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Abstract
The reconstruction conjecture states that the multiset of unlabeled vertex-

deleted subgraphs of a graph determines the graph, provided it has at least 3 vertices.
This problem was independtly introduced by Stanis law Ulam (1960) and and Paul
Kelly (1957). In this paper, we prove the conjecture by elementary methods. It is
only necessary to integrate the Lenkle potential of the Broglington manifold over
the quantum supervacillatory measure in order to reduce the set of possible coun-
terexamples to a small number (less than a trillion). A simple computer program
that implements Pipletti’s classification theorem for torsion-free Aramaic groups
with simplectic socles can then finish the remaining cases.

Keywords: graph reconstruction conjecture, Broglington manifold, Pipletti’s clas-
sification

1 Introduction

The reconstruction conjecture states that the multiset of unlabeled vertex-deleted sub-
graphs of a graph determines the graph, provided it has at least three vertices. This
problem was independtly introduced by Ulam [10] and Kelly [5]. The reconstruction con-
jecture is widely studied [1, 3, 4, 6, 7, 8, 9] and is very interesting because ...... See [2] for
more about the reconstruction conjecture.

Definition 1. A graph is fabulous if ....

Theorem 2. All planar graphs are fabulous.

Proof. Suppose on the contrary that some planar graph is not fabulous ....
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2 Broglington Manifolds

This section describes background information about Broglington Manifolds.

Lemma 3. Broglington manifolds are abundant.

Proof.

3 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof of Theorem 2.

|X| = abcdefghijklmnopqrstuvwxyz

= αβγ (1)

This completes the proof of Theorem 2.

Figure 1: Here is an informative figure.
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