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Abstract

In 1923, Eduard Helly published his celebrated theorem, which originated the well

known Helly property. A family of subsets has the Helly property when every sub-

family thereof, formed by pairwise intersecting subsets, contains a common element.

Many generalizations of this property exist which are relevant to some fields of math-

ematics, and have several applications in computer science. In this work, we survey

complexity aspects of the Helly property. The main focus is on characterizations of

several classes of graphs and hypergraphs related to the Helly property. We describe

algorithms for solving different problems arising from the basic Helly property. We

also discuss the complexity of these problems, some of them leading to NP-hardness

results.
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1 Introduction

In 1923, Eduard Helly [27, 65] published the famous theorem which originated the so
called Helly property. The theorem asserts that in a d-dimensional euclidian space, if
in a finite collection of n > d convex sets any d + 1 sets have a point in common, then
there is a point in common to all the sets. This theorem has been extensively studied
in distinct parts of mathematics and other areas, such as computer science. In fact, it
plays a central role in studies of geometric transversal theory, combinatorial geometry and
convexity theory.

A few surveys have been written on the Helly property, as in [31, 48, 57]. The Helly
property has been a field of interest within extremal hypergraph theory, as in [101], and
other topics of graph theory. For instance, see [44, 102, 103]. There are many extensions
of the Helly property. One of its generalizations, the fractional Helly property, is directly
related to Alon and Kleitman’s result [4], and is a tool to solve a famous conjecture by
Hadwiger and Debrunner [62]

Besides the purely theoretical interest, the Helly property has applications in different
areas. For example, in the context of optimization, it has been applied to location prob-
lems [41], and generalizes linear programming [5]. In computer science, the Helly property
has been used in theory of semantics [11], coding [10], computational biology [93], data
bases [50, 51], image processing [25] and, especially, graph and hypergraph theory.

The Helly property has motivated the introduction of several classes of graphs and
hypergraphs, e.g., clique-Helly graphs, disk-Helly graphs, Helly circular-arc graphs, Helly
hypergraphs, among others. Some of these classes are described in this survey. In general,
the Helly property in graphs and hypergraphs corresponds to some restriction imposed
on certain subsets of vertices or edges. Besides of the definition of the classes directly
employing the Helly property, it has been a useful, natural tool in other topics of graph
theory, for example intersection graph and clique graph theory.

In this work, we survey some of the results on the Helly property, from the complexity
point of view. Our purpose is to describe algorithms and complexity results for many
structural algorithmic problems related to the Helly property and some of its generaliza-
tions. In addition, we include new proposals of algorithms for some specific problems, and
formulate the main structural characterizations which are the basis of the algorithms.

Following are some definitions and notation used throughout this paper.

A hypergraph H is an ordered pair (V (H), E(H)) where V (H) = {v1, . . . , vn} is a finite
set of vertices and E(H) = {E1, . . . , Em} is a set of nonempty hyperedges Ei ⊆ V (H).
Where there is no ambiguity, we will denote the number of vertices and hyperedges of a
hypergraph H by n and m, respectively. Since the Helly property and most variations
considered in this work deal with hyperedges, isolated vertices are not relevant and can
be dropped. Hence, unless otherwise stated, we assume V (H) =

⋃

Ei∈E(H)

Ei.
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We say that H is a k-hypergraph if |E(H)| = k, a k−-hypergraph if |E(H)| ≤ k, and a
k+-hypergraph if |E(H)| ≥ k. We use the same notation for any term standing for a set;
for example, given a set S, write that S is k-set whenever |S| = k.

The rank r(H) of a hypergraph H is the maximum cardinality among the hyperedges of
H. A hypergraph H′ is a partial hypergraph of H if E(H′) ⊆ E(H), and a subhypergraph of
H induced by V ′ ⊆ V (H) if H′ contains exactly the hyperedges Ei∩V ′ 6= ∅ for 1 ≤ i ≤ m.

The core of H is defined as core(H) = E1 ∩ E2 ∩ . . . ∩ Em. We say that H is (p, q)-
intersecting if every partial p−-hypergraph of H has a q+-core. We employ the terms
intersecting and p-intersecting meaning (2, 1)-intersecting and (p, 1)-intersecting, respec-
tively.

Two hypergraphs H,H′ are isomorphic if there exists a bijection f : V (H) → V (H′)
such that:

{v1, . . . , vp} ∈ E(H) ⇐⇒ {f(v1), . . . , f(vp)} ∈ E(H′).

Given a hypergraph H, we construct the dual hypergraph H∗ of H creating one vertex
ej in V (H∗) for each hyperedge Ej ∈ E(H), and one hyperedge Ai in E(H∗) for each
vertex ai ∈ V (H), defined as Ai = {ej : ai ∈ Ej}.

A hypergraph H is r-uniform when every hyperedge of H contains exactly r ver-
tices. Let r, n be integers, 1 ≤ r ≤ n. We define the r-complete hypergraph Kr

n to be a
hypergraph consisting of all the r-subsets of an n-set.

A graph is a 2-uniform hypergraph. Usually, a graph is denoted by G. A hyperedge
and a partial hypergraph of a graph G are respectively called edge and subgraph of G.
A spanning subgraph of G is a subgraph with vertex set V (G), and the subgraph of G

induced by V ′, denoted by G[V ′], is the maximal subgraph of G with vertex set V ′. Two
vertices u and v forming an edge of G are adjacent vertices or neighbors in G, and we
denote such an edge by uv. The open neighborhood of a vertex v, denoted by N(v), is the
set formed by the neighbors of v. The closed neighborhood of v is N [v] = N(v)∪{v}. The
disk of radius k and center v is the set of vertices whose distance to v is not larger than
k. A vertex v is universal in G if N [v] = V (G).

A path is a sequence of distinct vertices v1, . . . , vq, q ≥ 1, such that vivi+1 ∈ E(G), for
1 ≤ i ≤ q − 1. If, furthermore, q ≥ 3 and vqv1 ∈ E(G), this sequence is a cycle. A chord
of a cycle C is any edge joining two non-consecutive vertices in C. The distance between
two vertices is the number of edges of a minimum path joining them.

A complete set (independent set) is a subset of pairwise adjacent (nonadjacent) vertices.
A bipartite set is a subset B ⊆ V (G) which can be partitioned into B = V1 ∪ V2, where
V1, V2 are nonempty independent sets. If every vi ∈ V1 and vj ∈ V2 are adjacent, then
B is a complete bipartite set. A clique of G is a maximal complete set, and a biclique
is a maximal complete bipartite set. A (complete) bipartite graph is a graph induced by
a (complete) bipartite set. A graph is Kr-free if it does not contain r-complete sets as
subgraphs.
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A graph is a tree if there exists exactly one path between every pair of vertices thereof.
A graph G is chordal if every cycle of G with at least 4 vertices has a chord. The
complement of a graph G, denoted by G, has V (G) as vertex set, and uv ∈ E(G) if and
only if uv 6∈ E(G). A graph is perfect if it does not contain an odd cycle or a complement
of an odd cycle, with at least 5 vertices, as an induced subgraph.

The clique hypergraph of G, denoted by C(G), is the hypergraph formed by the cliques
of G. Given a hypergraph H, the intersection graph or line graph of H is the graph
containing one vertex for each hyperedge of H, and two vertices are adjacent if the cor-
responding hyperedges intersect. The clique graph K(G) of G is the intersection graph
of the clique hypergraph of G. The i-th iterated clique graph of G, denoted by Ki(G), is
defined as follows: K0(G) = G and Ki(G) = K(Ki−1(G)) for i ≥ 1.

The contents of this survey is as follows. Section 2 presents the basic Helly property
on hypergraphs, with the description of some classical families of hypergraphs. A test
for the Helly property on hypergraphs is also included. Section 3 discusses the basic
Helly property on graphs. The commonest Helly classes of graphs are described, together
with their characterizations and recognition algorithms. Section 4 considers the p-Helly
hypergraphs and a generalization of them, the list p-Helly hypergraphs. Section 5 considers
the Helly property on subfamilies of limited size, that is, when the cardinality of the
subfamilies to be checked for a common vertex is bounded by a positive integer k. Section 6
contains a generalization of the p-Helly property which considers the cardinality of the
intersections, the (p, q, s)-Helly property. Characterizations generalizing classical results
on p-Helly hypergraphs and conformal hypergraphs are given; the last one is a new result.
This concept is also used to generalize the Helly number of a hypergraph. In Section 7 we
apply the (p, q, s)-Helly property to graphs. Characterization and recognition of (p, q)-
clique-Helly graphs are presented. Also, the complexity of determining the Helly defect
of a graph is discussed. In Section 8 we consider the hereditary Helly property applied
to special families of vertices of a graph, such as cliques, disks, bicliques, open and closed
neighborhoods. Furthermore, we characterize the hereditary p-Helly property on graphs
and hypergraphs. Section 10 contains a summary of the computational aspects of the
problems surveyed in this work. In the last section we list some proposed problems.

2 Basic Helly Property on Hypergraphs

In this section, we discuss the basic Helly property on hypergraphs. First, we describe
some classical examples of special families of objects satisfying the Helly property. Next,
we consider general Helly hypergraphs, and give an algorithm for recognizing this class.
Finally, we describe some well known classes of hypergraphs where the Helly property
holds.

Relevant references for this section are [12, 13, 15, 24, 43, 83].
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2.1 General hypergraphs

A hypergraph H is Helly when every intersecting partial hypergraph of H has a nonempty
core. For example, the hypergraph H having V (H) = {1, 2, 3, 4} and E(H) = {{1, 2},
{1, 3}, {1, 4}} is Helly, while if E(H) = {{1, 2}, {1, 3}, {2, 3}} then H is not Helly.

We now give some classical examples of objects satisfying the Helly property. Intervals
of a straight line form a Helly family, as it can be easily observed. Another classical exam-
ple, coming from the Chinese Theorem, expresses a property of arithmetic progressions:
let H be the hypergraph having the integers as vertices, and the arithmetic progressions
formed by integers as hyperedges (in this case, hyperedges are not finite); then H is Helly.
Another commonly employed case of a Helly family is that of subtrees of a tree. The fact
that subtrees of a tree are Helly is the basis for many properties of chordal graphs.

From the computational point of view, a central question is to describe a method for
recognizing Helly hypergraphs. Let us observe that simply applying the definition would
not lead to an efficient method, since the number of intersecting partial hypergraphs could
be exponential on the number of vertices.

Problem 2.1 Helly hypergraph
INSTANCE: A hypergraph H.
QUESTION: Does H satisfy the Helly property?

The following algorithm [12] decides whether a given hypergraph H is Helly.

Algorithm 2.1 [12] (Recognizing Helly hypergraphs): For every triple T of ver-
tices of V (H), construct the partial hypergraph HT of H formed by the hyperedges of H
containing at least two of the vertices of T . Then H is Helly precisely when HT has a
nonempty core for every triple T .

The above algorithm corresponds to the case p = 2 of the method for deciding if H is
p-Helly. Therefore its correctness follows from Theorem 4.2 (see Section 4).

As for the complexity, there are O(n3) partial hypergraphs to be considered. Each
one can be constructed and checked in linear time, yielding an overall complexity of
O(n3

∑

Ei∈E(H)

|Ei|) = O(n4m).

2.2 Special hypergraphs

We now define some classes of Helly hypergraphs.

Say that H is an interval hypergraph when its vertices can be embedded on a line in
such a way that its hyperedges correspond to intervals of the line. An example is given
in Figure 1(a).

the electronic journal of combinatorics (2009), #DS17 5



Figure 1: An interval hypergraph and a hypertree

A hypertree is a hypergraph H such that there exists a tree T with vertex set V (H)
where the hyperedges of E(H) induce subtrees in T . See Figure 1(b). Hypertrees are also
called arboreal hypergraphs. The dual of a hypertree is a concept employed in the theory
of relational databases [50, 51].

The following theorem characterizes hypertrees in terms of the Helly property.

Theorem 2.1 [42, 52, 95] A hypergraph H is a hypertree if and only if H is Helly and
its line graph is chordal.

Next, we define more families of hypergraphs based on the following notion. A special
cycle of a hypergraph H is a sequence v1E1v2E2 . . . vkEkvk+1

, k ≥ 3 and vk+1 = v1,
where v1, . . . , vk and E1, . . . , Ek are distinct vertices and hyperedges of H satisfying Ei ∩
{v1, . . . , vk} = {vi, vi+1}. The value k is the length of the cycle.

A hypergraph is balanced if it contains no special cycle of odd length [12] and it is
totally balanced if it has no special cycles of any length [79]. Finally, a hypergraph is
normal if it is Helly and its line graph is perfect [79].

Theorem 2.2 Normal hypergraphs, hypertrees, balanced, totally balanced, and interval
hypergraphs are Helly.

The proof of the above theorem follows from the fact that normal hypergraphs are Helly
by definition, balanced hypergraphs are normal [78, 80], and totally balanced hypergraphs
are balanced. On the other hand, hypertrees are Helly because the subtrees of a tree satisfy
the Helly property, while interval hypergraphs are special hypertrees.
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3 Basic Helly Property on Graphs

In the context of graphs, the Helly property has been mainly applied to certain sub-
sets of vertices, such as cliques, disks, open neighborhoods, closed neighborhoods, and
bicliques. In general, any of these special families of subsets may or not satisfy the
Helly property. In this section, we consider the classes of graphs for which the above
families of subsets of vertices do satisfy the Helly property. The clique-Helly graphs are
exactly the graphs whose families of cliques satisfy the Helly property. Similarly, we define
disk-Helly, open neighborhood-Helly, closed neighborhood-Helly, and biclique-Helly graphs,
respectively. Disk-Helly graphs are also called simply Helly graphs. In the definition of
these classes, we consider all possible subsets of the corresponding types. For instance,
for the clique-Helly graphs, all cliques are taken into account. For the disk-Helly graphs,
all disks are considered, for all possible centers and radii. The same principle is valid for
the other classes.

We describe characterizations and recognition algorithms for these classes, as well
as the containment relations among them. Finally, we consider another class of graphs
closely related to the Helly property, the Helly circular-arc graphs.

3.1 Clique-Helly graphs

Clique-Helly graphs have been well studied, mainly in connection with clique graphs. The
first reference to them is the following sufficient condition for a graph to be a clique graph.

Theorem 3.1 [63] Every clique-Helly graph is a clique graph.

This theorem has been generalized to an actual characterization of clique graphs, as
follows:

Theorem 3.2 [94] A graph G is a clique graph if and only if it contains a family of
complete subsets of vertices which covers all its edges and satisfies the Helly property.

The above characterization has not lead so far to a polynomial time algorithm for
recognizing clique graphs. In fact, it has been recently proved that recognizing clique
graphs is NP-complete [2].

Another result closely related to Theorem 3.1 can be formulated as follows.

Theorem 3.3 [49] The clique graph of a clique-Helly graph is clique-Helly, and every
clique-Helly graph is the clique graph of a clique-Helly graph.

Clique-Helly graphs play a key role in the study of iterated clique graphs. Let G

and H be graphs. Say that G is convergent to H when Ki(G) = Ki+1(G) = H, for some
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i ≥ 0. When H is the one-vertex graph, G is simply convergent. On the other hand, when
lim
i→∞

|V (Ki(G))| = ∞, G is a divergent graph. Finally, when K(G) = G, say that G is a

self-clique graph.

If G is clique-Helly then Ki(G) is again clique-Helly, and, in addition, K2(G) is an
induced subgraph of G [49]. The latter implies that divergent graphs cannot be clique-
Helly. The study of divergent graphs has both algebraic and geometric connections and
has recently attracted much interest. For instance, see [68, 69, 70, 71, 88], among other
papers. A general theory for this class is in [72, 85]. Finally, as for self-clique graphs,
we can mention that self-clique clique-Helly graphs have been fully characterized [16, 73].
However, little is known about self-clique graphs which are not clique-Helly. A survey on
clique graphs appears in [98].

Various other classes of graphs have been defined motivated by clique-Helly graphs,
or are closely related to them. See, for instance, [20, 22, 23, 99].

Figure 2: The Hajós Graph

The family of minimal non clique-Helly graphs has been described in [81]. Here, the
minimality refers both to induced subgraphs and to intersecting families of cliques.

The smallest graph which is not clique-Helly is the Hajós graph, depicted in Figure 2.
In general, in order to recognize clique-Helly graphs, the first idea is to apply the algorithm
of Section 2.1, with the aim of checking whether the clique hypergraph of the given graph
is Helly. However, since the number of cliques of a graph might be exponential [84], this
would not necessarily lead to a polynomial time algorithm.

Problem 3.1 Clique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G a clique-Helly graph?

However, clique-Helly graphs can be recognized in polynomial time, applying the fol-
lowing concept. Let G be a graph and T a triangle of if. The extended triangle of G

relative to T is the subgraph induced in G by the set of all vertices adjacent to at least
two vertices of T . The following theorem characterizes clique-Helly graphs.

Theorem 3.4 [40, 97] A graph is clique-Helly if and only if every of its extended triangles
contains a universal vertex.
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The above theorem leads directly to a polynomial time algorithm for recognizing
whether a given graph G is clique-Helly.

Algorithm 3.1 (Recognizing clique-Helly graphs): For every triangle T of G,
construct its extended triangle and verify if it contains a universal vertex. Then G is
clique-Helly precisely when the answer is positive for every triangle T .

We need O(nm) time to generate all the triangles of G. The computation of the
required operations, for each of the triangles, requires O(m). Therefore the overall com-
plexity is O(nm2). This complexity can be reduced by applying matrix multiplication for
generating the triangles.

3.2 Disk-Helly graphs

Disk-Helly graphs can also be recognized in polynomial time. Such recognition algorithms
have been described in [7, 40]. Disk-Helly graphs have been studied in connection with
retracts of a graph, e.g. [6, 8, 64]. This class has also been characterized in terms of
convergence, as follows.

Theorem 3.5 [9] A graph is disk-Helly if and only if it is clique-Helly and convergent.

The above theorem completely characterizes convergent graphs which are clique-Helly,
implying that such a class can be recognized in polynomial time. In contrast, it is an open
problem whether it is even decidable to recognize general convergent graphs.

3.3 Open and closed neighborhood-Helly graphs

Open and closed neighborhood-Helly graphs can also be recognized in polynomial time,
by applying Algorithm 2.1, since the size of the neighborhoods is polynomially bounded.
The same remark applies for disk-Helly graphs.

The following concept generalizes extended triangles. It has been employed both for
characterizing open neighborhood-Helly graphs and biclique-Helly graphs. For a graph
G, let S ⊆ V (G), |S| = 3. Denote by BS the family of bicliques of G, each of them
containing at least two vertices of S. Let GBS

be the subgraph of G formed exactly by
the vertices and edges of BS. Write S∗ = V (GBS

). The induced subgraph of G formed
by the vertices of S∗ is called an extension of S. Finally, denote by S∗

2 ⊆ S∗ the subset of
vertices which are adjacent to at least two vertices of S.

Theorem 3.6 [60] A graph G is open neighborhood-Helly if and only if G contains no
triangles, and for every independent set S with three vertices, S∗ contains a vertex adjacent
to all the vertices of S∗

2 .
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3.4 Biclique-Helly graphs

For biclique-Helly graphs, we need an additional definition. For a graph G, say that a
vertex v dominates an edge e when one of the extremes of e either coincides or is adjacent
to v. When v dominates every edge of G then v is an edge dominator of G. Biclique-Helly
graphs can be characterized as follows.

Theorem 3.7 [60] A graph G is biclique-Helly if and only if G is triangle-free and each
of its extensions has an edge dominator.

Problem 3.2 Biclique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G a biclique-Helly graph?

As for the question of recognizing biclique-Helly graphs, first we remark that unlike
neighborhoods and disks, the number of bicliques of a graph is not polynomially bounded,
meaning that a direct application of Algorithm 2.1 would not lead to an efficient method.
In fact, the number of bicliques of a graph might be exponential on its number of ver-
tices [92]. However, the above theorem can be used to formulate the following polynomial
time algorithm. Let G be the given graph.

Algorithm 3.2 [60] (Recognizing biclique-Helly graphs): First, verify whether
G has a triangle. If it does then stop, as G is not biclique-Helly. Otherwise, for each 3-
subset of vertices of G, construct its extension and verify if it contains an edge dominator.
Then G is biclique-Helly precisely when the answer is affirmative in all cases.

There are O(n3) extensions to be considered. In order to construct and check each of
them, we require O(m). The total complexity is O(n3m). The next result says that a
closed neighborhood-Helly graph with no triangles is also open neighborhood-Helly and
biclique-Helly.

Theorem 3.8 [58] Let G be a triangle-free graph. If G is closed neighborhood-Helly, then
G is open neighborhood-Helly and biclique-Helly.

3.5 Relation among classes

Finally, we relate the Helly classes so far considered in this section. Clearly, clique-Helly
graphs contain open neighborhood-Helly and biclique-Helly graphs, because the two last
classes are triangle-free (Theorems 3.6 and 3.7) and every triangle-free graph is clique-
Helly. Furthermore, if T is a triangle of some graph G and the extended triangle of T does
not contain a universal vertex then the closed neighborhoods of the vertices of T contain an
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Figure 3: Relations among Helly classes

intersecting subfamily with no common vertex. Consequently, every closed neighborhood-
Helly graph is also clique-Helly. On the other hand, it is clear that closed neighborhood-
Helly graphs contain disk-Helly graphs. However, open and closed neighborhood-Helly
graphs do not contain each other. Clearly, a triangle is closed neighborhood-Helly and
not open neighborhood-Helly, whereas the graph C4 is open neighborhood-Helly and not
closed neighborhood-Helly. See Figure 3, where some minimal graphs are also shown.

3.6 Helly circular-arc graphs

A generalization of intervals of a straight line is to consider arcs of a circle. However,
arcs of a circle do not form necessarily a Helly family. For example, a family of three arcs
which together cover the circle, and such that none of them contains another one, is not
Helly. See Figure 4. In fact, we are interested in the intersection graph G of arcs of a
circle, called circular-arc graph. That is, G has a vertex for each arc, and two vertices
are adjacent when the corresponding arcs intersect. The family of arcs together with the
corresponding circle form a circular-arc model of G. For a circular-arc graph G, if there
exists a Helly family of arcs which represents G, then G is a Helly circular-arc graph.

The above definition leads to the following problem.
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Figure 4: Non Helly families of arcs

Problem 3.3 Helly circular-arc graph
INSTANCE: A graph G.
QUESTION: Is G a Helly circular-arc graph?

In order to characterize circular-arc graphs, the following concept is useful. For a
(0, 1)-matrix M , say that M has the circular 1’s property on the columns when the 1’s in
each column appear consecutively, following the ordering of the lines, considered circularly.
The following theorem characterizes Helly circular-arc graphs.

Theorem 3.9 [53] A graph is a Helly circular-arc graph if and only if it admits a clique
matrix possessing the circular 1’s property on the columns.

This theorem leads to the following algorithm able to recognize Helly circular-arc
graphs. Let G be a graph.

Algorithm 3.3 [53] (Recognizing Helly circular-arc graphs): Find all cliques
of G. If G has more than n cliques then stop, as G is not Helly circular-arc. Otherwise,
verify if its cliques can be placed in a circular ordering, so that the corresponding clique
matrix has the circular 1’s property on its columns. Then G is a Helly circular-arc graph
in the affirmative case, otherwise it is not.

Helly circular-arc graphs can contain no more than n cliques, which can be computed
in overall O(n3) time, using the algorithm in [87]. Determining whether the graph admits
a clique matrix with the circular 1’s property on the columns can also be done within
the same bound [53]. Therefore the complexity of the algorithm is O(n3). See [96] for a
discussion about this recognition problem.

Recently, a forbidden subgraph characterization for Helly circular-arc graphs has been
described, which leads to a linear time recognition algorithm for the class. Furthermore,
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Figure 5: A Helly circle graph and two circle models of it.

if a circular-arc model is given as input [67], then the algorithm terminates in O(n) time.
Helly circular-arc graphs have been also studied in relation to clique graphs [17, 47] and
clique-perfectness [18].

Some special classes of Helly circular-arc graphs have also been studied. Say that a
circular-arc model is proper when no arc of it contains another one, and it is a unit model
when all arcs have the same size (always assuming that no two arcs share an endpoint).
Similarly, a proper (unit) circular-arc graph is one admitting a proper (unit) circular-arc
model. A proper (unit) Helly circular-arc model is a model simultaneously proper (unit)
and Helly. Finally, a proper (unit) Helly circular-arc graph is a graph admitting a proper
(unit) Helly circular-arc model. Clearly, if G is a proper (unit) Helly circular-arc graph
then it is both a proper (unit) circular-arc graph and Helly circular-arc graph. However,
the converse is not true. Proper Helly and unit Helly circular-arc graphs have been
characterized by forbidden induced subgraphs, and linear time recognition algorithms
have been described for this class [74, 75].

3.7 Helly circle graphs

A circle graph G is the intersection graph of a family of chords in a circle. The circle
together with the corresponding family of chords form a model for G. A model is Helly
when the family of chords satisfies the Helly property, and a circle graph is Helly when it
admits a Helly model. Figure 5(a) and 5(b) illustrate two distinct models of a same circle
graph, shown in Figure 5(c). The first of such models is not Helly, while the second one
is Helly, meaning that the graph of Figure 5(c) is a Helly circle graph.

Clearly, in a Helly model of a circle graph, any set of pairwise intersecting chords
contains a common point. Of course, this cannot occur if the graph contains an induced
diamond, that is, a K4 minus an edge. (Figure 6). Consequently, a necessary condition for
a circle graph to be Helly is that it cannot contain diamonds. In fact, in [45] it was stated
the conjecture that a circle graph is Helly if and only if it does not contain diamonds.
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Figure 6: A diamond and a paw.

This conjecture has been recently proved in [30]. A characterization of Helly circle graphs
through a system of equalities and inequalities has been described in [46]. Further, in [19]
there is a characterization of this class in terms of the existence of a real solution for a
certain system of polynomial equations and inequalities.

A circle graph is unit Helly if it admits a Helly circle model, where all chords have
the same size. Unit Helly circle graphs form a restricted class of graphs, as shown below.
Denote by C∗

n the graph obtained from the induced cycle with n vertices by adding an
isolated vertex to it.

Theorem 3.10 [19] Let G be a graph. The following assertions are equivalent:

1. G is a unit Helly circle graph;

2. G contains no induced diamond, paw nor C∗
n, for n ≥ 3;

3. G is a chordless cycle, a complete graph or a disjoint union of chordless paths.

3.8 Matrices of a graph

Another example of the use of the Helly property is in the characterization of clique
matrices of a graph, due to Gilmore. It states that a (0, 1)-matrix with no zero lines is
the clique matrix of some graph if and only if the 1’s of any row do not cover the 1’s of
another row, while the 1’s of the columns satisfy the Helly property. Biclique matrices of
a graph have recently been characterized [59], also in terms of the Helly property.

4 The p-Helly Property

Consider the following generalization of the Helly property. A hypergraph H is p-Helly
if every partial p-intersecting hypergraph of H has a nonempty core. In this section we
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present two characterizations of this concept, one of them leading to a polynomial-time
algorithm for recognizing p-Helly hypergraphs when p is fixed.

4.1 k-Conformal hypergraphs

Define the k-section of a hypergraph H to be a hypergraph [H]k whose hyperedges are
sets F ⊆ V (H) such that |F | = k and F ⊆ Ei ∈ E(H), or |F | < k and F ∈ E(H).

For k ≥ 2, a hypergraph H is k-conformal if every maximal set of V (H), which induces
a Kk

j hypergraph of [H]k for k ≤ j, is a hyperedge of H.

For example, the hypergraph H, where V (H) = {1, 2, 3, 4} and E(H) = {{1, 2}, {1, 3},
{1, 4}} is 2-conformal. However, if E(H) = {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}} then H is not
2-conformal. There is a close relationship between k-conformal and k-Helly hypergraphs.

Theorem 4.1 [13] A hypergraph is k-conformal if and only if its dual is k-Helly.

A generalization of the above theorem, Theorem 6.8, is proved in Section 6.

4.2 Recognition

The following theorem characterizes p-Helly hypergraphs:

Theorem 4.2 [14] A hypergraph H is p-Helly if and only if for every (p + 1)-subset V ′

of V (H), the partial hypergraph formed by the hyperedges that contain at least p elements
of V ′ has a nonempty core.

This theorem leads directly to an algorithm for recognizing whether a given hypergraph
H is p-Helly, for p ≥ 2.

Problem 4.1 p-Helly hypergraph, fixed p

INSTANCE: A hypergraph H.
QUESTION: Is H a p-Helly hypergraph?

Algorithm 4.1 [14] (Recognizing p-Helly hypergraphs): For each (p + 1)-subset
V ′ of V (H), construct the partial hypergraph H′ formed by the hyperedges of H containing
at least p vertices of V ′, and verify whether H′ has a nonempty core. Then H is p-Helly
precisely when the answer is positive in all cases.

There are O(np+1) partial hypergraphs to be considered. Each one of these partial
hypergraphs as well as its core can be constructed in O(m(n + p)) time. Then the overall

the electronic journal of combinatorics (2009), #DS17 15



complexity of the above algorithm is O(m(n+ p)np+1), that is, polynomial for fixed p. As
we shall see in Section 6, this problem is NP-hard for the case when p is variable, since it
is a particular case of Problem 6.3.

Observe that if a hypergraph is p-Helly, then it is (p + 1)-Helly. From this fact, one
can ask, for a given hypergraph H, what is the least number h for which H is h-Helly.
This number is known as the Helly number of the hypergraph [66]. The Subsection 6.4 is
dedicated to the Helly number and related topics.

What happens to the complexity of checking the p-Helly property if we relax the
definition, in the sense that some specific partial p-intersecting hypergraphs with an empty
core are allowed?

Let H be a hypergraph and L be a list of partial p-hypergraphs of H. Say that H is
list p-Helly relative to L if every partial p-intersecting hypergraph H′ of H satisfies the
following condition:

- if all the partial p-hypergraphs of H′ are listed in L , then core(H′) 6= ∅.

In particular, if L is the list of all the partial p-hypergraphs of H, then H is list
p-Helly if and only if H is p-Helly.

Problem 4.2 List p-Helly hypergraph, fixed p ≥ 2
INSTANCE: A hypergraph H and a list L of partial p-hypergraphs of H.
QUESTION: Is H list p-Helly relative to L ?

Theorem 4.3 [36] List p-Helly hypergraph, fixed p ≥ 2 is co-NP-complete.

5 The Bounded Helly Property

Recall that a hypergraph H is p-Helly if every p-intersecting partial hypergraph of H
has a nonempty core. As an example, consider V = {a1, . . . , ap+1} and the hypergraph
H formed by the hyperedges V \{ai}, i = 1, . . . , p + 1. Clearly, H is not p-Helly. This
definition can be restricted to subfamilies of limited size.

We say that a hypergraph H is k-bounded p-Helly (k ≤ |E(H)|) if every p-intersecting
partial k−-hypergraph of H has a nonempty core. This definition implies that, in a k-
bounded p-Helly hypergraph, p-intersecting subfamilies of size strictly greater than k do
not necessarily contain a common element. For instance, the hypergraph defined in the
previous paragraph is not (p+1)-bounded p-Helly, but it is p-bounded (p−1)-Helly. This
concept, for the case p = 2, was first considered in [94].

Observe that any hypergraph is k-bounded p-Helly for any p ≥ k; consequently, we
only need to study the case p < k.
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Problem 5.1 k-Bounded p-Helly hypergraph, fixed k and p

INSTANCE: A hypergraph H.
QUESTION: Is H a k-bounded p-Helly hypergraph?

The following algorithm is straightforward from the definition.

Algorithm 5.1 (Recognizing k-bounded p-Helly hypergraphs): For each partial
k−-hypergraph H′ of H, verify whether it is p-intersecting. If some H′ is p-intersecting and
has an empty core then stop, as H is not k-bounded p-Helly. Otherwise H is k-bounded
p-Helly.

There are O(|E(H)|k) partial k−-hypergraphs in H. In order to test if one of them is
p-intersecting and to compute its core we require O(pnkp) and O(nk) time, respectively.
Then the definition leads to an algorithm with time complexity O(pnmkkp).

Problem 5.2 k-Bounded p-Helly hypergraph, fixed p

INSTANCE: A hypergraph H and an integer k.
QUESTION: Is H a k-bounded p-Helly hypergraph?

When p is variable, Theorem 5.2 implies that the above problem is NP-hard. When
p is fixed and k is variable, Theorem 5.2 asserts the co-NP-completeness of Problem 5.2.
Its proof uses Theorem 5.1.

Theorem 5.1 [29] (Satisfiability): Deciding whether a boolean expression in the con-
junctive normal form is satisfiable is NP-complete.

Theorem 5.2 [35] k-Bounded p-Helly hypergraph, fixed p is co-NP-complete.

Proof. It can be checked in polynomial time whether a partial k−-hypergraph is not
p-Helly, for fixed p, using Algorithm 4.1. Thus, the decision problem belongs to co-NP.
For the hardness proof, we employ a transformation from Satisfiability. Let E be
a boolean expression. Denote by X = {x1, . . . , xn} the set of variables of E and by
C = {C1, . . . , Cm} the set of clauses. Build a hypergraph H in the following way: for
each variable of X and each clause of C create one vertex in H. Denote V (H) = VX ∪VC ,
where VX = {v1, . . . , vn} and VC = {c1, . . . , cm}, that is, the vertex vi ∈ VX is associated
with the variable xi ∈ X, and the vertex cj ∈ VC with the clause Cj ∈ C . For each
variable xi ∈ X create the hyperedges Exi

and Exi
in H, adding to them the vertices of

VX\{vi}. Furthermore, for each vertex cj ∈ VC , include cj in the hyperedge Exi
(Exi

) if
and only if the literal xi (xi) does not appear in the clause Cj. Finally, define k = n.

Let H′ be a partial hypergraph of H. If H′ does not contain at least one of the
hyperedges Exi

or Exi
, corresponding to xi ∈ X, then vi belongs to the core of H′. Hence,
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in order to verify whether H is k-bounded p-Helly we need to consider only the partial
hypergraphs H′ with exactly k hyperedges such that, for every variable xi ∈ X, either
Exi

or Exi
is a hyperedge of H′. Then let H′ be a partial k-hypergraph of H satisfying

such a property. Clearly, every vi ∈ VX does not belong to the core of H′ and H′ is
(k − 1)-intersecting. Hence, H′ is p-intersecting, because p < k.

Since H′ contains Exi
or Exi

for every xi ∈ X, H′ defines a truth assignment for
C . In this truth assignment a literal has the value true if and only if the corresponding
hyperedge belongs to H′. Therefore, let us say that H′ satisfies E if and only if this truth
assignment satisfies E .

Suppose that H′ satisfies E . Then any clause of C contains at least one literal asso-
ciated to some hyperedge of H′. This means that for each vertex ci ∈ VC there exists a
hyperedge in H′ which does not contain it. Therefore, the core of H′ is empty, meaning
that H is not k-bounded p-Helly.

Conversely, suppose that H′ does not satisfy E , and let Cj ∈ C be a clause in which
no literal has the value true. Consider an arbitrary variable xi ∈ X. If Exi

is the edge of
H′ representing xi then xi 6∈ Cj, otherwise Cj would be satisfied. This implies cj ∈ Exi

.
Similarly, whenever Exi

is the representing edge of xi, we have cj ∈ Exi
. In either case, cj

belongs to the edge representing xi, for every i. Thus cj belongs to the core of H′, that
is, H is k-bounded p-Helly.

Applying this concept to the cliques of a graph, we have the k-bounded p-clique-Helly
graphs. Consider now the recognition problem for graphs. The next theorem states that
this problem is co-NP-complete, even for fixed k and p.

Problem 5.3 k-Bounded p-clique-Helly graph, fixed k and p

INSTANCE: A graph G.
QUESTION: Is G a k-bounded p-clique-Helly graph?

Theorem 5.3 [35] k-Bounded p-clique-Helly graph, fixed k and p is co-NP-
complete.

By the definition, it is clear that Clique-Helly ⊂ k-bounded clique-Helly ⊂
k′-bounded clique-Helly, for k′ < k.

However, for Kk+1-free graphs, the classes of clique-Helly and k-bounded clique-Helly
coincide.

Lemma 5.1 [94] A Kk+1-free graph is clique-Helly if and only if it is k-bounded clique-
Helly.

Let G be a planar graph. Since any planar graph is K5-free, the number of cliques
of G is O(n4). Using Algorithm 5.1, we conclude that the next problem can be solved in
polynomial time.
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Figure 7: Extended triangles of type 2 and 3

Problem 5.4 Planar 3-bounded clique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G a 3-bounded clique-Helly graph?

A characterization which leads to a good algorithm for recognizing planar 3-bounded
clique-Helly graphs is presented in [3]. Next, we describe it.

For a given triangle T = {x, y, z} of G, we define:

• Vxy = {v ∈ V (G) : v ∈ N [x], v ∈ N [y], v 6∈ N [z]};

• Vxz = {v ∈ V (G) : v ∈ N [x], v ∈ N [z], v 6∈ N [y]};

• Vyz = {v ∈ V (G) : v ∈ N [y], v ∈ N [z], v 6∈ N [x]};

• Vxyz = {v ∈ V (G) : v ∈ N [x], v ∈ N [y], v ∈ N [z]}.

Let G be a graph and T ′ the extended triangle of G relative to the triangle T =
{x, y, z}. Say that:

• T ′ is of type 1 if at least one of the sets Vxy, Vxz or Vyz is empty;

• T ′ is of type 2 if Vxy = {z1}, Vxz = {y1}, Vyz = {x1}, Vxyz = {w}, and w is adjacent
to x1, y1 and z1;

• T ′ is of type 3 if Vxy = {z1}, Vxz = {y1}, Vyz = {x1}, Vxyz = {w, w′}, and w is
adjacent to x1, y1 and z1.

Notice that if T ′ is an extended triangle of type 2 (resp. type 3) of a planar graph
then T ′ is isomorphic to the leftmost (resp. rightmost) graph in Figure 7.
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Theorem 5.4 [3] Let G be a planar graph.

1. G is a clique-Helly graph if and only if every extended triangle of G is of type 1 or
2.

2. G is a 3-bounded clique-Helly graph if and only if every extended triangle of G is of
type 1, 2 or 3.

By this characterization, the complexities to recognize clique-Helly planar graphs and
3-bounded clique-Helly planar graphs are asymptotically the same. Therefore we discuss
only the algorithm for 3-bounded 2-clique-Helly planar graphs.

Algorithm 5.2 (Recognizing 3-bounded clique-Helly graphs): Construct the
extended triangle for every triangle of G. If some extended triangle is not of type 1, 2 or
3 then stop as the graph is not 3-bounded clique-Helly graph, otherwise it is.

Since the triangles of a planar graph can be listed in O(n) time [86], the above algo-
rithm has complexity O(n2).

Finally, Figure 8 illustrates containment relations among the Helly classes discussed
in this section.

Figure 8: Relations among k-bounded p-Helly hypergraph classes
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Next, we describe examples for the intersection of hypergraph classes, for Figure 8.
The examples are for k = 5 and p = 3.

Define the following hyperedges: E1 = {a, b, c}, E2 = {a, b, d}, E3 = {a, c, d}, E4 =
{b, c, d}, E5 = {a, b, c, d}, E6 = {a, b, c, e}, E7 = {a, b, d, e}, E8 = {a, c, d, e}, E9 =
{b, c, d, e}, E10 = {a, b}.

Examples of hypergraphs in the intersections of Figure 8 can be defined by the hyper-
edges below:

E(H1) = {E1, E2, E3, E4};

E(H2) = {E5, E6, E7, E8, E9, E10};

E(H3) = {E8, E9, E10};

E(H4) = {E5, E6, E7, E8, E9};

E(H6) = {E1}.

The hypergraph H5 does not exist by the following theorem.

Theorem 5.5 Let H be a hypergraph and p and k positive integers such that k > p. If
H is not k-bounded (p − 1)-Helly, then H is not (k − 1)-bounded (p − 1)-Helly and not
k-bounded p-Helly.

Proof. Suppose that H is a hypergraph which is not k-bounded (p − 1)-Helly but is
(k − 1)-bounded (p − 1)-Helly and k-bounded p-Helly. Let H′ be a (p − 1)-intersecting
partial k−-hypergraph of H with empty core. Since H is (k − 1)-bounded (p − 1)-Helly,
|E(H′)| = k and H′ is (k − 1)-intersecting. Then H′ is also p-intersecting. This implies
that H′ has a nonempty core, because H is k-bounded p-Helly, a contradiction.

For the case k = p, a general example of a hypergraph which is not k-bounded (p−1)-
Helly but is (k−1)-bounded (p−1)-Helly and k-bounded p-Helly is a k-hypergraph which
is not k-bounded (k − 1)-Helly.

6 Cardinality of the Intersections in Hypergraphs

In this section we extend the idea of the Helly property by considering the cardinality of
the intersections. Such concept was introduced in [105].

6.1 (p, q)-Intersecting

We begin with a generalization of the concept of p-intersecting hypergraph. Let p ≥ 1
and q ≥ 0. A hypergraph H is (p, q)-intersecting when every partial p−-hypergraph of H
has a q+-core.
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Clearly, the following implications hold for any hypergraph H.

• If 1 ≤ q ≤ |core(H)|, then H is (p, q)-intersecting.

• For p ≥ 2, if H is (p, q)-intersecting, then H is (p − 1, q)-intersecting.

• If H is (p, q)-intersecting, then H is (p, q − 1)-intersecting.

• H is (1, q)-intersecting if and only if every hyperedge of H contains at least q vertices.

• If H is (p, q)-intersecting, then every partial hypergraph of H is (p, q)-intersecting.

If p is fixed then it is possible to test whether H is (p, q)-intersecting in polynomial
time by simply computing the core of every partial p-hypergraph of H. For the case that
p is not fixed, deciding whether H is (p, q)-intersecting is co-NP-complete.

Problem 6.1 (p, q)-Intersecting hypergraph, fixed q

INSTANCE: A hypergraph H and an integer p ≥ 1.
QUESTION: Is H a (p, q)-intersecting hypergraph?

Theorem 6.1 [36] (p, q)-Intersecting hypergraph, fixed q is co-NP-complete.

6.2 (p, q, s)-Helly hypergraphs

The following definition is a generalization of the p-Helly property, and has been intro-
duced in [105].

Let p ≥ 1, q ≥ 0 and s ≥ 0. A hypergraph H is (p, q, s)-Helly when every partial
(p, q)-intersecting hypergraph of H has an s+-core.

The following implications are true for any hypergraph H.

• If H is (p, q, s)-Helly, then H is (p + 1, q, s)-Helly.

• If H is (p, q, s)-Helly, then H is (p, q + 1, s)-Helly.

• If H is (p, q, s)-Helly, then H is (p, q, s − 1)-Helly.

• H is (1, q, s)-Helly if and only if the partial hypergraph formed by the q+-hyperedges
of H has an s+-core.

Theorem 6.2 Let H be a hypergraph and q > 1 an integer. If H is (p, q, q)-Helly or
(p, q, q − 1)-Helly, then H is (p + 1, q − 1, q − 1)-Helly.
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Proof. Let H be a hypergraph which is not (p + 1, q − 1, q − 1)-Helly. Let H′ =
{E1, . . . , Ek} be a minimal (p + 1, q − 1)-intersecting partial hypergraph of H with no
(q − 1)-core. It is clear that k ≥ p + 2. Define Ci = core(H′ \ {Ei}), 1 ≤ i ≤ k. If
|Ci ∩ Cj| ≥ q − 1, for some i 6= j, then H′ would have a (q − 1)-core. This implies that
|Ci ∪Cj| ≥ q, for every i 6= j. Since the core of every partial p-hypergraph of H′ contains
at least two distinct Ci’s, H

′ is (p, q)-intersecting with no (q − 1)-core. This implies that
H is not (p, q, q)-Helly nor (p, q, q − 1)-Helly.

Lemma 6.1 Let H be a hypergraph with m edges, m ≥ 2. Any hypergraph with 0 < m′ <

m edges, each containing at least m− 1 edges of H, has a core containing at least m−m′

edges of H.

We can now describe the characterization of (p, q, s)-Helly hypergraphs. First we deal
the natural case q ≥ s. The idea is to check whether the (p, q)-intersecting hypergraphs
still keep s ≤ q elements in their cores.

Theorem 6.3 [38] Let p, s ≥ 1, q ≥ s be integers. A hypergraph H is (p, q, s)-Helly if
and only if:

(i) for every family S formed by p + q − s + 1 distinct s-subsets of V (H), the partial
hypergraph H′ of H formed by all the edges of H containing each at least p + q − s

members of S satisfies the following statement:
H′ is (p, q)-intersecting ⇒ |core(H′)| ≥ s

(ii) every (p, q)-intersecting partial hypergraph of H with p + q − s or fewer edges has
an s-core.

Proof. The theorem says that, in order to check the (p, q, s)-Helly property in a hyper-
graph H, it is not necessary to check whether every (p, q)-intersecting partial hypergraph
of H has an s-core, but it is sufficient to check only a few particular partial hypergraphs
of H. Hence we only need to prove the sufficiency.

Assume that H is not (p, q, s)-Helly. Then there exists a (p, q)-intersecting partial
hypergraph H′ of H such that |core(H′)| < s. If |H′| ≤ p + q − s then H′ is a (p, q)-
intersecting partial (p + q − s)−-hypergraph of H that violates Condition (ii).

Otherwise, write H′ = {E1, . . . , Em′}. Thus, m′ ≥ p + q − s + 1. Assume that H′ is
minimal, that is, H′ \ {E} has an s+-core, for any E ∈ H′. (If H′ is not minimal, one
can successively remove edges from H′ until obtaining either a minimal (p + q − s + 1)+-
hypergraph or a (p+q−s)−-hypergraph violating Condition (ii)). For each i, 1 ≤ i ≤ m′,
let Si ⊆ core(H′ \ {Ei}) be a s-subset of vertices such that Si 6⊆ Ei and Si ⊆ Ej for every
j 6= i. This means that there exists vi ∈ Si such that vi 6∈ Ei but vi ∈ Ej for every j 6= i.
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Let S = {S1, . . . , Sp+q−s+1}. Note that S is a family formed by p + q − s + 1 distinct
s-subsets of V (H). Define H′′ as the hypergraph formed by those edges of H containing
p + q − s edges of S each. Since H′ is a partial hypergraph of H′′, H′′ does not have an
s-core. Let us show that H′′ is (p, q)-intersecting.

Consider any partial p-hypergraph H′′′ of H′′. By Lemma 6.1, core(H′′′) contains at
least q − s + 1 edges of S, say S1, . . . , Sq−s+1. Note that S1 ∪ {vi : 2 ≤ i ≤ q − s + 1}
contains exactly s + q − s = q vertices. This means that |core(H′′′)| ≥ q. Therefore, H′′

is (p, q)-intersecting and does not have an s+-core. This violates Condition (i).

Nevertheless, for completeness, we deal with the case s ≥ q.

Theorem 6.4 Let p, q ≥ 1, s ≥ q be integers. A hypergraph H is (p, q, s)-Helly if and
only if:

(i) for every family S formed by p+1 distinct q-subsets of V (H), the partial hypergraph
H′ of H formed by all the hyperedges of H containing at least p members of S has
an s-core;

(ii) every (p, q)-intersecting partial hypergraph of H with p or fewer edges has an s-core.

Proof. For the necessity we only need to prove that every partial hypergraph H′ of the
Condition (i) is (p, q)-intersecting. But this is inferred directly from Lemma 6.1.

For the sufficiency, the proof is essentially the same of Theorem 6.3.

Problem 6.2 (p, q, s)-Helly hypergraph, fixed p and q

INSTANCE: A hypergraph H and an integer s ≥ 1.
QUESTION: Is H a (p, q, s)-Helly hypergraph?

The above theorems leads to the following algorithm for Problem 6.2. For the case
q ≥ s consider a = q − s and b = s, while for the case s ≤ q consider a = 0 and b = q.

Algorithm 6.1 (Recognizing (p, q, s)-Helly hypergraphs):

Part (i): for each (p + a + 1)-family S of b-subsets of V (H), construct the partial
hypergraph H′ choosing the hyperedges of H containing at least p+a members of S. Then
verify whether H′ is (p, q)-intersecting. If so, verify whether H′ has an s+-core.

Part (ii): for each partial (p+a)−-hypergraph of H, check whether it is (p, q)-intersecting.
If so, verify whether it has an s+-core.
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The complexity of Part (i) of the above algorithm is O(pmpnb(p+a+1)+1), because
there are O(nb(p+a+1)) (p + a + 1)-families of b-subsets of V (H), and for each one we
spend O(m(n + (p + a)b)) steps to construct each H′, O(pnmp) to check whether H′

is (p, q)-intersecting and O(nm) to compute its core. For Part (ii), the complexity is
O(pnmp+a(p + a)p+1). The overall time complexity is the sum of both. It is polynomial
for fixed p, q and variable s.

Problem 6.3 (p, q, s)-Helly hypergraph, fixed q and s

INSTANCE: A hypergraph H and an integer p ≥ 2.
QUESTION: Is H a (p, q, s)-Helly hypergraph?

Theorem 6.5 [36] (p, q, s)-Helly hypergraph, fixed q and s is NP-hard.

We deal now with the case in which q is not fixed.

Problem 6.4 (p, q, s)-Helly hypergraph, fixed p and s

INSTANCE: A hypergraph H and an integer q ≥ 1.
QUESTION: Is H a (p, q, s)-Helly hypergraph?

Theorem 6.6 [36] (p, q, s)-Helly hypergraph, q variable is co-NP-complete.

Containment relations among the (p, q, s)-Helly hypergraph classes, considering vari-
ations of p, q and s, are shown in Figure 9.

Figure 9: Relations among (p, q, s)-Helly hypergraph classes
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Next, we describe examples belonging to the intersections of classes in Figure 9. The
examples are for p = 2, q = 2 and s = 2.

Define the following hyperedges: E1 = {a, b, c, e}, E2 = {a, b, d, e}, E3 = {a, c, d, e},
E4 = {b, c, d, e}, E5 = {a, b, c}, E6 = {a, b, c, d, e, f}, E7 = {a, b, c, g, h, i}, E8 = {d, e, f, g, h, i},
E9 = {a, d, e, f, g, h, i}, E10 = {a, b, d}, E11 = {a, c, d}.

Examples of hypergraphs belonging to the intersections of classes in Figure 9 can be
defined by the hyperedges below:

E(H1) = {E1, E2, E3, E4, E5};

E(H2) = {E6, E7, E8};

E(H3) is the subhypergraph of H6 (see its definition below) induced by V (H6) \ {e};

H4 does not exist by Theorem 6.2;

E(H5) = {E6, E7, E9};

E(H6) = {E1, E2, E3, E4};

H7 does not exist by Theorem 6.2;

E(H8) = {E5, E10, E11};

E(H9) = {E5}.

6.3 The Case q = s

The case q = s is natural and interesting. For simplicity, we write (p, q)-Helly hypergraphs
instead of (p, q, q)-Helly hypergraphs. Theorem 6.3 can be rewritten for the case q = s as
follows:

Corollary 6.1 [38] A hypergraph H is (p, q)-Helly if and only if for every family S formed
by p+1 distinct q-subsets of V (H), the partial hypergraph H′ formed by all the hyperedges
of H containing at least p members of S has a q+-core.

Proof. Condition (ii) of Theorem 6.3 is trivially true for q = s.

The case p = 2, q = s has received attention. In special, bounds for (2, q)-Helly
hypergraphs were described in [104]. In the same work, the problem of finding a structural
characterization for r-uniform (2, q)-Helly hypergraphs for r > q + 1 was proposed.

The complexity of recognizing (2, q)-Helly hypergraphs, when q is part of the input,
remains as an open question. However, if we consider a fixed q, we have a polynomial
time recognition algorithm as a consequence of Theorem 6.3.
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Problem 6.5 (2, q)-Helly hypergraph, fixed q

INSTANCE: A hypergraph H.
QUESTION: Is H a (2, q)-Helly hypergraph?

The complexity of recognizing (p, q)-Helly hypergraphs, by using Corollary 6.1 and
Algorithm 6.1, is O(nq(p+1)m(n + pq)). Hence, for p = 2, we have an O(mn3q+1) time
complexity. If q = 1, we obtain the same complexity of Algorithm 4.1.

Another interesting case occurs for p = 2 and small values of r − q:

Problem 6.6 (2, q)-Helly hypergraph, fixed r − q

INSTANCE: A hypergraph H with rank r and an integer q, such that r − q is small.
QUESTION: Is H a (2, q)-Helly hypergraph?

A polynomial-time algorithm for the above problem is a consequence of the following
proposition:

Proposition 6.1 [104] If H is a minimal non-(2, q)-Helly hypergraph of rank r with 1 ≤
q < r, then |E(H)| ≤ r − q + 2.

Algorithm 6.2 ((2, q)-Helly hypergraphs): For every partial (r−q+2)−-hypergraph
of a hypergraph H, compute its core and verify if it contains at least q elements. Then H
is (2, q)-Helly precisely when the answer is affirmative in all cases.

There are
∑r−q+2

i=3

(

m

i

)

partial hypergraphs to be considered; this amount is O(mr−q+2)
by [82, Theorem 2.6.1]. In order to compute the core of each one we need O(nm) time.
The overall complexity is O(nmr−q+3), which is polynomial for small values of r − q.

We now present another way to verify if a hypergraph is (2, q)-Helly. The q-line graph
of a hypergraph H, denoted by Lq(H), has a vertex for every hyperedge of H, and two
vertices are adjacent if the corresponding hyperedges share at least q vertices.

Theorem 6.7 The number of cliques of Lq(H) for a (2, q)-Helly hypergraph H of rank r

is not greater than m
(

r

q

)

.

Proof. Let H be a (2, q)-Helly hypergraph. First note that if C ′, C ′′ are cliques of Lq(H)
and H′,H′′ are the partial hypergraphs of H formed by the hyperedges associated to the
vertices of C ′ and C ′′, respectively, then the cores of H′ and H′′ are incomparable and
each one has at least q elements.

Let v be a vertex of Lq(H) and Ev the hyperedge of H corresponding to v. Since Ev

contains all the cores of the partial hypergraphs associated with the cliques to which v

belongs, vertex v appears in at most (r
q) cliques of Lq(H). Since the number of vertices of

Lq(H) is m, the number of cliques of Lq(H) is not greater than m
(

r

q

)

.
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The above theorem leads to the following algorithm. Let H be a hypergraph and q ≥ 0
an integer.

Algorithm 6.3 ((2, q)-Helly hypergraphs):

Construct the graph Lq(H) and generate its cliques, C1, C2, . . . , Ci, . . . For each Ci,
proceed as follows.

• If i >
mr!

q!(r − q)!
then stop: H is not (2, q)-Helly.

• Otherwise, construct the partial hypergraph Hi of H, formed by the hyperedges of H
corresponding to the vertices of Ci. If core(Hi) < q, then stop: H is not (2, q)-Helly.

• Otherwise, if all the cliques of Lq(H) have been generated, then H is (2, q)-Helly.

To construct Lq(H) we spend O(m2n) steps. We generate at most m
(

r

q

)

cliques, each

in O(nm) time using the algorithm in [100]. In order to compute the core of each partial
hypergraph, O(nm) steps are required. The total complexity of the above algorithm is
thus O(m2n + n2m3

(

r

q

)

) = O(n2m3
(

r

q

)

).

The time complexity of this algorithm for Problem 2, when q is fixed, is O(n2m3rq) =
O(nq+2m3), while for Question 3, when r− q is small, O(n2m3rr−q) = O(nr−q+2m3) steps
are required.

6.4 Helly numbers

A hypergraph H has Helly number h if h is the least number for which H is h-Helly
[66]. For the general (p, q, s)-Helly property it is possible to define variations of the Helly
number in the following ways:

– Let q, s ≥ 0 be fixed integers. The (p∗, q, s)-Helly number of H is the least integer
p, if it exists, such that H is (p, q, s)-Helly.

– Let p ≥ 1 and s ≥ 0 be fixed integers. The (p, q∗, s)-Helly number of H is the
least integer q such that H is (p, q, s)-Helly. This number is well defined since H is
(p, n + 1, s)-Helly for any p, s.

– Let p ≥ 1 and 0 ≤ q ≤ r(H) be fixed integers. The (p, q, s∗)-Helly number of H is
the largest s for which H is (p, q, s)-Helly.

By Theorem 6.5, we conclude that determining the (p∗, q, s)-Helly number is NP-hard.
Similarly, Theorem 6.6 implies that finding the (p, q∗, s)-Helly number is also NP-hard.
However, using Theorem 6.1, we can determine the (p, q, s∗)-Helly number in polynomial
time.
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6.5 (p, q)-Conformal hypergraphs

We now generalize Theorem 4.1. In order to do so, we use the following generalizations
of the concepts of k-section and k-conformal hypergraphs.

Define the (p, q)-section of H to be a hypergraph [H]p,q whose hyperedges are sets
F ⊆ V (H) such that either |F | = p and F is contained in at least q hyperedges of H, or
|F | < p and F is a maximal set contained in at least q hyperedges of H.

A hypergraph H is (p, q)-conformal if every maximal set of V (H), which induces a K
p
j

hypergraph of [H]p,q, for p ≤ j, is contained in at least q hyperedges of H.

Theorem 6.8 A hypergraph H is (p, q)-Helly if and only if its dual is (p, q)-conformal.

Proof. Let H be a hypergraph and H∗ its dual hypergraph. Suppose first that H∗ is
not (p, q)-conformal. Hence, in [H∗]p,q, there is a maximal set that induces a p-complete
hypergraph I, such that V (I) is not contained in q hyperedges of H∗. However, the hyper-
edges of H, associated with the vertices of I, form a (p, q)-intersecting partial hypergraph
with no q+-core.

Conversely, suppose that H is not (p, q)-Helly. Consider a maximal (p, q)-intersecting
partial hypergraph H′ of H with no q+-core. The hyperedges of H′ correspond to a subset
of vertices C of H∗ with the property that every p of them belong to at least q hyperedges
of H∗ simultaneously. This means that C is a maximal set inducing a p-complete partial
hypergraph I of [H∗]p,q. Furthermore, if V (I) = C is contained in at least q hyperedges
of H∗, this implies that H′ contains a q+-core, which contradicts the hypothesis.

7 Cardinality of the Intersections on Cliques of Graphs

In this section we apply the (p, q, s)-Helly property to the clique hypergraph of a graph.
Thus, a graph is (p, q, s)-clique-Helly if its clique hypergraph is (p, q, s)-Helly. According
to this definition, (2, 1)-clique-Helly graphs are the clique-Helly graphs. First we focus
on the recognition problem of the case q = s, corresponding to the so-called (p, q)-clique-
Helly graphs, and afterwards we shall deal with the problem of deciding whether the
clique graph of a graph is clique-Helly.

7.1 (p, q)-Clique-Helly graphs

We begin with an example. Define, for two integers p and q, the graph Gp,q as follows:
V (Gp,q) is formed by a (q − 1)-complete set Q, a p-complete set Z = {z1, . . . , zp}, and a
p-independent set W = {w1, . . . , wp}. Further, there exist the edges ziwj, for i 6= j, and
qx, for q ∈ Q and x ∈ Z ∪ W .
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Figure 10: Graph Gp,q

The general graph Gp,q appears in Figure 10, where a thick line joining two sets means
that every vertex of a set is adjacent to all vertices of the other. Furthermore, for every
vertex of Z, there is a dotted line joining it to the only vertex of W which is not adjacent
to it.

The graph Gp,q contains exactly p + 1 cliques of size p + q − 1, namely: Q ∪ Z and
Q ∪ (Z\{zi}) ∪ {wi}, for 1 ≤ i ≤ p.

Observe that Gp,q is (p, q)-clique-Helly, but it is not (p− 1, q)-clique-Helly. Therefore,
Gp,q is (t, q)-clique-Helly for t ≥ p, and is not (t, q)-clique-Helly for t < p.

Furthermore, Gp+1,q is not (p, q)-clique-Helly, but it is (p, t)-clique-Helly for any t 6= q.
Consequently, for distinct q and t, the classes of graphs (p, q)-clique-Helly and (p, t)-clique-
Helly are incomparable.

The following theorem describes a class of (p, q)-clique-Helly graphs.

Theorem 7.1 [37] Let p, r > 1, q > 0 such that p + q ≥ r. If G is a Kr-free graph, then
G is (p, q)-clique-Helly.

Our aim is now to characterize (p, q)-clique-Helly graphs. We divide the characteriza-
tion in two cases, the first dealing with p = 1.
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Figure 11: Relations among (p, q)-clique-Helly graph classes. Where G1 = Gp,q ∪ Gp,q−1

and G2 = G1 ∪ Gp+1,q.

Theorem 7.2 [37] Let G be a graph, and let W be the union of the q+-cliques of G. Then
G is a (1, q)-clique-Helly graph if and only if G[W ] contains q universal vertices.

The second case corresponds to p ≥ 2 and we employ some additional definitions.

Let G be a graph and C a p-complete set of G. The p-expansion relative to C is the
subgraph of G induced by the vertices w such that w is adjacent to at least p− 1 vertices
of C.

We remark that the p-expansion for p = 3 has been used for characterizing clique-Helly
graphs [40, 97]. It is clear that constructing a p-expansion relative to a given p-complete
set can be done in polynomial time.

Let F be a partial hypergraph of C(G). The clique subgraph induced by F in G,
denoted by Gc[F ], is the subgraph of G formed exactly by the vertices and edges belonging
to the cliques of F .

Lemma 7.1 Let G be a graph, C a p-complete set of G, H the p-expansion of G relative
to C, and C the partial hypergraph C(G) formed by the cliques that contain at least p− 1
vertices of C. Then Gc[C ] is a spanning subgraph of H.
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Figure 13: A graph G and Φ3(G)

Let G be a graph. The graph Φq(G) is defined as follows: the vertices of Φq(G)
correspond to the q-complete sets of G, two vertices being adjacent in Φq(G) if the cor-
responding q-complete sets in G are contained in a common clique. As an example see
Figure 13.

We remark that Φq is precisely the operator Φq,2q described in [91], p.136, and the
graph Φ2(G) is the edge clique graph of G, introduced in [1].

An interesting property of Φq is that it preserves the q+-cliques of G, that is, every
q+-clique of G is a clique of Φq(G), and vice versa. Then, given a q+-clique C of G, denote
by ϕq(C) the clique of Φq(G) associated with C.

Let G be a graph and C(G) its clique hypergraph. Let F be a partial hypergraph of
C(G) containing some q+-cliques of G. Define ϕq(F ) to be the set of cliques {ϕq(C) :
C ∈ E(F )}. If C is a partial hypergraph of C(Φq(G)), define ϕ−1

q (C ) as the set of cliques
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{ϕ−1
q (C) : C ∈ E(C )}. As a consequence we have:

Corollary 7.1 Let G be a graph, F a partial hypergraph of C(G) containing some q+-
cliques of G, and C such that E(C ) = ϕq(F ). Then |core(F )| ≥ q if and only if
|core(C )| ≥ 1 .

Lemma 7.2 Let C be a (p + 1)-complete set of a graph G, and let C be a partial p−-
hypergraph of C(G) such that every clique of C contains at least p vertices of C. Then
core(C ) 6= ∅.

The next result is a characterization of (2, 2)-clique-Helly graphs.

Theorem 7.3 [28] A graph G is (2, 2)-clique-Helly if and only if every extended triangle
of Φ2(G) contains a universal vertex.

Problem 7.1 (2, 2)-Clique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G a (2, 2)-clique-Helly graph?

Algorithm 7.1 (Recognizing (2, 2)-clique-Helly graphs): In order to construct
Φ2(G), create one vertex for each edge of G. Then join two vertices by an edge if the
corresponding edges are contained in a same clique of G.

Next, for every triangle T of Φ2(G), we construct the extended triangle of T and verify
if it contains a universal vertex. If we find one extended triangle which does not have a
universal vertex, then we stop as G is not (2, 2)-clique-Helly; otherwise it is (2, 2)-clique-
Helly.

In order to calculate the complexity of this algorithm, first note that the number of
vertices of Φ2(G) is m. The time complexity to construct Φ2(G) is O(m2), and the time
complexity to verify if there exists an extended triangle without a universal vertex is
O(m5). Therefore one can verify if a graph is (2, 2)-clique-Helly in time O(m5).

Now we present a generalization of this result.

Theorem 7.4 [37] Let p > 1 be an integer. Then a graph G is (p, q)-clique-Helly if and
only if every (p + 1)-expansion of Φq(G) contains a universal vertex.

Proof. Suppose that G is a (p, q)-clique-Helly graph and there exists a (p+1)-expansion
T , relative to a (p+1)-complete set C of Φq(G), such that T contains no universal vertex.

Denote H = Φq(G). Let C be the partial hypergraph C(H) that contains at least p

vertices of C. Consider a partial p−-hypergraph C ′ of C . By Lemma 7.2, core(C ′) 6=
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∅. This implies that C is (p, 1)-intersecting. By Corollary 7.1, F = ϕ−1
q (C ) is (p, q)-

intersecting. Since G is (p, q)-clique-Helly, we conclude that F has a q+-core. By using
Corollary 7.1 again, C has an 1+-core, which means that Hc[C ] contains a universal vertex.
Moreover, by Lemma 7.1, Hc[C ] is a spanning subgraph of T . However, T contains no
universal vertex. This is a contradiction. Therefore, every (p+1)-expansion of H contains
a universal vertex.

Conversely, assume by contradiction that G is not (p, q)-clique-Helly. Let F be a
minimal (p, q)-intersecting partial hypergraph of C(G) which does not have a q+-core.
Denote E(F ) = {C1, . . . , Ck}, Ci ∈ C(G). Clearly, k > p.

The minimality of F implies that there exists a q-subset Qi ⊆ core(F − Ci), for
i = 1, . . . , k. It is clear that Qi 6⊆ Ci. Moreover, every two distinct Qi, Qj are contained
in a common clique, since k ≥ 3. Hence the sets Q1, Q2, . . . , Qp+1 correspond to a (p+1)-
complete set C in Φq(G).

Let C ′ be the partial hypergraph of C(H) formed by the cliques that contain at least
p vertices of C. Let C = ϕq(F ). Since every Ci ∈ E(F ) contains at least p sets from
Q1, Q2, . . . , Qp+1, it is clear that the clique ϕq(Ci) ∈ E(C ) contains at least p vertices of
C. Therefore, ϕq(Ci) ∈ E(C ′), for i = 1, . . . , k.

Let T be the (p + 1)-expansion of H relative to C. By Lemma 7.1, Hc[C
′] is a

spanning subgraph of T . Therefore, Q ⊆ V (T ), for every Q ∈ E(C ′). In particular,
V (ϕq(Ci)) ⊆ V (T ), for i = 1, . . . , k. By hypothesis, T contains a universal vertex x.
Then x is adjacent to all the vertices of ϕq(Ci)\{x}, for i = 1, . . . , k. This implies that
ϕq(Ci) contains x, otherwise ϕq(Ci) would not be maximal. Thus, core(C ) 6= ∅. By
Corollary 7.1, F has a q+-core, a contradiction. Hence, G is a (p, q)-clique-Helly graph.

From the above theorem one can recognize (p, q)-clique-Helly graphs in polynomial
time if p and q are fixed.

Problem 7.2 (p, q)-Clique-Helly graph, fixed p and q

INSTANCE: A graph G.
QUESTION: Is G a (p, q)-clique-Helly graph?

We present now the algorithm, for the case p ≥ 2. Let G be a graph.

Algorithm 7.2 (Recognizing (p, q)-clique-Helly graphs): Construct the graph
Φq(G) having as vertices the p-complete sets of G, and join two vertices by an edge when
the corresponding p-complete sets are both contained in a same clique.

Next, for every (p+1)-complete set C of Φq(G), we construct the (p+1)-expansion rel-
ative to C and verify if it contains a universal vertex. If we find a (p+1)-expansion which
does not have a universal vertex, then we stop as G is not (p, q)-clique-Helly; otherwise it
is (p, q)-clique-Helly.
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In order to calculate the complexity of this algorithm, first note that the number
of vertices of Φq(G) is t = O(nq). The time complexity to construct Φq(G) is O(n2qq2),
whereas to verify if there exists a (p+1)-expansion with no universal vertex is O(tp+1m′) =
O(nq(p+1)m′), where m′ = O(t2) is the number of edges of Φq(G). Therefore one can verify
if a graph is (p, q)-clique-Helly in O(nq(p+3)) time.

If p or q is variable, this procedure does not lead to a polynomial time algorithm.
Indeed, the problem is NP-hard in both cases.

Problem 7.3 (p, q)-clique-Helly graph, fixed p

INSTANCE: A graph G and a positive integer q.
QUESTION: Is G a (p, q)-clique-Helly graph?

Theorem 7.5 [37] (p, q)-Clique-Helly graph, fixed p is NP-hard.

Problem 7.4 (p, q)-Clique-Helly graph, fixed q

INSTANCE: A graph G and a positive integer p.
QUESTION: Is G a (p, q)-clique-Helly graph?

Theorem 7.6 [37] (p, q)-Clique-Helly graph, fixed q is NP-hard.

7.2 Helly defect

For any clique-Helly graph, its clique graph is also clique-Helly [49]. However, if a graph
is not clique-Helly it is still possible for its clique graph to be clique-Helly. This leads
to the definition of Helly defect [9], a parameter that informs how many times the clique
operator must be applied for a graph to become clique-Helly. The Helly defect of a graph
G is the smallest i such that Ki(G) is clique-Helly. There are graphs with any desired
finite Helly defect [21]. However if Ki(G) is not clique-Helly, for any finite i, we say that
its Helly defect is infinite. Trivially, the Helly defect of a clique-Helly graph is 0, while
that of a divergent graph is infinity.

Problem 7.5 Helly defect one
INSTANCE: A graph G.
QUESTION: Is the Helly defect of G at most one?

The Helly defect of a graph G is less than or equal to 1 when G or K(G) is clique-Helly.
In fact, this problem corresponds to asking whether G or K(G) is (2, q)-clique-Helly, for
q = 1.

Problem 7.6 Clique graph is (2, q)-clique-Helly
INSTANCE: A graph G.
QUESTION: Is K(G) a (2, q)-clique-Helly graph?

the electronic journal of combinatorics (2009), #DS17 35



Theorem 7.7 [34] Clique graph is (2, q)-clique-Helly is NP-hard.

Corollary 7.2 [34] Helly defect one is NP-hard.

8 Hereditary Helly Property

A hypergraph is strong Helly if, for every partial hypergraph H′ of H, there exist two
hyperedges in H′ whose core is equal to the core of H′. A hypergraph H is hereditary
Helly if all subhypergraphs of H are Helly. In this section we present algorithms and
characterizations on these variants of the Helly property.

In fact, we show that these two concepts are equivalent. First we characterize heredi-
tary p-Helly hypergraphs and then we consider the hereditary Helly property applied to
special families of vertices of a graph, such as cliques, disks, bicliques, open and closed
neighborhoods.

8.1 Hypergraphs

Since the number of partial hypergraphs and subhypergraphs of a given hypergraph H
can be exponential in the size of H, the definitions do not lead directly to algorithms
capable of verifying, in polynomial time, if a hypergraph is strong Helly or hereditary
Helly.

Problem 8.1 Hereditary Helly hypergraph
INSTANCE: A hypergraph H.
QUESTION: Is H a hereditary Helly hypergraph?

In [106] it has been shown that a hypergraph H is strong Helly if and only if for
every three hyperedges of H there exist two of them whose core equals the core of the
three hyperedges. This characterization leads to an algorithm for recognizing strong Helly
hypergraphs with time complexity O(rm3), where r and m are, respectively, the rank and
the number of hyperedges of the hypergraph.

In [26] it was presented an algorithm for recognizing hereditary Helly hypergraphs
that needs O(m∆r4) time and O(mr2) space, where ∆ is the maximum degree of the
hypergraph.

Generalizing these concepts, it follows that a hypergraph H is strong p-Helly if for
every partial (p + 1)+-hypergraph H′ of H there exist p hyperedges in H′ whose core
equals the core of H′. Also, a hypergraph H is hereditary p-Helly if all subhypergraphs of
H are p-Helly.

The following theorem describes classes of strong k-Helly hypergraphs.
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Theorem 8.1 [54]

(i) A hypergraph in which every hyperedge is a set of edges of some path of a tree is strong
3-Helly.

(ii) A hypergraph in which every hyperedge is a set of edges of some subtree of a tree with
k leaves is strong k-Helly.

The following theorem characterizes strong p-Helly and hereditary p-Helly hyper-
graphs. It implies that these concepts are equivalent.

Theorem 8.2 [39] The following statements are equivalent for a hypergraph H:

(i) H is strong p-Helly;

(ii) H is hereditary p-Helly;

(iii) H is (p, q)-Helly, for every q;

(iv) every partial (p + 1)-hypergraph of H is (p, q)-Helly for every q;

(v) there is no subhypergraph of H having a partial hypergraph isomorphic to K
p
p+1.

Proof. (i) ⇒ (ii) Suppose that H contains a subhypergraph H′ that is not p-Helly. Let
H′′ be a partial hypergraph of H′ which is p-intersecting with an empty core. Define a
partial hypergraph H1 of H choosing for every hyperedge E ′′ ∈ E(H′′) the hyperedge of
H that originated it. Since any p hyperedges of H′′ contain a vertex that is not in the
core of H′′, the same is true for any p hyperedges and the core of H1. Therefore H is not
strong p-Helly.

(ii) ⇒ (iii) Suppose that H is not (p, q)-Helly, for some q. Let H′ be a (p, q)-
intersecting partial hypergraph of H without a q+-core. Denote the core of H′ by C ′.
Every hyperedge of H′ properly contains C ′ because it belongs to a (p, q)-intersecting
partial hypergraph, and C ′ is a (q − 1)−-set. Hence, in the subhypergraph H′

1 of H in-
duced by V (H) \ C ′, there is one hyperedge for every hyperedge of H′. Consider the
partial hypergraph H′′

1 of H′
1 formed by these hyperedges. Note that H′′

1 is p-intersecting
and has an empty core. Therefore H′

1 is not p-Helly.

(iii) ⇒ (iv) Trivial.

(iv) ⇒ (v) Let H′ be a partial hypergraph of a subhypergraph of H isomorphic to
K

p
p+1. Clearly, H′ is not (p, 1)-Helly. Moreover, there exists a partial (p + 1)-hypergraph

H′′ of H in which every hyperedge contains a different hyperedge of H′. Hence, if the
core of H′′ has size c, we can say that H′′ is (p, c + 1)-intersecting, that is, H′′ is not
(p, c + 1)-Helly.

(v) ⇒ (i) Suppose that H is not strong p-Helly. Then there is a partial hypergraph
H′ of H such that the core of every p hyperedges of H′ properly contains C ′ = core(H′).
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Perform the following process: if H′ contains a hyperedge E ′ such that the core of H′−E ′

is C ′, redefine E(H′) = E(H′) \ {E ′}, and repeat; otherwise, stop.

After completing the above process, observe that for any Ek ∈ E(H′) there exists a
vertex vk 6∈ Ek in the core of H′ −Ek. This means that the subhypergraph of H induced
by {v1, v2, . . . , vp+1} has a partial hypergraph isomorphic to the hypergraph formed by all
p-subsets of a (p + 1)-set.

We can apply the equivalence (i)-(iv) in order to formulate a recognition algorithm
for strong p-Helly graphs. First, observe that assertion (iv) is equivalent to state that for
every (p + 1)-hypergraph H′ of H there exist p hyperedges with the same core as H′.

Problem 8.2 Hereditary p-Helly hypergraph, fixed p ≥ 2
INSTANCE: A hypergraph H.
QUESTION: Is H strong p-Helly?

Algorithm 8.1 (Recognizing hereditary p-Helly hypergraphs): For every par-
tial (p + 1)-hypergraph of H, compute its core and the core of every partial p-hypergraph
thereof. If every partial (p + 1)-hypergraph H′ of H has a partial p-hypergraph whose core
equals the core of H′ then H is strong p-Helly, otherwise it is not.

Computing the cores of a (p + 1)-hypergraph and all its partial p-hypergraphs can be
done in O(p2r) steps. Since there are O(mp+1) partial (p + 1)-hypergraphs in a hyper-
graph, this algorithm has time complexity O(p2rmp+1). For fixed p, the above algorithm
terminates within polynomial time. The following theorem refers to p variable.

Problem 8.3 Hereditary p-Helly hypergraph, p variable
INSTANCE: A hypergraph H and an integer p ≥ 2.
QUESTION: Is H strong p-Helly?

Theorem 8.3 [39] Hereditary p-Helly hypergraph, p variable is co-NP-complete.

Now we present a figure relating the classes of p-Helly and hereditary p-Helly hyper-
graphs. We present examples showing these relations. Consider an integer p ≥ 3. Let
V1 = {v1, . . . , vp}, H1 = {Ei : 1 ≤ i ≤ p}; and V2 = {u1, . . . , up+2} and H2 = {Ei : 1 ≤
i ≤ p + 1}. The hypergraph H1 is hereditary p-Helly, but is not (p − 1)-Helly; while H2

is (p − 1)-Helly, but is not hereditary p-Helly. Last, the hypergraph H3 = H1 ∪ H2 is
p-Helly, but is not (p − 1)-Helly nor hereditary p-Helly.

Next, we describe examples for the intersection of hypergraph classes, for Figure 14.
The examples are for general values of p:

H1 = K
p
p+1;

H2 = K ′∪Kp−1
p , where K ′ is the hypergraph K

p
p+1 with an additional universal vertex;

H3 = Kp−1
p .
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Figure 14: Relations among p-Helly and hereditary p-Helly hypergraph classes

8.2 Cliques of graphs

We say that a graph is strong p-clique-Helly if its clique hypergraph is strong p-Helly,
and that it is hereditary p-clique-Helly if all its induced subgraphs are p-clique-Helly. As
usual, we write clique-Helly to mean 2-clique-Helly.

Since every p-clique-Helly graph is also (p + 1)-clique-Helly, every hereditary p-clique-
Helly graph is also hereditary (p+1)-clique-Helly. The following result says that the clique
hypergraph of a intersection graph of a family of edge paths of a tree is strong 4-Helly.

Theorem 8.4 [54] If G is an intersection graph of edge paths of a tree, then G is strong
4-clique-Helly.

Next, we consider the question of characterizing hereditary p-clique-Helly graphs.

Theorem 8.2 is valid for general hypergraphs, and in particular for the clique hyper-
graph of a graph. However, since the number of cliques of a graph may be exponential
in the size of the graph [84], it does not lead to a polynomial-time recognition algorithm
for strong p-clique-Helly graphs. Similarly, the recognition algorithm for p-clique-Helly
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Figure 15: Forbidden subgraphs for hereditary clique-Helly graphs

graphs is not suitable for the recognition of hereditary p-clique-Helly graphs because the
number of induced subgraphs may also be exponential in the size of the graph.

The characterization of hereditary clique-Helly graphs given below uses the following
definition: an edge e of a triangle T is good, relative to T , if any vertex adjacent to the
vertices of e is also adjacent to the other vertex of T .

Theorem 8.5 [106, 90] The following statements are equivalent for any graph G:

(i) G is hereditary clique-Helly;

(ii) G is strong clique-Helly;

(iii) G does not contain an ocular graph as an induced subgraph;

(iv) every triangle of G has a good edge.

Figure 15 shows the ocular graphs.

Problem 8.4 Hereditary clique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G hereditary clique-Helly?

Algorithm 8.2 (Recognizing hereditary clique-Helly graphs): For every tri-
angle T of G, verify if T contains a good edge.

All the triangles of a graph can be computed in time O(nm). We need O(n) time to
verify, for each one, if it contains a good edge. Therefore the complexity of the recognition
algorithm for hereditary clique-Helly graphs is O(n2m).

For every integer p ≥ 3, a graph G is p-ocular if V (G) is the union of the disjoint
sets W = {w1, w2, ..., wp} and U = {u1, u2, ..., up}, where W is a complete set, U induces
an arbitrary subgraph, and wi, uj are adjacent precisely when i 6= j. The 3-ocular graph
corresponds to the ocular graph defined in [106]. A graph is p-ocular-free if it has not a
p-ocular graph as an induced subgraph.
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Lemma 8.1 [39] Any (p + 1)-ocular graph is not p-clique-Helly, p ≥ 2.

The following characterization of hereditary p-clique-Helly graphs is a generalization
of the one presented above for hereditary clique-Helly graphs. We need one more concept,
which is a generalization of a good edge. A p-complete subset C ′ of a (p + 1)-complete
set C is good, relative to C, if any vertex adjacent to all vertices of C ′ is also adjacent to
the vertex in C\C ′.

Theorem 8.6 [39] The following statements are equivalent for any graph G:

(i) G is strong p-clique-Helly;

(ii) G is hereditary p-clique-Helly;

(iii) G is (p + 1)-ocular-free;

(iv) every (p + 1)-complete set of G contains a good p-complete subset.

Problem 8.5 Hereditary p-clique-Helly graph, fixed p ≥ 2
INSTANCE: A graph G.
QUESTION: Is G hereditary p-clique-Helly?

Algorithm 8.3 (Recognizing hereditary p-clique-Helly graphs): For every
(p + 1)-complete set C of G, verify if C contains a good p-complete set.

The number of (p + 1)-complete sets in a graph with n vertices is O(np+1). We need
O(np) time to verify, for each one, if it contains a good p-complete set. Therefore the
complexity of the above algorithm is O(pnp+2). For fixed p, the algorithm terminates
within polynomial time. For p variable, we have the following result:

Problem 8.6 Hereditary p-clique-Helly graph
INSTANCE: A graph G and an integer p ≥ 2.
QUESTION: Is G hereditary p-clique-Helly?

Theorem 8.7 [39] Hereditary p-clique-Helly graph is NP-hard.

8.3 Other Hereditary Helly Classes of Graphs

A hereditary disk-Helly graph is a graph whose induced subgraphs are disk-Helly. Similarly,
we define hereditary biclique-Helly, hereditary open and closed-neighborhood-Helly graphs.
The following theorems describe characterizations for these classes, in terms of forbidden
induced subgraphs.
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Figure 16: Forbidden subgraphs for hereditary disk-Helly graphs

Problem 8.7 Hereditary disk-Helly graph
INSTANCE: A graph G.
QUESTION: Is G hereditary disk-Helly?

Theorem 8.8 [40] A graph is hereditary disk-Helly if and only if it does not contain the
graphs of Figure 16 as induced subgraphs.

Problem 8.8 Hereditary biclique-Helly graph
INSTANCE: A graph G.
QUESTION: Is G hereditary biclique-Helly?

Theorem 8.9 [61] A graph is hereditary biclique-Helly if and only if it does not contain
the graphs of Figure 17 as induced subgraphs.

Problem 8.9 Hereditary open neighborhood-Helly graph
INSTANCE: A graph G.
QUESTION: Is G hereditary open neighborhood-Helly?

Theorem 8.10 [61] A graph is hereditary open neighborhood-Helly if and only if it does
not contain the graphs of Figure 18 as induced subgraphs.

Problem 8.10 Hereditary closed neighborhood-Helly graph
INSTANCE: A graph G.
QUESTION: Is G hereditary closed neighborhood-Helly?

Theorem 8.11 [61] A graph is hereditary closed neighborhood-Helly if and only if it does
not contain the graphs of Figure 19 as induced subgraphs.
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Figure 17: Forbidden subgraphs for hereditary biclique-Helly graphs

Figure 18: Forbidden subgraphs for hereditary open neighborhood-Helly graphs

Figure 19: Forbidden subgraphs for hereditary closed neighborhood-Helly graphs
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It follows directly from the characterizations of the above considered classes that they
can be recognized in polynomial time.

By comparing the above forbidden families, we can also conclude:

Corollary 8.1 Let G be a graph with girth at least 7. Then G is hereditary clique-
Helly, hereditary biclique-Helly, hereditary open neighborhood-Helly and hereditary closed
neighborhood-Helly.

Figure 20 depicts relations among the above considered hereditary Helly classes of
graphs. All graphs shown in the figure are minimal examples. The symbol Ø indicates
that no graph exists in the corresponding intersection of graph classes.

Figure 20: Relations among hereditary Helly graph classes
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9 Sandwich Problems

In this section we define a class of problems which is a natural generalization of the class
of recognition problems.

A graph sandwich problem consists of: given two graphs G1 and G2, find a graph G

with some desired property, the sandwich graph, such that E(G1) ⊆ E(G) ⊆ E(G2).
Graph sandwich problems were defined in the context of Computational Biology [55].

Clearly, the complexity of recognizing the existence of a sandwich graph in a certain
class cannot be lower than the recognition of the class itself. Hence, the interest in looking
at the complexity of sandwich graph recognition is restricted to those classes of graphs
admitting a polynomial-time recognition algorithm. For instance, the recognition of in-
terval sandwich graphs is NP-complete [56]. Below, we report on clique-Helly sandwich
graphs.

Problem 9.1 Clique-Helly sandwich graph
INSTANCE: Two graphs G1, G2 such that E(G1) ⊆ E(G2).
QUESTION: Is there a sandwich graph for G1 and G2 that is clique-Helly?

Theorem 9.1 [33] Clique-Helly sandwich graph is NP-complete.

We can define the sandwich problem for hereditary clique-Helly graphs as we did for
clique-Helly graphs.

Problem 9.2 Hereditary clique-Helly sandwich graph
INSTANCE: Two graphs G1, G2 such that G1 ⊆ G2.
QUESTION: Is there a sandwich graph for G1 and G2 which is hereditary clique-Helly?

Theorem 9.2 [33] Hereditary clique-Helly sandwich graph is NP-complete.

The sandwich problems corresponding to the other Helly classes considered in this
survey have not been considered so far.

10 Summary of Results

Table 1 summarizes the complexity results of the various algorithmic problems considered
in this work. The complexities are expressed in terms of O-notation and correspond to
straightforward algorithms realizing the associated characterizations.
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Problem Complexity Reference

2.1 Helly hypergraph O(n4m) [14]
O(Mn2 + rn3) [32]

3.1 Clique-Helly graph O(nm2) [40, 97]
O(m2) [77]

9.1 Clique-Helly sandwich NP-complete [33]
3.2 Biclique-Helly graph O(n3m) [60]
3.3 Helly circular-arc graph O(n3) [53]

O(n + m) [67]
4.1 p-Helly hypergraph, fixed p O(np+2m) = O(Mnp+1) [14]

O(Mnp + prnp+1) [32]
4.2 List p-Helly hypergraph, fixed p ≥ 2 Co-NP-complete [36]
5.1 k-Bounded p-Helly hypergraph, fixed k and p O(nmkkp) Alg. 5.1
5.2 k-Bounded p-Helly hypergraph, fixed p Co-NP-complete [35]
5.3 k-Bounded p-clique-Helly graph, fixed k and p Co-NP-complete [35]
5.4 Planar 3-bounded clique-Helly graph O(n2) [3]
6.1 (p, q)-Intersecting hypergraph, fixed q Co-NP-complete [36]

6.2 (p, q, s)-Helly hypergraph, fixed p and q O(nb(p+a+1)+1mp + nmp+a) [38]
6.3 (p, q, s)-Helly hypergraph, fixed q and s NP-hard [36]
6.4 (p, q, s)-Helly hypergraph, fixed p and s Co-NP-complete [36]
6.5 (2, q)-Helly hypergraph, fixed q O(n3q+1m) [36]

O(rqnm5) Alg. 6.3
6.6 (2, q)-Helly hypergraph, fixed r − q O(n(r − q + 2)2mr−q+2) [104]

O(rr−qnm5) Alg. 6.3
7.1 (2, 2)-Clique-Helly graph O(m5) [28]

7.2 (p, q)-Clique-Helly graph, fixed p and q O(nq(p+3)) [37]
7.3 (p, q)-Clique-Helly graph, fixed p NP-hard [37]
7.4 (p, q)-Clique-Helly graph, fixed q NP-hard [37]
7.5 Helly defect NP-hard [34]
8.1 Hereditary Helly hypergraph O(rm3) [106]

O(r4m2) [26]
O(rn3) [32]

8.2 Hereditary p-Helly hypergraph, fixed p ≥ 2 O(rmp+1) [39]
O(prnp+1) [32]

8.3 Hereditary p-Helly hypergraph, p variable Co-NP-complete [39]
8.4 Hereditary clique-Helly graph O(n2m) [90, 106]

O(m2) [77]
9.2 Hereditary clique-Helly sandwich graph NP-complete [33]
8.5 Hereditary p-clique-Helly graph, fixed p ≥ 2 O(np+2) [39]
8.6 Hereditary p-clique-Helly graph NP-hard [39]
8.7 Hereditary disk-Helly graph O(n2m) [40]
8.8 Hereditary biclique-Helly graph O(n2m3) [61]
8.9 Hereditary open neighborhood-Helly graph O(n2m2) [61]
8.10 Hereditary closed neighborhood-Helly graph O(n2m2) [61]

Table 1: Summary of complexity results. Recall that n is the number of vertices, m is
the number of hyperedges or edges, M is the sum of the cardinalities of the hyperedges,
r is the rank, a = max{q − s, 0}, and b = min{q, s}.
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11 Proposed Problems

To conclude, we propose the following problems:

1. Describe a structural characterization for (2, q)-Helly hypergraphs.

This problem has been posed in [104]. In the article, some different extremal prob-
lems have been studied in relation to (2, q)-Helly hypergraphs. A characterization
for the case r − q fixed is described in [104]. Algorithm 6.3 of the present survey
also considers this special case.

2. Determine the complexity of recognizing (p, q)-Helly hypergraphs, for fixed p. In
special, consider p = 2.

Papers [36] and [38] consider some different variations of the problem of recognizing
(p, q, s)-Helly hypergraphs. However, the case p fixed and q = s variable has been
left open, in particular for p = 2. Clearly, this problem is related to the previous
one.

3. Characterize (p, q, s)-clique-Helly graphs.

A characterization of (p, q, s)-Helly hypergraphs is described in [38], while that of
(p, q)-clique-Helly appears in [37]. It remains open the case of (p, q, s)-clique-Helly
graphs.

4. Determine the complexity of recognizing (p, q, s)-clique-Helly graphs, for fixed p, q.

Clearly, this problem is related to the previous one, and to references [38] and [37].

5. Is there an algorithm to decide if the Helly defect of a graph G is finite?

Helly defect equal to zero corresponds to the case of a clique-Helly graph, and can
therefore be recognized in polynomial time. The recognition of graphs having Helly
defect 1 is NP-hard [34]. In general, for finite Helly defect, it is unknown even if
the problem is decidable. However, for every finite k ≥ 0 there is a graph whose
Helly defect is k [21]. There are similar problems within the scope of iterated clique
graphs. For instance, it is an open question to know whether the recognition of
convergent/divergent graphs is a decidable problem. General divergent graphs have
been studied in [72]. Divergence of cographs has been considered in [68], and of
circular-arc graphs in [17] and [76]. Convergence of clique-Helly graphs has been
examined in [9] and [89].
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