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Abstract

Given a nonnegative integer d and a graph G, let fd(G) be the maximum order
of an induced forest in G having maximum degree at most d. We seek lower bounds
for fd(G) based on the order and treewidth of G.

We show that, for all k, d > 2 and n > 1, if G is a graph with order n
and treewidth at most k, then fd(G) > ⌈(2dn+ 2)/(kd+ d+ 1)⌉, unless G ∈
{K1,1,3,K2,3} and k = d = 2. We give examples that show that this bound is
tight to within 1.

We conjecture a bound for d = 1: f1(G) > ⌈2n/(k + 2)⌉, which would also be
tight to within 1, and we prove it for k 6 3. For k > 4 the conjecture remains open,
and we prove a weaker bound: f1(G) > (2n + 2)/(2k + 3). We also examine the
cases d = 0 and k = 0, 1.

Lastly, we consider open problems relating to fd for graphs on a given surface,
rather than graphs of bounded treewidth.

Keywords: Treewidth; chordal graph; induced forest

1 Introduction

We begin with an overview of the topics considered in this paper. Our terminology and
notation agree with West [26]; see Diestel [13] for basic information about treewidth.

1.1 Background

Consider the following extremal problem for G a class of graphs. Given nonnegative
integers n, d, find the greatest integer t such that every n-vertex graph G ∈ G contains a
t-vertex induced forest of maximum degree at most d.
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When d = 0, we seek a lower bound on the size of a maximum independent set. This
has been studied intensely for various graph classes [3, 14, 17, 19, 20, 25], and is the
extremal version of the optimization problem Maximum Independent Set. When d =
n, the desired forest has unrestricted degree. A vertex set S in a graph G is a minimum-
size feedback vertex set if and only if the set U = V (G)− S induces a forest of maximum
order; thus the d = n case is essentially an extremal version of Feedback Vertex
Set. This topic has also received a great deal of study [2, 4, 5, 6, 11, 18, 24]. There are
straightforward connections between these ideas and coloring and acyclic coloring (the
latter were explored by Fertin et al. [15]), which can be used to obtain results for the
d = 0 and d = n cases, respectively.

Most of the graph classes considered in the above papers are defined by planarity,
degree restrictions, and girth restrictions. For the classes of planar graphs and outerplanar
graphs, the first author considered the d = 2 case, conjecturing lower bounds and giving
examples that would be best possible. The second author proved the outerplanar graph
conjecture [21, Thm. 1], showing that each n-vertex outerplanar graph contains an induced
forest with at least (4n+2)/7 vertices and maximum degree at most 2; this is best possible.

In the present paper, we extend this result, considering the class of all graphs with
treewidth at most some integer k. This is a natural outgrowth of the previous work, since
outerplanar graphs have treewidth at most 2. We generalize a technique of Pelsmajer [21],
to obtain nearly sharp results.

1.2 Basic Definitions

All graphs in this paper are finite, simple, and undirected.
If G is a graph, then V (G) denotes the vertex set of G. If U ⊆ V (G), then G[U ] is

the subgraph induced by the vertex set U . The set of all vertices adjacent to a vertex v
is the neighborhood of v, denoted by N(v).

A graph G is chordal if every cycle in G of length at least 4 has a chord (an edge
joining nonconsecutive vertices in the cycle). A chordal graph with at least one vertex
must contain a vertex that is simplicial, that is, whose neighborhood induces a complete
subgraph. The treewidth of a graph G is equal to one less than the smallest possible clique
number of a chordal graph of which G is a subgraph.

A special kind of chordal graph is a k-tree, inductively defined as follows: given a
nonnegative integer k, the complete graph Kk+1 is a k-tree. If G is a k-tree, then the
graph obtained by adding a new vertex and joining it to every vertex of some k-clique
of G, is also a k-tree. Equivalently, a graph G is a k-tree if G has treewidth k and is
edge-maximal with respect to that property. Two well known facts about k-trees that we
will use are that a k-tree cannot be disconnected by the removal of fewer than k vertices,
and that a k-tree cannot contain a subdivision of the complete graph Kk+2. (For more
on k-trees and treewidth, see Diestel [13] or other references [7, 23].)

Suppose we assign numerical weights to the vertices of a graph G. The weight of G,
denoted by w(G), is the sum of the weights of the vertices of G. The weight of a set
U ⊆ V (G), denoted by w(U), is the sum of the weights of the elements of U .
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If S is a set, then we abbreviate S∪{x} by S+x, and we abbreviate S−{x} by S−x.

1.3 Discussion of Results

The results in this paper concern a graph parameter that we denote by fd(G). Given a
graph G, for each nonnegative integer d we define fd(G) to be the maximum order of an
induced forest in G having maximum degree at most d.

For nonnegative integers k, d, we define a real number

rk,d :=
2d

kd+ d+ 1
.

As we will see, for graphs with treewidth k and order n, the best lower bound for fd(G)
is often something like rk,d · n.

The primary goal of this paper is to prove the following result.

Theorem 1. Let k, d be integers, with k > 2 and d > 2. If G is a graph with order n > 1
and treewidth at most k, then

fd(G) >

⌈

2dn+ 2

kd+ d+ 1

⌉

=
⌈

rk,d · n+
rk,d
d

⌉

,

unless G ∈ {K1,1,3, K2,3} and k = d = 2.

The special case of Theorem 1 when G is outerplanar and d = 2 was proven by
Pelsmajer [21, Thm. 1].

If a chordal graph has clique number ω, then its treewidth is ω−1. Further, K2,3 is not
chordal, and so Theorem 1 has the following corollary (which easily implies Theorem 1,
as well).

Corollary 2. Let d > 2. If G is a chordal graph with order n and clique number ω > 3,
then

fd(G) >

⌈

2dn+ 2

ωd+ 1

⌉

,

unless G ∼= K1,1,3 and d = 2.

In Section 2 we prove Theorem 1.
In Section 3 we discuss the sharpness of Theorem 1. We construct examples to show

that, for each k, d > 2, the bound of Theorem 1 is tight to within 1 for all n > 1, and
exactly sharp for infinitely many values of n. We conclude that the coefficient of n in
Theorem 1 (i.e., rk,d) cannot be improved.

In Section 4 we discuss similar questions for k < 2 and for d < 2. We observe that the
bound of Theorem 1 does not hold when d = 1. We conjecture that in this case a slightly
weaker bound holds, with no “+2” in the numerator.
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Conjecture 3. Let k > 0. If G is a graph with order n and treewidth at most k, then

f1(G) >

⌈

2n

k + 2

⌉

= ⌈rk,1 · n⌉ .

We show that, as with Theorem 1, the above bound is tight to within 1, if it holds.
The question of whether we can place “+2” in the numerator may seem minor. How-

ever, it has a significant impact on how we handle questions about sharpness. If there
is no extra constant in the numerator, then our bound is simply a fraction of n, as in
Conjecture 3, and we can reasonably expect to prove sharpness using a single graph as an
example; larger examples can be constructed using disjoint unions of copies of this graph.
However, if there is a constant in the numerator, as in Theorem 1, then we will need to
construct an infinite family of graphs in order to prove sharpness.

We prove Conjecture 3 for k 6 3. For k > 4, we prove a weaker bound: f1(G) >

(2n+ 2)/(2k + 3). We also cover the cases d = 0 and k = 0, 1, and we discuss sharpness.
In Section 5, we discuss related conjectures and results for planar graphs and graphs

on other surfaces, including the following conjecture.

Conjecture 4. Let d > 2 be an integer. If G is a planar graph with order n > 1, then

fd(G) >
2dn

4d+ 1
= r3,d · n.

1.4 Related Work

We conclude Section 1 with a discussion of a related paper.
Bose, Dujmović, and Wood [10] considered a problem similar to ours. They examine

a graph parameter that we will denote by f̂d(G): the maximum order of an induced forest
in G whose vertices all have degree at most d in the original graph. Equivalently, they
first discard all vertices of G with degree greater than d, and then find the maximum
order of an induced forest in the graph that remains. Like us, they focus on graphs with
given order, whose treewidth is at most some integer k. For each triple k, d, n with k > 1,
d > 2k − 1, and n > 2k + 1, they prove the following bound:

f̂d(G) >

(

d− 2k + 1

d− 3
2
k + 1 + 1

k+1

)

(

2

k + 1

)

n+
2k

d− 3
2
k + 1 + 1

k+1

,

for G a graph with order n and treewidth at most k.
Clearly, f̂d(G) 6 fd(G). Further, if k and n are fixed and d increases without bound,

then the best lower bounds for fd and f̂d both approach 2n/(k + 1). On the other hand,
for fixed k, d with d 6 2k − 1, the best lower bound for f̂d is given by a constant [10,
notes after Thm. 5.1], while fd grows with n for all values of k, d. It is thus unsurprising
that proving our results requires rather different methods.

The main result of Bose et al. [10, Thm. 5.1] is actually more general: they seek large
induced subgraphs of treewidth at most some given t. Above we compared our result
with the special case of theirs when t = 1. We ask whether our result can be similarly
extended to subgraphs of given treewidth.
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Problem 5. Generalize Theorem 1 to include lower bounds for the order of induced
subgraphs of given treewidth.

2 Proof of Theorem 1

Rather than prove Theorem 1 directly, we use a loaded induction involving partial vertices
(introduced by Pelsmajer [21]). Partial vertices are vertices of degree at most 1 that are
required to be in the induced forest. When determining whether the induced forest is
large enough, partial vertices in the forest count for less than other vertices. We denote
the set of partial vertices by P .

The actual result we will prove is the following; Theorem 1 follows by setting P = ∅.

Lemma 6. Let k, d be integers, with k > 2 and d > 2. Let G be a graph with order n > 1
and treewidth at most k, and let P ⊆ V (G) be an independent set, so that each vertex in
P has degree at most 1 in G. Let each vertex of P have weight

p :=
2

kd− d+ 1
,

and let each other vertex of G have weight 1. Then there exists a set U , with P ⊆ U ⊆
V (G), such that G[U ] is a forest with maximum degree at most d, and

w(U) >
2d · w(G) + 2

kd+ d+ 1
= rk,d · w(G) +

rk,d
d

,

unless G ∈ {K1,1,3, K2,3}, P = ∅, and k = d = 2.

Note that K1,1,3 and K2,3 contain independent sets of size 3, as well as other sets of
3 vertices that induce forests of maximum degree at most 2. If G ∈ {K1,1,3, K2,3} and

k = d = 2, then 3 = 2d·w(G)+1
kd+d+1

.

Proof of Lemma 6. Let k, d, G, n, P , p, and the vertex weights be as in the statement of
the lemma. A vertex of weight p is a partial vertex ; other vertices are full. We proceed by
induction on w(G); this is valid because w(G) can always be written as a rational number
with denominator kd− d+ 1.

We may assume that V (G − P ) is nonempty, since otherwise U = P = V (G) suf-
fices, with w(U) being exactly the required minimum when |P | = 1, and strictly greater
otherwise.

We may also assume that G− P is either a k-tree or a complete graph with order at
most k+1. If it is not, then we can add edges to G−P , without increasing its treewidth
beyond k, until it lies in one of these categories. A set U that meets the requirements for
this modified graph will meet the requirements for the original graph, unless k = d = 2,
the modified graph lies in {K1,1,3, K2,3}, and the original graph does not. However, if the
original graph is a 5-vertex graph of treewidth at most 2, other than K1,1,3 or K2,3, then
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there is always a way to add edges so that the modified graph is a 2-tree other than K1,1,3

(or K2,3, which is not a 2-tree).
We may further assume that each partial vertex has degree equal to 1; otherwise,

modify G by adding an edge from each isolated partial vertex to an arbitrary vertex of
G− P . Any solution for the modified graph will suffice for the original graph.

Since G− P is connected, each partial vertex has a neighbor, and the partial vertices
form an independent set, it follows that G is connected.

How Our Argument Works—We will break the argument into cases. In all cases of
the proof except the “Base Cases”, we define a graph G′ based on G. We do this by
removing vertices from G and/or making full vertices partial; sometimes we also add new
partial vertices. This G′ will always have order at least 1, treewidth at most k, and weight
strictly less than w(G). Where possible, we apply the induction hypothesis to G′ to find
a vertex set U ′ that is a solution for G′. We then use this U ′ to construct the required
vertex set U .

We cannot apply the induction hypothesis to G if k = d = 2 and G′ ∈ {K1,1,3, K2,3}.
If we know that G′ contains at least one partial vertex, then this is not a problem;
however, in some cases, there is the possibility of G′ having no partial vertices.1 When
G′ ∈ {K1,1,3, K2,3} we may simply specify U directly. Another option is to set U ′ to be
a 3-vertex set in G′, and then construct U based on U ′, as before. We will discuss this
option further shortly.

Having constructed U , we need to show that it induces a forest in G meeting the
degree requirement (maximum degree at most d) and the weight requirement (w(U) at
least the required minimum). Usually, the former will follow clearly from the construction
of U based on U ′ and the fact that G′[U ′] is a forest of maximum degree at most d. We
consider the latter.

Showing That U Satisfies the Weight Requirement—In most cases, we obtain U ′

in G′ by applying the induction hypothesis, and then we define U based on U ′. To verify
that U has the required weight, note that it suffices to show that

w(U)− w(U ′)

w(G)− w(G′)
> rk,d.

In a case where G′ ∈ {K1,1,3, K2,3} is a possibility and we define U based on U ′, we
can prove that U satisfies the weight requirement by verifying the following strict weight
inequality :

w(U)− w(U ′)

w(G)− w(G′)
> rk,d.

To see that this suffices, observe that w(U ′) > (2d · w(G′) + 1)/(kd + d + 1) [note the
“+1” in the numerator] when U ′ is obtained by applying the induction hypothesis and

1There are six cases later in the proof in which it is possible both that G′ contains no partial vertices
and that k = d = 2: those labeled Reductions A & B, C2, C8, C12, and C14.

the electronic journal of combinatorics 20(4) (2013), #P8 6



also when G′ ∈ {K1,1,3, K2,3} and |U ′| = 3. Now rewrite the strict weight inequality:

w(U) > w(U ′) + rk,d · [w(G)− w(G′)]

>
2d · w(G′) + 1

kd+ d+ 1
+

2d · [w(G)− w(G′)]

kd+ d+ 1
=

2d · w(G) + 1

kd+ d+ 1
.

Since the first inequality above is strict, and all numerators and denominators are integers,
w(U) must be at least (2d · w(G) + 2)/(kd+ d+ 1) [“+2” in the numerator], as desired.

Notes on K1,1,3 and K2,3—In the subsequent argument, whenever k = d = 2 and G′

has 5 vertices and no partial vertices, G′ is always obtained by removing some vertices
from G. Since G− P is a k-tree or a complete graph, it follows that G is chordal. Since
chordal graphs are closed under taking induced subgraphs, G′ will be chordal as well. The
graph K2,3 is not chordal, and so G′ 6∼= K2,3. Thus, in the remainder of this proof, the
only special case for G′ is K1,1,3; we will never need to deal directly with K2,3.

We will sometimes apply the following reasoning when dealing with G′ ∼= K1,1,3.

Remark 7. When k = d = 2, G′ ∼= K1,1,3, and G′ is created by removing a connected
subgraph B from G, it may be helpful to let U ′ be a 3-vertex set in G′ that contains no
vertices adjacent to vertices in B.

To see that we can always do this, let N(B) be the vertices of G′ that are adjacent
to vertices in B. If N(B) contains 2 nonadjacent vertices or N(B) contains a triangle,
then, since B is connected and G′ ∼= K1,1,3, there is a subdivision of K4 in G. But
this is impossible, since a graph of treewidth at most 2 cannot contain a subdivision
of K4. Therefore, N(B) contains either exactly one vertex or two adjacent vertices of
G′. Considering all the possibilities, we can see that there is always a 3-vertex set U ′ in
G′ − N(B) that does not form a triangle, or, equivalently, induces a forest of maximum
degree at most 2.

2.1 Simple Base Cases and Reductions

Base Case 1—Suppose that G− P has exactly one vertex, v.
If v has more than d (partial) neighbors, then let U = V (G) − v. This U is an

independent set. Since w(G) = w(U) + 1, the desired bound becomes

w(U) >
2d[w(U) + 1] + 2

kd+ d+ 1
,

which simplifies to

w(U) >
2(d+ 1)

kd− d+ 1
= (d+ 1)p.

Because U has at least this weight, the weight requirement is satisfied.
Otherwise, G is a tree with maximum degree at most d. Let U = V (G), so that

w(G) = w(U). The desired bound becomes

w(U) >
2d · w(U) + 2

kd+ d+ 1
,
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which simplifies to

w(U) >
2

kd− d+ 1
= p,

and again the weight requirement is satisfied.

Henceforth, we assume that G− P has at least two vertices.

Reduction A—Suppose that a full vertex v of G has d or more partial neighbors. (See
the first graph in Figure 1.)

Remove v and its partial neighbors, and let G′ be the graph that remains.
First suppose that G′ 6∼= K1,1,3 or k > 2 or d > 2. There is at least one full vertex in

G′ (otherwise G is Base Case 1), and so we find U ′ in G′ by the induction hypothesis.
Let U be U ′ together with the removed partial vertices. Then G[U ] is G′[U ′] plus isolated
vertices, and so G[U ] is a forest satisfying the degree requirement. We have

w(U)− w(U ′)

w(G)− w(G′)
>

dp

1 + dp

=
2d

kd+ d+ 1
set p = 2

kd−d+1
, simplify

= rk,d,

and so G[U ] also satisfies the weight requirement, and we are done.
Now, suppose that G′ ∼= K1,1,3 and k = d = 2. Let s be the number of partial vertices

adjacent to v. Apply Remark 7 to obtain a 3-vertex induced forest in G′ that contains no
vertices adjacent to v in G.

If s > 3, then let U consist of this 3-vertex set, together with the s partial vertices.
Since k = d = 2, we have p = 2/3. Substituting w(U) = 3 + sp, w(G) = 6 + sp, p = 2/3,
and k = d = 2 into

w(U) >
2d · w(G) + 2

kd+ d+ 1

and simplifying, we obtain s > 5/2, which holds when s > 3.
On the other hand, if s = 2, then let U consist of the 3-vertex set constructed above,

plus v and the 2 partial vertices. Then w(U) = 4+2p, while w(G) = 6+2p. Substituting
and simplifying, as above, we can see that w(U) is again large enough.

Henceforth, we assume that each full vertex of G has fewer than d partial neighbors.

Reduction B—Suppose that a vertex v that is simplicial in G − P has one or more
partial neighbors in G. (See the second graph in Figure 1.)

Remove these partial neighbors, and let G′ be the graph that remains. If G′ ∼= K1,1,3

and k = d = 2, then let U ′ be a 3-vertex independent set in G′; otherwise, find U ′ by the
induction hypothesis. Let U be U ′ together with the removed partial vertices. Then

w(U)− w(U ′)

w(G)− w(G′)
= 1 > rk,d,

and so the strict weight inequality holds.
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We consider the degree requirement. If v ∈ U ′, then, since v is simplicial in G−P , the
degree of v in the forest G′[U ′] is at most 1. Therefore, since v has fewer than d partial
neighbors in G, the degree of v in G[U ] is at most d. Thus, the degree requirement is
satisfied.

Henceforth, we assume that each vertex that is simplicial in G − P has no partial
neighbors in G.

bv

bC bC bCbC bC bC bC

bv

bC bC bC

G∗

b

b

b

b

b

(h)
b

b b
bC

bC

bC bC bC bCP

Figure 1: Reduction A, Reduction B, and Base Case 3. Partial vertices are shown as
hollow vertices, and ovals represent cliques.

Base Case 2—Suppose that G− P is a complete graph.
Since every vertex of G−P is simplicial, by Reduction B there are no partial vertices.

Thus, G = G − P is a complete graph with from 2 to k + 1 vertices. Let U be any two
vertices of G. Then w(U) = 2, while w(G) 6 k + 1. Thus,

w(U) =
2d(k + 1) + 2

d(k + 1) + 1
>

2d · w(G) + 2

kd+ d+ 1
,

and so the weight requirement is satisfied.

Henceforth we assume that G− P is not a complete graph.
LetG∗ be the subgraph obtained fromG−P by removing every vertex that is simplicial

in G − P . Because G − P is connected, but not complete, it contains a vertex that is
not simplicial, and so V (G∗) 6= ∅. Since G∗ is chordal, there must be a vertex that is
simplicial in G∗.

Base Case 3—Suppose that every vertex that is simplicial in G∗ dominates G− P .
A simplicial vertex of G∗ dominates G∗, and so G∗ must be a complete graph. Then

every vertex of G∗ is simplicial in G∗, and so each vertex of G − P is adjacent to all of
V (G∗). Since G − P is a k-tree but not a complete graph, its (two or more) simplicial
vertices cannot be adjacent. Therefore, for each simplicial vertex of G−P , its k neighbors
in G− P are precisely the set V (G∗).

We conclude that G−P is formed from G∗ ∼= Kk and an independent set V (G)−P −
V (G∗) of at least 2 vertices, with every vertex of the former adjacent to every vertex of
the latter. Each vertex in G∗ has at most d− 1 partial neighbors in G (by Reduction A),
and each vertex in V (G) − P − V (G∗) has no partial neighbors (by Reduction B). Let
h = |V (G)− P − V (G∗)|, and let t = |P |. (See the last graph in Figure 1.)
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Subcase 3a. Suppose that some vertex v of G∗ has at most d−h partial neighbors in G.
Let U consist of v, the h independent-set vertices, and the t partial vertices. Since v

has at most d neighbors in U , the degree requirement is satisfied. Observe that w(U) =
h+ tp+ 1 and w(G) = h+ tp+ k. Substituting these into

w(U) >
2d · w(G) + 2

kd+ d+ 1

and simplifying, we obtain h + tp > 1, which holds, and so the weight requirement is
satisfied as well.

Subcase 3b. Suppose that each vertex of G∗ has at least d− h+ 1 partial neighbors in
G.

Let U = V (G)− V (G∗). Observe that w(U) = h+ tp and w(G) = h+ tp+ k. Making
these substitutions, and using p = 2/(kd− d+ 1), we can show that the desired bound is
equivalent to

h+ tp > 2 + dp.

Since G∗ ∼= Kk and each vertex of G∗ has at least d − h + 1 partial neighbors, we
have t > k(d − h + 1). Thus, to verify the required bound it suffices to show that
h + k(d − h + 1)p > 2 + dp. Substituting p = 2/(kd − d + 1), we can show that this is
equivalent to

(d− 3)h(k − 1) + h(k − 2) + 2(k − 1) > 0.

This holds when d > 3, since h, k > 2.
Thus, for the remainder of Subcase 3b, we may assume that d = 2. The inequality

h+ tp > 2 + dp becomes h+ tp > 2 + 2p. Since h > 2, this inequality holds if t > 2, and
so we may assume that t is 0 or 1, and thus some vertex of G∗ has no partial neighbors
in G. Since this subcase assumes that each vertex of G∗ has at least d − h + 1 partial
neighbors, we have 0 > d− h+ 1, and so h > d+ 1 = 3.

We consider the possible values of k, when d = 2. If k > 3, then p 6 2/5, and so
h + tp > h > 3 > 2 + 2p, and we are done. On the other hand, if k = 2, then p = 2/3,
and so h + tp > 2 + 2p if t = 1 or if h > 4. The only remaining case for d = 2 is that in
which k = 2, h = 3, and t = 0, in which case G is K1,1,3 and P = ∅. Then the maximum
induced forest has weight 3, which is less than our lower bound. However, this is not a
problem, since, when k = d = 2, the graph K1,1,3 is an exception to our result.

Summary of Simple Cases—For the remainder of this proof, we assume that all of
the following hold:

• G is connected,

• G− P is a k-tree,

• no vertex of G is adjacent to more than d− 1 partial vertices,

• each simplicial vertex of G− P has no partial neighbors in G, and
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• there is a vertex that is simplicial in G∗ and that does not dominate G− P .

In the next portion of the proof, we will choose such a simplicial vertex y and use it to
construct what we call a “lobe of depth 2”.

2.2 Depth 2 Techniques

Lobes and Depth—Suppose that X ⊆ V (G − P ) induces a k-clique. If removing X
disconnects G − P , then X together with any component of G − P − X, is an X-lobe
of G − P . If an induced subgraph is an X-lobe for some X, then it is a lobe; the clique
induced by X is its clique of attachment. Consider the following procedure, performed on
a lobe B of G− P : remove all vertices of B that are simplicial and that do not lie in X.
The number of times we must perform this procedure, to leave only X remaining, is the
depth of B.

An X-lobe B of G is an X-lobe B′ of G−P , together with all partial vertices adjacent
to V (B′) − X with their incident edges. The depth of a lobe B of G is the depth of
B′ = B − P as a lobe of G− P .

The main portion of our proof consists of a number of cases in which we handle lobes
of depth 2.

A Lobe of Depth 2—Again, some vertex y that is simplicial in G∗, does not dominate
G − P . Let X be the neighborhood of y in G∗. Then X induces a k-clique; this is the
clique of attachment of a depth 2 lobe B2 in G. Since y dominates B2, but not G − P ,
we see that B2 − P is not all of G− P , as required.

X b b

b
y

b b
b

bC bC bC

Figure 2: A lobe B2 of depth 2, with m = 3, s = 3, and q = 2. Note that B2 − X is a
star centered at y.

If we remove X from the lobe B2, then the resulting graph is a star centered at y
(partial neighbors of vertices in X are not part of B2.) Let m be the number of full leaves
of the star B2 −X. Then m > 1, since otherwise y is simplicial in G− P . Each of these
leaves is adjacent to y and to exactly k − 1 vertices in X. Let s be the number of partial
leaves of B2 −X, so that 0 6 s 6 d− 1, by Reduction A.

Label the elements of X as x1, x2, . . . , xk. Let q be the number of distinct sets of
vertices in B2 that are neighborhoods of full leaves of B2 − X. (For example, all full
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leaves of B2−X have the same neighborhood if and only if q = 1.) Since X has k distinct
subsets of size k − 1, we have q 6 k.

See Figure 2 for an illustration of a depth 2 lobe.
We note that every depth 2 lobe of G can be found in the above manner (by choosing

a simplicial vertex in G∗ that does not dominate G− P , and so on).

Cases Involving Depth 2 Lobes—Having found a lobe B2 of depth 2, we handle it
based on k and d, as well as the values of m, s, and q (defined above) for B2.

We split this portion of the proof into 14 cases that cover all possible values of k, d,
m, s, and q, with k, d > 2, m > 1, 0 6 s 6 d− 1, and 1 6 q 6 min{k,m}.

(C1) m = 1 and s 6 d− 2.

(C2) m = 1 and s = d− 1.

(C3) m = 2 and s > 1.

(C4) k > 3, m > 2, and m+ s 6 d.

(C5) k > 3, m > 3, m+ s > d+ 1, and either m > 4 or k > 4.

(C6) k = 3, m = 3, and q 6 2.

(C7) k = 3, m = 3, and q = 3.

(C8) k = 2, m = 2, s = 0, and d = 2.

(C9) k = 2, m = 2, s = 0, q = 1, and d > 3.

(C10) k = 2, m = 2, s = 0, q = 2, and d > 3.

(C11) k = 2, m > 3, and d > 3.

(C12) k = 2, m = 3, q = 1, and d = 2.

(C13) k = 2, m = 3, q = 2, and d = 2.

(C14) k = 2, m > 4, and d = 2.

All the possibilities with m = 1 are covered by C1 and C2. For m = 2, if s > 1, then
we are in Case C3; otherwise, for k = 2 we are in one of C8, C9, C10, and for k > 3
we are in C4. For k > 3 and m > 3, Cases C4 and C5 cover all possibilities except for
some with k = m = 3, which are covered by Cases C6 and C7. For k = 2 and m > 3, all
possibilities are covered by Cases C11, C12, C13, and C14. (Some cases overlap.)

Thus, the 14 cases cover every possible value of k, d, m, s, and q.

Handling the Depth 2 Cases—We discuss how to handle each of the above cases, in
the order listed.

We first give two facts, which can easily be verified.

Facts. For all k > 2 and d > 2, both of the following hold.
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(i)
2− p

k + 1− p
= rk,d.

(ii)
2 + (d− 1)p

k + 2 + (d− 1)p
= rk,d.

We now cover the cases in the order listed above.

Case C1. Suppose that m = 1 and s 6 d− 2.
Since m = 1, there is one vertex in X (say x1) that is not adjacent to the full leaf of the

star B2 −X. (See the first graph in Figure 3.) Remove all vertices of the lobe B2, except
for x1 and y, and make y partial, to obtain G′. Find U ′ by the induction hypothesis, and
let U be U ′ plus all (full and partial) leaves of B2 −X. Note that y ∈ U . Then G[U ] is a
forest satisfying the degree requirement. We check the weight requirement.

w(U)− w(U ′)

w(G)− w(G′)
=

sp+ 1 + (1− p)

sp+ k + (1− p)

>
2− p

k + 1− p
minimized when s = 0

= rk,d. by Fact (i)

Since the construction of G′ involved the creation of a new partial vertex, we do not
need to verify the strict weight inequality. (We will generally not point this out in later
cases.)

Case C2. Suppose that m = 1 and s = d− 1.
(See the first graph in Figure 3 for an illustration of this case.) Remove the entire

lobe B2 to obtain G′. If G′ 6∼= K1,1,3 or k > 2 or d > 2, then find U ′ by the induction
hypothesis, and let U be U ′ plus all vertices in B2 −X. Then G[U ] is the disjoint union
of G′[U ′] with a star of maximum degree d, and the weights satisfy

w(U)− w(U ′)

w(G)− w(G′)
=

2 + sp

k + 2 + sp

= rk,d. by Fact (ii), since s = d− 1

If G′ ∼= K1,1,3 and k = d = 2, then we apply Remark 7 to obtain a 3-vertex induced
forest in G′ that contains no vertices adjacent to X in G. Let U consist of these three
vertices, x1, x2, the full leaf of the star B2 −X, and the partial vertex (there is only one,
since s = d− 1 = 1). Then w(U) = 6 + p, while w(G) = 9 + p. Further, k = d = 2, and
so p = 2/3. Substituting these into

w(U) >
2d · w(G) + 2

kd+ d+ 1

and simplifying, we see that U satisfies the weight requirement. (Note that here we
constructed U explicitly, U ′ was never defined, and there is no need to verify the strict
weight inequality.)
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X b
x1

b
y

b

bC bC bC

X b
x1

b
x2

b
y

b b

bC bC bC

X b
x1

b
x2

b
y

b
b

bC bC bC

Figure 3: Case C1/C2, Case C3 with q = 2, and Case C3 with q = 1.

Case C3. Suppose that m = 2 and s > 1.
Since m = 2 we must have q 6 2, and so there exist two distinct vertices of X (say

x1, x2), so that each full leaf of the star B2 −X is adjacent to only one of these vertices.
(See the second and third graphs in Figure 3.) Remove y, all partial leaves of B2 − X,
and X−{x1, x2}, and make the full leaves partial, to obtain G′. Find U ′ by the induction
hypothesis, and let U be U ′ plus all partial leaves of B2 −X. Note that both full leaves
of B2 −X also lie in U . We check the weight requirement.

w(U)− w(U ′)

w(G)− w(G′)
=

sp+ 2(1− p)

sp+ 2(1− p) + 1 + (k − 2)

>
p+ 2(1− p)

p+ 2(1− p) + 1 + (k − 2)
minimized when s = 1

=
2− p

k + 1− p

= rk,d. by Fact (i)

Case C4. Suppose that k > 3, m > 2, and m+ s 6 d.
Remove the entire lobe B2 to obtain G′. Find U ′ by the induction hypothesis, and let

U be U ′ plus all vertices in B2 −X. Then

w(U)− w(U ′)

w(G)− w(G′)
=

m+ sp+ 1

m+ sp+ k + 1

>
3

k + 3
. minimized when m = 2 & s = 0

The inequality
3

k + 3
>

2d

kd+ d+ 1

simplifies to k > 3− 3/d, which holds, since k > 3.
Note that, while it is possible that G′ contains no partial vertices, we always have

k 6= 2 in Case C4, and so we do not need to treat G′ ∼= K1,1,3 separately. (We will
generally not point this out in later cases.)
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Case C5. Suppose that k > 3, m > 3, m+ s > d+ 1, and either m > 4 or k > 4.
Remove the entire lobe B2 to obtain G′. Find U ′ by the induction hypothesis, and let

U be U ′ plus all leaves of the star B2 −X. Then

w(U)− w(U ′)

w(G)− w(G′)
=

m+ sp

m+ sp+ k + 1
.

The inequality
(m+ sp)

(m+ sp) + k + 1
>

2d

kd+ d+ 1

simplifies to

m+ sp >
2(k + 1)d

kd− d+ 1
.

We consider this inequality when m > 4, and then when k > 4.
Suppose that m > 4. It suffices to verify the inequality obtained by replacing m+ sp

by 4 above. This simplifies to kd > 3d− 2, which holds, since k > 3.
Now suppose that k > 4. The quantity m + sp is minimized when m = 3 and

m+s = d+1, that is, s = d−2. Thus, we replace m+sp by 3+(d−2)p above, substitute
p = 2/(kd− d+ 1), and simplify to (k − 3)d > 1, which holds, since k > 4 and d > 2.

X bx1 bx2

b
x3

b
y

b

b

b

bC bC bC

X bx1 bx2

b
x3

b
y b

b

b

bC bC bC

X bx1 bx2

bC

bC

bC

X bx1 bx2

bC

bC

bC

Figure 4: Case C6. On the left, q = 2 (before and after). On the right, q = 1 (before and
after).

Case C6. Suppose that k = 3, m = 3, and q 6 2.
Since q 6 2, there is a vertex in X (say x3) that is adjacent to every full leaf of B2−X.

(See Figure 4.) Then each full leaf is adjacent to exactly one vertex in {x1, x2}. Remove
x3, y, and all partial leaves, and make all the full leaves partial, to obtain G′. Find U ′ by
the induction hypothesis, and let U be U ′ plus all partial leaves. Note that all full leaves
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also lie in U . Thus,

w(U)− w(U ′)

w(G)− w(G′)
=

3(1− p) + sp

3(1− p) + sp+ 2

>
3− 3p

5− 3p
. minimized when s = 0

Thus, it suffices to show that

3− 3p

5− 3p
>

2d

kd+ d+ 1
.

Substituting p = 2/(kd−d+1) and k = 3, this inequality simplifies to (2d−3)(2d+1) > 0,
which holds, since d > 2.

Case C7. Suppose that k = 3, m = 3, and q = 3.

X bx1 bx2

b
x3

b
y

b

b

b

bC bC bC

X bx1 bx2

b
x3

b
y

bC

bC

bC
c1 c2

c3

Figure 5: Case C7 (before and after).

Remove all full and partial leaves of the star B2 −X, and add new partial vertices c1,
c2, c3, so that ci is adjacent only to xi, for i = 1, 2, 3. Let G′ be the resulting graph. (See
Figure 5.) Find U ′ by the induction hypothesis.

We may assume that y ∈ U ′. If it is not, then we can add y to U ′, removing one
element of X from U ′ if U ′ meets X, to obtain a new U ′ that contains y. Note that now
U ′ contains at most 1 vertex of X.

Let U be U ′ − {c1, c2, c3, y} plus all leaves of B2 −X. If xi ∈ U ′ then its degree is the
same in G[U ] as in G[U ′]; hence, G[U ] is a forest of maximum degree at most d.

For the weight requirement, we have

w(U)− w(U ′)

w(G)− w(G′)
=

3 + sp− 3p− 1

3 + sp− 3p

>
2− 3p

3− 3p
. minimized when s = 0

Thus, it suffices to show that

2− 3p

3− 3p
>

2d

kd+ d+ 1
.
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Substituting p = 2/(kd−d+1) and k = 3, this inequality simplifies to (2d+1)(d−2) > 0,
which holds, since d > 2.

Case C8. Suppose that k = 2, m = 2, s = 0, and d = 2.
Remove the entire lobe B2 to obtain G′. If G′ ∼= K1,1,3, then let U ′ be a 3-vertex

independent set in G′; otherwise, find U ′ by the induction hypothesis. Let U be U ′ plus
all vertices in B2 −X. Then

w(U)− w(U ′)

w(G)− w(G′)
=

3

5

>
4

7
= rk,d, k = 2 & d = 2

and so the strict weight inequality holds.

Case C9. Suppose that k = 2, m = 2, s = 0, q = 1, and d > 3.
Since q = 1, there is one vertex in X (say x1) that is not adjacent to either leaf of the

star B2 −X. (See the first graph in Figure 6.) Remove x2 and the two leaves of B2 −X,
and make y partial, to obtain G′. Find U ′ by the induction hypothesis, and let U be
U ′ plus all leaves of B2 − X. Note that y ∈ U . Since d > 3, the degree requirement is
satisfied. We have

w(U)− w(U ′)

w(G)− w(G′)
=

2 + (1− p)

3 + (1− p)

>
2− p

3− p

= rk,d. by Fact (i), since k = 2

Case C10. Suppose that k = 2, m = 2, s = 0, q = 2, and d > 3. (See Figure 7.)
To deal with this case we will use techniques involving lobes of depth 3. We discuss

these later, in Subsection 2.3.

Case C11. Suppose that k = 2, m > 3, and d > 3.
Remove y and all partial leaves of the star B2−X, and make all the full leaves partial,

to obtain G′. Find U ′ by the induction hypothesis, and let U be U ′ plus all partial leaves
of B2 −X. Note that all full leaves of B2 −X also lie in U . Thus,

w(U)− w(U ′)

w(G)− w(G′)
=

sp+m(1− p)

sp+m(1− p) + 1

>
3− 3p

4− 3p
. minimized when m = 3 & s = 0

Thus, it suffices to show that

3− 3p

4− 3p
>

2d

kd+ d+ 1
.
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Substituting p = 2/(kd− d+1) and k = 2, this inequality simplifies to (d− 3)(d+1) > 0,
which holds, since d > 3.

Case C12. Suppose that k = 2, m = 3, q = 1, and d = 2.

X bx1 bx2

b
y

b
b

X bx1 bx2

b
y

b
b
b

bC bC bC

X bx1 bx2

b
y

b

b
z2
z1

b z3

bC bC bC

X bx1 bx2

b
y

c1
bC

Figure 6: Case C9, Case C12, and Case C13 (before and after).

Since q = 1, there is one vertex in X (say x1) that is not adjacent to any full leaf of the
star B2−X. (See the second graph in Figure 6.) Remove all vertices of B2, except for x1,
to obtain G′. If G′ ∼= K1,1,3, then let U ′ be a 3-vertex independent set in G′; otherwise,
find U ′ by the induction hypothesis. Let U be U ′ plus all leaves of B2 −X. Then

w(U)− w(U ′)

w(G)− w(G′)
=

3 + sp

5 + sp

>
3

5
minimized when s = 0

>
4

7
= rk,d, k = 2 & d = 2

and so the strict weight inequality holds.

Case C13. Suppose that k = 2, m = 3, q = 2, and d = 2.
Let z1, z2, z3 be the full leaves of the star B2 −X. Without loss of generality, we may

assume that N(z1) = N(z2) = {x1, y}, while N(z3) = {x2, y}. Remove all full and partial
leaves of B2 − X, and add a partial vertex c1 adjacent to x1. Let G′ be the resulting
graph. (See the last two graphs in Figure 6.) Find U ′ by the induction hypothesis.

We may assume that y ∈ U ′. If it is not, then we can add y to U ′, removing one
element of X from U ′ if U ′ meets X, to obtain a new U ′ that contains y. Note that now
U ′ contains at most 1 vertex of X.

Let U be U ′ − {c1, y} plus all leaves of the star B2 −X. If xi ∈ U ′ then its degree is
the same in G[U ] as in G[U ′]; hence, G[U ] is a forest of maximum degree at most d. Then

w(U)− w(U ′)

w(G)− w(G′)
=

3 + sp− p− 1

3 + sp− p

>
2− p

3− p
minimized when s = 0

= rk,d. by Fact (i), since k = 2

Case C14. Suppose that k = 2, m > 4, and d = 2.
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Remove the entire lobe B2, to obtain G′. First, suppose that G′ 6∼= K1,1,3. In this case,
find U ′ by the induction hypothesis, and let U be U ′ plus all leaves of B2 −X. Then

w(U)− w(U ′)

w(G)− w(G′)
=

m+ sp

m+ sp+ 3

>
m

m+ 3
. minimized when s = 0

Since m > 4, this fraction is at least 4/7 = rk,d.
Now suppose that G′ ∼= K1,1,3. Applying Remark 7, we let U ′ be a 3-vertex set inducing

a forest in G′ that contains no vertices adjacent to X in G.
If m > 5, then let U be U ′ plus all leaves of B2 −X. Then w(U) = 3 +m+ sp, while

w(G) = 8 +m+ sp. Substituting these, along with k = d = 2, into

w(U) >
2d · w(G) + 2

kd+ d+ 1

and simplifying, we obtain m+ sp > 13/3, which holds, since m > 5.
Now suppose that m = 4. Since k = 2 and m = 4, some element of X (say x1) is

adjacent to at most 2 full leaves of B2−X. Let U be U ′ plus x1 and all leaves of B2−X.
Then w(U) = 8 + sp, while w(G) = 12 + sp. Substituting and simplifying, as above, we
obtain sp > −2, which holds.

Thus, U satisfies the weight requirement.

Cases Covered by the Depth 2 Techniques—When k > 3 or d = 2, we have handled
every lobe of depth 2, and so our proof of these cases is complete.

When k = 2 and d > 3, we have handled every lobe of depth 2 except for that with
m = 2, s = 0, and q = 2 (Case C10; see Figure 7). Next we consider graphs in which
every depth 2 lobe is of this type.

X bx1 bx2

b
y

b b

Figure 7: A depth 2 lobe of type C10.

2.3 Depth 3 Techniques

We have handled all depth 2 cases except for C10. Henceforth, we assume that every
lobe of depth 2 in G is in Case C10, that is, that k = 2, d > 3, and each depth 2 lobe
contains no partial vertices (s = 0) and two simplicial vertices (m = 2) having distinct
neighborhoods (q = 2). (See Figure 7.)

Base Case 4—Suppose that G has no lobe of depth 3 or more.
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We claim that G must be isomorphic to the graph with vertex set {a1, a2, a3, b1, b2, b3},
in which the ai vertices form a triangle, the bi vertices form an independent set, and ai is
adjacent to bj if and only if i 6= j. (This graph is known as the Hajós graph; it is pictured
in Figure 8.)

ba1 b a2

b
a3

b
b2

b
b1

b b3

Figure 8: Base Case 4, the Hajós graph.

To see this, note that G has a depth 2 lobe B, which must be in Case C10. Let
X = {x1, x2} be the clique of attachment of B, and let y be the common neighbor of x1,
x2 in B. Since B is not all of G−P , there is another X-lobe B′. If B′ has depth 2 or more,
then there is an {x1, y}-lobe of depth 3 or more, contradicting our assumption. Thus, B′

has depth 1. If there is a third X-lobe, or if x2 has any partial neighbors, then we have an
{x1, y}-lobe of depth 2 that is not in Case C10, another contradiction. Similarly, x1 has
no partial neighbors. We conclude that G is the union of B (depth 2, Case C10) and B′

(depth 1), and that P = ∅. Hence, G is the Hajós graph, with {a1, a2, a3} = {x1, x2, y}.
To deal with this case, let U = V (G) − {a1, a2}. Then w(U) = 4, while w(G) = 6.

Thus,

w(U) =
12d+ 4

3d+ 1
>

12d+ 2

3d+ 1
=

2d · w(G) + 2

kd+ d+ 1
,

and so the weight requirement is satisfied.

Henceforth, we assume that G has a lobe of depth 3 or more.

A Lobe of Depth 3—A lobe of depth more than 3 must contain a lobe of depth 3.
Thus, G has a lobe B3 of depth 3. Let X = {x1, x2} be the clique of attachment of B3.
Let y be the common neighbor in B3 of x1, x2. Let t be the number of partial vertices
adjacent to y; there can be no other partial vertices in B3.

Reduction D—Suppose that B3 contains two or more lobes of depth at most 2, at least
one of which has depth exactly 2, having the same clique of attachment X ′.

Remove the above X ′-lobes, to obtain G′. This G′ will have at least 1 full vertex,
since the two X ′-lobes are contained in B3 and, being a lobe, B3 cannot contain G− P .
Thus, we can find U ′ by the induction hypothesis, and let U be U ′ plus all vertices of the
removed lobes, except for those in X ′. Then the degree requirement is satisfied. Further,
the fraction

w(U)− w(U ′)

w(G)− w(G′)

is 6/8 if both removed lobes have depth 2, and 4/6 otherwise; in either case, it is at least
rk,d (since, when k = 2, we have rk,d = 2d/(3d+1) < 2/3), and so the weight requirement
is also satisfied.
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Henceforth, we assume that, given a depth 2 lobe contained in B3, there is no other
lobe of depth at most 2 having the same clique of attachment.

Cases Involving Depth 3 Lobes—Having found a lobe B3 of depth 3, we handle it
based on the depth 1 and depth 2 lobes that it contains.

By Reduction D, no two depth 2 lobes in B3 can have the same clique of attachment.
Thus, B3 must contain either 1 or 2 lobes of depth 2; if the latter, then one is attached
at {x1, y}, and the other is attached at {x2, y}. Further, if a depth 2 lobe is attached at
a 2-clique, then no depth 1 lobe is attached at this same clique.

We split this portion of the proof into 3 cases, listed below. We observe that these
cases cover all the possibilities.

(E1) B3 contains two lobes of depth 2.

(E2) B3 contains exactly one lobe of depth 2, and no full simplicial vertices other than
those in the lobe of depth 2.

(E3) B3 contains exactly one lobe of depth 2, and at least one full simplicial vertex other
than those in the lobe of depth 2.

Handling the Depth 3 Cases—We discuss how to handle each of the above cases, in
the order listed.

Case E1. Suppose that B3 contains two lobes of depth 2.
Then B3 has exactly 9 full vertices. By Reduction D, one of the depth 2 lobes must

be attached at {x1, y}, and the other at {x2, y}, (See the first graph in Figure 9.)
Delete B3 to obtain G′. Find U ′ by the induction hypothesis, and let U be U ′ plus

all vertices of B3 except for x1, x2, and y. Recall that t is the number of partial vertices
adjacent to y. Thus,

w(U)− w(U ′)

w(G)− w(G′)
=

6 + tp

9 + tp
>

6

9
> rk,d,

and so the weight requirement is satisfied.

In the remaining cases (E2 and E3), B3 contains exactly one lobe of depth 2. We
may assume, without loss of generality, that its clique of attachment is {x1, y}. Label
its full simplicials as z1, z2, and its remaining vertex as y′, so that N(z1) = {x1, y

′},
N(z2) = {y′, y}, and N(y′) = {x1, y, z1, z2}. (See the second graph in Figure 9 and the
first graph in Figure 10.)

Case E2. Suppose that B3 contains exactly one lobe of depth 2, and no full simplicial
vertices other than those in the lobe of depth 2.

Then B3 has exactly 6 full vertices. (See the second graph in Figure 9.) By Reduction
A, t 6 d− 1. We have two subcases: Subcase E2a, in which t 6 d− 2, and Subcase E2b,
in which t = d− 1.

Subcase E2a. Suppose that t 6 d− 2.
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X bx1 bx2

b
y

b
b

b

b
b

b

bC bC bC

X bx1 bx2

b
y

b y′
b

b

z1

z2

bC bC bC

X bx1 bx2

b
y

bCz1

Figure 9: Case E1 and Case E2 (before and, for Subcase E2a, after).

Delete the t partial vertices, z2, and y′, and make z1 partial. Let G′ be the resulting
graph. (See the last graph in Figure 9.) Find U ′ by the induction hypothesis, and let U
be U ′ plus the t partial vertices and z2. Note that z1 ∈ U . If y ∈ U ′, then the degree of y
in G′[U ′] is at most one, and so the degree of y in G[U ] is at most t+2 6 d. It follows that
G[U ] is a forest that satisfies the degree requirement; we verify the weight requirement.

w(U)− w(U ′)

w(G)− w(G′)
=

1 + tp+ (1− p)

2 + tp+ (1− p)

>
2− p

3− p
minimized when t = 0

= rk,d. by Fact (i), since k = 2

Subcase E2b. Suppose that t = d− 1.
Delete every vertex of B3, except for x2, to obtain G′. Find U ′ by the induction

hypothesis, and let U be U ′ plus y′, z1, z2, and the d− 1 partial vertices. Then

w(U)− w(U ′)

w(G)− w(G′)
=

3 + (d− 1)p

5 + (d− 1)p

>
2 + (d− 1)p

4 + (d− 1)p

= rk,d. by Fact (ii), since k = 2

X bx1 bx2

b
y

b y′
b

b

z1

z2
b

b

b

b

b

bC bC bC

(h)

X bx1

bC
y

z1
bC

X bx1 bx2

b y′z1

z2

b

bC bC

bC

b

b

b

(h)

Figure 10: Case E3 (left) and results of Subcases E3a (center) and E3b (right).

Case E3. Suppose that B3 contains exactly one lobe of depth 2, and at least one full
simplicial vertex other than those in the lobe of depth 2.
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Let h be the number of full simplicials outside of the depth 2 lobe; each of these has
neighborhood {x2, y}. (See the first graph in Figure 10.) Then B3 has exactly h + 6 full
vertices. We have two subcases: Subcase E3a, in which h+ t 6 d− 2, and Subcase E3b,
in which h+ t > d− 1.

Subcase E3a. Suppose that h+ t 6 d− 2.
Delete the t partial vertices, x2, y

′, z2, and the h full simplicials, and make y and z1
partial. Let G′ be the resulting graph. (See the second graph in Figure 10.) Find U ′ by
the induction hypothesis, and let U be U ′ plus z2, the h full simplicials, and the t partial
vertices. Note that y, z1 ∈ U . Thus,

w(U)− w(U ′)

w(G)− w(G′)
=

h+ 1 + tp+ 2(1− p)

h+ 3 + tp+ 2(1− p)

>
2 + 2(1− p)

4 + 2(1− p)
minimized when h = 1 & t = 0

=
2− p

3− p

= rk,d. by Fact (i), since k = 2

Subcase E3b. Suppose that h+ t > d− 1.
Delete y and the t partial vertices, and make the h full simplicials and z2 partial. Let

G′ be the resulting graph. (See the last graph in Figure 10.) Find U ′ by the induction
hypothesis, and let U be U ′ plus the t partial vertices. Note that U contains the h full
simplicials and z2. Then

w(U)− w(U ′)

w(G)− w(G′)
=

tp+ (h+ 1)(1− p)

tp+ (h+ 1)(1− p) + 1
.

We minimize the right-hand size above by setting t = d − 2 and h = 1. To see this,
note that, when d > 3, we have 1 − p > p. Thus, to minimize tp + (h + 1)(1 − p), while
maintaining h + t > d − 1, we set h as small as possible (h = 1) and t only as large as
necessary (t = d− 1− h = d− 2). Continuing:

>
(d− 2)p+ 2(1− p)

(d− 2)p+ 2(1− p) + 1

>
p+ 2(1− p)

p+ 2(1− p) + 1
minimized when d = 3

=
2− p

3− p

= rk,d. by Fact (i), since k = 2

This completes the proof of Lemma 6. �

We have now proven Theorem 1. In the next section we consider sharpness of this
result.
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3 Sharpness of Theorem 1

We construct examples to show that, for each k, d > 2, the bound of Theorem 1 is tight
to within 1 for all n > 1, and exactly sharp for infinitely many values of n.

Example 8. We construct a graph G(k, d, n) for each n > 1 and k, d > 2.
If n 6 k + 1, then let G(k, d, n) = Kn.
For the case when n > k + 2, choose nonnegative integers a, h with h 6 kd + d. Let

n = k + 2 + a(kd+ d+ 1) + h. Note that each n > k + 2 is obtained from a unique pair
a, h.

Let b = ⌊h/(k + 1)⌋, and let c = h− b(k+1), so that h = b(k+1)+ c, 0 6 b 6 d, and
0 6 c 6 k.

Now we construct G(k, d, n). Let z0, . . . , za be distinct vertices. For each pair (i, j)
with 1 6 i 6 a and 1 6 j 6 d, for each pair (i, j) with i = a + 1 and 1 6 j 6 b, and
for (i, j) = (1, 0), let Si,j be a k-clique, with every vertex adjacent to zi−1 and to another
vertex xi,j . If c 6= 0, then let S ′ be a c-clique, each of whose vertices is adjacent to za. Note
that we have specified (a+ 1) + (ad+ b+ 1)(k + 1) + c = n vertices. In each Si,j , choose
a vertex yi,j . For each 1 6 i 6 a, let zi be adjacent to every vertex in Si,d − yi,d + xi,d.

This defines G(k, d, n). See Figures 11 and 12 for illustrations. �

......... ...

S1,0

S1,1 S1,d−1

S1,d

S2,1 S2,d−1

S2,d

S3,1 S3,d−1

S3,d

S4,1 S4,b

S ′

x1,0

x1,1 x1,d−1 x1,d−1

x1,d

x2,1 x2,d−1

x2,d

x3,1

x3,d

x4,1 x4,b

y1,d y2,d y3,d
z0 z1 z2 z3

Figure 11: The structure of G(k, d, n) with a = 3. Circles represent k-cliques. Although
every k-clique Si,j contains a vertex yi,j , those vertices are only indicated in the figure
when both i 6 a and j = d.

Now we investigate fd
(

G(k, d, n)
)

.

Proposition 9. Let k, d > 2. Then the following both hold.

(i) For each n > 1, the graph G(k, d, n), from Example 8, has order n and treewidth at
most k, and

fd
(

G(k, d, n)
)

6 1 +

⌈

2dn+ 2

kd+ d+ 1

⌉

= 1 +
⌈

rk,d · n+
rk,d
d

⌉

.
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Figure 12: G(k, d, n) with n = 37, k = 4, d = 3; thus a = 1, h = kd + d = 15, b = d = 3,
and c = 0. Edges within each Si,j are shown in bold.

(ii) There exist infinitely many values of n > 1 for which

fd
(

G(k, d, n)
)

=

⌈

2dn+ 2

kd+ d+ 1

⌉

=
⌈

rk,d · n+
rk,d
d

⌉

.

Proof. Let G = G(k, d, n). It follows immediately from the construction that the order
of G is n. Since this graph is chordal, its treewidth is 1 less than its clique number. If
n 6 k + 1, then the graph is complete, and its treewidth is n− 1 6 k. If n > k + 2, then
each Si,j + xi,j induces a maximum clique of order k + 1, and the treewidth is k.

Suppose that n 6 k+1. The expression ⌈(2dn+2)/(kd+d+1)⌉ has positive numerator
and denominator, and so its value is at least 1. Since G ∼= Kn, an induced forest can have
at most two vertices, and so statement (i) of the proposition holds for these values of n.

Now suppose that n > k + 2. Let a, h, b, and c be as in Example 8. We will refer
to an induced forest of maximum degree at most d and maximum order, as an optimal
forest.

Note that if there are vertices v, v′ in G with N(v) − v′ ⊆ N(v′) − v, and if there
is an optimal forest that contains v′ but not v, then, by removing v′ and adding v, we
obtain another optimal forest that contains v but not v′. Thus, if v1, v2, v3 are vertices of
a triangle for which N(v1)− v3 ⊆ N(v3)− v1 and N(v2)− v3 ⊆ N(v3)− v2, then we can
find an optimal forest that does not contain v3.

Applying these ideas to triples in each Si,j + xi,j , it follows that there is an optimal
forest T that does not meet any Si,j − yi,j . If |S ′| > 2, then by applying the ideas to
triples in S ′ + za, we may assume that T does not contain za and T contains at most 2
vertices of S ′.

Removing from consideration those vertices that have been excluded from T , we are
left with a set containing zi for i < a, all xi,j and yi,j , and min{2, |S ′ + z1|} vertices of
S ′ + za. The number of xi,j vertices is ad+ b+ 1; the number of yi,j vertices is the same.
Let W be this set of vertices, so that V (T ) ⊆ W . Then

|W | 6 a+ 2 [ad+ b+ 1] + 2 = a+ 2ad+ 2b+ 4.

Each zi with i < a has degree d + 1 in G[W ]. Further, in G[W ], the sets N(zi) + zi
for 0 6 i < a, are pairwise disjoint; T thus misses at least one vertex from each of these
a sets. Subtracting a, we obtain an upper bound of 2ad+ 2b+ 4 for the order of T .
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If c = 0, then we can do better, since S ′ has no vertices, and so T has order at most
2ad + 2b + 3. If h = kd + d, then c = 0 and b = d, and we can do better still. Because
S ′ has no vertices, we have za ∈ W . Further, vertex za has degree d+ 1 in G[W ], and so
reasoning as before, T misses at least one vertex from the set N(za) + za. We conclude
that, if h = kd+ d, then T has order at most 2ad+ 2b+ 2.

Substituting n = k + 2+ a(kd+ d+ 1) + h and h = b(k + 1) + c, in the left-hand side
below, we obtain

⌈

2dn+ 2

kd+ d+ 1

⌉

= 2ad+ 2b+ 2 +

⌈

2(d− b) + 2dc

kd+ d+ 1

⌉

> 2ad+ 2b+ 2,

with the inequality following from the fact that b 6 d.
When h = kd+d, we showed that T has order at most 2ad+2b+2; thus, in this case,

|V (T )| 6 ⌈(2dn+ 2)/(kd+ d+ 1)⌉. That is, an optimal forest has at most this order for
the infinitely many n > k + 2 with n ≡ k + 1 (mod kd+ d+ 1). Together with the lower
bound in Theorem 1, this shows that statement (ii) of the proposition holds.

We also showed that, if c = 0, then T has order at most 2ad+ b+ 3. This shows that
statement (i) holds when c = 0. On the other hand, if c 6= 0, then b < d, and so the
right-hand side of the above inequality can be increased to 2ad+2b+3. Since we showed
that the order of T is always at most 2ad + b + 4, we conclude that statement (i) of the
proposition holds for all n. �

By Proposition 9, we have the following.

Corollary 10. Let k, d > 2. Then the bound of Theorem 1 is tight to within 1 for all
n > 1, and exactly sharp for infinitely many values of n.

In particular, the coefficient of n in the bound of Theorem 1, rk,d = 2d/(kd + d + 1),
is best possible.

4 Other Values of k and d

We have established a lower bound on fd(G) when k, d > 2. Now we look at other values
of k, d. We consider first k < 2, and then d < 2.

4.1 Values of k < 2

If we set k = 0, 1, then the bound of Theorem 1 may not hold. In particular, for each
d > 2 and k = 0, 1, there exist graphs for which the bound does not hold.

4.1.1 k = 0

For k = 0, this is obvious, since, when d > 2 and k = 0, we have rk,d = 2d/(d+ 1) > 1.
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The actual bound when k = 0 is trivial. The graphs of treewidth 0 are precisely the
graphs with no edges. Thus, every induced subgraph of such a graph is a forest with
maximum degree 0, and so the correct bound, for G a graph of order n, is given by

fd(G) = n.

4.1.2 k = 1

The case when k = 1 is a bit more interesting. The graphs of treewidth at most 1 are
precisely the forests. We seek a lower bound on the maximum order of an induced forest
with bounded degree, in a forest.

First we show that, if we allow k = 1, then the bound of Theorem 1 does not hold for
d > 2. When k = 1, we have rk,d = 2d/(2d+1). Let G = K1,d+1; this has order n = d+2.
Then fd(G) = d+1 = n·(d+1)/(d+2), which is too small, since (d+1)/(d+2) < 2d/(2d+1)
when d > 2.

This fraction (d + 1)/(d + 2) gives us the best lower bound. The following result
is due to Chappell, Gimbel, and Hartman [12]; it is restated using our notation. For
completeness, we provide the proof (again, rewritten using our notation).

Proposition 11 (Chappell, Gimbel, & Hartman). Let d > 0. If G is a graph with
treewidth at most 1, (i.e., a forest) and order n, then

fd(G) >

⌈

(d+ 1)n

d+ 2

⌉

.

Proof. We construct an induced forest T of maximum degree at most d and order at least
(d + 1)n/(d + 2). We proceed by induction on n. If n 6 d + 1, then we may set T = G,
and the result holds.

Suppose that n > d + 2. If G is not connected, then apply the induction hypothesis
to each component.

We may thus assume that G is a tree. Choose a vertex x of G, and call x the root of
G, so that G becomes a rooted tree, and we can talk about descendants in G. Consider
the collection of all vertices of G that have more than d descendants. This collection is
nonempty, since it contains the root. Let v be a vertex in this collection that is as far
from the root as possible.

Remove v and all of its descendants from G, to obtain G′. Apply the induction
hypothesis to obtain a forest T ′, and let T be the subgraph induced by the vertices in
T ′, together with the descendants of v. The descendants of v induce a subgraph with
maximum degree at most d. Furthermore,

|V (T )| − |V (T ′)|

|V (G)| − |V (G′)|
>

d+ 1

d+ 2
,

and so T is the required forest. �

the electronic journal of combinatorics 20(4) (2013), #P8 27



The example of K1,d+1 shows that the fraction (d+1)/(d+2) in Proposition 11 is best
possible. Letting G be a disjoint union of copies of K1,d+1, plus one smaller star if d + 2
does not divide n, we can verify that the bound of the proposition is sharp for all n > 0.
If connected examples are desired, then add edges joining the various stars.

4.2 Values of d < 2

4.2.1 d = 0

When d = 0, we seek a lower bound on the size of a maximum independent set in a graph
G. If we allow d = 0, then the bound of Theorem 1 is equal to 2, since rk,0 = 0. This
bound holds trivially, as long as G is not a complete graph. However, we can find a better
bound.

The best lower bound follows from the fact that a graph with treewidth at most k is
(k+1)-colorable. (To see this, find a chordal supergraph with clique number k+1, remove
a simplicial vertex, color the remainder of the graph by induction, and then replace the
simplicial, giving it a color not used on its neighbors, of which there are at most k.) Given
such a coloring, we can take the largest color class. Thus, we obtain the following well
known result. Note that f0(G) is the independence number of G.

Proposition 12. Let k > 0. If G is a graph with order n and treewidth at most k, then

f0(G) >

⌈

n

k + 1

⌉

.

Once again, the fraction 1/(k+1) in Proposition 12 is best possible, and the proposition
is sharp for all n > 0. To see this, let G be a disjoint union of copies of Kk+1, plus one
smaller clique if k + 1 does not divide n. As before, we can add edges, if connected
examples are desired.

4.2.2 d = 1

The truly interesting case is that in which d = 1.
If we allow d = 1, then the bound of Theorem 1 does not hold. To see this, let

G = Kk+2 − e, that is, a complete graph on k + 2 vertices with one edge removed. This
G has treewidth k, but the greatest order of an induced forest with maximum degree at
most 1, is 2, which is too small. Larger counterexamples can be constructed using disjoint
unions of copies of this graph; these may be joined by edges if connected counterexamples
are desired.

However, although allowing d = 1 would make the bound of Theorem 1 false, we
suspect that it is “nearly true”. It appears that the coefficient of n (i.e., rk,1) is correct;
the only problem is the “+2” in the numerator. Thus, we make the following conjecture.

Conjecture 13. Let k > 0. If G is a graph with order n and treewidth at most k, then

f1(G) >

⌈

2n

k + 2

⌉

= ⌈rk,1 · n⌉ .

the electronic journal of combinatorics 20(4) (2013), #P8 28



If this conjecture holds, then the fraction 2/(k+2) = rk,1 is best possible. The bound
would not be exactly sharp for all n; for example, when k > 2 and n = 2, the above bound
is 1, while f1(G) = 2 for every 2-vertex graph G. However, like Theorem 1, the bound
would be tight to within 1 for all n and exactly sharp for infinitely many values of n. We
can show this by letting G be a disjoint union of copies of Kk+2 − e, plus one smaller
clique if k+2 does not divide n. And again, we can add edges, if connected examples are
desired.

Later, we will prove Conjecture 13 for k 6 3. However, although we cannot prove
Conjecture 13 for all values of k, we can make use of Lemma 6 to prove the following
weaker result for all k > 2.

Theorem 14. Let k > 2. If G is a graph with order n > 1 and treewidth at most k, then

f1(G) >
2n+ 2

2k + 3
.

Proof. Let k, G, and n be as in the statement of the theorem. Define G′ by attaching a
partial vertex of weight p = 2/(2k− 1) to each vertex of G, and let P be the set of partial
vertices. Note that our p has the same value as that used in Lemma 6 when d = 2 and
k is our given value. Apply Lemma 6 to G′ with k having the given value and d = 2, to
obtain U ′, and let U = U ′ −P . Then U induces a forest of maximum degree at most 1 in
G. Also, w(U ′) > rk,2 · w(G

′) + rk,2/2, with w(G′) = n+ np, and so

w(U) = w(U ′)− np

> rk,2 · w(G
′) +

rk,2
2

− np

= rk,2 · (n+ np) +
rk,2
2

− np

=
4

2k + 3

(

n+
2n

2k − 1

)

+
2

2k + 3
−

2n

2k − 1

=
2n+ 2

2k + 3
. �

Again, we can prove the stronger bound of Conjecture 13 for k 6 3.

Theorem 15. Let k be an integer with 0 6 k 6 3. If G is a graph with order n and
treewidth at most k, then

f1(G) >

⌈

2n

k + 2

⌉

= ⌈rk,1 · n⌉ .

The k = 0 case of Theorem 15 follows from the discussion in Subsection 4.1.1. The
k = 1 case follows from Proposition 11. The k = 2 and k = 3 cases follow from the next
two lemmas, respectively.

We prove the k = 2 case using techniques similar to those used in the proof of Lemma 6.
However, the proof is much shorter, and there is no need for partial vertices.
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Lemma 16. If G is a graph with order n and treewidth at most 2, then G contains an
induced forest T , so that T has maximum degree at most 1, and

|V (T )| >
2n

4
= r2,1 · n.

Proof. Let G and n be as in the statement of the lemma. We proceed by induction on n.
If n = 0, then the result is trivially true; assume, therefore, that n > 1.

We may also assume that G is connected and is either a 2-tree or a complete graph with
at most 3 vertices. If not, then we can add edges to G, without increasing its treewidth
beyond 2, until it lies in one of these categories.

Let G∗ be the graph obtained from G by removing every vertex that is simplicial in
G.

If V (G∗) = ∅, that is, if every vertex in G is simplicial, then G is a complete graph
with 1, 2, or 3 vertices. If G is K1 or K2, then let T = G; if G is K3, then let T be the
subgraph induced by any 2 vertices of G, and we are done.

If there are two simplicial vertices z and z′ in G that have the same (2-vertex) neigh-
borhood, then delete this neighborhood, along with z and z′, to obtain G′. Apply the
induction hypothesis to obtain T ′, and let T be T ′ + z + z′. Then

|V (T )| − |V (T ′)|

|V (G)| − |V (G′)|
=

2

4
.

Henceforth, we assume that V (G∗) 6= ∅, and that no two simplicial vertices in G have
the same neighborhood.

Depth 2 Cases—Let y be a vertex that is simplicial in G∗. Let X be the neighborhood
of y in G∗. Let z1, . . . , zm be the simplicial vertices in G that are adjacent to y.

We claim that |X| = 2. If |X| < 2, then the removal ofX cannot disconnectG, because
G is a 2-tree, and so X ∪ {y, z1, . . . , zm} is the entire vertex set of G. Further, there is
exactly one possible neighborhood for the zi vertices: X + y, and so all of them have the
same neighborhood. Thus, either there are 2 simplicials with the same neighborhood, or,
if m = 1, G is a complete graph. Both of these cases have already been covered, and so
we must have |X| = 2. Say X = {x1, x2}.

There are exactly two possible neighborhoods for the simplicial vertices z1, . . . , zm:
{x1, y} and {x2, y}. Since no two simplicials can have the same neighborhood, we must
have m = 1 or m = 2. (See Figure 13.)

X bx1 bx2

b
y

bz1

X bx1 bx2

b
y

b bz1 z2

Figure 13: We must have m = 1 or m = 2 in the depth 2 cases of the proof of Lemma 16.
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If m = 1, then delete X, y, and z1, to obtain G′, apply the induction hypothesis to
obtain T ′, and let T be T ′ + y + z1. We have

|V (T )| − |V (T ′)|

|V (G)| − |V (G′)|
=

2

4
.

If m = 2, then assume, without loss of generality, that each zi is adjacent to the
corresponding xi; that is, N(z1) = {x1, y}, and N(z2) = {x2, y}. Delete z1 and z2, to
obtain G′, and apply the induction hypothesis to obtain T ′.

We may assume that y ∈ T ′. If it is not, then we can add y to T ′, removing one
element of X from T ′ if T ′ meets X, to obtain a new T ′ that contains y. Note that now
T ′ contains at most 1 vertex of X.

Let T = T ′ − y + z1 + z2. Then

|V (T )| − |V (T ′)|

|V (G)| − |V (G′)|
=

2− 1

2
=

2

4
.

This completes the proof of Lemma 16. �

The remaining case of Theorem 15 is that in which k = 3. For this case, we make use
of partial vertices, as in Lemma 6, along with a new kind of special vertex, which we call
a “loner”. A loner vertex is a simplicial vertex with degree at most 2 in G; if a loner lies
in our induced forest, then no neighbor of this loner lies in the forest (thus the name).
We denote the set of loner vertices by Q.

The k = 3 case of Theorem 15 follows from the lemma below, by letting P and Q be
empty.

Lemma 17. Let G be a graph with order n and treewidth at most 3. Let P , Q be disjoint
subsets of V (G), so that each vertex in P has degree at most 1 in G, each vertex in Q is
simplicial and has degree at most 2 in G, and P ∪Q is an independent set in G. Let each
vertex of P have weight 1/3, and let each other vertex of G, including those in Q, have
weight 1. Then there exists a set U ⊆ V (G), such that all of the following hold.

(i) G[U ] is a forest of maximum degree at most 1.

(ii) P ⊆ U .

(iii) Each vertex in Q ∩ U has no neighbors in G[U ].

(iv) w(U) > 2
5
w(G) = r3,1 · w(G).

Proof. Let G, n, P , Q, and the vertex weights be as in the statement of the lemma. A
vertex of weight 1/3 is a partial vertex. A vertex having the restriction that, if it lies in
U , then no neighbor lies in U , is a loner vertex. Thus, sets P and Q contain the partial
and loner vertices of G, respectively. Partial and loner vertices are special ; other vertices
are full.
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We proceed by induction, first, on the weight of G, and second—for graphs of equal
weight—on the number of full vertices.

Simple Cases—First, we deal with some simple base cases and reductions.
If some loner u in G has degree at most 1, then remove u and its neighbor, if any, from

G, to obtain G′. Apply the induction hypothesis to obtain U ′, and let U = U ′ + u. Then

w(U)− w(U ′)

w(G)− w(G′)
>

1

2
>

2

5
.

If 2 special vertices have intersecting neighborhoods, then delete these specials and
their neighborhoods (of 1, 2, or 3 full vertices total), to obtain G′. (See Figure 14 for
possibilities.) Apply the induction hypothesis to obtain U ′, and let U be U ′ plus the 2
deleted specials. If both specials are partial, then the fraction [w(U) − w(U ′)]/[w(G) −
w(G′)] is (2/3)/(1 + 2/3) = 2/5. If one is a partial vertex and one is a loner, then the
fraction is (1/3 + 1)/(2 + 1/3 + 1) = 2/5. If both specials are loners, then the fraction is
2/5 if the neighborhoods have exactly 1 vertex in common, and 2/4 if they have 2 vertices
in common—at least 2/5 in either case.

b

bC bC

b b

rSbC

b b b

rS rS

b b

rS rS

Figure 14: Special vertices with intersecting neighborhoods. Loners are gray squares.

Henceforth, we assume that each loner in G has degree 2, and that no full vertex is
adjacent to more than 1 special.

Suppose that there are at most 3 full vertices. If there are no full vertices, then let
U = V (G). If there are no special vertices, then let U contain min{2, n} vertices of G.
If there are partial vertices but no loners, then let U be all the partial vertices, together
with 1 full vertex. Otherwise, there is a loner, and so there are either 2 or 3 full vertices,
and possibly 1 partial vertex if there are 3 full vertices. Let U be the two neighbors of
the loner, plus the partial vertex, if there is one. In each case, U has the proper structure
and at least the required weight.

Henceforth, we assume that G has at least 4 full vertices. Further, we may assume
that G is connected and G− P −Q is a 3-tree; otherwise, add edges until these are true.

A Simplicial Vertex—Now consider a vertex z that is simplicial in G − P − Q. Let
X = {x1, x2, x3} be the neighborhood of z in G− P −Q.

Suppose that z has a loner neighbor u. Without loss of generality, say the other
neighbor of u is x1. Remove z and u and add a new partial vertex c adjacent to x1, to
obtain G′. Apply the induction hypothesis to obtain U ′. If x1 6∈ U ′, then we may let
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X bx1 bx2

b
x3

b
z

X bx1 bx2

b
x3

bC bC
bC

Figure 15: When a simplicial vertex z is not adjacent to any special (before and after).

U = U ′ − c+ u. If x1 ∈ U ′, then, noting that c ∈ U ′, we see that x2 and x3 cannot lie in
U ′; let U = U ′ − c+ z. In either case,

w(U)− w(U ′)

w(G)− w(G′)
=

1− 1
3

2− 1
3

=
2

5
.

Now suppose that z is not adjacent to any special. Remove z and add three partial
vertices, one adjacent to each element of X, to obtain G′. (See Figure 15.) This does
not change the weight of the graph, but it does reduce the number of full vertices. Apply
the induction hypothesis to obtain U ′. Note that |X ∩ U ′| 6 1. Let U be U ′ + z minus
the three added partial vertices. Since w(G) = w(G′) and w(U) = w(U ′), the weight
requirement is satisfied.

Henceforth, we assume that each vertex that is simplicial in G−P −Q is adjacent to
exactly one partial vertex and no loners.

If there is a vertex z′ 6= z that is simplicial in G − P − Q and whose neighborhood
in G − P − Q is X (the neighborhood of z), then remove X, z, z′, and their 2 partial
neighbors, to obtain G′. Apply the induction hypothesis to obtain U ′, and let U be U ′

plus z, z′, and their 2 partial neighbors. Then

w(U)− w(U ′)

w(G)− w(G′)
=

2 + 2
3

5 + 2
3

>
2

5
.

Henceforth, we assume that no two vertices that are simplicial in G−P −Q have the
same neighborhood in G− P −Q.

Suppose there is a loner u adjacent to an element of X; say N(u) = {x1, v}, where
v may or may not lie in X. (See Figure 16.) Remove u, x1, v, and the partial vertex
adjacent to z, and make z into a loner, to obtain G′. Apply the induction hypothesis to
obtain U ′, and let U be U ′ plus u and the partial vertex adjacent to z. Then

w(U)− w(U ′)

w(G)− w(G′)
=

1 + 1
3

3 + 1
3

=
2

5
.

Henceforth, we assume that no loner is adjacent to any neighbor of a vertex that is
simplicial in G− P −Q.
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X b x1 b

b
v

b
z

rS
u

bC

N(u)

X b

b

rS
z

N(u)

X b

rS
z

Figure 16: When there is a loner adjacent to X (both possibilities, before and after).

The Subgraph G∗—Let G∗ be the graph obtained from G − P − Q by removing each
vertex that is simplicial in G− P −Q.

If V (G∗) = ∅, that is, if every vertex of G−P −Q is simplicial in G−P −Q, then G
is a complete graph on 4 full vertices with a partial vertex joined to each full vertex. Let
U be all the partial vertices, together with one full vertex. Then

w(U)

w(G)
=

1 + 4
3

4 + 4
3

>
2

5
.

Henceforth, we assume that V (G∗) 6= ∅, and thus that G− P −Q is not a complete
graph. SinceG−P−Q is a 3-tree, it must contain two nonadjacent simplicial vertices. Two
simplicial vertices of G−P −Q cannot have the same neighborhood, and so |V (G∗)| > 3.
Thus, G∗ is a 3-tree.

X

by

b
z1

b
zm

b

b

b

bC

bC

bC?

Figure 17: Depth 2 Cases.

the electronic journal of combinatorics 20(4) (2013), #P8 34



Depth 2 Cases—Let y be a vertex that is simplicial in G∗. Let X be the neighborhood
of y in G∗. Since G∗ is a 3-tree, we must have |X| = 3. Let z1, . . . , zm be the full simplicial
vertices in G that are adjacent to y. Then each zi is adjacent to exactly one partial vertex,
y may or may not be adjacent to a single partial vertex, and no loner is adjacent to y or
to any of the zi vertices. (See Figure 17.)

If m > 2, then remove X, y and the zi vertices, and their adjacent partial vertices,
to obtain G′. Apply the induction hypothesis to obtain U ′, and let U be U ′ plus the zi
vertices and their adjacent partial vertices, along with the partial vertex adjacent to y, if
there is one. Then

w(U)− w(U ′)

w(G)− w(G′)
>

m+m · 1
3

4 +m+m · 1
3

minimized when y has no adjacent partial vertex

>
2 + 2

3

6 + 2
3

=
2

5
. minimized when m = 2

It remains to prove the result when m = 1. Let x1, x2 be the neighbors of z1 in X.
(See Figure 18.)

X bx1 bx2

b

b
y

b
z1

bC

X bx1 bx2

b

b
y

b
z1

bC

bC

X bx1 bx2

b

bC bC

X bx1 bx2

b rS
z1

Figure 18: When m = 1 and y is not (left) or is (right) adjacent to a partial vertex (before
and after).

If y is not adjacent to a partial vertex, then remove z1, its neighboring partial vertex,
and y, and then add two new partial vertices adjacent to x1, x2, respectively, to obtain
G′. Apply the induction hypothesis to obtain U ′. At most one vertex of X will lie in U ′.
If x1 or x2 lies in U ′, then let U be U ′ minus the two added partial vertices, plus y and
the removed partial vertex. Otherwise, let U be U ′ minus the two added partial vertices,
plus z1 and the removed partial vertex. In either case,

w(U)− w(U ′)

w(G)− w(G′)
=

−2
3
+ 1 + 1

3

−2
3
+ 2 + 1

3

=
2

5
.

the electronic journal of combinatorics 20(4) (2013), #P8 35



If, on the other hand, y is adjacent to a partial vertex, then remove y and the partial
vertices adjacent to y and z1, and make z1 a loner, to obtain G′. Apply the induction
hypothesis to obtain U ′, and let U be U ′ plus the removed partial vertices. Then

w(U)− w(U ′)

w(G)− w(G′)
=

2
3

1 + 2
3

=
2

5
.

This completes the proof of Lemma 17. �

We have now proven Theorem 15.

5 Graphs on Surfaces

This research was initially motivated by two conjectures of the first author. The first
conjecture stated that, if G is an outerplanar graph of order n, then f2(G) > 4n/7. This
conjecture was proven by the second author [21, Thm. 1]. Because outerplanar graphs
have treewidth at most 2, and r2,2 = 4/7, this result is implied by our more general
Theorem 1.

The second conjecture is a similar one involving planar graphs. It remains open.

Conjecture 18. Let G be a planar graph of order n > 1. Then f2(G) > 4n/9.

While we do not know whether the above conjecture holds, we do know that, if it
does, then the fraction 4/9 is best possible, because of the following observation.

Observation 19. If k = 3, then, for all n > 1 and d > 2, the graph G(k, d, n), from
Example 8, is planar.

x1,0

x1,1 x1,2

x1,3

x2,1 x2,2

x2,3

x3,1

y1,3 y2,3

z0 z1 z2

Figure 19: G(k, d, n) with n = 37, k = 3, d = 3 (thus a = 2, h = 6, b = 1, and c = 2),
drawn without crossing edges to illustrate the fact that it is planar. Edges within each
Si,j are shown in bold.
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(See Figure 19 for an illustration.) By this observation, we can use the graphs
G(3, d, n), along with Proposition 9, to prove upper bounds for planar graphs.

A weaker version of Conjecture 18, in which “f2(G) > 4n/9” is replaced by “f2(G) >
n/3”, is known to hold. This follows from a result proved independently by Poh [22] and
by Goddard [16]: that every planar graph has a (not necessarily proper) vertex 3-coloring,
so that each color class induces a forest of maximum degree at most 2 (a linear forest).
In such a coloring, the largest color class induces a linear forest with at least n/3 vertices.

While planar graphs can have arbitrarily high treewidth (this is well known, but
nontrivial to prove; see, for example, Diestel [13]), in many ways they are similar to
graphs with treewidth at most 3. For example, the maximum number of edges in an
n-vertex planar graph is 3n− 6; the same holds for n-vertex graphs of treewidth at most
3. Both classes have a maximum clique number of 4; indeed, the maximum order of a
clique minor is 4. Our investigations suggest that planar graphs also behave much like
graphs of treewidth at most 3 for the purpose of finding large induced forests. If k = 3,
then rk,d = 2d/(4d + 1). We conjecture that this same fraction gives a lower bound for
planar graphs.

Conjecture 20. Let d > 2 be an integer. If G is a planar graph with order n > 1, then

fd(G) >
2dn

4d+ 1
= r3,d · n.

Note that Conjecture 20 generalizes Conjecture 18, since 2d/(4d + 1) = 4/9 when
d = 2; that is, r3,2 = 4/9. And as before, if the above conjecture is true, then the fraction
2d/(4d + 1) is best possible, as shown by the graphs G(k, d, n) from Example 8, with
k = 3.

Conjecture 20 would become false if we allowed d = 1, as shown by setting G = K2,2,2

(the octahedron). The largest induced forest with maximum degree at most 1 in this
graph has 2 vertices, while, when d = 1 and n = 6, we have 2dn/(4d+ 1) = 12/5 > 2.

Letting d increase without bound, the value of r3,d approaches 1/2. Thus, Conjec-
ture 20 implies the Induced Forest Conjecture of Albertson and Berman [2]: that every
n-vertex planar graph contains an induced forest with at least n/2 vertices.

If “n/2” is replaced by “2n/5”, then the resulting statement is known to hold. This
follows from a result of Borodin [8, 9]: that every planar graph has a proper vertex 5-
coloring, so that the union of each pair of color classes induces a forest. In such a coloring,
the union of the two largest color classes induces a forest with at least 2n/5 vertices.

Note that proving only Conjecture 18 would not suffice to verify the Induced Forest
Conjecture. However this would still improve on the 2n/5 in the previous paragraph,
since 4/9 > 2/5.

Lastly, we consider induced forests in graphs on other surfaces. We ask whether the
ratio 2d/(4d+ 1) works for any surface, once a correction term is subtracted.

Question 21. Does there exist a function ϕ so that, if d > 2 is an integer and G is a
graph of order n that is embeddable on a surface S, then

fd(G) >
2d

4d+ 1
· [n− ϕ(S)]?
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In particular, when S is the torus, does ϕ(S) = 3 work?
This idea of being able to remove a fixed number of vertices from a graph embeddable

on some surface, in order to obtain a graph that “acts planar”, is not a new one. In
particular, Albertson [1] conjectured that for each surface S there is a constant q(S), so
that for each graph G embeddable on S, a set of at most q(S) vertices can be removed
from G, to obtain a 4-colorable graph.
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