not admit) a product cordial labeling.

In [1659] Salehi called the set $\{|e_f(0) - e_f(1)| : f$ is a friendly labeling of $G\}$ the product-cordial set of $G$. He determines the product-cordial sets for paths, cycles, wheels, complete graphs, bipartite complete graphs, double stars, and complete graphs with an edge deleted. Salehi and Mukhin [1667] say a graph $G$ of size $q$ is fully product-cordial if its product cordial set is $\{q - 2k : 0 \leq k \leq \lfloor q/2 \rfloor\}$. They proved: $P_n$ $(n \geq 2)$ is fully product-cordial; trees with a perfect matching are fully product-cordial; and $P_2 \times P_n$ is not fully product-cordial. They determine the product-cordial sets of $P_2 \times P_n$, $P_n \times P_m$, and $P_n \times P_{2m+1}$, where $m \geq n$. Because the product-cordial set is the multiplicative version of the friendly index set, Kwong, Lee, and Ng [1150] called it the product-cordial index set of $G$. They determined the exact values of the product-cordial index set of $C_m$ and $C_m \times P_n$ and that $P_m \times P_n$ has the maximum product cordial-index $2mn - m - n$. In [1151] Kwong, Lee, and Ng determined the friendly index sets and product-cordial index sets of 2-regular graphs and the graphs obtained by identifying the centers of any number of wheels. In [1662] z Salehi, Churchman, Hill, and Jordan determine the product-cordial index sets of certain classes of trees.

In [1803] Shiu and Kwong define the full product-cordial index of $G$ under $f$ as $\text{FPCI}(G) = \{i^*_f(G) : f$ is a friendly labeling of $G\}$. They provide a relation between the friendly index and the product-cordial index of a regular graph. As applications, they determine the full product-cordial index sets of $C_m$ and $C_m \times C_n$, which was asked by Kwong, Lee, and Ng in [1150]. Shiu [1797] determined the product-cordial index sets of grids.
Recall the twisted cylinder graph is the permutation graph on \(4n\) \((n \geq 2)\) vertices, \(P(2n; \sigma)\), where \(\sigma = (1, 2)(3, 4) \cdots (2n − 1, 2n)\) (the product of \(n\) transpositions). Shiu and Lee [1814] determined the full friendly index sets and the full product-cordial index sets of twisted cylinders.

Jeyanthi and Maheswari define a mapping \(f : V(G) \to \{0, 1, 2\}\) to be a 3-product cordial labeling if \(|v_f(i) − v_f(j)| \leq 1\) and \(|e_f(i) − e_f(j)| \leq 1\) for any \(i, j \in \{0, 1, 2\}\), where \(v_f(i)\) denotes the number of vertices labeled with \(i\) and \(e_f(i)\) denotes the number of edges \(xy\) with \(f(x)f(y) \equiv i \pmod{3}\). A graph with a 3-product cordial labeling is called a 3-product cordial graph. In [923] they prove that for a \((p, q)\) 3-product cordial graph: \(p \equiv 0 \pmod{3}\) implies \(q \leq \frac{p^2−3p+6}{3}\); \(p \equiv 1 \pmod{3}\) implies \(q \leq \frac{p^2−2p+7}{3}\); and \(p \equiv 2 \pmod{3}\) implies \(q \leq \frac{p^2−p+4}{3}\). They prove the following graphs are 3-product cordial: paths; stars; \(C_n\) if and only if \(n \equiv 1, 2 \pmod{3}\); \(C_n \cup P_n\), \(C_m \odot \overline{K_n}\); \(P_m \odot \overline{K_n}\) for \(m \geq 3\) and \(n \geq 1\); \(W_n\) when \(n \equiv 1 \pmod{3}\); and the graph obtained by joining the centers of two identical stars to a new vertex. They also prove that \(K_n\) is not 3-product cordial for \(n \geq 3\) and if \(G_1\) is a 3-product cordial graph with \(3m\) vertices and \(3n\) edges and \(G_2\) is any 3-product cordial graph, then \(G_1 \cup G_2\) is a 3-product cordial graph. In [924] they prove that ladders, \(< W_n^{(1)} : W_n^{(2)} : \ldots : W_n^{(k)} >\) (see §3.7 for the definition), graphs obtained by duplicating an arbitrary edge of a wheel, graphs obtained by duplicating an arbitrary vertex of a cycle or a wheel are 3-product cordial. They also prove that the graphs obtained by from the ladders \(L_n = P_n \times P_2\) \((n \geq 2)\) by adding the edges \(u_i v_{i+1}\) for \(1 \leq i \leq n − 1\), where the consecutive vertices of two copies of \(P_n\) are \(u_1, u_2, \ldots, u_n\) and \(v_1, v_2, \ldots, v_n\) and the edges are \(u_i v_i\). They call these graphs triangular ladders. The graph \(B_{n,n}^*\) is obtained from the bistar \(B_{n,n}\) with \(V(B_{n,n}) = \{u, v, u_i, v_i \mid 1 \leq i \leq n\}\) and \(E(B_{n,n}) = \{uv, uu_i, vv_i, uu_i, vv_i \mid 1 \leq i \leq n\}\) by joining \(u\) with \(v_i\) and \(v\) with \(u_i\) for \(1 \leq i \leq 4\). Jeyanthi and Maheswari [931] proved: the splitting graphs \(S'(K_{1,n})\) and \(S'(B_{n,n})\) are 3-product cordial graphs; \(B_{n,n}^*\) is a 3-product cordial graph if and only if \(n \equiv 0, 1 \pmod{3}\); and the shadow graph \(D_2(B_{n,n})\) is a 3-product cordial graph if and only if \(n \equiv 0, 1 \pmod{3}\). Jeyanthi, Maheswari, and Vijaya Laksmi [942] prove the following: graphs obtained by switching an apex vertex in a closed helm are 3-product cordial; \(W_n\) are 3-product cordial if and only if \(n \equiv 2 \pmod{3}\); double fans are 3-product cordial if and only if \(n \equiv 0 \pmod{3}\); books are 3-product cordial; and permutation graphs \(P(K_2 + mK_1; T)\) are 3-product cordial if and only if \(m \equiv 2 \pmod{3}\).

Sundaram and Somasundaram [1952] also have introduced the notion of total product cordial labelings. A total product cordial labeling of a graph \(G\) with vertex set \(V\) is a function \(f\) from \(V\) to \(\{0, 1\}\) such that if each edge \(uv\) is assigned the label \(f(u)f(v)\) the number of vertices and edges labeled with 0 and the number of vertices and edges labeled with 1 differ by at most 1. A graph with a total product cordial labeling is called a total product cordial graph. In [1952] and [1950] Sundaram, Ponraj, and Somasundaram prove the following graphs are total product cordial: every product cordial graph of even order or odd order and even size; trees; all cycles except \(C_4\); \(K_{n,2n−1}\); \(C_n\) with \(m\) edges appended at each vertex; fans; double fans; wheels; helms; \(C_n \times P_2\); \(K_{2,n}\) if and only if \(n \equiv 2 \pmod{4}\); \(P_n \times P_n\) if and only if \((m, n) \neq (2, 2)\); \(C_n + 2K_1\) if and only if \(n\) is even or \(n \equiv 1 \pmod{3}\); \(\overline{K_n} \times 2K_2\) if \(n\) is odd, or \(n \equiv 0\) or 2 (mod 6), or \(n \equiv 2\) (mod 8). Y.-L.
Lai, the reviewer for MathSciNet [1154], called attention to some errors in [1950].

Vaidya and Vihol [2067] prove the following graphs have total product labelings: a split graph; the total graph of $C_n$; the star of $C_n$ (recall that the star of a graph $G$ is the graph obtained from $G$ by replacing each vertex of star $K_{1,n}$ by a graph $G$); the friendship graph $F_n$; the one point union of $k$ copies of a cycle; and the graph obtained by the switching of an arbitrary vertex in $C_n$.

Ramanjaneyulu, Venkaiah, and Kothapalli [1599] give total product cordial labeling for a family of planar graphs for which each face is a 4-cycle.

Sundaram, Ponraj, and Somasundaram [1955] introduced the notion of EP-cordial (extended product cordial) labeling of a graph $G$ as a function $f$ from the vertices of a graph to $\{-1, 0, 1\}$ such that if each edge $uv$ is assigned the label $f(u)f(v)$, then $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ where $i, j \in \{-1, 0, 1\}$ and $v_f(k)$ and $e_f(k)$ denote the number of vertices and edges respectively labeled with $k$. An EP-cordial graph is one that admits an EP-cordial labeling. In [1955] Sundaram, Ponraj, and Somasundaram prove the following: every graph is an induced subgraph of an EP-cordial graph, $K_n$ is EP-cordial if and only if $n \leq 3$; $C_n$ is EP-cordial if and only if $n \equiv 1, 2 \pmod{3}$, $W_n$ is EP-cordial if and only if $n \equiv 1 \pmod{3}$; and caterpillars are EP-cordial. They prove that all $K_{2,n}$, paths, stars and the graphs obtained by subdividing each edge of of a star exactly once are EP-cordial. They also prove that if a $(p,q)$ graph is EP-cordial, then $q \leq 1 + p/3 + p^2/3$. They conjecture that every tree is EP-cordial.

Ponraj, Sivakumar, and Sundaram [1550] introduced the notion of $k$-product cordial labeling of graphs. Let $f$ be a map from $V(G)$ to $\{0, 1, 2, \ldots, k-1\}$, where $2 \leq k \leq |V|$. For each edge $uv$ assign the label $f(u)f(v) \pmod{k}$. $f$ is called a $k$-product cordial labeling if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$, $i, j \in \{0, 1, 2, \ldots, k-1\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges labeled with $x$. A graph with a $k$-product cordial labeling is called a $k$-product cordial graph. Observe that 2-product cordial labeling is simply a product cordial labeling and 3-product cordial labeling is an EP-cordial labeling. In [1550] and [1551] Ponraj et al. prove the following are 4-product cordial: $P_n$ if and only $n \leq 11$, $C_n$ if and only if $n = 5, 6, 7, 8, 9$, or 10, $K_n$ if and only if $n \leq 2$, $P_n \odot K_1$, $P_n \odot 2K_1$, $K_2$ if and only if $n \equiv 0, 3 \pmod{4}$, $W_n$ if and only if $n = 5$ or 9, $K_{n} + 2K_2$ if $n \leq 2$, and the subdivision graph of $K_{1,n}$.

Jeyanthi, Maheswari, and Vijayalakshmi [944] investigated the 3-product cordial behavior of alternate triangular snakes, double alternate triangular snakes, and triangular snake graphs. In [945] they establish that vertex switching graphs of wheels, gears, and degree splitting of bistars are 3-product cordial graphs.

Let $f$ be a map from $V(G)$ to $\{0, 1, 2, \ldots, k-1\}$ where $2 \leq k \leq |V|$. For each edge $uv$ assign the label $f(u)f(v) \pmod{k}$. Ponraj, Sivakumar, and Sundaram [1552] define $f$ to be a $k$-total product cordial labeling if $|f(i) - f(j)| \leq 1$, $i, j \in \{0, 1, 2, \ldots, k-1\}$, where $f(x)$ denote the number of vertices and edges labeled with $x$. A graph with a $k$-total product cordial labeling is called a $k$-total product cordial graph. A 2-total product cordial labeling is simply a total product cordial labeling. In [1552], [1553], [1554], [1555] and [1556], Ponraj et al. proved the following graphs are $3$-total product cordial: $P_n$, $C_n$ if and only if $n \neq 3$ or 6, $K_{1,n}$ if and only if $n \equiv 0, 2 \pmod{3}$, $P_n \odot K_1$, $P_n \odot 2K_1$, $K_2 + mK_1$ if and only if $m$ is odd.
if \( m \equiv 2 \pmod{3} \), helms, wheels, \( C_n \odot 2K_1, \ C_n \odot K_2 \), dragons \( C_m \odot P_n, \ C_n \odot K_1 \), bistars \( B_{m,n}, \) and the subdivision graphs of \( K_{1,n}, \ C_n \odot K_1, \ K_{2,n}, \ P_n \odot K_1, \ P_n \odot 2K_1, \) \( C_n \odot K_2 \), wheels and helms. Also they proved that every graph is a subgraph of a connected \( k \)-total product cordial graph, \( B_{m,n} \) is \((n+2)\)-total product cordial, and \( K_{m,n} \) is \((n+2)\)-total product cordial.

For a graph \( G \) Sundaram, Ponraj, and Somasundaram [1956] defined the index of product cordiality, \( i_p(G) \), of \( G \) as the minimum of \( \{ |e_f(0) - e_f(1)| \} \) taken over all the 0-1 binary labelings \( f \) of \( G \) with \( |v_f(i) - v_f(j)| \leq 1 \) and \( f(uv) = f(u)f(v) \), where \( e_f(k) \) and \( v_f(k) \) denote the number of edges and the number of vertices labeled with \( k \). They established that \( i_p(K_n) = \lceil n/2 \rceil^2 \); \( i_p(C_n) = 2 \) if \( n \) is even; \( i_p(W_n) = 2 \) or 4 according as \( n \) is even or odd; \( i_p(K_{2,n}) = 4 \) or 2 according as \( n \) is even or odd; \( i_p(K_2 + nK_1) = 3 \) if \( n \) is even; \( i_p(P_2 \times P_2) \leq 2i_p(G) \); \( i_p(G_1 \cup G_2) \leq i_p(G_1) + i_p(G_2) + 2 \min \{ \Delta(G_1), \Delta(G_2) \} \) where \( G_1 \) and \( G_2 \) are graphs of odd order; and \( i_p(G_1 \odot G_2) \leq i_p(G_1) + i_p(G_2) + 2\delta(G_2) + 3 \) where \( G_1 \) and \( G_2 \) have odd order.

Vaidya and Vyas [2075] define the tensor product \( G_1(T_p)G_2 \) of graphs \( G_1 \) and \( G_2 \) as the graph with vertex set \( V(G_1) \times V(G_2) \) and edge set \( \{(u_1,v_1)(u_2,v_2) \mid u_1u_2 \in E(G_1), v_1v_2 \in E(G_2)\} \). They proved the following graphs are product cordial: \( P_m(T_p)P_n \); \( C_{2m}(T_p)P_{2n} \); \( C_{2m}(T_p)C_{2n} \); the graph obtained by joining two components of \( P_m(T_p)P_n \) at an arbitrary path; the graph obtained by joining two components of \( C_{2m}(T_p)P_{2n} \) at an arbitrary path; and the graph obtained by joining two components of \( C_{2m}(T_p)C_{2n} \) at an arbitrary path.

In [1503] Ponraj introduced the notion of an \((\alpha_1, \alpha_2, \ldots, \alpha_k)\)-cordial labeling of a graph. Let \( S = \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \) be a finite set of distinct integers and \( f \) be a function from a vertex set \( V(G) \) to \( S \). For each edge \( uv \) of \( G \) assign the label \( f(u)f(v) \). He calls \( f \) an \((\alpha_1, \alpha_2, \ldots, \alpha_k)\)-cordial labeling of \( G \) if \( |v_f(\alpha_i) - v_f(\alpha_j)| \leq 1 \) for all \( i, j \in \{1, 2, \ldots, k\} \) and \( |e_f(\alpha_i \alpha_j) - e_f(\alpha_i \alpha_s)| \leq 1 \) for all \( i, j, r, s \in \{1, 2, \ldots, k\} \), where \( v_f(t) \) and \( e_f(t) \) denote the number of vertices labeled with \( t \) and the number of edges labeled with \( t \), respectively. A graph that admits an \((\alpha_1, \alpha_2, \ldots, \alpha_k)\)-cordial labeling is called an \((\alpha_1, \alpha_2, \ldots, \alpha_k)\)-cordial graph. Note that an \((\alpha, \alpha)\)-cordial graph is simply a cordial graph and a \((0, \alpha)\)-cordial graph is a product cordial graph. Ponraj proved that \( K_{1,n} \) is \((\alpha_1, \alpha_2, \ldots, \alpha_k)\)-cordial if and only if \( n \leq k \) and for \( \alpha_1 \neq 0, \alpha_2 \neq 0, \alpha_1 + \alpha_2 \neq 0 \) proved the following: \( K_n \) is \((\alpha_1, \alpha_2)\)-cordial if and only if \( n \leq 2 \); \( P_n \) is \((\alpha_1, \alpha_2)\)-cordial; \( C_n \) is \((\alpha_1, \alpha_2)\)-cordial if and only if \( n > 3 \); \( K_{m,n} \) \((m, n > 2) \) is not \((\alpha_1, \alpha_2)\)-cordial; the bistar \( B_{n,n+1} \) is \((\alpha_1, \alpha_2)\)-cordial; \( B_{n+2,n} \) is \((\alpha_1, \alpha_2)\)-cordial if and only if \( n \equiv 1, 2 \pmod{3} \); \( B_{n+3,n} \) is \((\alpha_1, \alpha_2)\)-cordial if and only if \( n \equiv 0, 2 \pmod{3} \); and \( B_{n+r,n} \) \( r > 3 \) is not \((\alpha_1, \alpha_2)\)-cordial. He also proved that if \( G \) is an \((\alpha_1, \alpha_2)\)-cordial graph with \( p \) vertices and \( q \) edges, then \( q \leq 3p^2/8 - p/2 + 9/8 \). In [1503] Ponraj proved that combs \( P_n \odot K_1 \) are \((\alpha_1, \alpha_2)\)-cordial; coronas \( C_n \odot K_1 \) are \((\alpha_1, \alpha_2)\)-cordial for \( n \equiv 0, 2, 4, 5 \pmod{6} \); \( C_3^{(l)} \) is not \((\alpha_1, \alpha_2)\)-cordial; \( W_n \) is not \((\alpha_1, \alpha_2)\)-cordial; and \( \overline{K_n} + 2K_2 \) is \((\alpha_1, \alpha_2)\)-cordial if and only if \( n = 2 \).

In [2089] Varatharajan, Navanaethakrishnan Nagarajan define a divisor cordial labeling of a graph \( G \) with vertex set \( V \) as a bijection \( f \) from \( V \) to \( \{1, 2, \ldots, |V|\} \) such that an edge \( uv \) is assigned the label 1 if one \( f(u) \) or \( f(v) \) divides the other and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by
at most 1. If a graph that has a divisor cordial labeling, it is called a divisor cordial graph. They proved the standard graphs such as paths, cycles, wheels, stars and some complete bipartite graphs are divisor cordial. They also proved that complete graphs are not divisor cordial. In [2090] they proved dragons, coronas, wheels, and complete binary trees are divisor cordial. For \( t \) copies \( S_1, S_2, \ldots, S_t \) of an \( n \)-star \( K_{1,n} \) they define \( \langle S_1, S_2, \ldots, S_t \rangle \) as the graph obtained by starting with \( S_1, S_2, \ldots, S_t \) and joining the central vertices of \( S_{k-1} \) and \( S_k \) to a new vertex \( x_{k-1} \). They prove that \( \langle S_1, S_2 \rangle \) and \( \langle S_1, S_2, S_3 \rangle \) are divisor cordial.

Vaidya and Shah [2057] proved that the splitting graphs of stars and bistars are divisor cordial and the shadow graphs and the squares of bistars are divisor cordial. In [2059] they proved that helms, flower graphs, and gears are divisor cordial graphs. They also proved that graphs obtained by switching of a vertex in a cycle, switching of a rim vertex in a wheel, and switching of an apex vertex in a helm admit divisor cordial labelings. Raj and Valli [1585] proved the following graphs divisor cordial: the duplication of a vertex of a cycle; graphs obtained by joining two wheels of the same size by a path of length at least 3; \( G_v \otimes K_1 \), where \( G_v \) is a graph obtained by switching any vertex of a cycle of size at least 4; graphs obtained by joining the apex vertices of two shells of the same size to an isolated vertex; graphs obtained by joining the centers of two wheels of the same size to an isolated vertex; and a class of graphs obtained by removing certain edges from complete graphs.

Motivated by the concept of divisor cordial labeling, Lourdusamy and Patrick [1323] introduced a new concept of divisor cordial labeling called sum divisor cordial labeling. Let \( G = (V(G), E(G)) \) be a simple graph and \( f \) be a bijection from \( V(G) \) to \( \{1, 2, \ldots, |V(G)|\} \). For each edge \( uv \), assign the label 1 if 2 divides \( f(u) + f(v) \) and the label 0 otherwise. The function \( f \) is called a sum divisor cordial labeling if the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph which admits a sum divisor cordial labeling is called a sum divisor cordial graph. They prove that paths, combs, stars, complete bipartite, \( K_2 + mK_1 \), bistars, jewels, crowns, flowers, gears, subdivisions of stars, the graph obtained from \( K_{1,3} \) by attaching the root of \( K_{1,n} \) at each pendant vertex of \( K_{1,3} \), and the square \( B_{n,n} \) are sum divisor cordial graphs.

Murugesan [1434] introduced a square divisor cordial labeling. Let \( G \) be a simple graph and \( f : \{1, 2, \ldots, |V(G)|\} \) a bijection. For each edge \( uv \), assign the label 1 if either \( (f(u))^2 \) divides \( f(v) \) or \( (f(v))^2 \) divides \( f(u) \) and the label 0 otherwise. Call \( f \) a square divisor cordial labeling if \( |e_f(0) - e_f(1)| \leq 1 \). A graph with a square divisor cordial labeling is called a square divisor cordial graph. Murugesan proved that the following are square divisor cordial graphs: \( P_n (n \leq 12) \), \( C_n (3 \leq n \leq 11) \), wheels, some stars, some complete bipartite graphs, and some complete graphs. Vaidya and Shah [2063] proved that the following are square divisor cordial graphs: flowers, bistars, shadow graphs of stars, splitting graphs of stars and bistars, degree splitting graphs of paths and bistars.

Kanani and Bosmia [1010] define a cube divisor cordial labeling \( f \) of a simple graph \( G \) as a bijection from \( V(G) \) to \( \{1, 2, \ldots, |V(G)|\} \) such that, when each edge \( uv \) is assigned the label 1 if \( (f(u))^3 \) divides \( f(v) \) or \( (f(v))^3 \) divides \( f(u) \) and the label 0 otherwise, it holds that \( |e_f(0) - e_f(1)| \leq 1 \). A graph with a cube divisor cordial labeling is called a cube divisor cordial graph. They proved that the following graphs admit cube divisor cordial
labelings: \(K_n\) if and only if \(n = 1, 2, 3\); \(K_{1,n}\) if and only if \(n = 1, 2, 3\); \(K_{2,n}\) for all \(n\); \(K_{3,n}\) if and only if \(n = 1, 2\); bistars \(B_{n,n}\) for all \(n\); and the graph obtained by joining leaves of one star of a bistar with the center of the opposite star of the bistar. Kanani and Bosmia \([1010]\) prove: the edge deleted graph of a cube divisor cordial graph is also a cube divisor cordial graph; \(P_n\) is a cube divisor cordial graph if and only if \(n = 1, 2, 3, 4, 5, 6, 8\); \(C_n\) is a cube divisor cordial graph if and only if \(n = 3, 4, 5\); and wheels, flowers and fans are cube divisor cordial.

### 7.10 Edge Product Cordial Labelings

Vaidya and Barasara \([2004]\) introduced the concept of edge product cordial labeling as edge analogue of product cordial labeling. An edge product cordial labeling of graph \(G\) is an edge labeling function \(f : E(G) \rightarrow \{0, 1\}\) that induces a vertex labeling function \(f^* : V(G) \rightarrow \{0, 1\}\) defined as \(f^*(u) = \prod\{f(uv) \mid uv \in E(G)\}\) such that the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 and the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1. A graph with an edge product cordial labeling is called an edge product cordial graph.

In \([2004]\), \([2006]\), \([2007]\), \([2008]\), and \([2011]\) Vaidya and Barasara proved the following graphs are edge product cordial: \(C_n\) for \(n\) odd; trees with order greater than 2; unicyclic graphs of odd order; \(C_n^{(t)}\), the one point union of \(t\) copies of \(C_n\) for \(t\) even or \(t\) and \(n\) both odd; \(C_n \odot K_1\); armed crowns \(C_m \odot P_n\); helms; closed helms; webs; flowers; gears; shells \(S_n\) for odd \(n\); tadpoles \(C_n \odot P_m\) for \(m + n\) even or \(m + n\) odd and \(m > n\); while not edge product cordial for \(m + n\) odd and \(m < n\); triangular snakes; for odd \(n\), double triangular snakes \(DT_n\); quadrilateral snakes \(Q_n\); and double quadrilateral snakes \(DQ_n\); \(P_n^2\) for odd \(n\); \(M(P_n), T(P_n); S'(P_n)\) for even \(n\); the tensor product of \(P_m\) and \(P_n\); and the tensor product of \(C_n\) and \(C_m\) if \(m\) and \(n\) are even. In \([2012]\) Vaidya and Barasara investigate product and edge product cordial labelings of the degree splitting graphs of paths, shells, bistars, and gear graphs.

Vaidya and Barasara proved the following graphs are not edge product cordial: \(C_n\) for \(n\) even; \(K_n\) for \(n \geq 4\); \(K_{m,n}\) for \(m, n \geq 2\); wheels; the one point union of \(t\) copies of \(C_n\) for \(t\) odd and \(n\) even; shells \(S_n\) for even \(n\); tadpoles \(C_n \odot P_m\) for \(m + n\) odd and \(m < n\); for \(n\) even double triangular snake \(DT_n\); quadrilateral snake \(Q_n\); and double quadrilateral snake \(DQ_n\); double fans; \(C_n^2\) for \(n > 3\); \(P_n^2\) for even \(n\); \(D_2(C_n), D_2(P_n); M(C_n); T(C_n); S'(C_n); S'(P_n)\) for odd \(n\); \(P_m \times P_n\) and \(C_m \times C_n\); the tensor product of \(C_n\) and \(C_m\) if \(m\) or \(n\) odd; and \(P_n[P_2]\) and \(C_n[P_2]\).

Vaidya and Barasara \([2009]\) introduced the concept of a total edge product cordial labeling as edge analogue of total product cordial labeling. An total edge product cordial labeling of graph \(G\) is an edge labeling function \(f : E(G) \rightarrow \{0, 1\}\) that induces a vertex labeling function \(f^* : V(G) \rightarrow \{0, 1\}\) defined as \(f^*(u) = \prod\{f(uv) \mid uv \in E(G)\}\) such that the number of edges and vertices labeled with 0 and the number of edges and vertices labeled with 1 differ by at most 1. A graph with total edge product cordial labeling is called a total edge product cordial graph.
In [2009] and [2010] Vaidya and Barasara proved the following graphs are total edge product cordial: $C_n$ for $n \neq 4$; $K_n$ for $n > 2$; $W_n$; $K_{m,n}$ except $K_{1,1}$ and $K_{2,2}$; gears; $C_n^{(t)}$, the one point union of $t$ copies of $C_n$; fans; double fans; $C_n^2$; $M(C_n)$; $D_2(C_n)$; $T(C_n)$; $S'(C_n)$; $P_n^2$ for $n > 2$; $M(C_n)$; $D_2(C_n)$ for $n > 2$; $T(C_n)$; $S'(C_n)$. Moreover, they prove that every edge product cordial graph of either even order or even size admits total edge product cordial labeling.

### 7.11 Difference Cordial Labelings

Ponraj, Sathish Narayanan, and Kala [1530] introduced the notion of difference cordial labelings. A difference cordial labeling of a graph $G$ is an injective function $f$ from $V(G)$ to $\{1, \ldots, |V(G)|\}$ such that if each edge $uv$ is assigned the label $|f(u) - f(v)|$, the number of edges labeled with 1 and the number of edges not labeled with 1 differ by at most 1. A graph with a difference cordial labeling is called a difference cordial graph.

The following definitions appear in [1531], [1519], [1520] and [1521]. A double triangular snake $DT_n$ consists of two triangular snakes that have a common path; a double quadrilateral snake $DQ_n$ consists of two quadrilateral snakes that have a common path; an alternate triangular snake $A(T_n)$ is the graph obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to new vertex $v_i$ (that is, every alternate edge of a path is replaced by $C_3$); a double alternate triangular snake $DA(T_n)$ is obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to two new vertices $v_i$ and $w_i$; an alternate quadrilateral snake $A(Q_n)$ is obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to new vertices $v_i$ and $w_i$ respectively and then joining $v_i$ and $w_i$ (that is, every alternate edge of a path is replaced by a cycle $C_4$); a double alternate quadrilateral snake $DA(Q_n)$ is obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to new vertices $v_i$, $x_i$ and $y_i$ respectively and then joining $v_i$ and $w_i$ and $x_i$ and $y_i$.

In [1520] and [1521] Ponraj and Sathish Narayanan define the irregular triangular snake $IT_n$ as the graph obtained from the path $P_n : u_1, u_2, \ldots, u_n$ with vertex set $V(IT_n) = V(P_n) \cup \{v_i : 1 \leq i \leq n \leq 2\}$ and the edge set $E(IT_n) = E(P_n) \cup \{u_iv_i, u_{i+2} : 1 \leq i \leq n - 2\}$. The irregular quadrilateral snake $IQ_n$ is obtained from the path $P_n : u_1, u_2, \ldots, u_n$ with vertex set $V(IQ_n) = V(P_n) \cup \{v_i, w_i : 1 \leq i \leq n - 2\}$ and edge set $E(IQ_n) = E(P_n) \cup \{u_iv_i, w_iu_{i+2}, v_iw_i : 1 \leq i \leq n - 2\}$. They proved the following graphs are difference cordial: triangular snakes $T_n$, quadrilateral snakes, alternate triangular snakes, alternate quadrilateral snakes, irregular triangular snakes, irregular quadrilateral snakes, double triangular snakes $DT_n$ if and only if $n \leq 6$, double quadrilateral snakes, double alternate triangular snakes $DA(T_n)$, and double alternate quadrilateral snakes.

In [1530], [1518], [1531], and [1519] Ponraj, Sathish Narayanan, and Kala proved the following graphs have difference cordial labelings: paths; cycles; wheels; fans; gears; helms; $K_{1,n}$ if and only if $n \leq 5$; $K_n$ if and only if $n \leq 4$; $K_{2,n}$ if and only if $n \leq 4$; $K_{3,n}$ if and only if $n \leq 4$; bistar $B_{1,n}$ if and only if $n \leq 5$; $B_{2,n}$ if and only if $n \leq 5$; $B_{3,n}$ if and only if $n \leq 5$; $DT_n \circ K_1$; $DT_n \circ 2K_1$; $DT_n \circ 2K_2$; $DQ_n \circ K_1$; $DQ_n \circ 2K_1$; $DQ_n \circ K_2$; $DA(T_n) \circ K_1$; $DA(T_n) \circ 2K_1$; $DA(T_n) \circ K_2$; $DA(Q_n) \circ K_1$; $DA(Q_n) \circ 2K_1$; and $DA(Q_n) \circ K_2$. They...
also proved: if $G$ is a $(p, q)$ difference cordial graph, then $q \leq 2p - 1$; if $G$ is a $r$-regular graph with $r \geq 4$, then $G$ is not difference cordial; if $m \geq 4$ and $n \geq 4$, then $K_{m,n}$ is not difference cordial; if $m + n > 8$ then the bistar $B_{m,n}$ is not difference cordial; and every graph is a subgraph of a connected difference cordial graph. If $G$ is a book, sunflower, lotus inside a circle, or square of a path, they prove that $G \circ mK_1$ $(m = 1, 2)$ and $G \circ K_2$ is difference cordial.

In [1532], [1534], and [1533] Ponraj, Sathish Narayanan, and Kala proved that the following graphs are difference cordial: crowns $C_n \circ K_1$; combs $P_n \circ K_1$; $P_n \circ C_m$; $C_n \circ C_m$; $W_n \circ K_2$; $W_n \circ 2K_1$; $G_n \circ K_1$ where $G_n$ is the gear graph; $G_n \circ 2K_1$; $G_n \circ K_2$; $(C_n \times P_2) \circ K_1$; $(C_n \times P_2) \circ 2K_1$; $(C_n \times P_2) \circ K_2$; $L_n \circ K_1$; $L_n \circ 2K_1$; and $L_n \circ K_2$. Ponraj, Sathish Narayanan and Kala proved that the following subdivision graphs are difference cordial: $S(T_n)$; $S(Q_n)$; $S(DT_n)$; $S(DQ_n)$; $S(A(T_n))$; $S(DA(T_n))$; $S(AQ_n)$; $S(DAQ_n)$; $S(K_{1,n})$; $S(K_{2,n})$; $S(W_n)$; $S(P_n \circ K_1)$; $S(P_n \circ 2K_1)$; $S(LC_n)$; $S(P^2)$; $S(K_2 + mK_1)$; sub-division graphs of sunflowers $S(F_n)$; subdivisions graphs flowers $S(Fl_n)$; $S(B_m)$ $(B_m$ is a book with $m$ pages)$; S(C_n \times P_2)$; $S(B_{m,n})$; subdivisions $n$-cubes; $S(J(m, n))$; $S(W(t, n))$; sub-division of Young tableaus $S(Y_{n,n})$; and if $S(G)$ is difference cordial, then $S(G \circ mK_1)$ is difference cordial. For graphs $G$ that are a tree, a unicycle, or when $|E(G)| = |V(G)| + 1$, they proved that $G \circ P_n$ and $G \circ mK_1$ $(m = 1, 2, 3)$ are difference cordial.

Recall the splitting graph of $G$, $S'$ $(G)$, is obtained from $G$ by adding for each vertex $v$ of $G$ a new vertex $v'$ so that $v'$ is adjacent to every vertex that is adjacent to $v$ and the shadow graph $D_2(G)$ of a connected graph $G$ is constructed by taking two copies of $G$, $G'$ and $G''$, and joining each vertex $u'$ in $G'$ to the neighbors of the corresponding vertex $u''$ in $G''$.

Ponraj and Sathish Narayanan [1520], [1521] proved the following graphs are difference cordial: $S'(P_n)$; $S'(C_n)$; $S'(P_n \circ K_1)$; and $S'(K_{1,n})$ if and only if $n \leq 3$. They proved following are not difference cordial: $S'(W_n)$; $S'(K_n)$; $S'(C_n \times P_2)$; the splitting graph of a flower graph; $DS(SF_n)$; $DS(LC_n)$; $DS(Fl_n)$; $D_2(G)$ where $G$ is a $(p, q)$ graph with $q \geq p$; and $DS(B_{m,n})$ $(m \neq n)$ with $m + n > 8$.

Let $G(V, E)$ be a graph with $V = S_1 \cup S_2 \cup \cdots \cup S_t \cup T$ where each $S_i$ is a set of vertices having at least two vertices and having the same degree. Panraj and Sathish Narayanan [1520], [1521] define the degree splitting graph of $G$ denoted by $DS(G)$ as the graph obtained from $G$ by adding vertices $w_1, w_2, \ldots, w_t$ and joining $w_i$ to each vertex of $S_i$ $(1 \leq i \leq t)$. They proved the following graphs are difference cordial: $DS(P_n)$; $W_n$; $DS(C_n)$; $DS(K_n)$ if and only if $n \leq 3$; $DS(K_{1,n})$ if and only if $n \leq 4$; $DS(W_n)$ if and only if $n = 3$; $DS(K_n^c + 2K_2)$ if and only if $n = 1$; $DS(K_2 + mK_1)$ if and only if $n \leq 3$; $DS(K_{n,n})$ if and only if $n \leq 2$; $DS(T_n)$ if and only if $n \leq 5$; $DS(Q_n)$ if and only if $n \leq 5$; $DS(L_n)$ if and only if $n \leq 5$; $DS(B_{m,n})$ if and only if $n \leq 2$; $DS(B_{1,n})$ if and only if $n \leq 4$; $DS(B_{2,n})$ if and only if $n \leq 4$; $D_2(P_n)$; $D_2(K_n)$ if and only if $n \leq 2$; and $D_2(K_{1,m})$ if and only if $m \leq 2$.

In [1522], Ponraj and Sathish Narayanan proved the following graphs are difference cordial: $T_n \circ K_1$, $T_n \circ 2K_1$, $T_n \circ K_2$, $A(T_n) \circ K_1$, $A(T_n) \circ 2K_1$ and $A(T_n) \circ K_2$ where $T_n$ and $A(T_n)$ are triangular snake and alternate triangular snake respectively. In [1535, 1536]
Ponraj, Sathish Narayanan, and Kala proved the following graphs are difference cordial: \( C_n \times P_2 \); Möbius ladders; the \( n \)-cube; sunflower graphs; lotuses inside a circle; pyramids; books with \( n \) pentagonal pages; mongolian tents; graphs obtained from a ladder by subdividing each step exactly once; permutation graphs \( P(P_{2k}, f) \) where \( f = (12)(34) \cdots (k \, k+1) \cdots (2k-1 \, 2k) \); and \( P(P_n, I), P(C_n, I), P(P_n \circ K_1, I), P(P_n \circ 2K_1, I) \) where \( I \) is the identity permutation. Ponraj, Sathish Narayanan, and Kala [1535] [1536] proved the following graphs are not difference cordial: \( G \) is the flower graph and \( f \) is any permutation; \( P(W_n, f) \) for any permutation \( f \); \( P(S'(G), f) \) where \( S'(G) \) is the splitting graph of \( G \); \( |E(G)| \geq |V(G)| \), and \( f \) is any permutation; and \( P(Fl_n, f) \) where \( Fl_n \) is a flower graph and \( f \) is any permutation. They also obtained the following necessary and sufficient conditions for difference cordiality: \( K_m \times P_2 \) if and only if \( m \leq 3 \); for a connected graph \( G \), \( G \times W_n \) if and only if \( G = K_1 \); books \( B_m \) if and only if \( m \leq 6 \); \( G + G \) if and only if \( |V(G)| \leq 3 \) and \( |E(G)| \leq 1 \); \( K_2 + mK_1 \) if and only if \( m \leq 4 \); \( K_n + 2K_2 \) if and only if \( n \leq 2 \); the double fan \( DF_n \) if and only if \( n \leq 4 \); the \( t \)-fold wheel \( W_n + K_t \) if and only if \( t \leq 2 \) and \( n = 3 \); cocktail party graphs \( H_{n,n} \) if and only if \( n \leq 6 \); \( P(K_n, I) \) if and only if \( n \leq 3 \); \( P(K_2 + mK_1, I) \) if and only if \( m \leq 3 \); and \( P(K_{m,n}, I) \) \((m, n > 1)\) if and only if \( m = n = 2 \) and \( n = 3, 4, 5 \).

### 7.12 Prime Cordial Labelings

Sundaram, Ponraj, and Somasundaram [1949] have introduced the notion of prime cordial labelings. A \emph{prime cordial labeling} of a graph \( G \) with vertex set \( V \) is a bijection \( f \) from \( V \) to \( \{1, 2, \ldots, |V|\} \) such that if each edge \( uv \) is assigned the label 1 if \( \gcd(f(u), f(v)) = 1 \) and 0 if \( \gcd(f(u), f(v)) > 1 \), then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In [1949] Sundaram, Ponraj, and Somasundaram prove the following graphs are prime cordial: \( C_n \) if and only if \( n \geq 6 \); \( P_n \) if and only if \( n \neq 3 \) or 5; \( K_{1,n} \) (\( n \) odd); the graph obtained by subdividing each edge of \( K_{1,n} \) if and only if \( n \geq 3 \); bistars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders; \( K_{1,n} \) if \( n \) is even and there exists a prime \( p \) such that \( 2p < n + 1 < 3p \); \( K_{2,n} \) if \( n \) is even and if there exists a prime \( p \) such that \( 3p < n + 2 < 4p \); and \( K_{3,n} \) if \( n \) is odd and if there exists a prime \( p \) such that \( 5p < n + 3 < 6p \). They also prove that if \( G \) is a prime cordial graph of even size, then the graph obtained by identifying the central vertex of \( K_{1,n} \) with the vertex of \( G \) labeled with 2 is prime cordial, and if \( G \) is a prime cordial graph of odd size, then the graph obtained by identifying the central vertex of \( K_{1,2n} \) with the vertex of \( G \) labeled with 2 is prime cordial. They further prove that \( K_{m,n} \) is not prime cordial for a number of special cases of \( m \) and \( n \). Sundaram and Somasundaram [1952] and Youssef [2234] observed that for \( n \geq 3 \), \( K_n \) is not prime cordial provided that the inequality \( \phi(2) + \phi(3) + \cdots + \phi(n) \geq n(n - 1)/4 + 1 \) is valid for \( n \geq 3 \) (\( \phi \) is the Euler phi-function). This inequality was proved by Yufei Zhao [2255]. Haque, Lin, Yang, and Zhao [763] show that with the exception of \( P(4, 1) \), all generalized
Petersen graphs are prime cordial. Haque, Lin, Yang, and Zhang [761] show that the flower snark and related graphs are prime cordial.

Seoud and Salim [1727] give an upper bound for the number of edges of a graph with a prime cordial labeling as a function of the number of vertices. For bipartite graphs they give a stronger bound. They prove that $K_n$ does not have a prime cordial labeling for $2 < n < 500$ and conjecture that $K_n$ is not prime cordial for all $n > 2$. They determine all prime cordial graphs of order at most 6. For a graph with $n$ vertices to admit a prime cordial labeling, Seoud and Salim [1729] proved that the number of edges must be less than $n(n - 1) - 6n^2/\pi^2 + 3$. As a corollary they get that $K_n$ ($n > 2$) is not prime cordial thereby proving their earlier conjecture.

In [709] Ghodasara and Jena prove that the following graphs are prime cordial: $C_n$ with one chord, $C_n$ with twin chords (that is, two chords that form a triangle with an edge of the cycle), $C_n$ with three chords that form two triangles and a cycle of length $n - 3$ ($n \geq 7$), the graph obtained by joining two copies of $C_n$ with one chord by a path, and the graph obtained by joining two copies of the same cycle with twin chords by a path is prime cordial.

In [318] Baskar Babujee and Shobana proved sun graphs $C_n \odot K_1$; $C_n$ with a path of length $n - 3$ attached to a vertex; and $P_n$ ($n \geq 6$) with $n - 3$ pendent edges attached to a pendant vertex of $P_n$ have prime cordial labelings. Additional results on prime cordial labelings are given in [319].

In [2070] and [2071] Vaidya and Vihol prove following results: $P_n^m$ is prime cordial for $n = 6$ and $n \geq 8$; $C_n^2$ is prime cordial for $n \geq 10$; the shadow graphs of $K_{1,n}$ (see §3.8 for the definition) for $n \geq 4$ and the bistar $B_{n,n}$ are prime cordial graphs.

Let $G_n$ be a simple nontrival connected cubic graph with vertex set $V(G_n) = \{a_i, b_i, c_i, d_i : 0 \leq i \leq n - 1\}$, and edge set $E(G_n) = \{a_i a_{i+1}, b_i b_{i+1}, c_i c_{i+1}, d_i a_i, d_i b_i, d_i c_i : 0 \leq i \leq n - 1\}$, where the edge labels are taken modulo $n$. Let $H_n$ be a graph obtained from $G_n$ by replacing the edges $b_{n-1}b_0$ and $c_{n-1}c_0$ with $b_{n-1}c_0$ and $c_{n-1}b_0$ respectively. For odd $n \geq 5$, $H_n$ is called a flower snark whereas $G_n$, $H_3$ and all $H_n$ with even $n \geq 4$, are called the related graphs of a flower snark. Mominul Haque, Lin, Yang, and Zhang [1415] proved that flower snarks and related graphs are prime cordial for all $n \geq 3$.

In [2054] Vaidya and Shah prove that the following graphs are prime cordial: split graphs of $K_{1,n}$ and $B_{n,n}$; the square graph of $B_{n,n}$; the middle graph of $P_n$ for $n \geq 4$; and $W_n$ if and only if $n \geq 8$. Vaidya and Shah [2054] prove following graphs are prime cordial: the splitting graphs of $K_{1,n}$ and $B_{n,n}$; the square of $B_{n,n}$; the middle graph of $P_n$ for $n \geq 4$; and wheels $W_n$ for $n \geq 8$.  

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 248
In [2058] [2060] Vaidya and Shah proved following graphs are prime cordial: gear graphs $G_n$ for $n \geq 4$; helms; closed helms $CH_n$ for $n \geq 5$; flower graphs $Fl_n$ for $n \geq 4$; degree splitting graphs of $P_n$ and the bistar $B_{n,n}$; double fans $DF_n$ for $n = 8$ and $n \geq 10$; the graphs obtained by duplication of an arbitrary rim edge by an edge in $W_n$ where $n \geq 6$; and the graphs obtained by duplication of an arbitrary spoke edge by an edge in wheel $W_n$ where $n = 7$ and $n \geq 9$.

Let $G(p,q)$ with $p \geq 4$ be a prime cordial graph and $K_{2,n}$ be a bipartite graph with bipartition $V = V_1 \cup V_2$ with $V_1 = \{v_1, v_2\}$ and $V_2 = \{u_1, u_2, \ldots, u_n\}$. If $G_1$ is the graph obtained by identifying the vertices $v_1$ and $v_2$ of $K_{2,n}$ with the vertices of $G$ having labels 2 and 4 respectively, Vaidya and Prajapati [2049] proved that $G_1$ admits a prime cordial labeling if $n$ is even; if $n, p, q$ are odd and with $e_f(0) = \lfloor q/2 \rfloor$; and if $n$ is odd, $p$ is even and $q$ is odd with $e_f(0) = \lceil q/2 \rceil$.

Vaidya and Prajapati [2047] call a graph strongly prime cordial if for any vertex $v$ there is a prime labeling $f$ of $G$ such that $f(v) = 1$. They prove the following: the graphs obtained by identifying any two vertices of $K_{1,n}$ are prime cordial; the graphs obtained by identifying any two vertices of $P_n$ are prime cordial; $C_n$, $P_n$, and $K_{1,n}$ are strongly prime cordial; and $W_n$ is a strongly prime cordial for every even integer $n \geq 4$. Prajapati and Gaijar [1564] proved that generalized prism graphs $Y_{n,2}$ is prime cordial except for $n = 1, 2$ and 4; $Y_{n,4}$ is prime cordial for $n \geq 3$; $Y_{3,n}, Y_{5,n}, Y_{6,n}$ and $Y_{2p,n}$ (for odd prime $p$) are prime cordial for $n > 1$; and $Y_{4,n}$ is prime cordial for $n = 2$.

In [1547] Ponraj, Rajpal Singh, Kala, and Sathish Narayanan introduced a new graph labeling called $k$-prime cordial labeling. Let $G$ be a $(p,q)$-graph and $2 \leq p \leq k$ and let $f : V(G) \to \{1, 2, \ldots, k\}$ be a map. For each edge $uv$, assign the label $\gcd(f(u), f(v))$. They say that $f$ is a $k$-prime cordial labeling of $G$ if $|v_f(i) - v_f(j)| \leq 1$ for $i, j \in \{1, 2, \ldots, k\}$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(x)$ denotes the number of vertices labeled with $x$, and $e_f(1)$ and $e_f(0)$, respectively, denote the number of edges labeled with 1 and not labeled with 1. A graph with a $k$-prime cordial labeling is a $k$-prime cordial graph. They proved that every graph is a subgraph of a connected $k$-prime cordial graph; if $k$ is even, then $P_n$, $n \neq 3$, is $k$-prime cordial; $C_n$, $n \neq 3$, is $k$-prime cordial when $k$ is even; and the bistar $B_{n,n}$ is $k$-prime cordial for all even $k$. They studied 3-prime cordiality of paths, cycles, and olive trees. They also proved that if $T$ is a 3-prime cordial tree, then $T \circ K_1$ is 3-prime cordial; $K_{1,n}$ is 3-prime cordial if and only if $n \leq 3$; $K_n$ is 3-prime cordial if and only if $n < 3$; combs $P_n \circ K_1$ are 3-prime cordial; and $C_n \circ K_1$ is 3-prime cordial if and only if $n \neq 3$. They proved that $K_2 + mK_1, K_{2,n}$, and wheels are not 3-prime cordial graphs.

## 7.13 Parity Combination Cordial Labelings

In [1546] Ponraj, Sathish Narayanan, and Ramasamy introduced a new graph labeling called parity combination cordial labeling. Let $G$ be a $(p,q)$-graph. Let $f$ be an injective map from $V(G)$ to $\{1, 2, \ldots, p\}$. For each edge $xy$, assign the label $(\frac{x}{y})$ or $(\frac{y}{x})$ according as $x > y$ or $y > x$. Call $f$ a parity combination cordial labeling if $f$ is a one to one map and $|e_f(0) - e_f(1)| \leq 1$, where $e_f(0)$ and $e_f(1)$ denote the number of edges labeled with an even number and odd number, respectively. A graph with a parity combination cordial
labeling is called a parity combination cordial graph. They proved that the following are parity combination cordial graphs: paths, cycles, stars, triangular snakes, alternate triangular snakes, olive trees, combs, crowns, fans, umbrellas, $P_n^2$, helms, dragons, bistars, butterfly graphs, and graphs obtained from $C_n$ and $K_{1,m}$ by unifying a vertex of $C_n$ and a pendant vertex of $K_{1,m}$. They also proved that $W_n$ admits a parity combination cordial labeling if and only if $n \geq 4$ and conjectured that for $n \geq 4$, $K_n$ is not a parity combination cordial graph. In [1548], Ponraj, Rajpal Singh, and Sathish Narayanan proved that if $G$ is a parity combination cordial graph, then $G \cup P_n$ is also parity combination cordial if $n \neq 2, 4$.

### 7.14 Mean Labelings

Somasundaram and Ponraj [1896] have introduced the notion of mean labelings of graphs. A graph $G$ with $p$ vertices and $q$ edges is called a mean graph if there is an injective function $f$ from the vertices of $G$ to $\{0, 1, 2, \ldots, q\}$ such that when each edge $uv$ is labeled with $(f(u) + f(v))/2$ if $f(u) + f(v)$ is even, and $(f(u) + f(v) + 1)/2$ if $f(u) + f(v)$ is odd, then the resulting edge labels are distinct.

In [1896], [1897], [1898], [1899], [1558], and [1559] they proved the following graphs are mean graphs: $P_n$, $C_n$, $K_{2,n}$, $K_2 + mK_1$, $K_n + 2K_2$, $C_m \cup P_n$, $P_m \times P_n$, $P_m \times C_n$, $C_m \odot K_1$, $P_m \odot K_1$, triangular snakes, quadrilateral snakes, $K_n$ if and only if $n < 3$, $K_{1,n}$ if and only if $n < 3$, bistars $B_{m,n}$ ($m > n$) if and only if $m < n + 2$, the subdivision graph of the star $K_{1,n}$ if and only if $n < 4$, the friendship graph $C_3^{(t)}$ if and only if $t < 2$, the one point union of two copies a fixed cycle, dragons (the one point union of $C_m$ and $P_n$, where the chosen vertex of the path is an end vertex), the one point union of a cycle and $K_{1,n}$ for small values of $n$, and the arbitrary super subdivision of a path, which is obtained by replacing each edge of a path by $K_{2,m}$. They also prove that $W_n$ is not a mean graph for $n > 3$ and enumerate all mean graphs of order less than 5.

Gayathri and Gopi [692] prove the following are mean graphs: double triangular snakes; double quadrilateral snakes; generalized antiprisms; graphs obtained by joining the 2 vertices of $K_{2,n}$ of degree $n$ with an edge; and graphs obtained from $C_n$ with consecutive vertices $v_1, v_2, \ldots, v_n$ by adding the chords joining $v_i$ and $v_{n-i+2}$ for $2 \leq i \leq \lfloor n/2 \rfloor$. In [690] Gayathri and Gopi give various necessary conditions for mean labelings.

Lourdusamy and Seenivasan [1325] prove that $kC_n$-snakes are means graphs and every cycle has a super subdivision that is a mean graph. They define a generalized $kC_n$-snake in the same way as a $C_n$-snake except that the sizes of the cycle blocks can vary (see Section 2.2). They prove that generalized $kC_n$-snakes are mean graphs. Recall that $P_{a,b}$ denotes the graph obtained by identifying the endpoints of $b$ internally disjoint paths each of length $a$. Vasuki and Nagarajan [2092] proved that the following graphs admit mean labelings: $P_{r,2m+1}$ for all $r$ and $m$; $P_{r,2m}$ for all $m$ and $2 \leq r \leq 6$; $P_{r,2m+1}$ for all $r$ and $m$; and $P_{r}^{2m}$ for all $m$ and $2 \leq r \leq 6$.

Lourdusamy and Seenivasan [1326] define an edge linked cyclic snake, $EL(kC_n)$, as the connected graph obtained from $k$ copies of $C_n$ ($n \geq 4$) by identifying an edge of the $(i+1)^{th}$ copy to an edge of the $i^{th}$ copy for $i = 1, 2, \ldots, k - 1$ in such a way that the
consecutive edges so chosen are not adjacent. They proved that all \( EL(kC_{2n}) \) are mean graphs and some cases of \( EL(C_{2n-1}) \) are mean graphs. They also define a \textit{generalized edge linked cyclic snake} in the same way but allow the cycle lengths (at least 4) to vary. They prove that certain cases of generalized edge linked cyclic snakes are mean graphs.

Barrientos and Krop [291] proved that there exist \( n! \) graphs of size \( n \) that admit mean labelings. They give two necessary conditions for the existence of a mean labeling of a graph \( G \) with \( m \) vertices and \( n \) edges: if \( G \) is a mean graph, then \( n + 1 \geq m \); if \( G \) is a mean graph with \( n \) edges and maximum degree \( \Delta(G) \), then \( \Delta(G) \leq \frac{n+3}{2} \) when \( n \) is odd and \( \Delta(G) \leq \frac{n+2}{2} \) when \( n \) is even. They proved that the disjoint union of \( n \) copies of \( C_3 \) is a mean graph and if a mean \( r \)-regular graph has \( n \) vertices, then \( r < n - 2 \). They established a connection between \( \alpha \)-labelings and mean labelings by proving that every tree that admits an \( \alpha \)-labeling is a mean graph when the size of its stable sets differ by at most one. When the tree is a caterpillar, this difference can be up to two. Barrientos and Krop call a mean labeling of a bipartite graph an \textit{\( \alpha \)-mean labeling} if the labels assigned to vertices of the same color have the same parity. They show that the complementary labeling of a \( \alpha \)-mean labeling is also an \( \alpha \)-mean labeling. They use graphs with \( \alpha \)-mean labelings to construct new mean graphs. One construction consists of connecting a pair of corresponding vertices of two copies of an \( \alpha \)-mean labeling to construct new mean graphs. One construction consists of connecting a pair of suitable vertices from two \( \alpha \)-mean graphs. Barrientos and Krop also proved that every quadrilateral snake admits an \( \alpha \)-mean labeling. They conjecture that all trees of size \( n \) and maximum degree at most \( \lceil (n + 1)/2 \rceil \) are mean graphs and state some open problems. In [286] Barrientos proves that all trees with up to four end-vertices except \( K_{1,4} \) are mean graphs. Bailey and Barrientos [253] prove the following are mean graphs: \( C_n \cup C_m \), \( C_n \cup P_n \), \( K_2 + nK_1 \), \( 2K_2 + nK_1 \), \( C_n \times K_2 \).

In [253], Bailey and Barrientos study several operations with mean graphs. They prove that the coronas \( G \odot K_1 \) and \( G \odot K_2 \) are mean graphs when \( G \) is an \( \alpha \)-mean graph. Also, if \( G \) and \( H \) are mean graphs with \( n \) vertices and \( n - 1 \) edges and \( H \) is an \( \alpha \)-mean graph, then \( G \times H \) is a mean graph. They prove that given two mean graphs \( G \) and \( H \), there exists a mean graph obtained by identifying an edge from \( G \) with an edge from \( H \) and uses this result to prove that the graphs \( R_n \) \((n \geq 2)\) of order \( 2n \) and size \( 4n - 3 \) with vertex set \( V(R_n) = \{v_1, v_2, \ldots, v_{2n}\} \) and edge set \( E(R_n) = \{v_i v_{i+1} \mid 1 \leq i \leq n - 1 \text{ and } n + 1 \leq i \leq 2n - 1 \} \cup \{v_i v_{n+i} \mid 1 \leq i \leq n \} \cup \{v_i v_{n+i-1} \mid 2 \leq i \leq n \} \) (rigid ladders) are mean graphs.

Barrientos, Abdel-Aal, Minion, and Williams [287] use \( A_n \) to denote the set of all \( \alpha \)-mean labeled graphs of size \( n \) such that the difference of the cardinalities of the bipartite sets of the vertices of the graphs is at most one. They prove that the class \( A_n \) is equivalent to the class of \( \alpha \)-labeled graphs of size \( n \) with bipartite sets that differ by at most one. They also prove that when \( G \in A_n \), the coronas \( G \odot mK_1 \), \( G \odot P_2 \), and \( G \odot P_3 \) admit mean labelings.

In [2014] Vaidya and Bijukumar define two methods of creating new graphs from cycles as follows. For two copies of a cycle \( C_n \) the \textit{mutual duplication} of a pair of vertices \( v_k \) and \( v_k' \) respectively from each copy of \( C_n \) is the new graph \( G \) such that \( N(v_k) = N(v_k') \). For two copies of a cycle \( C_n \) and an edge \( e_k = v_kv_{k+1} \) from one copy of \( C_n \) with incident
edges \( e_{k-1} = v_{k-1}v_k \) and \( e_{k+1} = v_{k+1}v_{k+2} \) and an edge \( e'_m = u_mu_{m+1} \) in the second copy of \( C_n \) with incident edges \( e'_{m-1} = u_{m-1}u_m \) and \( e'_{m+1} = u_{m+1}u_{m+2} \), the mutual duplication of a pair of edges \( e_k \) and \( e'_m \) respectively from two copies of \( C_n \) is the new graph \( G \) such that \( N(v_k) - v_{k+1} = N(u_m) - u_{m+1} = \{v_{k-1}, u_{m-1}\} \) and \( N(v_{k+1}) - v_k = N(u_{m+1}) - u_m = \{v_{k+2}, u_{m+2}\} \). They proved that the graph obtained by mutual duplication of a pair of vertices each from copy of a cycle and the mutual duplication of a pair of edges from each copy of a cycle are mean graphs. Moreover, they proved that the shadow graphs of the stars \( K_{1,n} \) and bistars \( B_{n,n} \) are mean graphs.

Vasuki and Nagarajan [2093] proved the following graphs are admit mean labelings: the splitting graphs of paths and even cycles; \( C_m \circ P_n \); \( C_m \circ 2P_n \); \( C_n \cup C_n \); disjoint unions of any number of copies of the hypercube \( Q_3 \); and the graphs obtained from by starting with \( m \) copies of \( C_n \) and identifying one vertex of one copy of \( C_n \) with the corresponding vertex in the next copy of \( C_n \). Jeyanthi and Ramya [958] define the jewel graph \( J_n \) as the graph with vertex set \( \{u, v, x, y, u_i : 1 \leq i \leq n\} \) and edge set \( \{ux, vx, uy, vy, xy, uu, vu : 1 \leq i \leq n\} \). They proved that the jewel graphs, jelly fish graphs (see §7.26 for the definition), and the graph obtained by joining any number of isolated vertices to the two endpoints of \( P_3 \) are mean graphs. Ramya and Jeyanthi [1605] proved several families of graphs constructed from \( T_r \)-tree are mean graphs. Ahmad, Imran, and Semaničová-Feňovčíková [72] studied the relation between mean labelings and \((a, d)\)-edge-antimagic vertex labelings. They show that two classes of caterpillars admit mean labelings.

Recall from Section 2.7 that given connected graphs \( G_1, G_2, \ldots, G_n \), Kaneria, Makadia, and Jariya [1030] define a cycle of graphs \( C(G_1, G_2, \ldots, G_n) \) as the graph obtained by adding an edge joining \( G_i \) to \( G_{i+1} \) for \( i = 1, \ldots, n-1 \) and an edge joining \( G_n \) to \( G_1 \). (The resulting graph can vary depending on which vertices of the \( G_i \) are chosen.) When the \( n \) graphs are isomorphic to \( G \) the notation \( C(n \cdot G) \) is used. Also recall Kameneria and Makadia [1023] define a step grid graph \( St_n \) as the graph obtained by starting with paths \( P_n, P_n, P_{n-1}, \ldots, P_2 \) \((n \geq 3)\) arranged vertically parallel with the vertices in the paths forming horizontal rows and edges joining the vertices of the rows. In [1051], [1039], and [1042], Kaneria, Viradia, and Makadia proved the following graphs are mean graphs: the path union of any number of copies of a mean graph; \( C(2t \cdot P_n) \); \( C(2t \cdot C_n) \); \( C(2t \cdot P_n \times P_m) \); \( C(2r \cdot B^2_{n,n}) \) \((B^2_{n,n} \text{ is the square of the bistar } B_{n,n})\); \( C(2r \cdot M(C_n)) \) \((M(C_n) \text{ is the middle graph of } C_n)\); \( C(2r \cdot (P_{2n} + 2K_1)) \); step grid graphs; the path union of finitely copies of the step grid graphs; cycles of step grid graphs \( C(2r \cdot St_n) \); and \( C(2t \cdot K_{2,m}) \).

Ramya, Ponraj, and Jeyanthi [1608] called a mean graph super mean if vertex labels and the edge labels are \( \{1, 2, \ldots, p + q\} \). They prove following graphs are super mean: paths, combs, odd cycles, \( P^n, L_n \circ K_1, C_n \cup P_n \) \((n \geq 2)\), the bistars \( B_{n,n} \) and \( B_{n+1,n} \). They also prove that unions of super mean graphs are super mean and \( K_n \) and \( K_{1,n} \) are not super mean when \( n > 3 \). In [962] Jeyanthi, Ramya, and Thangavelu prove the following are super mean: \( nK_{1,4} \); the graphs obtained by identifying an endpoint of \( P_m \) \((m \geq 2)\) with each vertex of \( C_n \); the graphs obtained by identifying an endpoint of two copies of \( P_m \) \((m \geq 2)\) with each vertex of \( C_n \); the graphs obtained by identifying an endpoint of three copies of \( P_m \) \((m \geq 2)\); and the graphs obtained by identifying an endpoint of four
copies of $P_n$ $(m \geq 2)$. In [959] Jeyanthi and Ramya prove the following graphs have super mean labelings: the graph obtained by identifying the endpoints of two or more copies of $P_3$; the graph obtained from $C_n$ $(n \geq 4)$ by joining two vertices of $C_n$ distance 2 apart with a path of length 2 or 3; Jeyanthi and Rama [961] use $S(G)$ to denote the graph obtained from a graph $G$ by subdividing each edge of $G$ by inserting a vertex. They prove the following graphs have super mean labelings: $S(P_n \oplus K_1), S(B_{n,n}), C_n \odot K_2$; the graphs obtained by joining the central vertices of two copies of $K_{1,m}$ by a path $P_n$ (denoted by $\langle B_{m,m} : P_n \rangle$); generalized antiprisms (see §6.2 for the definition), and the graphs obtained from the paths $v_1, v_2, v_3, \ldots, v_n$ by joining each $v_i$ and $v_{i+1}$ to two new vertices $u_i$ and $w_i$ (double triangular snakes). Jeyanthi, Ramya, Thangavelu, and Aditanar [963] give super mean labelings for $C_m \cup C_n$ and $k$-super mean labelings for a variety of graphs.

Let $G(V, E)$ be a simple graph of order $p$ and size $q$. Then $G$ is said to be a relaxed mean graph if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from \{0, 1, 2, ..., $q-1, q+1$\} in such a way that when each edge $uv$ is labeled with $(f(u)+f(v))/2$ if $f(u)+f(v)$ is even and $(f(u)+f(v)+1)/2$ if $f(u)+f(v)$ is odd, then the resulting edge labels \{1, 2, 3, ..., $q$\} are distinct. Such an $f$ is called a relaxed mean labeling of $G$. Balaji, Ramesh, and Sudhaker [254] prove that the disjoint union of any path with $n-1$ edges joining the pendant vertices of distinct paths is a relaxed mean graph and $K_{1,m}$ is not a relaxed mean graph for $m \geq 5$. They also prove that the graph consisting of two stars $K_{1,m}$ and $K_{1,n}$ with an edge in common is a relaxed mean graph if and only if $|m-n| \leq 5$.

In [257] and [258] Balaji, Ramesh and Subramanian use the term “Skolem mean” labeling for super mean labeling. They prove: $P_n$ is Skolem mean; $K_{1,m}$ is not Skolem mean if $m \geq 4$; $K_{1,m} \cup K_{1,n}$ is Skolem mean if and only if $|m-n| \leq 4$; $K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is Skolem mean if $|m-n| = 4 + l$ for $l = 1, 2, 3, \ldots, m = 1, 2, 3, \ldots, l \leq m < n$; $K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is not Skolem mean if $|m-n| > 4 + l$ for $l = 1, 2, 3, \ldots, m = 1, 2, 3, \ldots, n \geq l + m + 5$ and $l \leq m < n$; $K_{1,l} \cup K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is Skolem mean if $|m-n| = 4 + 2l$ for $l = 2, \ldots, m = 2, 3, 4, \ldots, n = 2l + m + 4$ and $l \leq m < n$; $K_{1,l} \cup K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is not Skolem mean if $|m-n| > 4 + l$ for $l = 1, 2, 3, \ldots, m = 1, 2, 3, \ldots, n \geq l + m + 5$ and $l \leq m < n$; $K_{1,l} \cup K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is not Skolem mean if $|m-n| > 4 + 2l$ for $l = 2, \ldots, m = 2, 3, 4, \ldots, n \geq 2l + m + 5$ and $l \leq m < n$; $K_{1,l} \cup K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is Skolem mean if $|m-n| = 7$ for $m = 1, 2, 3, \ldots, n = m + 7$ and $1 \leq m < n$; and $K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is not Skolem mean if $|m-n| > 7$ for $m = 1, 2, 3, \ldots, n \geq m + 8$ and $1 \leq m < n$. Balaji [256] proved that $K_{1,l} \cup K_{1,m} \cup K_{1,n}$ is Skolem mean if $|m-n| < 4 + l$ for integers $1, m \geq 1$ and $l \leq m < n$.

In [964] Jeyanthi, Ramya, and Thangavelu proved the following graphs have super mean labelings: the one point union of any two cycles, graphs obtained by joining any two cycles by an edge (dumbbell graphs), $C_{2n+1} \odot C_{2m+1}$, graphs obtained by identifying a copy of an odd cycle $C_m$ with each vertex of $C_n$, the quadrilateral snake $Q_n$, where $n$ is odd, and the graphs obtained from an odd cycle $u_1, u_2, \ldots, u_n$ by joining the vertices $u_i$ and $u_{i+1}$ by the path $P_m$ $(m$ is odd) for $1 \leq i \leq n-1$ and joining vertices $u_n$ and $u_1$ by the path $P_m$. Jeyanthi, Ramya, Thangavelu, and Aditanar [962] give super mean labelings of $C_m \cup C_n$ and $T_p$-trees.

In [957] Jeyanthi and Ramya define $S_{m,n}$ as the graph obtained by identifying one
endpoint of each of \( n \) copies of \( P_m \) and \(< S_{m,n} : P_m >\) as a graph obtained by identifying one end point of a path \( P_m \) with the vertex of degree \( n \) of a copy of \( S_{m,n} \) and the other endpoint of the same path to the vertex of degree \( n \) of another copy of \( S_{m,n} \). They prove the following graphs have super mean labelings: caterpillars, \(< S_{m,n} : P_{m+1} >\), and the graphs obtained from \( P_{2m} \) and \( 2m \) copies of \( K_{1,n} \) by identifying a leaf of \( i \)th copy of \( K_{1,n} \) with \( i \)th vertex of \( P_{2m} \). They further establish that if \( T \) is a \( T^*_p \)-tree, then \( T \cap K_1, T \cap K_2 \), and, when \( T \) has an even number of vertices, \( T \cap K_n \) \((n \geq 3)\) are super mean graphs.

Kannan, Vikrama Prasad, and Gopi [1058] call a graph \( G \) with \( p \) vertices and \( q \) edges a **super root mean graph** if there is an injective function \( f \) from the vertices of \( G \) to \( \{1, 2, \ldots, p + q\} \) such that for each edge \( uv \) the induced function \( f^*(uv) = \lceil \sqrt{(f(u)^2 + f(v)^2)/2} \rceil \) or \( f^*(uv) = \lfloor \sqrt{(f(u)^2 + f(v)^2)/2} \rfloor \) yields the set of vertex labels and edge labels being \( \{1, 2, \ldots, p + q\} \). They proved the following are super root square mean graphs: \( P_m \cup P_m \)(\( m, n \geq 3 \)); \( P_m \cup (P_n \cdot K_1) \)(\( m, n \geq 3 \)); \( (P_m \cdot K_1) \cup (P_n \cdot K_1) \)(\( m, n \geq 3 \)); the union of a path and a triangular snake; and the union of \( P_n \cdot K_1 \) and a triangular snake.

Let \( G \) be a graph and let \( f : V(G) \rightarrow \{1, 2, \ldots, n\} \) be a function such that the label of the edge \( uv \) is \((f(u) + f(v))/2 \) or \((f(u) + f(v) + 1)/2 \) according as \( f(u) + f(v) \) is even or odd and \( f(V(G)) \cup \{f^*(e) : e \in E(G)\} \subseteq \{1, 2, \ldots, n\} \). If \( n \) is the smallest positive integer satisfying these conditions together with the condition that all the vertex and edge labels are distinct and there is no common vertex and edge labels, then \( n \) is called the **super mean number** of a graph \( G \) and it is denoted by \( S_m(G) \). Nagarajan, Vasuki, and Arockiaraj [1438] proved that for any graph of order \( p \), \( S_m(G) \leq 2^p - 2 \) and provided an upper bound of the super mean number of the graphs: \( K_{1,n} \) \( n \geq 7 \); \( tK_{1,n} \), \( n \geq 5 \); \( t > 1 \); the bistar \( B(p, n) \), \( p > n \); the graphs obtained by identifying a vertex of \( C_m \) and the center of \( K_{1,n} \), \( n \geq 5 \); and the graphs obtained by identifying a vertex of \( C_m \) and the vertex of degree \( 1 \) of \( K_{1,n} \). They also gave the super mean number for the graphs \( C_n, tK_{1,4} \), and \( B(p, n) \) for \( p = n \) and \( n + 1 \).

Manickam and Marudai [1352] defined a graph \( G \) with \( q \) edges to be an **odd mean graph** if there is an injective function \( f \) from the vertices of \( G \) to \( \{1, 3, 5, \ldots, 2q - 1\} \) such that each edge \( uv \) is labeled with \((f(u) + f(v))/2 \) if \( f(u) + f(v) \) is even, and \((f(u) + f(v) + 1)/2 \) if \( f(u) + f(v) \) is odd, then the resulting edge labels are distinct. Such a function is called a **odd mean labeling**. For integers \( a \) and \( b \) at least 2, Vasuki and Nagarajan [2094] use \( P^b_a \) to denote the graph obtained by starting with vertices \( y_1, y_2, \ldots, y_a \) and connecting \( y_i \) to \( y_{i+1} \) with \( b \) internally disjoint paths of length \( i + 1 \) for \( i = 1, 2, \ldots, a - 1 \) and \( j = 1, 2, \ldots, b \). For integers \( a \geq 1 \) and \( b \geq 2 \) they use \( P^b_{(2a)} \) to denote the graph obtained by starting with vertices \( y_1, y_2, \ldots, y_{a+1} \) and connecting \( y_i \) to \( y_{i+1} \) with \( b \) internally disjoint paths of length \( 2i \) for \( i = 1, 2, \ldots, a \) and \( j = 1, 2, \ldots, b \). They proved that the graphs \( P^b_{2r, m}, P^b_{2r+1, 2m+1}, \) and \( P^m_{(2r)} \) are odd mean graphs for all values of \( r \) and \( m \).

Jeyanthi and Gomathi [907] proved the edge linked cyclic snake \( EL(kC_n) \)(\( n \geq 6 \)) is an odd mean graph. In [907] they constructed new families of odd mean graphs from linking existing odd mean graphs.

For a \( T^*_p \)-tree \( T \) with \( m \) vertices \( T \oplus P_n \) is the graph obtained from \( T \) and \( m \) copies of \( P_n \)
by identifying one pendent vertex of $i$th copy of $P_n$ with $i$th vertex of $T$. For a $T_p$-tree $T$ with $m$ vertices $T \circ 2P_n$ is the graph obtained from $T$ by identifying the pendent vertices of two vertex disjoint paths of equal lengths $n l$ at each vertex of $T$. Ramya, Selvi and Jeyanthi [1609] prove that $P_m \circ K_n (m \ge 2, n \ge 1)$ is an odd mean graph. $T_p$ trees are odd mean graphs, and, for any $T_p$ tree $T$, the graphs $T \circ P_n, T \circ 2P_n, \langle T \circ K_{1,n} \rangle$ are odd mean graphs.

For a $T_p$-tree $T$ with $m$ vertices let $T \circ C_n$ denote the graph obtained from $T$ and $m$ copies of $C_n$ by identifying a vertex of $i$th copy of $C_n$ with $i$th vertex of $T$ and $T \circ C_n$ denote the graph obtained from $T$ and $m$ copies of $C_n$ by joining a vertex of $i$th copy of $C_n$ with $i$th vertex of $T$ by an edge. In [1696] Selvi, Ramya, and Jeyanthi prove that for a $T_p$ tree $T$ the graphs $T \circ C_n (n > 3, n \neq 6)$ and $T \circ C_n, (n > 3, n \neq 6)$ are odd mean graphs.

Ramya, Selvi, and Jeyanthi [1610] prove that for a $T_p$-tree $T$ the following graphs are odd mean graphs: $T \circ P_n, T \circ 2P_n, P_m \circ K_n$, and the graph obtained from $T$ and $m$ copies of $K_{1,n}$ by joining the central vertex of $i$th copy of $K_{1,n}$ with $i$th vertex of $T$ by an edge.

Gayathri and Amuthavalli [676] (see also [120]) say a $(p, q)$-graph $G$ has a $(k, d)$-odd mean labeling if there exists an injection $f$ from the vertices of $G$ to $\{0, 1, 2, \ldots, 2k − 1 + 2(q − 1)d\}$ such that the induced map $f^*$ defined on the edges of $G$ by $f^*(uv) = [(f(u) + f(v))/2]$ is a bijection from edges of $G$ to $\{2k−1, 2k−1 + 2d, 2k−1 + 4d, \ldots, 2k−1 + 2(q − 1)d\}$. When $d = 1$ a $(k, d)$-odd mean labeling is called $k$-odd mean. For $n \ge 2$ they prove the following graphs are $k$-odd mean for all $k$: $P_n$; combs $P_n \circ K_1$; crowns $C_n \circ K_1 (n \ge 4)$; bistars $B_n,n$; $P_m \circ K_n (m \ge 2)$; $C_n \circ K_n$; $K_{2,n}$; $C_n$ except for $n = 3$ or 6; the one-point union of $C_n (n \ge 4)$ and an endpoint of any path; grids $P_m \times P_n (m \ge 2)$; $(P_n \times P_2) \circ K_1$; arbitrary unions of paths; arbitrary unions of stars; arbitrary unions of cycles; the graphs obtained by joining two copies of $C_n (n \ge 4)$ by any path; and the graph obtained from $P_m \times P_n$ by replacing each edge by a path of length 2. They prove the following graphs are not $k$-odd mean for any $k$: $K_n$; $K_n$ with an edge deleted; $K_3,n (n \ge 3)$; wheels; fans; friendship graphs; triangular snakes; M"obius ladders; books $K_{1,m} \times P_2 (m \ge 4)$; and webs. For $n \ge 3$ they prove $K_{1,n}$ is $k$-odd mean if and only if $k \ge n − 1$. Gayathri and Amuthavalli [677] prove that the graph obtained by joining the centers of stars $K_{1,m}$ and $K_{1,n}$ are $k$-odd mean for $m = n, n+1, n+2$ and not $k$-odd mean for $m > n + 2$. For $n \ge 2$ the following graphs have a $(k, d)$-mean labeling [696]: $C_m \cup P_n (m \ge 4)$ for all $k$; arbitrary unions of cycles for all $k$; $P_{2n}; P_{m+1}$ for $k \ge d$; $P_{2n+1}$ is not $(k, d)$-mean when $k < d$; combs $P_n \circ K_1$ for all $k$; $K_{1,n}$ for $k \ge d$; $K_{2,n}$ for $k \ge d$; bistars for all $k$; $nC_4$ for all $k$; and quadrilateral snakes for $k \ge d$.

In [1729] Seoul and Salim [1730] proved that a graph has a $k$-odd mean labeling if and only if it has a mean labeling. In [1729] Seoul and Salim give upper bounds of the number of edges of graphs with a $(k, d)$-odd mean labeling.

Pricilla [1567] defines an even mean labeling of a graph $G$ as an injective function $f$ from the vertices of $G$ to $\{2, 4, \ldots, 2 \lvert E(G) \rvert \}$ such that the edge labels given by $(f(u) + f(v))/2$ are distinct. Vaidya and Vyas [2082] proved that $D_2(P_n), M(P_n), T(P_n), S'(P_n), P_2^n, P_n^3$, switching of pendent vertex in $P_n, S'(B_{n,n})$, double fans, and duplicating each vertex by an edge in paths are even mean graphs.

Gayathri and Gopi [685] defined a graph $G$ with $q$ edges to be an $k$-even mean graph
if there is an injective function \( f \) from the vertices of \( G \) to \( \{0, 1, 2, \ldots, 2k + 2(q - 1)\} \) such that when each edge \( uv \) is labeled with \((f(u) + f(v))/2\) if \( f(u) + f(v) \) is even, and \((f(u) + f(v) + 1)/2\) if \( f(u) + f(v) \) is odd, then the resulting edge labels are \( \{2k, 2k + 2, 2k + 4, \ldots, 2k + 2(q - 1)\} \). Such a function is called a \( k\)-even mean labeling. In [685] they proved that the graphs obtained by joining two copies of \( C_n \) with a path \( P_m \) are \( k\)-even mean for all \( k \) and all \( m, n \geq 3 \) when \( n \equiv 0, 1 \) (mod 4) and for all \( k \geq 1, m \geq 7, \) and \( n \geq 3 \). In [687] Gayathri and Gopi proved that various graphs obtained by joining two copies of stars \( K_{1,m} \) and \( K_{1,n} \) with a path by identifying the one endpoint of the path with the center of one star and the other endpoint of the path with the center of the other star are \( k\)-even mean. In [686] they proved that various graphs obtained by appending a path to a vertex of a cycle are \( k\)-even mean. In [688] they proved that \( C_n \cup P_m, n \geq 4, m \geq 2, \) is \( k\)-even mean for all \( k \). Gayathri and Gopi [691] proved the following are \( k\)-even mean labeling. In [685] they proved that various graphs obtained by appending a path to a vertex of a cycle are \( k\)-even mean. In [686] they proved that various graphs obtained by appending a path to a vertex of a cycle are \( k\)-even mean. In [688] they proved that various graphs obtained by appending a path to a vertex of a cycle are \( k\)-even mean. In [689] Gayathri and Gopi proved the following are \( k\)-even mean labeling. They proved that \( P_n \oplus nK_1(m \geq 3, n \geq 2) \) has a \( (k, d)\)-even mean labeling in the following cases: all \( (k, d) \) when \( m \) is even; all \( (k, d) \) when \( m \) is odd and \( n \) is odd; and \( (k, d) \) when \( m \) is odd and \( n \) is even and \( k \geq d \).

Gayathri and Gopi [689] say graph \( G \) with \( q \) edges has a \((k, d)\)-even mean labeling if there exists an injection \( f \) from the vertices of \( G \) to \( \{0, 1, 2, \ldots, 2k + 2(q - 1)d\} \) such that the induced map \( f^* \) defined on the edges of \( G \) by \( f^*(uv) = (f(u) + f(v))/2 \) if \( f(u) + f(v) \) is even and \( f^*(uv) = (f(u) + f(v) + 1)/2 \) if \( f(u) + f(v) \) is odd is a bijection from edges of \( G \) to \( \{2k, 2k + 2d, 2k + 4d, \ldots, 2k + 2(q - 1)d\} \). A graph that has a \((k, d)\)-even mean labeling is called a \((k, d)\)-even mean graph. They proved that \( P_n \oplus nK_1(m \geq 3, n \geq 2) \) has a \( (k, d)\)-even mean labeling in the following cases: all \( (k, d) \) when \( m \) is even; all \( (k, d) \) when \( m \) is odd and \( n \) is odd; and \( (k, d) \) when \( m \) is odd and \( n \) is even and \( k \geq d \).

Kalaimathy [1006] investigated conditions under which a mean labeling for a graph \( G \) will yield a \((k, d)\)-even mean labeling for \( G \) and vice versa. He also gave conditions under which two graphs that have \((1, 1)\)-mean labelings can be joined by an single edge to obtain a new graph that has a \((1, 1)\)-even mean labeling.

Murugan and Subramanian [1428] say a \((p, q)\)-graph \( G \) has a Skolem difference mean labeling if there exists an injection \( f \) from the vertices of \( G \) to \( \{1, 2, \ldots, p + q\} \) such that the induced map \( f^* \) defined on the edges of \( G \) by \( f^*(uv) = (|f(u) - f(v)|)/2 \) if \( |f(u) - f(v)| \) is even and \( f^*(uv) = (|f(u) - f(v)| + 1)/2 \) if \( |f(u) + f(v)| \) is odd is a bijection from edges of \( G \) to \( \{1, 2, \ldots, q\} \). A graph that has a Skolem difference mean labeling is called a Skolem difference mean graph. They show that the graphs obtained by starting with two copies of \( P_n \) with vertices \( v_1, v_2, \ldots, v_n \) and \( u_1, u_2, \ldots, u_n \) and joining the vertices \( v_{(n+1)/2} \) and \( u_{(n+1)/2} \) if \( n \) is odd and the vertices \( v_{n/2+1} \) and \( u_{n/2} \) if \( n \) is even are Skolem difference mean.

Selvi, Ramya and Jeyanthi [1695] prove that \( C_n \circ P_n \) \((n \geq 3, m \geq 1)\), \( K_n \) \(n \leq 3)\), the shrub \( St(n_1, n_2, \ldots, n_m) \), and the banana tree \( Bt(n, n, \ldots, n) \) are Skolem difference mean graphs. They show that if \( G \) is a \((p, q)\) graph with \( q > p \) then \( G \) is not a Skolem difference mean graph and prove that \( K_n \) \(n \geq 4) \) is not a Skolem difference mean graph. A skolem difference mean labeling for which all the labels are odd is called an extra Skolem difference mean labeling. They also prove that the graph \( T \{K_{1,n_1} : K_{1,n_2} : \cdots : K_{1,n_m}\} \), obtained from the stars \( K_{1,n_1}, K_{1,n_2}, \ldots, K_{1,n_m} \) by joining the central vertex of \( K_{1,n_j} \) and
Kalaiyarasi, Ramya, and Jeyanthi prove the following graphs have Skolem odd difference trees obtained by connecting an isolated vertex to one leaf of each of any number of graphs obtained from $K_{1,n_1}$, $K_{1,n_2}$, $K_{1,n_m}$ by joining a leaf of $K_{1,n_j+1}$ to a new vertex $w_j$ for $1 \leq j \leq m-1$ by an edge are extra Skolem difference mean graphs.

Let $G(V,E)$ be a graph with $p$ vertices and $q$ edges. Ramya, Kalaiyarasi, and Jeyanthi [1607] say $G$ is a Skolem odd difference mean if there exists an injective function $f : V(G) \to \{0,1,2,3,\ldots,p+3q-3\}$ such that the induced map $f^* : E(G) \to \{1,3,5,\ldots,2q-1\}$ denoted by $f^*(uv) = \lceil |f(u) - f(v)|/2 \rceil$ is a bijection. A graph that admits a Skolem odd difference mean labeling is called a odd difference mean graph. They prove that $P_n$, $C_n$ ($n \geq 4$), $K_{1,n}$, $P_n \odot K_{1,n}$, coconut trees $T(n,m)$ obtained by identifying the central vertex of the star $K_{1,m}$ with a pendent vertex of $P_n$, $B_{m,n}$, caterpillars $S(n_1,n_2,\ldots,n_m)$, $P_m \odot P_n$ and $P_m \odot 2P_n$ are Skolem even difference mean graphs. They establish that $K_n$, $n > 3$ and $K_{2,n}$ ($n \geq 3$) are not Skolem odd difference mean graphs. They also prove that $K_{2,n}$ is a Skolem odd difference mean graph if $n \leq 2$. In [920] Jeyanthi, Kalaiyarasi, Ramya, and Saratha Devi prove that bistars $B(m,n)$, $mP_n$, $mP_n \odot tP_s$, $mK_{1,n} \cup tK_{1,s}$ and the graph $\langle P_m \odot S_n \rangle$ obtained from $P_m$ and $m$ copies of $K_{1,n}$ by joining the central vertex of $p$th copy of $K_{1,n}$ with $i$th vertex of $P_m$ by an edge admit Skolem odd difference mean labelings. They also prove that if $G(p,q)$ is a Skolem odd difference mean graph then $p \geq q$ and that wheels, umbrellas, books, and ladders are not Skolem odd difference mean graphs. They call a Skolem odd difference labeling a Skolem even vertex odd difference mean labeling if all the vertex labels are even. They prove that $P_n$, $K_{1,n}$, $P_n \odot K_1$, the coconut tree $T(n,m)$ obtained by identifying the central vertex of $K_{1,m}$ with a pendent vertex of a path $P_n$, $B(m,n)$, caterpillars $S(n_1,n_2,\ldots,n_m)$, $P_m \odot P_n$ are $P_m \odot 2P_n$ are even vertex odd difference mean and $C_n$ is not a Skolem even vertex odd difference mean graph. In [1008] Kalaiyarasi, Ramya, and Jeyanthi prove the following graphs have Skolem odd difference mean labelings: graphs obtained from a $T_p$ tree with $m$ vertices and $m$ copies of $K_{1,n}$ by identifying the central vertex of $i$th copy of $K_{1,n}$ with $i$th vertex of $T$; graphs obtained by connecting an isolated vertex to central vertex of each of a number of stars; the banana trees obtained by connecting an isolated vertex to one leaf of each of any number of $K_{1,n}$; graphs obtained from $K_{1,n_1}$, $K_{1,n_2}$, $K_{1,n_m}$ by joining the central vertices of $K_{1,n_j}$ and $K_{1,n_j+1}$ to a new vertex $w_j$ for $1 \leq j \leq m-1$; graphs obtained from $K_{1,n_1}$, $K_{1,n_2}$, $K_{1,n_m}$ by joining a leaf of $K_{1,n_j}$ and a leaf of $K_{1,n_j+1}$ to a new vertex $w_j$ for $1 \leq j \leq m-1$.

Kalaiyarasi, Ramya, and Jeyanthi [1007] say a graph $G(V,E)$ with $p$ vertices and $q$ edges has a centered triangular mean labeling if it is possible to label the vertices with distinct elements $f(x)$ from $S$, where $S$ is a set of non-negative integers in such a way that for each edge $e = uv$, $f^*(e) = \lceil (|f(u) + f(v)|)/2 \rceil$ and the resulting edge labels are the first $q$ centered triangular numbers. A graph that admits a centered triangular mean labeling is called a centered triangular mean graph. They prove that $P_n$, $K_{1,n}$, bistars $B_{m,n}$, coconut trees, caterpillars $S(n_1,n_2, n_3,\ldots,n_m)$, $S(n_1,n_2, n_3,\ldots,n_m)$, banana trees $B_t(n,n,\ldots,n)$ and $P_m \odot P_n$ are centered triangular mean graphs.

Selvi, Ramya, and Jeyanthi [1694] define a triangular difference mean labeling of a graph $G(p,q)$ as an injection $f : V \to Z^+$, such that when the edge labels are defined as $f^*(uv) = \lceil |f(u) - f(v)|/2 \rceil$ the values of the edges are the first $q$ triangular numbers. A graph that admits a triangular difference mean labeling is called a triangular differen-
ence mean graph. They prove that the following are triangular difference mean graphs: \( P_n, K_{1,n}, P_n \odot K_1 \), bistars \( B_{m,n} \); graphs obtained by joining the roots of different stars to the new vertex, trees \( T(n,m) \) obtained by identifying a central vertex of a star with a pendant vertex of a path, the caterpillar \( S(n_1,n_2,\ldots,n_m) \) and the graph \( C_n \odot P_m \).

A graph \( G(V,E) \) with \( p \) vertices and \( q \) edges is said to have centered triangular difference mean labeling if there is an injective mapping \( f \) from \( V \) to \( \mathbb{Z}^+ \) such that the edge labels induced by \( f^*(uv) = \lceil (f(u) - f(v))/2 \rceil \) are the first \( q \) centered triangular numbers. A graph that admits a centered triangular difference mean labeling is called a centered triangular difference mean graph. Ramya, Selvi, and Jeyanthi [1611] prove that \( P_n, K_{1,n}, C_n \odot K_1 \), bistars \( B_{m,n} \), \( C_n \) \((n > 4)\), coconut trees, caterpillars \( S(n_1,n_2,\ldots,n_m) \), \( C_n \odot P_m \) \((n > 4)\) and \( S_{m,n} \) are centered triangular difference mean graphs.

Gayathri and Tamil selvi [696] say a \((p,q)\)-graph \( G \) has a \((k,d)\)-super mean labeling if there exists an injection \( f \) from the vertices of \( G \) to \( \{k,k+d,\ldots,k+(p+q)d\} \) such that the induced map \( f^* \) defined on the edges of \( G \) by \( f^*(uv) = \lceil (f(u) + f(v))/2 \rceil \) has the property that the vertex labels and the edge labels together are the integers from \( k \) to \( k+(p+q)d \). When \( d = 1 \) a \((k,d)\)-super mean labeling is called \( k\)-super mean. For \( n \geq 2 \) they prove the following graphs are \( k\)-super mean for all \( k \): odd cycles; \( P_n \); \( C_m \cup P_n \); the one-point union of a cycle and the endpoint of \( P_n \); the union of any two cycles excluding \( C_4 \); and triangular snakes. For \( n \geq 2 \) they prove the following graphs are \((k,d)\)-super mean for all \( k \) and \( d \): \( P_n \); odd cycles; combs \( P_n \odot K_1 \); and bistars. In [964] Jeyanthi, Ramya, and Thangavelu proved the following graphs have \( k\)-super mean labelings: \( C_{2n}, C_{2n+1} \times P_m \), grids \( P_m \times P_n \) with one arbitrary crossing edge in every square, and antiprisms on \( 2n \) vertices \((n > 4)\). (Recall an antiprism on \( 2n \) vertices has vertex set \( \{x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n}\} \) and edge set \( \{x_{j,i},x_{j,i+1}\} \cup \{x_{1,i},x_{2,i}\} \cup \{x_{1,i},x_{2,i-1}\} \) where subscripts are taken modulo \( n \).) Jeyanthi, Ramya, Thangavelu [963] give \( k\)-super mean labelings for a variety of graphs. Jeyanthi, Ramya, Thangavelu, and Aditanar [962] show how to construct \( k\)-super mean graphs from existing ones.

Gayathri and Tamil selvi [696] say a \((p,q)\)-graph \( G \) has a \( k\)-super edge mean labeling if there exists an injection \( f \) from the edges of \( G \) to \( \{k,k+1,\ldots,k+(p+q)q\} \) such that the induced map \( f^* \) defined on the vertices of \( G \) to \( \{k,k+1,\ldots,k+2(p+q)q\} \) defined by \( f^*(v) = \lceil (\Sigma f(v)) \rceil \) taken all edges \( vu \) incident to \( v \) is an injection. For \( n \geq 3 \) they prove the following graphs are \( k\)-super edge mean for all \( k \): paths; cycles; combs \( P_n \odot K_1 \); triangular snakes; crowns \( C_n \odot K_1 \); the one-point union of \( C_3 \) and an endpoint of \( P_n \); and \( P_n \odot K_2 \).

In [1675] Sandhya, Somasundaram, and Ponraj call a graph with \( q \) edges a harmonic mean graph if there is an injective function \( f \) from the vertices of the graph to the integers from 1 to \( q+1 \) such that when each edge \( uv \) is labeled with \( (2f(u)f(v))/(f(u)+f(v)) \) or \( (2f(u)f(v))/(f(u)+f(v)) \) the edge labels are distinct. They prove the following graphs have such a labeling: paths, ladders, triangular snakes, quadrilateral snakes, \( C_m \cup P_n \) \((n > 1)\); \( C_m \cup C_n \); \( nK_3 \); \( mK_3 \cup P_n \) \((n > 1)\); \( mC_4 \); \( mC_4 \cup P_n \); \( mK_3 \cup nC_4 \); and \( C_n \odot K_1 \) (crowns). They also prove that wheels, prisms, and \( K_n \) \((n > 4)\) with an edge deleted are not harmonic mean graphs. In [1673] Sandhya, Somasundaram, and Ponraj investigated
the harmonic mean labeling for a polygonal chain, square of the path and dragon and enumerate all harmonic mean graph of order at most 5. In [885] Jayasekaran and David Raj prove that some disconnected graphs are harmonic mean graphs.

Sandhya, Somasundaram, Ponraj [1674] proved that the following graphs have harmonic mean labelings: graphs obtained by duplicating an arbitrary vertex or an arbitrary edge of a cycle; graphs obtained by joining two copies of a fixed cycle by an edge; the one-point union of two copies of a fixed cycle; and the graphs obtained by starting with a path and replacing every other edge by a triangle or replacing every other edge by a quadrilateral.

Vaidya and Barasara [2002] proved that the following graphs have harmonic mean labelings: graphs obtained by the duplication of an arbitrary vertex or arbitrary edge of a path or a cycle; the graphs obtained by the duplication of an arbitrary vertex of a path or cycle by a new edge; and the graphs obtained by the duplication of an arbitrary edge of a path or cycle by a new vertex.

An \( F \)-geometric mean labeling of a graph \( G \) with \( q \) edges, is an injective function from the vertex set of \( G \) to \( \{1, 2, \ldots, q + 1\} \) such that the edge labels obtained from the floor function of geometric mean of the vertex labels of the end vertices of each edge, are all distinct and the set of edge labels is \( \{1, 2, \ldots, q\} \). Durai Baskar, Arockiaraj, and Rajendran [566] proved that the following graphs are \( F \)-geometric mean: graphs obtained by identifying a vertex of consecutive cycles (not necessarily of the same length) in a particular way; graphs obtained by identifying an edge of consecutive cycles (not necessarily of the same length) in a particular way; graphs obtained by joining consecutive cycles (not necessarily of the same length) by paths (not necessarily of the same length) in a particular way; \( C_n \circ K_1 \); \( P_n \circ K_1 \); \( L_n \circ K_1 \); \( G \circ K_1 \) where \( G \) is the graph obtained by joining two copies of \( P_n \) by an edge in a particular way; graphs obtained by appending two edges at each vertex of graphs obtained by joining two copies of \( P_n \) by an edge in a particular way; graphs obtained from \( C_n \) by appending two edges at each vertex of \( C_n \); graphs obtained from ladders by appending two edges at each vertex of the ladders; graphs obtained from \( P_n \) by appending an end point of the star \( S_2 \) to each vertex of \( P_n \); and graphs obtained from \( P_n \) by appending an end point of the star \( S_3 \) to each vertex of \( P_n \).

Durai Basker and Arockiaraj [567] study the \( F \)-geometric meanness of cycles, stars, complete graphs, combs, ladders, triangular ladders, middle graphs of paths, graphs obtained from duplicating arbitrary vertex by a vertex as well as arbitrary edge by an edge in cycles, and subdivisions of combs and stars.

In [1954] Sundaram, Ponraj, and Somasundaram introduced a new labeling parameter called the mean number of a graph. Let \( f \) be a function from the vertices of a graph to the set \( \{0, 1, 2, \ldots, n\} \) such that the label of any edge \( uv \) is \( (f(u) + f(v))/2 \) if \( f(u) + f(v) \) is even and \( (f(u) + f(v) + 1)/2 \) if \( f(u) + f(v) \) is odd. The smallest integer \( n \) for which the edge labels are distinct is called the mean number of a graph \( G \) and is denoted by \( m(G) \). They proved that for a graph \( G \) with \( p \) vertices \( m(tK_{1,n}) \leq t(n + 1) + n - 4 \); \( m(K_{1,n}) = 2n - 3 \) if \( n > 3 \); \( m(B(p,n)) = 2p - 1 \) if \( p > n + 2 \) where \( B(p,n) \) is a bistar; \( m(kT) = kp - 1 \) for a mean tree \( T \); \( m(W_n) \leq 3n - 1 \); and \( m(C_3^{(0)}) \leq 4t - 1 \).
Let $f$ be a function from $V(G)$ to $\{0,1,2\}$. For each edge $uv$ of $G$, assign the label $[(f(u)+f(v))/2]$. Ponraj, Sivakumar, and Sundaram [1557] say that $f$ is a mean cordial labeling of $G$ if $|v_f(i) - v_f(j)| \leq 1$ for $i$ and $j$ in $\{0,1,2\}$ where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges labeled with $x$, respectively. A graph with a mean cordial labeling is called a mean cordial graph. Observe that if the range set of $f$ is restricted to $\{0,1\}$, a mean cordial labeling coincides with that of a product cordial labeling. Ponraj, Sivakumar, and Sundaram [1557] prove the following: every graph is a subgraph of a mean cordial: every graph is a subgraph of a mean cordial; the comb $P_n \circ K_1$ is mean cordial; $P_n \circ 2K_1$ is mean cordial; and $K_{2,n}$ is a mean cordial if and only if $n \leq 2$.

In [1549] Ponraj and Sivakumar proved the following graphs are mean cordial: $mG$ where $m \equiv 0 \pmod{3}$; $C_m \cup P_n$; $P_m \cup P_n$; $K_1 \cup P_n$; $S(P_n \circ K_1)$; $S(P_n \circ 2K_1)$; $P_2^n$ if and only if $n \equiv 1 \pmod{3}$ and $n \geq 7$; and the triangular snake $T_n (n > 1)$ if and only if $n \equiv 0 \pmod{3}$. They also proved that if $G$ is mean cordial then $mG$, $m \equiv 1 \pmod{3}$ is mean cordial.

In [1524] Ponraj and Sathish Narayanan proved double triangular snakes $D(T_n)$ are mean cordial if and only if $n > 3$ and obtained partial results on mean cordial labelings of alternate triangular snakes, double alternate triangular snakes.

In [1540] Ponraj, Sathish Narayanan, and Ramasamy introduced the notion of total mean cordial labeling. A total mean cordial labeling of a graph $G(V,E)$ is a function $f : V(G) \rightarrow \{0,1,2\}$ such that when each edge $xy$ is assigned the label $[(f(x)+f(y))/2]$ we have $|ev_f(i) - ev_f(j)| \leq 1$, $i, j \in \{0,1,2\}$, where $ev_f(x)$ denotes the total number of vertices and edges labeled with $x$. A graph with a total mean cordial labeling is called total mean cordial. In [1540], [1541], and [1542], Ponraj, Sathish Narayanan, and Ramasamy determined the total mean cordiality of the following graphs: $P_n$; $C_n$; $K_{1,n}$; $W_n$; $K_2 + mK_1$; combs $P_n \circ K_1$; double combs $P_n \circ 2K_1$; crowns; flowers; lotuses inside a circle; bistars; quadrilateral snakes; $K_{2,n}$; olive trees; $S(P_n \circ K_1)$; $S(K_{1,n})$ ($S(G)$ denotes the subdivision of $G$); triangular snakes; $P_2^n$; fans $F_n$; umbrellas; butterflies; and dumbbells. In [1523], [1525], and [1526], Ponraj and Sathish Narayanan determined the total mean cordiality of $K_n^c + 2K_2$; prisms; gears; helms; $P_1 \cup P_2 \cup \cdots \cup P_n$; $L_n \circ K_1$; $S(W_n)$; $S(P_n \circ 2K_1)$; and graphs obtained by subdividing each step of a ladder exactly once.

Let $G$ be a $(p,q)$-graph. Ponraj and Sathish Narayanan [1528] and [1529] proved the following. If $G$ satisfies any one of the following three conditions then $G \circ 2K$ is total mean cordial: (1) $G$ is a tree, (2) $G$ is a unicycle, (3) $q = p + 1$. If $G$ satisfies any one of the following three conditions then the shadow graph of $G$ is total mean cordial: (1) $G$ is a tree, (2) $G$ is a unicycle, (3) $q = p + 1$. They also proved that the following are total mean cordial graphs: $C_n \circ K_2$, $C_n^{(2)}$, dragons, splitting graphs of stars, splitting graphs of combs, books, ladders, $P_n \circ K_2$ if and only if $n \neq 1$, and $G \cup P_n (n \neq 3)$.

Ponraj, Sathish Narayanan, and Kala introduced the concept of radio mean labeling in [1537]. A radio mean labeling of a connected graph $G$ is a one-to-one map $f$ from the vertex set $V(G)$ to the set of natural numbers such that for each pair of distinct vertices $u$ and $v$ of $G$, $d(u,v) + \left\lfloor \frac{f(u)+f(v)}{2} \right\rfloor \geq 1 + \text{diam}(G)$. The radio mean number of $f$,
$rmn(f)$, is the maximum number assigned to any vertex of $G$. The radio mean number of $G$, $rmn(G)$, is the minimum value of $rmn(f)$ taken over all radio mean labelings $f$ of $G$. They proved $rmn(G) \geq |V(G)|$; if $G$ is a $(p,q)$-graph with diameter $d \geq 2$, then $rmn(G) \leq p + d - 2$; and if $G$ is a $(p,q)$-connected graph with diameter 2 or 3, then $rmn(G) = p$. They also determine the radio mean number of $K_n$, $K_{m,n}$, sunflowers, helms, gears, lotuses inside a circle, and graphs obtained by identifying any two vertices of two wheels of the same size.

In [1538] and [1539], Ponraj, Sathish Narayanan, and Kala determine the radio mean numbers of $S(K_{m,n})$ ($m > 1, n > 1$); $K_{m,n} \odot P_t$; $C_6^{(t)}$; $W_n \odot P_m$; graphs obtained by joining the rim vertices of the two wheels with an edge; and graphs obtained from a wheel by subdividing each spoke by a vertex. In [1543] Ponraj, Sathish Narayanan, and Kala give the radio mean number of graphs with diameter three, lotuses inside a circle, helms, and sunflower graphs.

In [1544] and [1545] Ponraj and Sathish Narayanan give the radio mean number of the following graphs: subdivisions of stars, subdivisions of wheels, subdivisions of $K_2 + mK_1$, subdivisions of bistars, jelly fish, subdivisions of jelly fish, books with pentagonal pages, graphs obtained by taking $m$ disjoint copies of $K_{1,n}$ and joining a new vertex to the centers of the $m$ copies of $K_{1,n}$.

In [1527] Ponraj and Sathish Narayanan proved that the following graphs are not mean cordial: $K_2 + \overline{K}_m$; $\overline{K}_n + 2K_2$; $P_n \times K_2$; flower graphs; sunflower graphs; $C_n \odot K_2$. Also they proved the following: the Mongolian tent $MT_{m,n}$ is mean cordial if and only if $m \equiv 0 \pmod{3}$ or $n \equiv 0 \pmod{3}$ ($MT_{m,n}$ is the graph obtained from $P_m \times P_n$, $n$ odd, by adding one extra vertex above the grid and joining every other vertex of the top row of $P_m \times P_n$ to the new vertex); the book $B_m$ is mean cordial if and only if $m = 1$; books with $n$ pentagonal pages are mean cordial if and only if $n \equiv 1 \pmod{3}$; $P_n \odot K_2$ is mean cordial if and only if $n \equiv 0 \pmod{3}$; quadrilateral snakes are mean cordial; alternate quadrilateral snakes $A(Q_n)$ are mean cordial if and only if the square starts from second vertex of the path $P_n$, ends with $(n-1)^{th}$ vertex and $n \equiv 0, 2 \pmod{3}$, or the square starts from first vertex, ends with $n^{th}$ vertex and $n \equiv 0, 2 \pmod{3}$, or the square starts from second vertex, ends with $n^{th}$ vertex and $n \equiv 0, 1 \pmod{3}$.

Kaneria, Khoda, and Karavadiya [1019] prove: the path union of $n$ copies of a graph $G$ is a mean cordial when $n \equiv 0 \pmod{3}$; if $G$ is balanced mean cordial, then $P_n \times G$ and $C_n \times G$ are balanced mean cordial; and if $f : V(G) \rightarrow \{0, 1, 2\}$ is a balanced mean cordial labeling for $G$, then $G^*$ is also a balanced mean cordial graph.

In [927] Jeyanthi and Maheswari define a one modulo three mean labeling of a graph $G$ with $q$ edges as an injective function $\phi$ from the vertices of $G$ to $\{a \mid 0 \leq a \leq 3q - 2$ where $a \equiv 0 \pmod{3}$ or $a \equiv 1 \pmod{3}\}$ and $\phi$ induces a bijection $\phi^*$ from the edges of $G$ to $\{a \mid 1 \leq a \leq 3q - 2$ where $a \equiv 1 \pmod{3}\}$ given by $\phi^*(uv) = \lceil(\phi(u) + \phi(v))/2\rceil$. They proved that $P_{2n}$, combs, bistars $B_{n,n}$, $T_p$-trees with an even number of vertices, $C_{4n+1}$, ladders, $K_{1,2n} \times P_2$ are one modulo three mean graphs. They also proved that bistars $B_{m,n}$ ($m \neq n$), $K_{1,n}$ ($n > 3$), and $K_{n}$ ($n > 3$) are not one modulo three mean graphs. In [937] Jeyanthi, Maheswari, and Pandiaraj [937] proved that $DA(Q_n)$, $DA(Q_2) \odot nK_1$, $DA(Q_m) \odot nK_1$, $DA(T_2) \odot nK_1$, $DA(T_m) \odot nK_1$, $\overline{S}(DA(T_n))$, $\overline{S}(DA(Q_n))$, and $mP_n$. 

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6

261
Jeyanthi, Maheswari, and Pandiaraj [936] prove that following graphs have one modulo three mean labelings: books $K_{1,2n} \times P_2$; splitting graphs $S'(P_{2n})$; vertex duplication graphs $D(G,v')$; edge duplication graphs $D(G,e')$; $n$th alternate quadrilateral snake graphs $NA(Q_m)$; graphs obtained by joining the endpoints of paths $P_{4m}$ to $n$ isolated vertices; and extended jewel graphs $EJ_n$ with vertex set $\{u, v, x, y, w, z, u_i : 1 \leq i \leq n\}$ and edge set $\{uv, wx, xy, yz, vw, wz, vu_i, zu_i : 1 \leq i \leq n\}$.

For graphs $G_1$ and $G_2$, $G_1 \circ G_2$ is the graph obtained from $G_1$ and $|V G_1|$ copies of $G_2$ by joining a vertex of $i$th copy of $G_2$ with the $i$th vertex of $G_1$ by an edge. Jeyanthi, Maheswari, and Pandiaraj [939] prove that the graphs $T \circ K_n$, $T \circ K_{1,n}$, $T \circ P_n$, and $T \circ 2P_n$ are one modulo three mean graphs.

Somasundaram, Vidhyarani, and Ponraj [1900] introduced the concept of a geometric mean labeling of a graph $G$ with $p$ vertices and $q$ edges as an injective function $f : V(G) \to \{1, 2, \ldots, q+1\}$ such that the induced edge labeling $f^* : E(G) \to \{1, 2, \ldots, q\}$ defined as $f^*(uv) = \left\lfloor \sqrt{f(u)f(v)} \right\rfloor$ or $\left\lceil \sqrt{f(u)f(v)} \right\rceil$ is bijective. Among their results are: paths, cycles, combs, ladders are geometric mean graphs and $K_n$ ($n > 4$) and $K_{1,n}$ ($n > 5$) are not geometric mean graphs. Somasundaram, Vidhyarani, and Sandhya [1901] proved $C_m \cup P_n$, $C_m \cup C_n$, $nK_3$, $nK_3 \cup P_n$, $nK_3 \cup C_m$, $P_n^2$, and crowns are geometric mean graphs. Vaidya and Barasara [2005] investigated geometric mean labelings in context of duplication of graph elements in cycle $C_n$ and path $P_n$.

Jeyanthi, Maheswari, and Pandiaraj [938] define a graph $G$ to be a one modulo three geometric mean graph if there is an injective function $\phi$ from the vertex set of $G$ to the set $\{a|1 \leq a \leq 3q - 2\}$ and either $a \equiv 0 \pmod{3}$ or $a \equiv 1 \pmod{3}$ where $q$ is the number of edges of $G$ and $\phi$ induces a bijection $\phi^*$ from the edge set of $G$ to $\{a|1 \leq a \leq 3q - 2\}$ given by $\phi^*(uv) = \left\lfloor \sqrt{\phi(u)\phi(v)} \right\rfloor$ or $\left\lceil \sqrt{\phi(u)\phi(v)} \right\rceil$ the function $\phi$ is called one modulo three geometric mean labeling of $G$. They proved paths, cycles with length at least 5, ladders, $P_n \odot K_1$, $P_n \odot P_2$, $P_n \odot P_2^*$, subdivision graphs $S(P_n \odot K_1)$, and subdivision graphs $S(P_n \odot K_2)$ are one modulo three geometric graphs. They also prove that $K_{1,n}$, $n \geq 3$ and graphs in which every edge lies on a triangle are not one modulo three geometric mean graph.

Jeyanthi, Selvi, and Ramya [981] define a restricted triangular difference mean labeling of a graph $G$ with $p$ vertices and $q$ edges as an injection $f : V \to \{1, 2, 3, \ldots, pq\}$ such that for each edge $uv$, the edge labels defined by $f^*(uv) = \lceil|f(u) - f(v)|/2\rceil$ are the first $q$ triangular numbers. A graph that admits a restricted triangular difference mean labeling is called a restricted triangular difference mean graph. Jeyanthi, Selvi, and Ramya [981] investigate the restricted triangular difference mean behaviors of the paths, combs, $K_n$, bistars $B_{m,n}$, caterpillars $S_{n_1,n_2,\ldots,n_m}$, $K_{m,n}$, wheels, and graphs obtained by joining the centers of different stars to the new vertex. They also give a necessary condition for a graph to be a restricted triangular difference mean graph.

Jeyanthi, Gomathi, and Lau [908] call a $(p,q)$-graph an analytic odd mean graph if there exist an injective function $f$ from the vertex set to $\{0, 1, 3, 5, \ldots, 2q - 1\}$ such that when each edge $e = uv$ with $f(u) < f(v)$ is labeled with $f^*(uv) = |f(u) - f(v)|/2$. They proved that the graphs $T \circ K_n$, $T \circ K_{1,n}$, $T \circ P_n$, and $T \circ 2P_n$ are one modulo three mean graphs.
If $a$ and $r$ are positive integers at least 2, we say a $(p, q)$-graph $G$ is $(a, r)$-geometric if its vertices can be assigned distinct positive integers such that the value of the edges obtained as the product of the endpoints of each edge is $\{a, a r, a r^2, \ldots, a r^{q-1}\}$. Hegde [788] has shown the following: no connected bipartite graph, except the star, is $(a, a)$-geometric where $a$ is a prime number or square of a prime number; any connected $(a, a)$-geometric graph where $a$ is a prime number or square of a prime number, is either a star or has a triangle; $K_{a,b}$, $2 \leq a \leq b$ is $(k, k)$-geometric if and only if $k$ is neither a prime number nor the square of a prime number; a caterpillar is $(k, k)$-geometric if and only if $k$ is neither a prime number nor the square of a prime number; $K_{a,b,1}$ is $(k, k)$-geometric for all integers $k \geq 2$; $C_{4t}$ is $(a, a)$-geometric if and only if $a$ is neither a prime number nor the square of a prime number; for any positive integers $t$ and $r \geq 2$, $C_{4t+1}$ is $(r^2t, r)$-geometric; for any positive integer $t$, $C_{4t+2}$ is not geometric for any values of $a$ and $r$; and for any positive integers $t$ and $r \geq 2$, $C_{4t+3}$ is $(r^{2t+1}, r)$-geometric. Hegde [790] has also shown that every $T_p$-tree and the subdivision graph of every $T_p$-tree are $(a, r)$-geometric for some values of $a$ and $r$ (see Section 3.2 for the definition of a $T_p$-tree). He conjectures that all trees are $(a, r)$-geometric for some values of $a$ and $r$.

Hegde and Shankaran [798] prove: a graph with an $\alpha$-labeling (see §3.1 for the definition) where $m$ is the fixed integer that is between the endpoints of each edge has an $(a^m+1, a)$-geometric for any $a > 1$; for any integers $m$ and $n$ both greater than 1 and $m$ odd, $mP_n$ is $(a^r, a)$-geometric where $r = (m n + 3)/2$ if $n$ is odd and $(a^r, a)$-geometric where $r = (m(n + 1) + 3)/2$ if $n$ is even; for positive integers $k > 1, d \geq 1$, and odd $n$, the generalized closed helm (see §5.3 for the definition) $CH(t, n)$ is $(k^r, k^d)$-geometric where $r = (n - 1)d/2$; for positive integers $k > 1, d \geq 1$, and odd $n$, the generalized web graph (see §5.3 for the definition) $W(t, n)$ is $(k^r, a)$-geometric where $a = k^d$ and $r = (n - 1)d/2$; for positive integers $k > 1, d \geq 1$, the generalized $n$-crown $(P_m \times K_3) \circ K_{1,n}$ is $(a, a)$-geometric where $a = k^d$; and $n = 2r + 1$, $C_n \circ P_3$ is $(k^r, k)$-geometric.

If $a$ and $r$ are positive integers and $r$ is at least 2 Arumugan, Germina, and Anadavally [151] say a $(p, q)$-graph $G$ is additively $(a, r)$-geometric if its vertices can be assigned distinct integers such that the value of the edges obtained as the sum of the endpoints of each edge is $\{a, ar, ar^2, \ldots, ar^{q-1}\}$. In the case that the vertex labels are nonnegative.
integers the labeling is called additively \((a,r)\ast\)-geometric. They prove: for all \(a\) and \(r\) every tree is additively \((a,r)\ast\)-geometric; a connected additively \((a,r)\ast\)-geometric graph is either a tree or unicyclic graph with the cycle having odd size; if \(G\) is a connected unicyclic graph and not a cycle, then \(G\) is additively \((a,r)\ast\)-geometric if and only if either \(a\) is even or \(a\) is odd and \(r\) is even; connected unicyclic graphs are not additively \((a,r)\ast\)-geometric; if a disconnected graph is additively \((a,r)\ast\)-geometric, then each component is a tree or a unicyclic graph with an odd cycle; and for all even \(a\) at least 4, every disconnected graph for which every component is a tree or unicyclic with an odd cycle has an additively \((a,r)\ast\)-geometric labeling.

Vijayakumar [2104] calls a graph \(G\) (not necessarily finite) arithmetic if its vertices can be assigned distinct natural numbers such that the value of the edges obtained as the sum of the endpoints of each edge is an arithmetic progression. He proves [2103] and [2104] that a graph is arithmetic if and only if it is \((a,r)\ast\)-geometric for some \(a\) and \(r\).

7.16 Strongly Multiplicative Graphs

Beineke and Hegde [336] call a graph with \(p\) vertices strongly multiplicative if the vertices of \(G\) can be labeled with distinct integers 1, 2, \ldots, \(p\) such that the labels induced on the edges by the product of the end vertices are distinct. They prove the following graphs are strongly multiplicative: trees; cycles; wheels; \(K_n\) if and only if \(n \leq 5\); \(K_{r,r}\) if and only if \(r \leq 4\); and \(P_m \times P_n\). They then consider the maximum number of edges a strongly multiplicative graph on \(n\) vertices can have. Denoting this number by \(\lambda(n)\), they show:

\[
\begin{align*}
\lambda(4r) & \leq 6r^2; \\
\lambda(4r+1) & \leq 6r^2 + 4r; \\
\lambda(4r+2) & \leq 6r^2 + 6r + 1; \text{ and} \\
\lambda(4r+3) & \leq 6r^2 + 10r + 3.
\end{align*}
\]

Adiga, Ramaswamy, and Somashekara [48] give the bound \(\lambda(n) \leq n(n+1)/2 + n - 2 - [(n+2)/4] - \sum_{i=2}^{n} i/p(i)\) where \(p(i)\) is the smallest prime dividing \(i\). For large values of \(n\) this is a better upper bound for \(\lambda(n)\) than the one given by Beineke and Hegde. It remains an open problem to find a nontrivial lower bound for \(\lambda(n)\).

Seoud and Zid [1744] prove the following graphs are strongly multiplicative: wheels; \(rK_n\) for all \(r\) and \(n\) at most 5; \(rK_n\) for \(r \geq 2\) and \(n = 6\) or 7; \(rK_n\) for \(r \geq 3\) and \(n = 8\) or 9; \(K_{4,r}\) for all \(r\); and the corona of \(P_n\) and \(K_m\) for all \(n\) and \(2 \leq m \leq 8\). In [1724] Seoud and Mahran give some necessary conditions for a graph to be strongly multiplicative.

Kanani and Chhaya [1011] prove that the total graph, splitting graph, and shadow graph of paths are strongly multiplicative and triangular snakes are strongly multiplicative.

Germina and Ajitha [702] (see also [31]) prove that \(K_2 + \overline{K_t}\), quadrilateral snakes, Petersen graphs, ladders, and unicyclic graphs are strongly multiplicative. Acharya, Germina, and Ajitha [31] have shown that \(C_k^{(n)}\) (see §2.2 for the definition) is strongly multiplicative and that every graph can be embedded as an induced subgraph of a strongly multiplicative graph. Germina and Ajitha [702] define a graph with \(q\) edges and a strongly multiplicative labeling to be hyper strongly multiplicative if the induced edge labels are \(\{2,3,\ldots,q+1\}\). They show that every hyper strongly multiplicative graph has exactly one nontrivial component that is either a star or has a triangle and every graph can be embedded as an induced subgraph of a hyper strongly multiplicative graph.
Vaidya, Dani, Vihol, and Kanani [2023] prove that the arbitrary supersubdivisions of tree, \( K_{mn}, P_n \times P_m, C_n \odot P_m, \) and \( C_n^m \) are strongly multiplicative. Vaidya and Kanani [2029] prove that the following graphs are strongly multiplicative: a cycle with one chord; a cycle with twin chords (that is, two chords that share an endpoint and with opposite endpoints that join two consecutive vertices of the cycle; the cycle \( C_n \) with three chords that form a triangle and whose edges are the edges of two 3-cycles and a \( n - 3 \)-cycle. duplication of an vertex in cycle (see \( \S 2.7 \) for the definition); and the graphs obtained from \( C_n \) by identifying of two vertices \( v_i \) and \( v_j \) where \( d(v_i, v_j) \geq 3 \). In [2032] the same authors prove that the graph obtained by an arbitrary supersubdivision of path, a star, a cycle, and a tadpole (that is, a cycle with a path appended to a vertex of the cycle.

Krawec [1110] calls a graph \( G \) on \( n \) edges modular multiplicative if the vertices of \( G \) can be labeled with distinct integers \( 0, 1, \ldots, n - 1 \) (with one exception if \( G \) is a tree) such that the labels induced on the edges by the product of the end vertices modulo \( n \) are distinct. He proves that every graph can be embedded as an induced subgraph of a modular multiplicative graph on prime number of edges. He also shows that if \( G \) is a modular multiplicative graph on prime number of edges \( p \) then for every integer \( k \geq 2 \) there exist modular multiplicative graphs on \( p^k \) and \( kp \) edges that contain \( G \) as a subgraph. In the same paper, Krawec also calls a graph \( G \) on \( n \) edges \( k \)-modular multiplicative if the vertices of \( G \) can be labeled with distinct integers \( 0, 1, \ldots, n + k - 1 \) such that the labels induced on the edges by the product of the end vertices modulo \( n + k \) are distinct. He proves that every graph is \( k \)-modular multiplicative for some \( k \) and also shows that if \( p = 2n + 1 \) is prime then the path on \( n \) edges is \((n + 1)\)-modular multiplicative. He also shows that if \( p = 2n + 1 \) is prime then the cycle on \( n \) edges is \((n + 1)\)-modular multiplicative if there does not exist \( \alpha \in \{2, 3, \ldots, n\} \) such that \( \alpha^2 + \alpha - 1 \equiv 0 \mod p \). He concludes with four open problems. In [1111] Krawec shows that every graph is a subgraph of a modular multiplicative graph. He also defines \( k \)-modular multiplicative graphs and proves that certain families of paths and cycles admit such a labeling.

### 7.17 Pair Sum and Pair Mean Graphs

For a \((p, q)\) graph \( G \) Ponraj and Parthipan [1511] define an injective map \( f \) from \( V(G) \) to \( \{\pm 1, \pm 2, \ldots, \pm p\} \) to be a pair sum labeling if the induced edge function \( f_{em} \) from \( E(G) \) to the nonzero integers defined by \( f_{em}(uv) = f(u) + f(v) \) is one-one and \( f(E(G)) \) is either of the form \( \{\pm k_1, \pm k_2, \ldots, \pm k_2\} \) or \( \{\pm k_1, \pm k_2, \ldots, \pm k_{2+1}\} \cup \{k_{2+1}\} \), according as \( q \) is even or odd. A graph with a pair sum labeling is called pair sum graph. In [1511] and [1512] they proved the following are pair sum graphs: \( P_n, C_n, K_n \) if and only if \( n \leq 4, K_{1,n}, K_{2,n} \), bistars \( B_{m,n} \), combs \( P_n \odot K_1, P_n \odot 2K_1 \), and all trees of order up to 9. Also they proved that \( K_{m,n} \) is not pair sum graph if \( m, n \geq 8 \) and enumerated all pair sum graphs of order at most 5.

In [1514], [1515], [1516], and [1517] Ponraj, Parthipan, and Kala proved the following are pair sum graphs: \( K_{1,n} \cup K_{1,m}, C_n \cup C_n, mK_2 \) if \( n \leq 4, (P_n \times K_1) \odot K_1, C_n \odot K_2, \) dragons \( D_{m,n} \) for \( n \) even, \( K_n^c + 2K_2 \) for \( n \) even, \( P_n \times P_n \) for \( n \) even, \( C_n \times P_2 \) for \( n \) even, \( (P_n \times P_2) \odot K_1, C_n \odot K_2 \) and the subdivision graphs of \( P_n \times P_2, C_n \odot K_1, P_n \odot K_1, \) triangular.
snakes, and quadrilateral snakes.

Jeyanthi, Sarada Devi, and Lau [972] proved that the following graphs have edge pair sum labelings: triangular snakes $T_n$, $C_n \cup C_n$, $K_{1,n} \cup K_{1,m}$, and bistars $B_{m,n}$. They also proved that every graph is a subgraph of a connected edge pair sum graph. Jeyanthi and Sarada Devi [966] showed that $P_{2n} \times P_2$ and the graphs $P_n (+) N_m$ obtained from a path $P_n$ by joining its endpoints to $m$ isolated vertices are edge pair sum graphs. Jeyanthi and Sarada Devi [968] proved that the following graphs have edge pair sum labeling: shadow graphs $S_2(P_n)$, $S_2(K_{1,n})$, total graphs $T(C_{2n})$ and $T(P_n)$, the one-point union of any number of copies of $C_n$, the one-point union of $C_m$ and $C_n$, $P_{2n-1}$, and full binary trees in which all leaves are at the same level and every parent has two children. Jeyanthi and Sarada Devi [967] proved that the spiders $SP(1^m, 2^t)$, $SP(1^m, 2^t, 3)$, $SP(1^m, 2^t, 4)$, and for $t$ even $SP(1^m, 3^t, 3)$ are edge pair sum graphs. In [966] Jeyanthi and Sarada Devi prove some cycle related graphs are edge pair sum graphs. In [968] they prove that the one point union of cycles, perfect binary trees, shadow graphs, total graphs, and $P_n^2$ admit edge pair sum graph. In [956] Jeyanthi and Sarada provide edge pair sum labelings for jewel graphs, gears, triangular ladders, balanced lobsters, and double wheels $2C_n + K_1$.

The tree $WT(n)$ is obtained from $K_{1,n+2}$ with central vertex $c_1$ and end vertices $x_i : 1 \leq i \leq n + 2$ and another $K_{1,n+2}$ with central vertex $c_2$ and end vertices $y_j : 1 \leq j \leq n + 2$ by identifying vertex $x_{n+2}$ and $y_{n+2}$ and denoting the identified vertices by $w$. A $w$-tree $WT(n : k)$ is obtained from $k$ copies of $WT(n)$ by joining a new vertex $a$ to vertex $w$ of each copy of $WT(n)$. Jeyanthi, Sarada Devi, and Lau [973] proved that the graphs $WT(n : k)$ trees have edge pair sum labelings (see also [974]).

Jeyanthi and Sarada Devi [965] define an injective map $f$ from $E(G)$ to \{±1, ±2, ..., ±q\} as an edge pair sum labeling of a graph $G(p, q)$ if the induced function of $f^*$ from $V(G)$ to $Z - \{0\}$ defined by $f^*(v) = \sum f(e)$ taken over all edges $e$ incident to $v$ is one-one and $f^*(V(G))$ is either of the form \{±$k_1, ±k_2, ..., ±k_{p/2}\}$ or \{±$k_1, ±k_2, ..., ±k_{(p-1)/2}\}$ or \{±$k_{p/2}\}$ according as $p$ is even or odd. A graph with an edge pair sum labeling is called an edge pair sum graph. They proved that $P_n, C_n$, triangular snakes, $P_m \cup K_{1,n}$, and $C_n \circ \overline{K_m}$ are edge pair sum graphs.

In [971], [973], [970], [969] Jeyanthi and Sarada Devi prove the following graphs are edge pair sum graphs: shell graphs; some butterfly graphs; jelly fish; Y-trees; theta graphs; wheels with subdivided spokes, $P_n + 2K_1$; $C_4 \times P_n$; $P_n \circ \overline{K_m}$; $(P_2 \times P_m) \circ \overline{K_n}$; $P_n \times C_3$; books; graphs obtained from the path $P_n$ having an even fixed even number quadrilaterals on each edge of the path; $K_2 + mK_1$; graphs obtained by identifying one end point from each of $m$ copies of $P_n$; closed helms; graphs that are two copies of generalized Petersen graphs joined by a path $P_n$, $n \geq 5$; and graphs that two copies of fan $P_n \circ K_1$ joined by a path $P_n$, $n \geq 5$.

For a $(p, q)$ graph $G$ Ponraj and Parthipan [1513] define an injective map $f$ from $V(G)$ to \{±1, ±2, ..., ±p\} to be a pair mean labeling if the induced edge function $f_{em}$ from $E(G)$ to the nonzero integers defined by $f_{em}(uv) = (f(u) + f(v))/2$ if $f(u) + f(v)$ is even and $f_{em}(uv) = (f(u) + f(v) + 1)/2$ if $f(u) + f(v)$ is odd is one-one and $f_{em}(E(G)) = \{±k_1, ±k_2, ..., ±k_{q/2}\}$ or $f_{em}(E(G)) = \{±k_1, ±k_2, ..., ±k_{(q-1)/2}\}$ or $\{k_{(q+1)/2}\}$, according as $q$ is even or odd. A
Aigner and Triesch proved that a graph with a pair mean labeling is called a pair mean graph. They proved the following graphs have pair mean labelings: $P_n$, $C_n$ if and only if $n \leq 3$, $K_n$ if and only if $n \leq 2$, $K_{2,n}$, bistars $B_{m,n}$, $P_n \odot K_1$, $P_n \odot 2K_1$, and the subdivision graph of $K_{1,n}$. Also they found the relation between pair sum labelings and pair mean labelings.

The graph $G \odot P_n$ is obtained by identifying an end vertex of a path $P_n$ with any vertex of $G$. A graph $G(V, E)$ with $q$ edges is called a $(k + 1)$-equitable mean graph if there is a function $f$ from $V$ to $\{0, 1, 2, \ldots, k\}$ $(1 \leq k \leq q)$ such that the induced edge labeling $f^*$ from $E$ to $\{0, 1, 2, \ldots, k\}$ given by $f^*(uv) = \lfloor (f(u) + f(v))/2 \rfloor$ has the properties $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for $i, j = 0, 1, 2, \ldots, k$ where $v_f(x)$ and $e_f(x)$ are the number of vertices and edges of $G$ respectively with the label $x$. In [898] Jeyanthi proved the following: a connected graph with $q$ edges is a $(q + 1)$-equitable mean graph if and only if it is a mean graph; a graph is 2-equitable mean graph if and only if it is a product cordial graph; for every 3-equitable mean graph $G$, the graph $(3m + 1)G$ is a 3-equitable mean graph; $C_n$ is a 3-equitable mean graph if and only if $n \not\equiv 0 \pmod{3}$; $P_n$ is a 3-equitable mean graph for all $n \geq 2$; if $G$ is a 3-equitable mean graph then $G \odot P_n$ is a 3-equitable mean graph for $n \equiv 1 \pmod{3}$; the bistar $B(m,n)$ with $m \geq n$ is a 3-equitable mean graph if and only if $n \geq \lfloor q/3 \rfloor$; $K_{1,n}$ is a 3-equitable mean graph if and only if $n \leq 2$; and for any graph $H$ and $3m$ copies $H_1, H_2, \ldots, H_{3m}$ of $H$, the graph obtained by identifying a vertex of $H_i$ with a vertex of $H_{i+1}$ for $1 \leq i \leq 3m - 1$ is a 3-equitable mean graph.

### 7.18 Irregular Total Labelings

In 1988 Chartrand, Jacobson, Lehel, Oellermann, Ruiz, and Saba [454] defined an irregular labeling of a graph $G$ with no isolated vertices as an assignment of positive integer weights to the edges of $G$ in such a way that the sums of the weights of the edges at each vertex are distinct. The minimum of the largest weight of an edge over all irregular labelings is called the irregularity strength $s(G)$ of $G$. If no such weight exists, $s(G) = \infty$. Chartrand et al. gave a lower bound for $s(mK_n)$. Faundree, Jacobson, and Lehel [605] gave an upper bound for $s(mK_n)$ when $n \geq 5$ and proved that for graphs $G$ with $\delta(G) \geq n - 2 \geq 1$, $s(G) \leq 3$. They also proved that if $G$ has order $n$ and $\delta(G) = n - t$ and $1 \leq t \leq \sqrt{n/18}$, $s(G) \leq 3$.

Aigner and Triesch proved $s(G) \leq n + 1$ for any graph $G$ with $n \geq 4$ vertices for which $s(G)$ is finite. In [1573] Przybylo proved that $s(G) < 112n/\delta + 28$, where $\delta$ is the minimum degree of $G$ and $G$ has $n$ vertices. The best bound of this form is currently due to Kalkowski, Karoński, and Pfender, who showed in [1009] that $s(G) \leq 6[n/\delta] < 6n/\delta + 6$.

In [603] Faundree and Lehel conjectured that for each $d \geq 2$, there exists an absolute constant $c$ such that $s(G) \leq n/d + c$ for each $d$-regular graph of order $n$. In Przybylo [1572] showed that for $d$-regular graphs $s(G) < 16n/d + 6$. In 1991 Cammack, Schelp, and Schrag [436] proved that the irregularity strength of a full $d$-ary tree $(d = 2, 3)$ is its number of pendent vertices and conjectures that the irregularity strength of a tree with no vertices of degree two is its number of pendent vertices. This conjecture was proved by Amar and Togni [116] in 1998. In [751] Guo, Chen, Wang, and Yao give the total vertex irregularity strength of certain complete $m$-partite graphs. Ahmad, Nurdin, and

Motivated by the notion of the irregularity strength of a graph and various kinds of other total labelings, Baˇca, Jendroˇl, Miller, and Ryan [211] introduced the total edge irregularity strength of a graph as follows. For a graph $G(V,E)$ a labeling $\partial : V \cup E \to \{1,2,\ldots,k\}$ is called an edge irregular total $k$-labeling if for every pair of distinct edges $uv$ and $xy$, $\partial(u) + \partial(uv) + \partial(v) \neq \partial(x) + \partial(xy) + \partial(y)$. Similarly, $\partial$ is called a vertex irregular total $k$-labeling if for every pair of distinct vertices $u$ and $v$, $\partial(u) + \sum \partial(e)$ over all edges $e$ incident to $u \neq \partial(v) + \sum \partial(e)$ over all edges $e$ incident to $v$. The minimum $k$ for which $G$ has an edge (vertex) irregular total $k$-labeling is called the total edge (vertex) irregularity strength of $G$. The total edge (vertex) irregular strength of $G$ is denoted by $\text{tes}(G)$ ($\text{tvs}(G)$). They prove: for $G(V,E)$, $E$ not empty, $\lceil(|E|+2)/3\rceil \leq \text{tes}(G) \leq |E|$; $\text{tes}(G) \geq \lceil(\Delta(G)+1)/2\rceil$ and $\text{tes}(G) \leq |E| - \Delta(G)$, if $\Delta(G) \leq (|E| - 1)/2$; $\text{tes}(P_n) = \text{tes}(C_n) = \lceil(n+2)/3\rceil$; $\text{tvs}(W_n) = \lceil(2n+2)/3\rceil$; $\text{tes}(C_n)$ (friendship graph) $= \lceil(3n+2)/3\rceil$; $\text{tvs}(C_n) = \lceil(n+2)/3\rceil$; for $n \geq 2$, $\text{tvs}(K_n) = 2$; $\text{tvs}(K_{1,n}) = \lceil(n+1)/2\rceil$; and $\text{tvs}(C_n \times P_2) = \lceil(2n+3)/4\rceil$.

Jendroˇl, Miˇskuf, and Sot´ak [886] (see also [887]) proved: $\text{tes}(K_5) = 5$; for $n \geq 6$, $\text{tes}(K_n) = \lceil(n^2 - n + 4)/6\rceil$; and that $\text{tes}(K_{m,n}) = \lceil(mn+2)/3\rceil$. They conjecture that for any graph $G$ other than $K_5$, $\text{tes}(G) = \max\{\lceil(\Delta(G)+1)/2\rceil, \lceil(|E|+2)/3\rceil\}$. Ivanˇco and Jendroˇl [864] proved that this conjecture is true for all trees. Jendroˇl, Miˇskuf, and Sot´ak [886] prove the conjecture for complete graphs and complete bipartite graphs. The conjecture has been proven for the categorical product of two paths [63], the categorical product of a cycle and a path [1834], the categorical product of two cycles [68], the Cartesian product of a cycle and a path [246], the subdivision of a star [1835], and the toroidal polyhexes [215]. In [78] Ahmad, Siddiqui, and Afzal proved the conjecture is true for graphs obtained by starting with $m$ vertex disjoint copies of $P_n$ ($m,n \geq 2$) arranged in $m$ horizontal rows with the $j$th vertex of row $i+1$ directly below the $j$th vertex row $i$ for $1 = 1,2,\ldots,m-1$ and joining the $j$th vertex of row $i$ to the $j+1$th vertex of row $i+1$ for $1 = 1,2,\ldots,m-1$ and $j = 1,2,\ldots,n-1$ (the zigzag graph). Siddiqui, Ahmad, Nadeem, and Bashir [1837] proved the conjecture for the disjoint union of $p$ isomorphic sun graphs (i. e., $C_n \odot K_1$) and the disjoint union of $p$ sun graphs in which the orders of the $n$-cycles are consecutive integers. They pose as an open problem the determination of the total edge irregularity strength of disjoint union of any number of sun graphs. Brandt, Miˇskuf, and Rautenbach [395] proved the conjecture for large graphs whose maximum degree is not too large relative to its order and size. In particular, using the probabilistic method they prove that if $G(V,E)$ is a multigraph without loops and with nonzero maximum degree less than $|E|/10^3 \sqrt{|V|}$, then $\text{tes}(G) = \lceil(|E|+2)/3\rceil$. As corollaries they have: if $G(V,E)$ satisfies $|E| \geq 3 \cdot 10^3 |V|^{3/2}$, then $\text{tes}(G) = \lceil(|E|+2)/3\rceil$; if $G(V,E)$ has minimum degree $\delta > 0$ and maximum degree $\Delta$ such that $\Delta < \delta \sqrt{|V|}/10^3 \cdot 4\sqrt{2}$ then $\text{tes}(G) = \lceil(|E|+2)/3\rceil$; and for every positive integer $\Delta$ there is some $n(\Delta)$ such that every graph $G(V,E)$ without isolated vertices with $|V| \geq n(\Delta)$ and maximum degree at most $\Delta$ satisfies $\text{tes}(G) = \lceil(|E|+2)/3\rceil$. Notice that this last result includes $d$-regular graphs.
of large order. They also prove that if $G(V,E)$ has maximum degree $\Delta \geq 2|E|/3$, then $G$ has an edge irregular total $k$-labeling with $k = \lceil (\Delta + 1)/2 \rceil$. Pfender [1490] proved the conjecture for graphs with at least $7 \times 10^{10}$ edges and proved for graphs $G(V,E)$ with $\Delta(G) \leq E(G)/4350$ we have $\text{tes}(G) = \lceil (|E| + 2)/3 \rceil$.

In [982] Jeyanthi and Sudha investigated the total edge irregularity strength of the disjoint union of wheels. They proved the following: $\text{tes}(2W_n) = \lceil (4n + 2)/3 \rceil$, $n \geq 3$; for $n \geq 3$ and $p \geq 3$ the total edge irregularity strength of the disjoint union of $p$ isomorphic wheels is $\lceil (2pn + 1)/3 \rceil$; for $n_1 \geq 3$ and $n_2 = n_1 + 1$, $\text{tes}(W_{n_1} \cup W_{n_2}) = \lceil (2n_1 + 2)/3 \rceil$; for $n_1, n_2, n_3$ where $n_1 \geq 3$ and $n_{i+1} = n_i + 1$ for $i = 1, 2$, $\text{tes}(W_{n_1} \cup W_{n_2} \cup W_{n_3}) = \lceil (2n_1 + n_2 + n_3 + 3)/3 \rceil$; the total edge irregularity strength of the disjoint union of $p \geq 4$ wheels $W_{n_1} \cup W_{n_2} \cup \cdots \cup W_{n_p}$ with $n_{i+1} = n_i + 1$ and $N = \sum_{j=1}^{p} n_j + 1$ is $\lceil 2N/3 \rceil$; and the total edge irregularity strength of $p \geq 3$ disjoint union of wheels $W_{n_1} \cup W_{n_2} \cup \cdots \cup W_{n_p}$ and $N = \sum_{j=1}^{p} n_j + 1$ is $\lceil 2N/3 \rceil$ if maximum $\{n_i \mid 1 \leq i \leq p\} \leq \frac{1}{2} \lceil 2N/3 \rceil$.

In [983], [985], [986], and [984] Jeyanthi and Sudha determine the total edge irregularity strength of fans, helms, closed helms, webs, flowers, gears, sun flowers, tadpoles, armed crowns, split graphs of cycles, split graph of paths, disjoint unions of isomorphism double wheels, and disjoint union of consecutive non-isomorphic double wheels.

A generalized helm $H_n^m$ is a graph obtained by inserting $m$ vertices in every pendent edge of a helm $H_n$. Indriati, Widodo, and Sugeng [858] proved that for $n \geq 3$, $\text{tes}(H_n^1) = \lceil (4n + 2)/3 \rceil$, $\text{tes}(H_n^2) = \lceil (5n + 2)/3 \rceil$, and $\text{tes}(H_n^m) = \lceil ((m + 3)n + 2)/3 \rceil$ for $m \equiv 0 \mod 3$. They conjecture that $\text{tes}(H_n^m) = \lceil ((m + 3)n + 2)/3 \rceil$, for all $n \geq 3$ and $m \geq 10$.

The strong product of graphs $G_1$ and $G_2$ has as vertices the pairs $(x, y)$ where $x \in V(G_1)$ and $y \in V(G_2)$. The vertices $(x_1, y_1)$ and $(x_2, y_2)$ are adjacent if either $x_1 = y_2$ or $x_1 = x_2$ and $y_1 = y_2$ is an edge of $G_2$. For $m, n \geq 2$ Ahmad, Baća, Bashir, Siddiqui [65] proved that the total edge irregular strength of the strong product of $P_m$ and $P_n$ is $\lceil 4mn + 1)/3 \rceil - (m + n)$.

Nuradin, Baskoro, Salman, and Gaos [1462] determine the total vertex irregularity strength of trees with no vertices of degree 2 or 3; improve some of the bounds given in [211]; and show that $\text{tvs}(P_n) = \lceil (n + 1)/3 \rceil$. In [1465] Nuradin, Salman, Gaos, and Baskoro prove that for $t \geq 2$, $\text{tvs}(tP_1) = t$; $\text{tvs}(tP_2) = t + 1$; $\text{tvs}(tP_3) = t + 1$ and for $n \geq 4$, $\text{tvs}(tP_n) = \lceil (nt + 1)/3 \rceil$. Ahmad, Baća and Bashir [64] proved that for $n \geq 3$ and $t \geq 1$, $\text{tvs}((n, t)\text{-kite}) = \lceil (n + t)/3 \rceil$, where the $(n, t)$-kite is a cycle of length $n$ with a $t$-edge path (the tail) attached to one vertex.

Anholcer, Kalkowski, and Przybyło [138] prove that for every graph with $\delta(G) > 0$, $\text{tvs}(G) \leq \lceil 3n/\delta \rceil + 1$. Majerski and Przybyło [1349] prove that the total vertex irregularity strength of graphs with $n$ vertices and minimum degree $\delta \geq n^{0.5}\ln n$ is bounded from above by $(2 + o(1))n/\delta + 4$. Their proof employs a random ordering of the vertices generated by order statistics. Anholcer, Karoniński, and Pfender [137] prove that for every forest $F$ with no vertices of degree 2 and no isolated vertices $\text{tvs}(F) = \lceil (n_1 + 1)/2 \rceil$, where $n_1$ is the number of vertices in $F$ of degree 1. They also prove that for every forest with no isolated vertices and at most one vertex of degree 2, $\text{tvs}(F) = \lceil (n_1 + 1)/2 \rceil$. Anholcer and Palmer [139] determined the total vertex irregularity strength $C_n^k$, which
is a generalization of the circulant graphs $C_n(1, 2, \ldots, k)$. They prove that for $k \geq 2$ and $n \geq 2k + 1$, $\text{tvs}(C^n_k = [(n + 2k)/(2k + 1)]$. Przybyło [1573] obtained a variety of upper bounds for the total irregularity strength of graphs as a function of the order and minimum degree of the graph.

In [1987] Tong, Lin, Yang, and Wang give the exact values of the total edge irregularity strength and total vertex irregularity strength of the toroidal grid $C_m \times C_n$. In [69] Ahmad, Bača and Siddiqui gave the exact value of the total edge and total vertex irregularity strength for disjoint union of prisms and for disjoint union of cycles. In [67] Ahmad, Bača, and Numan showed that $\text{tes}(\bigcup_{j=1}^{m} F_{n_j}) = 1 + \sum_{j=1}^{m} n_j$ and $\text{tvs}(\bigcup_{j=1}^{m} F_{n_j}) = [(2 + 2 \sum_{j=1}^{m} n_j)/3]$, where $\bigcup_{j=1}^{m} F_{n_j}$ denotes the disjoint union of friendship graphs. Chunling, Xiaohui, Yuansheng, and Liping, [496] showed $\text{tvs}(K_p) = 2 (p \geq 2)$ and for the generalized Petersen graph $P(n, k)$ they proved $\text{tvs}(P(n, k)) = [n/2] + 1$ if $k \leq n/2$ and $\text{tvs}(P(n, n/2)) = n/2 + 1$. They also obtained the exact values for the total vertex strengths for ladders, Möbius ladders, and Knödel graphs. For graphs with no isolated vertices, Przybyło [1572] gave bounds for $\text{tvs}(G)$ in terms of the order and minimum and maximum degrees of $G$. For $d$-regular ($d > 0$) graphs, Przybyło [1573] gave bounds for $\text{tvs}(G)$ in terms $d$ and the order of $G$. Ahmad, Ahtsham, Imran, and Gaig [56] determined the exact values of the total vertex irregularity strength for five families of cubic plane graphs. In [61] Ahmad and Bača determine that the total edge-irregular strength of the categorical product of $C_n$ and $P_m$ where $m \geq 2$, $n \geq 4$ and $n$ and $m$ are even is $[(2n(m - 1) + 2)/3]$. They leave the case where at least one of $n$ and $m$ is odd as an open problem. In [68] and [69] Ahmad, Bača, and Siddiqui determine the exact values of the total edge irregularity strength of the categorical product of two cycles, the total edge (vertex) irregularity strength for the disjoint union of prisms, and the total edge (vertex) irregularity strength for the disjoint union of cycles. In [60] Ahmad, Awan, Javaid, and Slamin study the total vertex irregularity strength of flowers, helms, generalized friendship graphs, and web graphs. Indriati, Widodo, Wijayanti, Sugeng, and Bača [854] determine the exact value of the total edge irregularity strength of the generalized web graph $W(n, m)$ and two families of related graphs. Ahmad, Bača, and Numan [67] determined the exact values of the total vertex irregularity strength and the total edge irregularity strength of a disjoint union of friendship graphs. Bokhary, Ahmad, and Imran [388] determined the exact value of the total vertex irregularity strength of cartesian and categorical product of two paths. Al-Mushayt, Ahmad, and Siddiqui [109] determined the exact values of the total edge-irregular strength of hexagonal grid graphs. Rajasingh, Rajan, and Annamma [1588] obtain bounds for the total vertex irregularity strength of three families of triangle related graphs.

In [1464] Nurdin, Salman, and Baskoro determine the total edge-irregular strength of the following graphs: for any integers $m \geq 2$, $n \geq 2$, $\text{tes}(P_m \odot P_n) = [(2mn + 1)/3]$; for any integers $m \geq 2$, $n \geq 3$, $\text{tes}(P_m \odot C_n) = [(2n + 1)m + 1)/3]$; for any integers $m \geq 2$, $n \geq 2$, $\text{tes}(P_m \odot K_{1,n}) = [(2m(n + 1) + 1)/3]$; for any integers $m \geq 2$ and $n \geq 3$, $\text{tes}(P_m \odot G_n) = [(m(5n + 2) + 1)/3]$ where $G_n$ is the gear graph obtained from the wheel $W_n$ by subdividing every edge on the $n$-cycle of the wheel; for any integers $m \geq 2$, $n \geq 2$, $\text{tes}(P_m \odot F_n) = [m(5n + 2) + 1]$, where $F_n$ is the friendship graph obtained
from $W_{2m}$ by subdividing every other rim edge; for any integers $m \geq 2$ and $n \geq 3$; and
tes$(P_m \odot W_n) = \lceil (2n + 2m + 1)/3 \rceil$.

In [1591], [1592], and [1590] Rajasingh, Rajan, Teresa Arockiamary, and Quadras provide the total edge irregularity strengths of honeycomb mesh networks, hexagonal networks, butterfly networks, benes networks, and series compositions of uniform theta graphs.

In [1463] Nurdin, Baskoro, Salman, and Gaos proved: the total vertex-irregular strength of the complete $k$-ary tree ($k \geq 2$) with depth $d \geq 1$ is $\lceil (k^d + 1)/2 \rceil$ and the total vertex-irregular strength of the subdivision of $K_{1,n}$ for $n \geq 3$ is $\lceil (n + 1)/3 \rceil$. They also determined that if $G$ is isomorphic to the caterpillar obtained by starting with $P_m$ and $m$ copies of $P_n$ denoted by $P_{n,1}, P_{n,2}, \ldots, P_{n,m}$, where $m \geq 2$, $n \geq 2$, then joining the $i$-th vertex of $P_n$ to an end vertex of the path $P_{n,i}$, tvs$(G) = \lceil (mn + 3)/3 \rceil$.

Ahmad and Bača [62] proved tvs$(J_{n,2}) = \lceil (n + 1)/2 \rceil$ $(n \geq 4)$ and conjectured that for $n \geq 3$ and $m \geq 3$, tvs$(J_{n,m}) = \max \{\lceil (nm - 1 + 2)/3 \rceil, \lceil (nm + 2)/4 \rceil\}$. They also proved that for the circulant graph (see §5.1 for the definition) $C_{n}(1,2)$, $n \geq 5$, tvs$(C_{n}(1,2)) = \lceil (n + 4)/5 \rceil$. They conjecture that for the circulant graph $C_{n}(a_1, a_2, \ldots, a_m)$ with degree $r$ at least 5 and $n \geq 5$, $1 \leq a_i \leq \lfloor n/2 \rfloor$, tvs$(C_{n}(a_1, a_2, \ldots, a_m)) = \lceil (n + r)/(1 + r) \rceil$. Ahmad, Arshad, and Ižarićová [59] determine tes$(G)$ where $G$ is the generalized helm and tvs$(G)$ where $G$ is the generalized sun graph.

Slamin, Dafik, and Winnona [1871] consider the total vertex irregularity strengths of the disjoint union of isomorphic sun graphs, the disjoint union of consecutive nonisomorphic sun graphs, tvs$(U_{i=1}^{t} S_{i+2})$, and disjoint union of any two nonisomorphic sun graphs. (Recall $S_n = C_n \odot K_1$.) Rajasingh and Annamma [1589] determine the total vertex irregularity strength of 1-fault tolerant Hamiltonian graphs $CH(n), H(n)$, and $W(m)$.

In [54] Ahmad shows that the total vertex irregularity strength of the antiprism graph $A_n$ $(n \geq 3)$ is $\lceil (2n + 4)/5 \rceil$ (see §5.7 for the definition) and gives the vertex irregularity strength of three other families convex polytope graphs. Al-Mushayt, Arshad, and Siddiqui [110] determined an exact value of the total vertex irregularity strength of some convex polytope graphs. Ahmad, Baskoro, and Imran [71] determined the exact value of the total vertex irregularity strength of disjoint union of Helm graphs.

The notion of an irregular labeling of an Abelian group $\Gamma$ was introduced Anholcer, Cieczak, and Milanič [131]. They defined a $\Gamma$-irregular labeling of a graph $G$ with no isolated vertices as an assignment of elements of an Abelian group $\Gamma$ to the edges of $G$ in such a way that the sums of the weights of the edges at each vertex are distinct. The group irregularity strength of $G$, denoted $s(\Gamma,G)$, is the smallest integer $s$ such that for every Abelian group $\Gamma$ of order $s$ there exists $\Gamma$-irregular labeling of $G$. They proved that if $G$ is connected, then $s(\Gamma,G) = n + 2$ when $K_{1,3q} \equiv n + 2 \pmod{4}$ and $G \not\cong K_{1,3q}$ for some integer $q \geq 1$; $s(\Gamma,G) = n + 1$ when $n \equiv 2 \pmod{4}$ and $G \equiv K_{1,3q} \pmod{4}$ for any integer $q \geq 1$; and $s(\Gamma,G) = n$ otherwise. Moreover, Anholcer and Cieczak [130] showed that if $G$ is a graph of order $n$ with no component of order less than 3 and with all the bipartite components having both color classes of even order. Then $s(\Gamma,G) = n$ if $n \equiv 1 \pmod{2}$; $s(\Gamma,G) = n + 1$ if $n \equiv 2 \pmod{4}$; and $s(\Gamma,G) \leq n + 1$ if $n \equiv 0 \pmod{4}$.

Marzuki, Salman, and Miller [1371] introduced a new irregular total $k$-labeling of a
A graph $G$ called total irregular total $k$-labeling, denoted by $ts(G)$, which is required to be at the same time both vertex and edge irregular. They gave an upper bound and a lower bound of $ts(G)$; determined the total irregularity strength of cycles and paths; and proved $ts(G) \geq \max\{te_s(G),te_v(G)\}$. For $n \geq 3$, Ramdani and Salman [1601] proved $ts(S_n \times P_2) = n + 1$; $ts((P_n + P_1) \times P_2) = \lceil (5n + 1)/3 \rceil$, $ts(P_n \times P_2) = n$; and $ts(C_n \times P_2) = n$. In [1602] Ramdani, Salman, and Assiyatun prove that for a regular graph $G$ $ts(mG) \leq m(ts(G)) - \lceil (m - 1)/2 \rceil$, $ts(mC_n) = \lceil (mn + 2)/3 \rceil$ for $n \equiv 3$ mod 3, and $ts(m(C_n \times P_2) = mn + 1$. In [1603] Ramdani, Salman, Assiyatun, Semaničová-Feňovčíková, and Bača estimate the upper bound of the total irregularity strength of graphs and determine the exact value of the total irregularity strength for three families of graphs.

In [1435] Muthgu Guru Packiam defines a face irregular total $k$-labeling $f$ from $V \cup E \cup F$ to $\{1,2,\ldots,k\}$ of a 2-connected plane graph $G(V,E,F)$ as a labeling of vertices and edges such that different faces have different weights. The minimum $k$ for which a plane graph $G$ has a face irregular total $k$-labeling is called total face irregularity strength of $G$ and is denoted by $f(\{x,y,z\})$. He provides a bound on this parameter and the exact values for shell graphs and a family of planar graphs consisting of an even number of 5-sided faces and one external infinite face.

An edge $e \in \overline{G}$ is called a total positive edge or total negative edge or total stable edge of $G$ if $tv_{s}(G + e) > tv_{s}(G)$ or $tv_{s}(G + e) < tv_{s}(G)$ or $tv_{s}(G + e) = tv_{s}(G)$, respectively. If all edges of $G$ are total stable (total negative) edges of $G$, then G is called a total stable (total negative) graph. Otherwise G is called a total mixed graph. Packiam and K. Kathiresan [1467] showed that $K_{1,n}$ $n \geq 4$, and the disjoint union of $t$ copies of $K_{3}$, $t \geq 2$, are total negative graphs and that the disjoint union of $t$ copies of $P_{3}$, $t \geq 2$, is a total mixed graph.

For a simple graph $G$ with no isolated edges and at most one isolated vertex Anholcer [128] calls a labeling $w : E(G) \rightarrow \{1,2,\ldots,m\}$ product-irregular, if all product degrees $pd_G(v) = \prod_{e \in \overline{G}} w(e)$ are distinct. Analogous to the notion of irregularity strength the goal is to find a product-irregular labeling that minimizes the maximum label. This minimum value is called the product irregularity strength of $G$ and is denoted by $ps(G)$. He provides bounds for the product irregularity strength of paths, cycles, cartesian products of paths, and cartesian products of cycles. In [129] Anholcer gives the exact values of $ps(G)$ for $K_{m,n}$ where $2 \leq m \leq n \leq (m + 2)(m + 1)/2$, some families of forests including complete $d$-ary trees, and other graphs with $d(G) = 1$. Skowronk-Kaziów [1868] proves that for the complete graphs $ps(K_n) = 3$. Darda and Hujdurović [523] proved that $ps(X) \leq |V(X)| - 1$ for any graph $X$ with more than 3 vertices and gave a connection between the product irregularity strength and the multidimensional multiplication table problem.

In [4] Abdo and Dimitrov introduced the total irregularity of a graph. For a graph $G$, they define $irr_{t}(G) = (1/2)\sum_{u,v \in V} |d_G(u) - d_G(v)|$, where $d_G(v)$ denotes the vertex degree of the vertex $w$. For $G$ with $n$ vertices they proved $irr_{t}(G) \leq (1/12)(2n^3 - 3n^2 - 2n + 3)$. For a tree $G$ with $n$ vertices they prove $irr_{t}(G) \leq (n - 1)(n - 2)$ and equality holds if and only if $G \approx S_n$. You, Yang, and You [2222] determined the graph with the maximal total irregularity among all unicyclic graphs.
7.19 Minimal $k$-rankings

A $k$-ranking of a graph is a labeling of the vertices with the integers 1 to $k$ inclusively such that any path between vertices of the same label contains a vertex of greater label.

The rank number of a graph $G$, $\chi_r(G)$, is the smallest possible number of labels in a ranking. A $k$-ranking is minimal if no label can be replaced by a smaller label and still be a $k$-ranking. The concept of the rank number arose in the study of the design of very large scale integration (VLSI) layouts and parallel processing (see [525], [1257] and [1698]). Ghoshal, Laskar, and Pillone [719] were the first to investigate minimal $k$-rankings from a mathematical perspective. Laskar and Pillone [1156] proved that the decision problem corresponding to minimal $k$-rankings is NP-complete. It is HP-hard even for bipartite graphs [535]. Bodlaender, Deogun, Jansen, Kloks, Kratsch, Müller, Tuza [380] proved that the rank number of $P_n$ is $\chi_r(P_n) = \lfloor \log_2(n) \rfloor + 1$ and satisfies the recursion $\chi_r(P_n) = 1 + \chi_r(P_{\lceil (n-1)/2 \rceil})$ for $n > 1$. The following results are given in [535]: $\chi_r(S_n) = 2; \chi_r(C_n) = \lfloor \log_2(n - 1) \rfloor + 2; \chi_r(W_n) = \lfloor \log_2(n - 3) \rfloor + 3(n > 3); \chi_r(K_n) = n$; the complete $t$-partite graph with $n$ vertices has ranking number $n + 1$ - the cardinality of the largest partite set; and a split graph with $n$ vertices has ranking number $n + 1$ - the cardinality of the largest independent set (a split graph is a graph in which the vertices can be partitioned into a clique and an independent set.) Wang proved that for any graphs $G$ and $H$ $\chi_r(G + H) = \min\{|V(G)| + \chi_r(H), |V(H)| + \chi_r(G)|\}$.

In 2009 Novotny, Ortiz, and Narayan [1460] determined the rank number of $P_n^2$ from the recursion $\chi_r(P_n^2) = 2 + \chi_r(P_{\lceil (n-2)/2 \rceil})$ for $n > 2$. They posed the problem of determining $\chi_r(P_n^m \times P_n)$ and $\chi(P_n^k)$. In 2009 [115] and [114] Alpert determined the rank numbers of $P_n^k$, $C_n^k$, $P_2 \times C_n$, $K_m \times P_n$, $P_3 \times P_n$, Möbius ladders and found bounds for rank numbers of general grid graphs $P_m \times P_n$. About the same time as Alpert and independently, Chang, Kuo, and Lin [444] determined the rank numbers of $P_n^k$, $C_n^k$, $P_2 \times P_n$, $P_2 \times C_n$. Chang et al. also determined the rank numbers of caterpillars and proved that for any graphs $G$ and $H$ $\chi_r(G[H]) = \chi_r(H) + |V(H)|(|\chi_r(G) - 1|)$.

In 2010 Jacob, Narayan, Sergel, Richter, and Tran [871] investigated $k$-rankings of paths and cycles with pendant paths of length 1 or 2. Among their results are: for any caterpillar $G$ $\chi_r(P_n) \leq \chi_r(G) \leq \chi_r(P_n) + 1$ and both cases occur; if $2^m \leq n \leq 2^{m-1}$ then for any graph $G$ obtained by appending edges to an $m$-cycle we have $m + 2 \leq \chi_r(G) \leq m + 3$ and both cases occur; if $G$ is a lobster with spine $P_n$ then $\chi_r(P_n) \leq \chi_r(G) \leq \chi_r(P_n) + 2$ and all three cases occur; if $G$ is a graph obtained from the cycle $C_n$ by appending paths of length 1 or 2 to any number of the vertices of the cycle then $\chi_r(P_n) \leq \chi(G) \leq \chi(P_n) + 2$ and all three cases occur; and if $G$ is the graph obtained from the comb obtained from $P_n$ by appending one path of length $m$ to each vertex of $P_n$ then $\chi(G) = \chi_r(P_n) + \chi_r(P_{m+1}) - 1$.

Sergel, Richter, Tran, Curran, Jacob, and Narayan [1745] investigated the rank number of a cycle $C_n$ with pendant edges, which they denote by $CC_n$, and call a caterpillar cycle. They proved that $\chi(CC_n) = \chi_r(C_n)$ or $\chi(CC_n) = \chi_r(C_n) + 1$ and showed that both cases occur. A comb tree, denoted by $C(n, m)$, is a tree that has a path $P_n$ such that every vertex of $P_n$ is adjacent to an end vertex of a path $P_m$. In the comb tree $C(n, m)$ ($n \geq 3$) there are 2 pendent paths $P_{m+2}$ and $n - 2$ paths $P_{m+1}$. They proved $\chi_r(C(n, m)) = \chi_r(P_{m+1}) - 1$. 

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 273
They define a circular lobster as a graph where each vertex is either on a cycle \( C_n \) or at most distance two from a vertex on \( C_n \). They proved that if \( G \) is a lobster with longest path \( P_n \) then \( \chi_r(P_n) \leq \chi_r(G) \leq \chi_r(P_n) + 2 \) and determined the conditions under which each true case occurs. If \( G \) is circular lobster with cycle \( C_n \), they showed that \( \chi_r(C_n) \leq \chi_r(G) \leq \chi_r(C_n) + 2 \) and determined the conditions under which each true case occurs. An icicle graph \( I_n \) \((n \geq 3)\) has three pendant paths \( P_2 \) and is comprised of a path \( P_n \) with vertices \( v_1, v_2, \ldots, v_n \) where a path \( P_{i-1} \) is appended to vertex \( v_i \). They determine the rank number for icicle graphs.

Richter, Leven, Tran, Ek, Jacob, and Narayan [1628] define a reduction of a graph \( G \) as a graph \( G_S^* \) such that \( V(G_S^*) = V(G) \setminus S \) and, for vertices \( u \) and \( v \), \( uv \) is an edge of \( G_S^* \) if and only if there exists a \( uv \) path in \( G \) with all internal vertices belonging to \( S \). A vertex separating set of a connected graph \( G \) is a set of vertices whose removal disconnects \( G \). They define a bent ladder \( BL_n(a,b) \) as the union of ladders \( L_a \) and \( L_b \) (where \( L_n = P_n \times P_2 \)) that are joined at a right angle with a single \( L_2 \) so that \( n = a + b + 2 \). A staircase ladder \( SL_n \) is a graph with \( n - 1 \) subgraphs \( G_1, G_2, \ldots, G_{n-1} \) each of which is isomorphic to \( C_4 \). (They are ladders with a maximum number of bends.) Richter et al. [1628] prove: \( \chi_r(BL_n(a,b)) = \chi_r(L_n) - 1 \) if \( n = 2^k - 1 \) and \( a \equiv 2 \) or \( 3 \) \( (\text{mod} \ 4) \) and is equal to \( \chi_r(L_n) \) otherwise; \( \chi_r(SL_n) = \chi_r(L_{n+1}) \) if \( n = 2^k + 2^{k-1} - 2 \) for some \( k \geq 3 \) and is equal to \( \chi_r(L_n) \) otherwise; and for any ladder \( L_n \) with multiple bends, the rank number is either \( \chi_r(L_n) \) or \( \chi_r(L_n) + 1 \).

The arank number of a graph \( G \) is the maximum value of \( k \) such that \( G \) has a minimal \( k \)-ranking. Eyabi, Jacob, Laskar, Narayan, and Pillone [599] determine the arank number of \( K_n \times K_n \), and investigated the arank number of \( K_m \times K_n \).

### 7.20 Set Graceful and Set Sequential Graphs

The notions of set graceful and set sequential graphs were introduced by Acharaya in 1983 [24]. A graph is called set graceful if there is an assignment of nonempty subsets of a finite set to the vertices and edges of the graph such that the value given to each edge is the symmetric difference of the sets assigned to the endpoints of the edge, the assignment of sets to the vertices is injective, and the assignment to the edges is bijective. A graph is called set sequential if there is an assignment of nonempty subsets of a finite set to the vertices and edges of the graph such that the value given to each edge is the symmetric difference of the sets assigned to the endpoints of the edge and the assignment of sets to the vertices and the edges is bijective. The following has been shown: \( P_n \) \((n > 3)\) is not set graceful [789]; \( C_n \) is not set sequential [37]; \( C_n \) is set graceful if and only if \( n = 2^n - 1 \) [791] and [24]; \( K_n \) is set graceful if and only if \( n = 2, 3 \) or \( 6 \) [1414]; \( K_n \) \((n \geq 2)\) is set sequential if and only if \( n = 2 \) or \( 5 \) [791]; \( K_{a,b} \) is set sequential if and only if \((a+1)(b+1)\) is a positive power of \( 2 \) [791]; a necessary condition for \( K_{a,b,c} \) to be set sequential is that \( a, b, \) and \( c \) cannot have the same parity [789]; \( K_{1,b,c} \) is not set sequential when \( b \) and \( c \) even [791]; \( K_{2,b,c} \) is not set sequential when \( b \) and \( c \) are odd [789]; no theta graph is set graceful [789]; the complete nontrivial \( n \)-ary tree is set sequential if and only if \( n + 1 \) is a power of \( 2 \) and the number of levels is \( 1 \) [789]; a tree is set sequential if and only if it is set graceful.
the nontrivial plane triangular grid graph $G_n$ is set graceful if and only if $n = 2$
[791]; every graph can be embedded as an induced subgraph of a connected set sequential
graph [789]; every graph can be embedded as an induced subgraph of a connected set
graceful graph [789], every planar graph can be embedded as an induced subgraph of a
set sequential planar graph [791]; every tree can be embedded as an induced subgraph of a
set sequential tree [791] and every tree can be embedded as an induced subgraph of a
set graceful tree [791]. Hegde conjectures [791] that no path is set sequential. Hegde’s
conjecture [792] that every complete bipartite graph that has a set graceful labeling is a
star was proved by Vijayakumar [2105]. Shahida and Sunitha [1776] prove that the concept
of set-gracefulness is equivalent to topologically set-gracefulness in trees and almost all
finite trees are not set-graceful. Using this they characterize topologically set-graceful
stars and topologically set-graceful paths.

Germina, Kumar, and Princy [701] prove: if a $(p, q)$-graph is set-sequential with respect
to a set with $n$ elements, then the maximum degree of any vertex is $2^{n-1} - 1$; if $G$ is set-
sequential with respect to a set with $n$ elements other than $K_5$, then for every edge $uv$
with $d(u) = d(v)$ one has $d(u) + d(v) < 2^{n-1} - 1$; $K_{1,p}$ is set-sequential if and only if $p$
has the form $2^{n-1} - 1$ for some $n \geq 2$; binary trees are not set-sequential; hypercubes $Q_n$
are not set-sequential for $n > 1$; wheels are not set-sequential; and uniform binary trees
with an extra edge appended at the root are set-graceful and set graceful.

Vijayakumar [2105] and Gyri, Balister, and Schelp [202] proved that if a complete
bipartite graph $G$ has a set-graceful labeling, then it is a star. Abhishek [6] described a
method for constructing a set-graceful bipartite graph of arbitrarily large order and size
beginning with a set-graceful bipartite graph. Acharya, Germina, Princy, and Rao [33]
proved that $K_{1,m,n}$ is set-graceful if and only if $m = 2^s - 1$ and $n = 2^t - 1$ and almost all
open problems and conjectures are included.

Acharya [24] has shown: a connected set graceful graph with $q$ edges and $q+1$ vertices
is a tree of order $p = 2^m$ and for every positive integer $m$ such a tree exists; if $G$ is a
connected set sequential graph, then $G+K_1$ is set graceful; and if a graph with $p$ vertices
and $q$ edges is set sequential, then $p + q = 2^m - 1$. Acharya, Germina, Princy, and Rao
[33] proved: if $G$ is set graceful, then $G \cup \overline{K_t}$ is set sequential for some $t$; if $G$ is a set
graceful graph with $n$ edges and $n+1$ vertices, then $G+\overline{K_t}$ is set graceful if and only if
$m$ has the form $2^t - 1$; $P_n + \overline{K_m}$ is set graceful if $n = 1$ or $2$ and $m$ has the form $2^t - 1$;
$K_{1,m,n}$ is set graceful if and only if $m$ has the form $2^t - 1$ and $n$ has the form $2^s - 1$;
$P_4 + \overline{K_m}$ is not set graceful when $m$ has the form $2^t - 1$ ($t \geq 1$); $K_{3,5}$ is not set graceful;
if $G$ is set graceful, then graph obtained from $G$ by adding for each vertex $v$ in $G$ a new
vertex $v'$ that is adjacent to every vertex adjacent to $v$ is not set graceful; and $K_{3,5}$ is not
set graceful.

Acharya, Germina, Abhishek, and Slater [30] prove $C_m$ is set-graceful if and only if
$m = (4^n -1)/3$; $mK_2$ is set-sequential if and only if $m = (4^n - 1)/3$; and, for $r + s = 2^{n-1}$
the bistar $B(r, s)$ is set-sequential if and only if $r$ and $s$ are odd. They also prove that
connected planar graphs with an even number of faces, regular polyhedrons, and cacti
containing an odd number of cycles are not set-sequential.
Abhishek [6] proved that if $G$ is a set-sequential bipartite graph and $H$ is $2k$-set-sequential, then $4^k G \cup H$ is set-sequential. As a corollary, he gets $mP_3$ is set-sequential if and only if $m = (16^n - 1)/5$. Abhishek and Agustine [9] characterized the set-sequential caterpillars of diameter four and give a necessary condition for a graph to be set-sequential. Abhishek [8] characterized the set-sequential caterpillars of diameter five.

### 7.21 Vertex Equitable Graphs

Given a graph $G$ with $q$ edges and a labeling $f$ from the vertices of $G$ to the set \{0, 1, 2, \ldots, \lceil q/2 \rceil \} define a labeling $f^*$ on the edges by $f^*(uv) = f(u) + f(v)$. If for all $i$ and $j$ and each vertex the number of vertices labeled with $i$ and the number of vertices labeled with $j$ differ by at most one and the edge labels induced by $f^*$ are $1, 2, \ldots, q$. Lourdusamy and Seenivasan [1324] call a $f$ a vertex equitable labeling of $G$. They proved the following graphs are vertex equitable: paths, bistars, combs, $n$-cycles for $n \equiv 0$ or $3 \pmod{4}$, $K_{2,n}$, $C_3^{q,t}$ for $t \geq 2$, quadrilateral snakes, $K_2 + mK_1$, $K_{1,n} \cup K_{1,n+k}$ if and only if $1 \leq k \leq 3$, ladders, arbitrary super divisions of paths, and $n$-cycles with $n \equiv 0$ or $3 \pmod{4}$. They further proved that $K_{1,n}$ for $n \geq 4$, Eulerian graphs with $n$ edges where $n \equiv 1$ or $2 \pmod{4}$, wheels, $K_n$ for $n > 3$, triangular cacti with $q \equiv 0$ or $6$ or $9 \pmod{12}$, and graphs with $p$ vertices and $q$ edges, where $q$ is even and $p < \lceil q/2 \rceil + 2$ are not vertex equitable.

Jeyanthi and Maheswari [932] proved that the following graphs have vertex equitable labelings: the square of the bistar $B_{n,n}$; the splitting graph of the bistar $B_{n,n}$; $C_4$-snakes; connected graphs for which each block is a cycle of order divisible by 4 (they need not be the same order) and whose block-cut point graph is a path; $C_m \circ P_n$; tadpoles; the one-point union of two cycles; and the graph obtained by starting friendship graphs, $C_n^{(2)}, C_n^{(2)}, \ldots, C_n^{(2)}$ where each $n_i \equiv 0 \pmod{4}$ and joining the center of $C_n^{(2)}$ to the center of $C_n^{(2)}$ with an edge for $i = 1, 2, \ldots, k - 1$. In [922] Jeyanthi and Maheswari prove that $T_p$ trees, bistars $B(n, n + 1)$, $C_n \circ K_m$, $P_n^2$, tadpoles, certain classes of caterpillars, and $T \circ K_n$ where $T$ is a $T_p$ tree with an even number of vertices are vertex equitable. Jeyanthi and Maheswari [925] gave vertex equitable labelings for graphs constructed from $T_p$ trees by appending paths or cycles. Jeyanthi and Maheswari [921] proved that graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle, total graphs of a paths, splitting graphs of paths, and the graphs obtained identifying an edge of one cycle with an edge of another cycle are vertex equitable (see §2.7 for the definitions of duplicating vertices and edges, a total graph, and a splitting graph.)

For a graph $H$ with vertices $v_1, v_2, \ldots, v_n$ and $n$ copies of a graph $G$, $H \triangledown G$ is a graph obtained by identifying a vertex $u_i$ of the $i$th copy of $G$ with a vertex $v_i$ of $H$ for $1 \leq i \leq n$. The graph $H \triangledown G$ is a graph obtained by joining a vertex $u_i$ of the $i$th copy of $G$ with a vertex $v_i$ of $H$ by an edge for $1 \leq i \leq n$. Jeyanthi, Maheswari, and Laksmi prove [935] that the graphs $L_m \triangledown nC_4$, $L_m \triangledown nC_4$, $C_m \triangledown nC_4$, and $P_m \triangledown nC_4$ are vertex equitable graphs. The graph $S^*(G)$ is obtained from a graph $G$ by replacing every edge $e$ of $G$ with $K_{2,m}$ ($m \geq 2$) with the endpoints of $e$ merged with the two vertices of the 2-vertices part of $K_{2,m}$ after removing the edge $e$ from $G$. Jeyanthi, Maheswari, and Vijaya Laksmi [943]
prove the graphs $S^*(P_n \cdot K_1)$, $S^*(B(n, n))$, $S^*(P_n \times P_2)$, and $S^*(Q_n)$ of the quadrilateral snake are vertex equitable.

In [929] Jeyanthi and Maheswari proved the double alternate triangular snake $DA(T_n)$ obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to two new vertices $v_i$ and $w_i$ is vertex equitable; the double alternate quadrilateral snake $DA(Q_n)$ obtained from a path $u_1, u_2, \ldots, u_n$ by joining $u_i$ and $u_{i+1}$ (alternatively) to two new vertices $v_i, x_i$ and $w_i, y_i$ respectively and then joining $v_i, w_i$ and $x_i, y_i$ is vertex equitable; and $NQ(m)$ the $n^{th}$ quadrilateral snake obtained from the path $u_1, u_2, \ldots, u_n$ by joining $u_i, u_{i+1}$ with $2n$ new vertices $v^j_i$ and $w^j_i, 1 \leq i \leq m - 1, 1 \leq j \leq n$ is vertex equitable. Jeyanthi and Maheswari [940] prove $DA(T_n) \odot K_1$, $DA(T_n) \odot 2K_1$, $DA(T_n)$, $DA(Q_n) \odot K_1$, $DA(Q_n) \odot 2K_1$, and $DA(Q_n)$ are vertex equitable.

In [928] and [930] Jeyanthi and Maheswari show a number of families of graphs have vertex equitable labelings. Their results include: armed crowns $C_m \odot P_n$, shadow graphs $D_2(K_{1,n})$; the graph $G \ast C_n$ obtained by identifying a single vertex of a cycle graph $C_n$ with a single vertex of a cycle graph $C_n$ if and only if $m + n \equiv 0, 3 \pmod{4}$; for $n \equiv 0 \pmod{4}$ the graph obtained from $m$ copies of $C_n \ast C_n$ and $P_m$ by joining each vertex of $P_m$ with the cut vertex in one copy of $C_n \ast C_n$; and graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle; the total graph of $P_n$; the splitting graph of $P_n$; and the fusion of two edges of $C_n$.

Jeyanthi, Maheswari, and Vijayalaksmi [941] proved the following graphs are vertex equitable: jewel graphs $J_n$ with vertex set $\{u, v, x, y, u_i : 1 \leq i \leq n\}$ and edge set $\{ux, uy, xy, xv, yv, uu_i, vv_i : 1 \leq i \leq n\}$; jelly fish graphs $(JF)_n$ with vertex set $\{u, v, u_i, v_j : 1 \leq i \leq n, 1 \leq j \leq n - 2\}$ and edge set $\{uu_i : 1 \leq i \leq n\} \cup \{vv_j : 1 \leq j \leq n - 2\} \cup \{u_{n-1}u_n, v_{n-1}v_n\}$; lobsters constructed from the path $a_1, a_2, \ldots, a_n$ with vertices $a_{i1}$ and $a_{i2}$ adjacent to $a_i$ for $1 \leq i \leq n$ and pendant vertices $a_{ij}^1, a_{ij}^2, \ldots, a_{ij}^k$ joining $a_{ij}$ for $1 \leq i \leq n$ and $j = 1, 2$; $L_n \odot K_m$; and the graph obtained from ladder a $L_n$ and $2n$ copies of $K_{1,m}$ by identifying a non-central vertex of $i^{th}$ copy of $K_{1,m}$ with $i^{th}$ vertex of $L_n$.

Jeyanthi, Mahewari, and Vijaya Laksmi [933] prove the following graphs are vertex equitable: graphs obtained by joining a vertex of a cycle to a degree 2 vertex of a comb $(P_n \odot K_1)$ with an edge; path unions of quadrilateral snakes; cycle unions of $n$ copies of $mC_4$-snakes where $n \equiv 0, 3 \pmod{4}$; the graphs obtained from a path $u_1, u_2, \ldots, u_n$ by joining the end points of each edge $u_iu_{i+1}$ to $2n$ isolated vertices $v^i_j, w^i_j$ for $1 \leq m - 1, 1 \leq j \leq n$, where $n$ is even (the $n^{th}$ quadrilateral snake).

Jeyanthi, Maheswari, and Vjaya Laksmi [933] prove that subdivisions of double triangular snakes $S(D(T_n))$, subdivisions of double quadrilateral snakes $S(D(Q_n))$, subdivisions of double alternate triangular snakes $S(DA(T_n))$, subdivisions of double alternate quadrilateral snakes $S(DA(Q_n))$, $DA(Q_m) \odot nK_1$, and $DA(T_m) \odot nK_1$ admit vertex equitable labelings.

The super subdivision graph $S^*(G)$ of a graph $G$ is the graph obtained from $G$ by replacing every edge $uv$ of $G$ by $K_{2,m}$ ($m$ may vary for each edge) and identifying $u$ and $v$ with the two vertices in $K_{2,m}$ that form the partite set with exactly two members. Jeyanthi, Maheswari and Vijayalaksmi [943] prove that super subdivision graphs of $P_n \odot$
$K_1$, bistars $B(n, n)$, $P_n \times P_2$, and quadrilateral snakes are vertex equitable.

For a graph $H$ with vertices $v_1, v_2, \ldots, v_n$ and $n$ copies of a graph $G$, $H \circ G$ is a graph obtained by identifying a vertex $u_i$ of the $i$th copy of $G$ with a vertex $v_i$ of $H$ for $1 \leq i \leq n$. The graph $H \circ G$ is a graph obtained by joining a vertex $u_i$ of the $i$th copy of $G$ with a vertex $v_i$ of $H$ by an edge for $1 \leq i \leq n$. Jeyanthi, Maheswari, and Laksmi [935] prove that the graphs $L_m \circ nC_4$, $L_m \circ nC_4$, $C_m \circ nC_4$ and $P_m \circ nC_4$ are vertex equitable graphs.

### 7.22 Sequentially Additive Graphs

Bange, Barkauskas, and Slater [269] defined a $k$-sequentially additive labeling $f$ of a graph $G(V, E)$ to be a bijection from $V \cup E$ to \{ $k, \ldots, k + |V \cup E| - 1$ \} such that for each edge $xy$, $f(xy) = f(x) + f(y)$. They proved: $K_n$ is 1-sequentially additive if and only if $n \leq 3$; $C_{3n+1}$ is not $k$-sequentially additive for $k \equiv 0$ or 2 (mod 3); $C_{3n+2}$ is not $k$-sequentially additive for $k \equiv 1$ or 2 (mod 3); $C_n$ is 1-sequentially additive if and only if $n \equiv 0$ or 1 (mod 3); and $P_n$ is 1-sequentially additive. They conjecture that all trees are 1-sequentially additive. Hegde [787] proved that $K_{1,n}$ is $k$-sequentially additive if and only if $k$ divides $n$.

Hajnal and Nagy [757] investigated 1-sequentially additive labelings of 2-regular graphs. They prove: $kC_3$ is 1-sequentially additive for all $k$; $kC_4$ is 1-sequentially additive if and only if $k \equiv 0$ or 1 (mod 3); $C_{6n} \cup C_{6n}$ and $C_{6n} \cup C_{6n} \cup C_3$ are 1-sequentially additive for all $n$; $C_{12n}$ and $C_{12n} \cup C_3$ are 1-sequentially additive for all $n$. They conjecture that every 2-regular simple graph on $n$ vertices is 1-sequentially additive where $n \equiv 0$ or 1 (mod 3).

Acharya and Hegde [38] have generalized $k$-sequentially additive labelings by allowing the image of the bijection to be \{ $k, k + d, \ldots, (k + |V \cup E| - 1)d$ \}. They call such a labeling additively $(k, d)$-sequential.

### 7.23 Difference Graphs

Analogous to a sum graph, Harary [766] calls a graph a difference graph if there is a bijection $f$ from $V$ to a set of positive integers $S$ such that $xy \in E$ if and only if $|f(x) - f(y)| \in S$. Bloom, Hell, and Taylor [375] have shown that the following graphs are difference graphs: trees, $C_n$, $K_n$, $K_{n,n}$, $K_{n,n-1}$, pyramids, and $n$-prisms. Gervacio [705] proved that wheels $W_n$ are difference graphs if and only if $n = 3, 4$, or 6. Sonntag [1903] proved that cacti (that is, graphs in which every edge is contained in at most one cycle) with girth at least 6 are difference graphs and he conjectures that all cacti are difference graphs. Sugeng and Ryan [1940] provided difference labelings for cycles; fans; cycles with chords; graphs obtained by the one-point union of $K_n$ and $P_m$; and graphs made from any number of copies of a given graph $G$ that has a difference labeling by identifying one vertex the first with a vertex of the second, a different vertex of the second with the third and so on.

Hegde and Vasudeva [810] call a simple digraph a mod difference digraph if there
is a positive integer $m$ and a labeling $L$ from the vertices to $\{1, 2, \ldots, m\}$ such that for any vertices $u$ and $v$, $(u, v)$ is an edge if and only if there is a vertex $w$ such that $L(v) - L(u) \equiv L(w) \pmod{m}$. They prove that the complete symmetric digraph and unidirectional cycles and paths are mod difference digraphs.

In [1721] Seoud and Helmi provided a survey of all graphs of order at most 5 and showed the following graphs are difference graphs: $K_n$, $(n \geq 4)$ with two deleted edges having no vertex in common; $K_n$, $(n \geq 6)$ with three deleted edges having no vertex in common; gear graphs $G_n$ for $n \geq 3$; $P_m \times P_n$ ($m, n \geq 2$); triangular snakes; $C_4$-snakes; dragons (that is, graphs formed by identifying the end vertex of a path and any vertex in a cycle); graphs consisting of two cycles of the same order joined by an edge; and graphs obtained by identifying the center of a star with a vertex of a cycle.

### 7.24 Square Sum Labelings and Square Difference Labelings

Ajitha, Arumugam, and Germina [108] call a labeling $f$ from a graph $G(p, q)$ to $\{1, 2, \ldots, q\}$ a square sum labeling if the induced edge labeling $f^*(uv) = (f(u))^2 + (f(v))^2$ is injective. They say a square sum labeling is a strongly square sum labeling if the $q$ edge labels are the first $q$ consecutive integers of the form $a^2 + b^2$ where $a$ and $b$ are less than $p$ and distinct. They prove the following graphs have square sum labelings: trees; cycles; $K_2 + mK_1$; $K_n$ if and only if $n \leq 5$; $C_{n}^{(t)}$ (the one-point union of $t$ copies of $C_n$); grids $P_m \times P_n$; and $K_{m,n}$ if $m \leq 4$. They also prove that every strongly square sum graph except $K_1, K_2$, and $K_3$ contains a triangle.

Germina and Sebastian [704] proved that the following graphs are square sum graphs: trees; unicyclic graphs; $mC_n$; cycles with a chord; the graphs obtained by joining two copies of cycle $C_n$ by a path $P_k$; and graphs that are a path union of $k$ copies of $C_n$ and the path is $P_2$. In [1709] Seoud and Al-Harere give several necessary conditions for a graph to be a square sum graph and show that $2C_n, P_{2n}$, and $C_{2n}$ are square sum graphs.

In [1894] Somashekara and Veena used the term “square sum labeling” to mean “strongly square sum labeling.” They proved that the following graphs have strongly square sum labelings: paths, $K_{1,n_1} \cup K_{1,n_2} \cup \cdots \cup K_{1,n_k}$, complete $n$-ary trees, and lobsters obtained by joining centers of any number of copies of a star to a new vertex. They observed that that if every edge of a graph is an edge of a triangle then the graph does not have strongly square sum labeling. As a consequence, the following graphs do not have a strongly square sum labelings: $K_n, n \geq 3$; wheels; fans $P_n + K_1$ ($n \geq 2$); double fans $P_n + K_2$ ($n \geq 2$); friendship graphs $C_4^{(n)}$; windmills $K_{m}^{(m)}$ ($m > 3$); triangular ladders; triangular snakes; double triangular snakes; and flowers. They also proved that helms are not strongly square sum graphs and the graphs obtained by joining the centers of two wheels to a new vertex are not strongly square sum graphs.

Ajitha, Princy, Lokesha, and Ranjini [83] defined a graph $G(p, q)$ to be a square difference graph if there exist a bijection $f$ from $V(G)$ to $\{0, 1, 2, \ldots, p-1\}$ such that the induced function $f^*$ from $E(G)$ to the natural numbers given by $f^*(uv) = |(f(u))^2 - (f(v))^2|$ for every edge $uv$ of $G$ is a bijection. Such a the function is called a square difference labeling of the graph $G$. They proved that following graphs have square difference labelings:
paths, stars, cycles, $K_n$ if and only if $n \leq 5$, $K_{m,n}$ if $m \leq 4$, friendship graphs $C_3(n)$, triangular snakes, and $K_2 + mK_1$. They also prove that every graph can be embedded as a subgraph of a connected square difference graph and conjecture that trees, complete bipartite graphs and $C_k(n)$ are square difference graphs.

Tharmaraj and Sarasija [1981] proved that following graphs have square difference labelings: fans $F_n$ ($n \geq 2$); $P_n + K_2$; the middle graphs of paths and cycles; the total graph of a path; the graphs obtained from $m$ copies of an odd cycle and the path $P_m$ with consecutive vertices $v_1, v_2, \ldots, v_m$ by joining the vertex $v_i$ to a vertex of the $i^{th}$ copy of the odd cycle; and the graphs obtained from $m$ copies of the star $S_n$ and the path $P_m$ by joining the vertex $v_i$ of $P_m$ to the center of the $i^{th}$ copy of $S_n$. Sebastian and Germina [1686] proved that certain planar graphs and higher order level joined planar grid admit square sum labeling. They also study square sum properties of several classes of graphs with many odd cycles.

### 7.25 Permutation and Combination Graphs

Hegde and Shetty [804] define a graph $G$ with $p$ vertices to be a permutation graph if there exists an injection $f$ from the vertices of $G$ to $\{1, 2, 3, \ldots, p\}$ such that the induced edge function $g_f$ defined by $g_f(uv) = f(u)! / |f(u) - f(v)|!$ is injective. They say a graph $G$ with $p$ vertices is a combination graph if there exists an injection $f$ from the vertices of $G$ to $\{1, 2, 3, \ldots, p\}$ such that the induced edge function $g_f$ defined as $g_f(uv) = f(u)! / |f(u) - f(v)|! f(v)!$ is injective. They prove: $K_n$ is a permutation graph if and only if $n \leq 5$; $K_n$ is a combination graph if and only if $n \leq 5$; $C_n$ is a combination graph for $n > 3$; $K_{n,n}$ is a combination graph if and only if $n \leq 2$; $W_n$ is a not a combination graph for $n \leq 6$; and a necessary condition for a $(p, q)$-graph to be a combination graph is that $4q \leq p^2$ if $p$ is even and $4q \leq p^2 - 1$ if $p$ is odd. They strongly believe that $W_n$ is a combination graph for $n \geq 7$ and all trees are combinations graphs. Baskar Babujee and Vishnupriya [322] prove the following graphs are permutation graphs: $P_n$; $C_n$; stars; graphs obtained adding a pendant edge to each edge of a star; graphs obtained by joining the centers of two identical stars with an edge or a path of length 2); and complete binary trees with at least three vertices. Seoud and Salim [1731] determine all permutation graphs of order at most 9 and prove that every bipartite graph of order at most 50 is a permutation graph. Seoud and Mahar [1723] give an upper bound on the number of edges of a permutation graph and introduce some necessary conditions for a graph to be a permutation graph. They show that these conditions are not sufficient for a graph to be a permutation graph.

Hegde and Shetty [804] say a graph $G$ with $p$ vertices and $q$ edges is a strong $k$-combination graph if there exists a bijection $f$ from the vertices of $G$ to $\{1, 2, 3, \ldots, p\}$ such that the induced edge function $g_f$ from the edges to $\{k, k+1, \ldots, k+q-1\}$ defined by $g_f(uv) = f(u)! / |f(u) - f(v)|! f(v)!$ is a bijection. They say a graph $G$ with $p$ vertices and $q$ edges is a strong $k$-permutation graph if there exists a bijection $f$ from the vertices of $G$ to $\{1, 2, 3, \ldots, p\}$ such that the induced edge function $g_f$ from the edges to $\{k, k+1, \ldots, k+q-1\}$ defined by $g_f(uv) = f(u)! / |f(u) - f(v)|!$ is a bijection.
Kings provided necessary conditions for combination graphs, permutation graphs, strong k-combination graphs, and strong k-permutation graphs.

Seoud and Al-Harere [1710] showed that the following families are combination graphs: graphs that are two copies of $C_n$ sharing a common edge; graphs consisting of two cycles of the same order joined by a path; graphs that are the union of three cycles of the same order; wheels $W_n$ ($n \geq 7$); coronas $T_n \odot K_1$, where $T_n$ is the triangular snake; and the graphs obtained from the gear $G_m$ by attaching $n$ pendent vertices to each vertex which is not joined to the center of the gear. They proved that a graph $G(n, q)$ having at least 6 vertices such that 3 vertices are of degree 1, $n - 1, n - 2$ is not a combination graph, and a graph $G(n, q)$ having at least 6 vertices such that there exist 2 vertices of degree $n - 3$, two vertices of degree 1 and one vertex of degree $n - 1$ is not a combination graph.

Seoud and Al-Harere [1708] proved that the following families are combination graphs: unions of four cycles of the same order; double triangular snakes; fans $F_n$ if and only if $n \geq 6$; caterpillars; complete binary trees; ternary trees with at least 4 vertices; and graphs obtained by identifying the pendent vertices of stars $S_m$ with the paths $P_{n_1}$, for $1 \leq n_i \leq m$. They include a survey of trees of order at most 10 that are combination graphs and proved the following graphs are not combination graphs: bipartite graphs with two partite sets with $n \geq 6$ elements such that $n/2$ elements of each set have degree $n$; the splitting graph of $K_{n,n}$ ($n \geq 3$); and certain chains of two and three complete graphs. Seoud and Anwar [1711] proved the following graphs are combination graphs: dragon graphs (the graphs obtained from by joining the endpoint of a path to a vertex of a cycle); triangular snakes $T_n$ ($n \geq 3$); wheels; and the graphs obtained by adding $k$ pendent edges to every vertex of $C_n$ for certain values of $k$.

In [1707] and [1708] Seoud and Al-Harere proved the following graphs are non-combination graphs: $G_1 + G_2$ if $|V(G_1)|, |V(G_2)| \geq 2$ and at least one of $|V(G_1)|$ and $|V(G_2)|$ is greater than 2; the double fan $K_2 + P_n$; $K_{i,m,n}$; $K_{i,m,n} \odot P_2[G]$; $P_3[G]$; $C_5[G]$; $C_4[G]$; $K_m[G]$; $W_m[G]$; the splitting graph of $K_n$ ($n \geq 3$); $K_n$ ($n \geq 4$) with an edge deleted; $K_n$ ($n \geq 5$) with three edges deleted; and $K_{n,n}$ ($n \geq 3$) with an edge deleted. They also proved that a graph $G(n, q)$ ($n \geq 3$) is not a combination graph if it has more than one vertex of degree $n - 1$.

In [1983] and [1982] Tharmaraj and Sarasija defined a graph $G(V, E)$ with $p$ vertices to be a beta combination graph if there exist a bijection $f$ from $V(G)$ to $\{1, 2, \ldots, p\}$ such that the induced function $B_f$ from $E(G)$ to the natural numbers given by $B_f(uw) = (f(u) + f(v))!/f(u)!f(v)!$ for every edge $uv$ of $G$ is injective. Such a function is called a beta combination labeling. They prove the following graphs have beta combination labelings: $K_n$ if and only if $n \leq 8$; ladders $L_n$ ($n \geq 2$); fans $F_n$ ($n \geq 2$); wheels; paths; cycles; friendship graphs; $K_{n,n}$ ($n \geq 2$); trees; bistars; $K_{1,n}$ ($n > 1$); triangular snakes; quadrilateral snakes; double triangular snakes; alternate triangular snakes (graphs obtained from a path $v_1, v_2, \ldots, v_n$, where for each odd $i \leq n - 1$, $v_i$ and $v_{i+1}$ are joined to a new vertex $u_{i,i+1}$; alternate quadrilateral snakes (graphs obtained from a path $v_1, v_2, \ldots, v_n$, where for each odd $i \leq n - 1$, $v_i$ and $v_{i+1}$ are joined to two new vertices $u_{i,i+1,1}$ and $u_{i,i+1,2}$); helms; gears; combs $P_n \odot K_1$; and coronas $C_n \odot K_1$. 

---

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS6 281
7.26 Strongly *-graphs

A variation of strong multiplicity of graphs is a strongly *-graph. A graph of order \( n \) is said to be a strongly *-graph if its vertices can be assigned the values 1, 2, \ldots, \( n \) in such a way that, when an edge whose vertices are labeled \( i \) and \( j \) is labeled with the value \( i + j + ij \), all edges have different labels. Adiga and Somashekara [49] have shown that all trees, cycles, and grids are strongly *-graphs. They further consider the problem of determining the maximum number of edges in any strongly *-graph of given order and relate it to the corresponding problem for strongly multiplicative graphs. In [1725] and [1726] Seoud and Mahan give some technical necessary conditions for a graph to be strongly *-graph.

Baskar Babujee and Vishnupriya [322] have proved the following are strongly *-graphs: \( C_n \times P_2, (P_2 \cup \overline{K}_m) + \overline{K}_2 \), windmills \( K_3^{(n)} \), and jelly fish graphs \( J(m, n) \) obtained from a 4-cycle \( v_1, v_2, v_3, v_4 \) by joining \( v_1 \) and \( v_3 \) with an edge and appending \( m \) pendent edges to \( v_2 \) and \( n \) pendent edges to \( v_4 \).

Baskar Babujee and Beaula [306] prove that cycles and complete bipartite graphs are vertex strongly *-graphs. Baskar Babujee, Kannan, and Vishnupriya [316] prove that wheels, paths, fans, crowns, \( (P_2 \cup mK_1) + \overline{K}_2 \), and umbrellas (graphs obtained by appending a path to the central vertex of a fan) are vertex strongly *-graphs.

7.27 Triangular Sum Graphs

S. Hegde and P. Shankaran [799] call a labeling of graph with \( q \) edges a triangular sum labeling if the vertices can be assigned distinct non-negative integers in such a way that, when an edge whose vertices are labeled \( i \) and \( j \) is labeled with the value \( i + j \), the edges labels are \( \{k(k + 1)/2 \mid k = 1, 2, \ldots, q\} \). They prove the following graphs have triangular sum labelings: paths, stars, complete \( n \)-ary trees, and trees obtained from a star by replacing each edge of the star by a path. They also prove that \( K_n \) has a triangular sum labeling if and only if \( n \) is 1 or 2 and the friendship graphs \( C_3^{(l)} \) do not have a triangular sum labeling. They conjecture that \( K_n \) (\( n \geq 5 \)) are forbidden subgraphs of graph with triangular sum labelings. They conjectured that every tree admits a triangular sum labeling. They show that some families of graphs can be embedded as induced subgraphs of triangular sum graphs. They conclude saying “as every graph cannot be embedded as an induced subgraph of a triangular sum graph, it is interesting to embed families of graphs as an induced subgraph of a triangular sum graph”. In response, Seoud and Salim [1728] showed the following graphs can be embedded as an induced subgraph of a triangular sum graph: trees, cycles, \( nC_4 \), and the one-point union of any number of copies of \( C_4 \) (friendship graphs).

Vaidya, Prajapati, and Vihol [2050] showed that cycles, cycles with exactly one chord, and cycles with exactly two chords that form a triangle with an edge of the cycle can be embedded as an induced subgraph of a graph with a triangular sum labeling.

Vaidya, Prajapati, and Vihol [2050] proved that several classes of graphs do not have triangular sum labelings. Among them are: helms, graphs obtained by joining the centers of two wheels to a new vertex, and graphs in which every edge is an edge of a triangle. As a
corollary of the latter result they have that \( P_m + K_n, W_m + K_n \), wheels, friendship graphs, flowers, triangular ladders, triangular snakes, double triangular snakes, and flowers. do not have triangular sum labelings.

Seoud and Salim [1728] proved the following are triangular sum graphs: \( P_m \cup P_n, m \geq 4 \); the union of any number of copies of \( P_n, n \geq 5 \); \( P_n \odot K_m \); symmetrical trees; the graph obtained from a path by attaching an arbitrary number of edges to each vertex of the path; the graph obtained by identifying the centers of any number of stars; and all trees of order at most 9.

For a positive integer \( i \) the \( i \)th pentagonal number is \( i(3i - 1)/2 \). Somashekara and Veena [1895] define a pentagonal sum labeling of a graph \( G(V, E) \) as one for which there is a one-to-one function \( f \) from \( V(G) \) to the set of nonnegative integers that induces a bijection \( f^+ \) from \( E(G) \) to the set of the first \( |E| \) pentagonal numbers. A graph that admits such a labeling is called a pentagonal sum graph. Somashekara and Veena [1895] proved that the following graphs have pentagonal sum labelings: paths, \( K_{1,n_1} \cup K_{1,n_2} \cup \ldots \cup K_{1,n_k} \), complete \( n \)-ary trees, and lobsters obtained by joining centers of any number of copies of a star to a new vertex. They conjecture that every tree has a pentagonal sum labeling and as an open problem they ask for a proof or disprove that cycles have pentagonal labelings.

Somashekara and Veena [1895] observed that that if every edge of a graph is an edge of a triangle then the graph does not have pentagonal sum labeling. As was the case for triangular sum labelings the following graphs do not have a pentagonal sum labeling: \( P_m + K_n \), and \( W_m + K_n \) wheels, friendship graphs, flowers, triangular ladders, triangular snakes, double triangular snakes, and flowers. Somashekara and Veena [1895] also proved that helms and the graphs obtained by joining the centers of two wheels to a new vertex are not pentagonal sum graphs.

7.28 Divisor Graphs

G. Santhosh and G. Singh [1681] call a graph \( G(V, E) \) a divisor graph if \( V \) is a set of integers and \( uv \in E \) if and only if \( u \) divides \( v \) or vice versa. They prove the following are divisor graphs: trees; \( mK_n \); induced subgraphs of divisor graphs; cocktail party graphs \( H_{m,n} \) (see Section 7.1 for the definition); the one-point union of complete graphs of different orders; complete bipartite graphs; \( W_n \) for \( n \) even and \( n > 2 \); and \( P_n + K_t \). They also prove that \( C_n (n \geq 4) \) is a divisor graph if and only if \( n \) is even and if \( G \) is a divisor graph then for all \( n \) so is \( G + K_n \).

Chartrand, Muntean, Saenpholphat, and Zhang [457] proved complete graphs, bipartite graphs, complete multipartite graphs, and joins of divisor graphs are divisor graphs. They also proved if \( G \) is a divisor graph, then \( G \times K_2 \) is a divisor graph if and only if \( G \) is a bipartite graph; a triangle-free graph is a divisor graph if and only if it is bipartite; no divisor graph contains an induced odd cycle of length 5 or more; and that a graph \( G \) is divisor graph if and only if there is an orientation \( D \) of \( G \) such that if \((x, y) \) and \((y, z) \) are edges of \( D \) then so is \((x, z) \).

In [92] and [94] Al-Addasi, AbuGhneim, and Al-Ezeh determined precisely the values of \( n \) for which \( P^k_n (k \geq 2) \) are divisor graphs and proved that for any integer \( k \geq 2 \), \( C_n^k \)
is a divisor graph if and only if \( n \leq 2k + 2 \). In [95] they gave a characterization of the graphs \( G \) and \( H \) for which \( G \times H \) is a divisor graph and a characterization of which block graphs are divisor graphs. (Recall a graph is a \textit{block graph} if every one of its blocks is complete.) They showed that divisor graphs form a proper subclass of perfect graphs and showed that cycle permutation graphs of order at least 8 are divisor graphs if and only if they are perfect. (Recall a graph is \textit{perfect} if every subgraph has chromatic number equal to the order of its maximal clique.) In [93] Al-Addasi, AbuGhneim, and Al-Ezeh proved that the contraction of a divisor graph along a bridge is a divisor graph; if \( e \) is an edge of a divisor graph that lies on an induced even cycle of length at least 6, then the contraction along \( e \) is not a divisor graph; and they introduced a special type of vertex splitting that yields a divisor graph when applied to a cut vertex of a given divisor graph.

AbuHijleh, AbuGhneim, and Al-Ezeh [19] prove that for any tree \( T \), \( T^2 \) is a divisor graph if and only if \( T \) is a caterpillar and the diameter of \( T \) is less than six. For any caterpillar \( T \) and a positive integer \( k \) with \( \text{diam}(T) < 2k \), they show that \( T^k \) is a divisor graph. Moreover, for a caterpillar \( T \) and \( k \geq 3 \) with \( \text{diam}(T) = 2k \) or \( \text{diam}(T) = 2k + 1 \), they show that \( T^k \) is a divisor graph if and only if the centers of \( T \) have degree two. In [20] AbuHijleh, AbuGhneim, and Al-Ezeh prove that the \( k \)-th power \( Q_n^k \) of \( Q_n \) is a divisor graph if and only if \( n = 2, 3 \) or \( n \geq 4 \) and \( k \geq n - 1 \) hold. In the case of the \( n \)-dimensional folded-hypercube \( FQ_n \) (that is, the graph obtained from \( Q_n \) by adding to it a perfect matching that connects opposite pairs of the vertices of \( Q_n \)) they show that \( FQ_n \) is a divisor graph for odd \( n \), but not for even \( n \geq 4 \). They also prove \((FQ_n)^k\) is not a divisor graph if and only if \( 2 \leq k \leq \lceil n/2 \rceil \), where \( n \geq 5 \).

Ganesan and Uthayakumar [663] proved that \( G \odot H \) is a divisor graph if and only if \( G \) is a bipartite graph and \( H \) is a divisor graph. Frayer [623] proved \( K_n \times G \) is a divisor graph for each \( n \) if and only if \( G \) contains no edges and \( K_n \times K_2 \) (\( n \geq 3 \)) is a divisor graph. Vinh [2122] proved that for any \( n > 1 \) and \( 0 \leq m \leq n(n - 1)/2 \) there exists a divisor graph of order \( n \) and size \( m \). She also gave a simple proof of the characterization of divisor graphs due to Chartrand, Muntean, Saenpholphat, and Zhang [457]. Gera, Saenpholphat, and Zhang [699] established forbidden subgraph characterizations for all divisor graphs that contain at most three triangles. Tsao [1996] investigated the vertex-chromatic number, the clique number, the clique cover number, and the independence number of divisor graphs and their complements. In [1717] Seoud, El Sonbaty, and Mahran discuss here some necessary and sufficient conditions for a graph to be divisor graph.
References


S. Akbari, M. Kano, S. Zare, 0-Sum and 1-sum flows in regular graphs, preprint.


R. E. L. Aldred and B. D. McKay, Graceful and harmonious labellings of trees, personal communication.


[115] H. Alpert, Rank numbers of path powers and grid graphs, personal communication.


[141] R. Aravamudhan and M. Murugan, Numbering of the vertices of $K_{a,1,b}$, unpublished.


[256] V. Balaji, Solution of a conjecture on Skolem mean graph of stars $K_{1,l} \cup K_{1,m} \cup K_{1,n}$, *Internat. J. Math. Combin.*, 4 (2011) 115-117.


[259] R. Balakrishnan, Graph labelings, unpublished.


[360] V. Bhat-Nayak and U. Deshmukh, Gracefulness of $C_{4t} \cup K_{1,4t-1}$ and $C_{4t+3} \cup K_{1,4t+2}$, *J. Ramanujan Math. Soc.*, 11 (1996) 187-190.


[404] C. Bu, Sequential labeling of the graph $C_n \odot \overline{K}_m$, preprint.
[433] H. Cai, L. X. Wei, X. R. Lu, Gracefulness of unconnected graphs \( (P_1 \vee P_n) \cup G_r, (P_1 \vee P_n) \cup (P_3 \vee K_n) \) and \( W_n \cup St(m) \), J. Jilin Univ. Sci., 45 (2007) 539-543.


[511] Z. Coles, A. Huszar, J. Miller, and Z. Szaniszlo, 4-equitable tree labelings, preprint
[518] Dafik, M. Miller, and J. Ryan, Super edge-magic total labelings of mK_{n,n,n}, Ars Combin., 101 97-107.


K. Driscoll, E. Krop, and M. Nguyen, All trees are six-cordial, arXiv1604.02105.


A. B. Evans, Representations of disjoint unions of complete graphs, unpublished.


W. Fang, A computational approach to the graceful tree conjecture, preprint.

W. Fang, New computational result on harmonious trees, preprint.


B. Gayathri and K. Amuthavalli, personal communication.


B. Gayathri and M. Duraisamy, personal communication.


B. Gayathri and V. Hemalatha, Even sequential harmonious graphs, personal communication.


B. Gayathri and M. Tamilselvi, personal communication.


[728] J. Gómez, Solution of the conjecture: If $n \equiv 0 \pmod{4}$, $n > 4$, then $K_{n}$ has a super vertex-magic total labeling, *Discrete Math.*, 307 (2007) 2525-2534.


S. Hall, K. Hillesheim, E. Kocina, and M. Schmit, personal communication.


Y. He, L. Shen, Y. Wang, Y. Chang, Q. Kang, and X. Yu, The integral sum number of complete bipartite graphs $K_{r,s}$, *Discrete Math.*, **239** (2001) 137-146.


D. Hefetz, A. Saluz, and H. Tran, An application of the combinatorial nullstellensatz to a graph labeling problem, *J. Graph Theory*, **65** (2010) 70-82.


[831] Q. Huang, Harmonious labeling of crowns C_n ⊗ K_1, unpublished


[917] P. Jeyanthi and K. Jeya Daisy, Some results on $Z_k$-magic labeling, preprint,
[919] P. Jeyanthi and K. Jeya Daisy, $Z_k$-magic labeling of some graphs, preprint


M.-J. Lee, On super $(a,1)$-edge-antimagic total labeling of grids and crowns, Ars Combin., 104 (2012) 97-105.


Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, *J. Graph Th.*, 75 (2014) 31-36.


[1300] Y. Liu, All crowns and helms are harmonious, unpublished.


X. Lu and X. F. Li, $P_1 \vee T_m$ graphs and a certification of its gracefulness, Gongcheng Shuxue Xuebao, 13 (1996) 109-113.
[1334] X. Lu, W. Pan, and X. Li, k-gracefulness and arithmetic of graph $St(m) \cup K_{p,q}$, *J. Jilin Univ.*, **42** (2004) 333-336.


T. Nicholas and V. Vilfred, Sum graph and edge reduced sum number, preprint.


W. Pan and X. Lu, The gracefulness of two kinds of unconnected graphs $(P_2 \vee K_n) \cup St(m)$ and $(P_2 \vee K_n) \cup T_n$, J. Jilin Univ., 41 (2003) 152-154.


[1490] F. Pfender, Total edge irregularity strength of large graphs,


[1494] O. Phanalasy, M. Miller, L. J. Rylands, and P. Lieby, On a relationship between completely separating systems and antimagic labeling of regular graphs, In C. S. Il-


[1504] R. Ponraj, Further results on $(\alpha_1, \alpha_2, \ldots, \alpha_k)$-cordial labeling of graphs, *J. Indian Acad. Math.*, 31 (2009) 157-163.


J.-F. Puget, Breaking symmetries in all different problems, in Proceedings of SymCon04, the 4th International Workshop on Symmetry in Constraints, 2004.


J. Qian, On some conjectures and problems in graceful labelings graphs, unpublished.


I. Rajasingh and P. R. L. Pushpam, Strongly harmonious labeling of helms, personal communication.

I. Rajasingh and P. R. L. Pushpam, On graceful and harmonious labelings of $t$ copies of $K_{m,n}$ and other special graphs, personal communication.


V. Ramachandran and C. Sekar, Gracefulness and one modulo $N$ gracefulfulness of $L_n \otimes S_m$, *Scientia Magna, 10* (3) (2014) 66-76.


[1625] M. Reid, personal communication.


[1634] A. Riskin, $Z_2^2$-cordiality of $K_n$ and $K_{m,n}$, preprint.


E. Salehi and S. De, On a conjecture concerning the friendly index sets of trees, Ars Combin., 90 (2009) 371-381.


Y. Sanaka, On $\gamma$- labelings of complete bipartite graphs, Ars Combin., 111 (2013) 251-256.


[1696] M. Selvi, D. Ramya and P. Jeyanthi, Odd mean labeling of $T\tilde{o}C_n$ and $T\tilde{o}C_n$, to appear.


M. A. Seoud and A. E. A. Mahran, Some notes on strongly *-graphs, preprint.


M. A. Seoud and M. A. Salim, Upper bounds of four types of graph labeling, preprint.

M. A. Seoud and M. A. Salim, On odd mean graphs, preprint.


M. A. Seoud and M. Z. Youssef, Harmonious labellings of helms and related graphs, unpublished.


[1752] G. Sethuraman and A. Elumalai, Every graph is a vertex induced subgraph of a graceful graph and elegant graph, preprint.


G. Sethuraman and P. Selvaraju, Super-subdivisions of connected graphs are graceful, preprint.


G. Sethuraman and P. Selvaraju, New classes of graphs on graph labeling, preprint.

G. Sethuraman and P. Selvaraju, On harmonious and felicitous graphs: Union of \(n\)-copies of edge deleted subgraphs of \(K_4\), preprint.

G. Sethuraman, P. Selvaraju, and A. Elumalai, On harmonious, felicitous, elegant and cordial graphs: Union of \(n\) copies of edge deleted subgraphs of \(K_4\), preprint.


[1941] K. A. Sugeng, J. Ryan, and H. Fernau, A sum labelling for the flower \(f_{p,q}\), preprint.


[2094] R. Vasuki and A. Nagarajan, Odd mean labeling of the graphs $P_{a,b}$, $P_{a}^{b}$ and $P_{(2a)}^{b}$, *Kragujevac J. Math.*, 36, no. 1, (2012) 141-150.


[2108] V. Vilfred, Sigma partitions and sigma labeled graphs, preprint.

[2109] V. Vilfred, Perfectly regular graphs or cyclic regular graphs and ∑-labeling and partitions, Srinivasa Ramanujan Centenary Celebrating International Conference in Mathematics, Anna University, Madras, India, Abstract A23 (1987).


[2119] V. Vilfred and T. Nicholas, On integral sum graphs $G$ with $\Delta(G) = |V(G)| - 1$, preprint.

[2121] V. Vilfred and T. Nicholas, Amalgamation of integral sum graphs, fans and Dutch $M$-windmills are integral sum graphs, National Seminar on Algebra and Discrete Mathematics held at Kerala Univ., Trivandrum, India, 2005, personal communication.

[2122] Le Anh Vinh, Divisor graphs have arbitrary order and size, preprint.


[2165] L. X. Wei and K. L. Zhang, Researches on graceful graphs $(P_1^{(1)} \vee P_n) \cup (P_2^{(2)} \vee P_{2n})$ and $(P_2 \vee K_n) \cup G_{n-1}$, J. Hefei Univ. Tech., 31 (2008) 276-279.


[2169] Y. Wen and S. M. Lee, On Eulerian graphs of odd sizes which are fully magic, preprint.


[2195] X. Xu, Y. Yang, H. Li, and Y. Xi, The graphs $C_{11}^{(t)}$ are graceful for $t \equiv 0, 1 \pmod{4}$, Ars Combin., 88 (2008) 429-435.
[2196] X. Xu, Y. Yang, L. Han, and H. Li, The graphs $C_{13}^{(t)}$ are graceful for $t \equiv 0, 1 \pmod{4}$, Ars Combin., 90 (2009) 25-32.
[2204] X.-W Yang and W. Pan, Gracefulness of the graph $\bigcup_{i=1}^{n} F_{m_i,4}$, J. Jilin Univ. Sci., 41 (2003) 466-469.
[2205] Y. Yang, X. Lin, C. Yu, The graphs $C_{5}^{(t)}$ are graceful for $t \equiv 0, 3 \pmod{4}$, Ars Combin. 74 (2005) 239-244.


Y. Yang, X. Xu, Y. Xi, H. Li, and K. Haque, The graphs $C_7^{(t)}$ are graceful for $t \equiv 0, 1 \pmod{4}$, *Ars Combin.*, 79 (2006) 295-301.

Y. Yang, X. Xu, Y. Xi, and H. Huijun, The graphs $C_9^{(t)}$ are graceful for $t \equiv 0, 3 \pmod{4}$, *Ars Combin.*, 85 (2007) 361-368.


Z. B. Yilma, Antimagic properties of graphs with large maximum degree, *J. Graph Th.*, 72 (2013), no. 4, 367-373.


M. Z. Youssef, personal communication.
M. Z. Youssef, personal communication.
D. Zhang, Y-S. Ho, S. M. Lee, and Y. Wen, On the balance index sets of trees with diameter at most four, preprint.
L. Zhao, W. Feng, and Jirimutu On the gracefulfulness of the digraphs $n - \vec{C}_m$, *Util. Math.*, 82 (2010) 129-134.
L. Zhao, Siqintuya, and Jirimutu, On the gracefulfulness of the digraphs $n - \vec{C}_m$, *Ars Combin.*, 99 (2011) 421-428.

[2255] Y. Zhao, personal communication.


