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Abstract

The best lower bound known on the crossing number of the complete bipartite
graph is :

cr(Km,n) ≥ (1/5)(m)(m − 1)bn/2cb(n − 1)/2c
In this paper we prove that:

cr(Km,n) ≥ (1/5)m(m − 1)bn/2cb(n − 1)/2c + 9.9 × 10−6m2n2

for sufficiently large m and n.

1 Introduction

Determining the crossing number of the complete bipartite graph is one of the oldest
crossing number open problems. It was first posed by Turan and known as Turan’s brick
factory problem. In 1954 , Zarankiewicz conjectured that it is equal to

Z(m, n) = bn/2cb(n − 1)/2cbm/2cb(m − 1)/2c

He even gave a proof and a drawing that matches the lower bound, but the proof was
shown to be flawed by Richard Guy [1]. Then in 1970 Kleitman proved that Zarankiewicz
conjecture holds for Min(m, n) ≤ 6 [2]. In 1993 Woodall proved it for m ≤ 8, n ≤ 10
[3]. Previously the best known lower bound in the general case was the one proved by
Kleitman [2] :

cr(Km,n) ≥ (1/5)(m)(m − 1)bn/2cb(n − 1)/2c.
Richter and Thomassen discussed the relation between the crossing numbers of the com-
plete and the complete bipartite graphs [4].
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2 A new bound

We will start by giving definitions that will be used throughout the paper. They are taken
from Woodall[3] and Kleitman [2].

Definition 1 Two edges e1 and e2 are said to have a crossing in a drawing D of Km,n if
e1 can be closed by a curve disjoint from e2 connecting the two endpoints of e1 and such
that there are points of e2 both inside and outside the closed curve.

Definition 2 The crossing number crG of a graph G is the smallest crossing number of
any drawing of G in the plane, where the crossing number crD of a drawing D is the
number of non-adjacent edges that have a crossing in the drawing.

Definition 3 A good drawing a graph G is a drawing where the edges are non-self-
intersecting where each two edges have at most one point in common, which is either
a common end vertex or a crossing.

Clearly a drawing with minimum crossing number must be a good drawing.
Let A be one partite and B the other partite. The elements of A are a1, a2, a3, . . . , am,

and the elements of B are b1, b2, . . . , bn. In a drawing D, we denote by crD(ai, ak) the
number of crossings of arcs, one terminating at ai, the other at ak and by crD(ai) the
number of crossings on arcs which terminate at ai :

crD(ai) =
n∑

k=1

crD(ai, ak)

The crossing number of the drawing D is therefore:

crD =
n∑

i=1

n∑
k=i+1

crD(ai, ak)

Let us define :
Z(m) = bm/2cb(m − 1)/2c.

Let S∗
n be the set of the (n− 1)! different cyclic orderings of a set Vn of n elements. (The

significance of cyclic ordering is that 01234 is considered as being the same as 34012 or
12340). If z1 and z2 belong to S∗

n then the distance d(z1, z2) is the minimum number of
transpositions between adjacent elements in the cyclic ordering necessary to turn z1 into
z2. If a belongs to S∗

n then ā denotes the reverse ordering of a. For example, in S∗
7 , if

a = 0354162, then ā = 0261453. The antidistance d̄(a, b) between two elements a and b
is the distance between ā and b (or between b̄ and a). Woodall [3] gave a detailed proof
of the two following propositions:

Theorem 1 If a ∈ S∗
n, then d̄(a, a) = Z(n).

Theorem 2 In a drawing D of K2,n on two sets {x, x′} and Vn, let the clockwise orders
in which the edges leave x and x′ to go to Vn be the elements a and b of S∗

n. Then
crD ≥ d̄(a, b), and if n is odd then crD is of the same parity than d̄(a, b).
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Kleitman proved the following equalities:

Theorem 3
cr(K5,n) = 4bn/2cb(n − 1)/2c (1)

cr(K6,n) = 6bn/2cb(n − 1)/2c. (2)

From this he deduced that

cr(Km,n) ≥ (1/5)(m)(m− 1)bn/2cb(n − 1)/2c (3)

in the following way: There are
(

m
5

)
K5,n which are subgraphs of Km,n, with the partite

with n vertices in the K5,n being B. Let σ be the sum over all such K5,n of the number

of crossings that each of these K5,n contain in a drawing D. Obviously σ ≥
(

m
5

)
Z(5, n).

Each crossing appears in exactly
(

m−2
3

)
K5,n. Therefore

cr(Km,n) ≥
(

m
5

)
Z(5, n)(
m−2

3

)

cr(Km,n) ≥ (1/5)(m)(m− 1)bn/2cb(n − 1)/2c
We will obtain a small improvement on this lower bound for large values of n, with m ≥ 7,
by proving that there is a number of K5,n subgraphs of Km,n which must have more than
Z(5, n) crossings in any drawing of Km,n

The cyclic ordering of the edges around each bj ∈ B can be considered as a cyclic
ordering of the elements of A, and therefore as an element of S∗

m.
Suppose we have a K2,m which first partite is {u1, u2} and second partite is {u′

1, . . . , u
′
m}.

And let c(u1) denote the cyclic ordering of the edges around u1, and c(u2) denote the cyclic
ordering of the edges around u2. Woodall [3] proved the following theorem:

Theorem 4 If a good drawing of K2,m has r crossings, there is a sequence Seq(u1, u2) of
r transpositions between adjacent elements in c(u1), such that if we apply this sequence
to c(u1) we obtain c̄(u2), and there is a crossing in the K2,2 subgraph of K2,m on vertices
u1, u2, u

′
i, u

′
i′ if and only if exactly one of the transpositions takes place between elements

u′
i and u′

i′ in Seq(u1, u2). (In a good drawing a K2,2 can have one crossing at most.)

We can now prove our first lemma:

Lemma 1 In any K2,7 subgraph of K(m, n) where the two vertices with 7 edges have the
same cyclic ordering of edges, there is a K2,4 subgraph which has 6 crossings.

Proof :Let A′ be a subset of 7 elements of A, say w1, w2, . . . , w7 (for every l, wl = ak for
some k). Let {bk, bl} be one partite of a K2,7 subgraph G of Km,n and let A′ be the second
partite. Now suppose c(bk) = c(bl) in G. Let W (bk, bl) be the set of pairs {wi, wi′} of
elements of A′ such that there is a transposition exchanging wi and wi′ in Seq(bk, bl) in the
drawing of G. Let wy be one element of A′, and let A∗ = A′ \ {wy}. Let A1 be the set of
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elements ax of A∗ such that {ax, wy} ∈ W (bk, bl) and A2 = A∗ \ A1. It is clear that every
triple {wy, wz, wz′} reverses its ordering between c(bk) and c̄(bl) = c̄(bk), which implies
that either all three pairs {wz, wz′}, {wy, wz}, {wy, wz′} belong to W (bk, bl) or exactly one
of these pairs belong to W (bk, bl). Therefore, if a pair of elements {wz, wz′} ⊂ A′ either
has both of its elements in A1 or has both of its elements in A2, then {wz, wz′} ∈ W (bk, bl).
Either Card(A2) ≥ 4 or not. If Card(A2) ≥ 4, every 4-subset of A2 has 6 2subsets that
belong W (bk, bl). If Card(A2) < 4, Card(A1) ≥ 3, and every 3-subset of A1 has 3 2-
subset belong W (bk, bl). Let A′

1 be such a subset. Then A′
1U{wy} is a 4-subset that has

6 2-subsets in W (bk, bl). Therefore there exists a subgraph χ of G, having 6 crossings,
where one partite is {bk, bl} and the other partite is a 4-subset.2

There are 3 distinct K2,5 in G that have χ as a subgraph so each of them must have
at least 6 crossings.

We will also need the following lemma :

Lemma 2 Let D5,z be an arbitrary drawing of some K5,z and let t0 be an element of the
partite F with z elements and let T be the set of all elements of F having the same cyclic
ordering of edges incident on them as t0. The elements of T are t0, t1, . . .. Let η be the
number of pairs {tk ∈ T, tk′ ∈ T} such that crD5,z(tk, tk′) ≥ 6 ≥ Z(3, 5) + 2.
Then Z(5, z) + 2η ≤ crD5,z .

Proof:Let h(tk) be the sum of the number of crossings of the edges of tk with edges
not incident on any vertex of T . Let tmin be the element of T such that h(tmin) ≤ h(tk)
for all tk ∈ T . Using a construction used by Kleitman,[2] (”Constructive Argument ”
p319), we can obtain from D5,z another drawing D′

5,z where the position of the edges
not incident on a vertex of T remains unchanged, and h(tk) = h(tmin) for all k, and
crD′

5,z
(tk, tk′) = Z(3, 5). (The construction mainly consists at placing tk close to tmin

and letting the edges incident on tk follow the path of the corresponding edges of tmin.)
Therefore

Z(5, z) + 2η ≤ crD′
5,z

+ 2η ≤ crD5,z

Let θ be the number of distinct K2,5 subgraphs of Km,n having at least 6 crossings
in D and such that the partite with 2 elements is a subset of B, and the partite with 5
elements is a subset of A, and let σ have the same definition as it had in the proof of (3).

Then σ ≥
(

m
5

)
Z(5, n) + 2θ.

In the following lemma, A′ is defined in the same way as in the proof of Lemma 1.

Lemma 3 Let λ be the number of distinct pairs of elements of B having the same cyclic
ordering of edges incident on an element of A′. Then, if n ≥ 2 × 6!, we have

λ ≥ (6!)

(bn/6!c
2

)
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Proof : Let α1 and α2 be two distinct elements of (S∗
7) and let nα1 be the number of vertices

of B having the cyclic ordering of their edges equal to α1 and let nα2 be the number of
vertices of B having the cyclic ordering of their edges equal to α2. If nα1 − nα2 ≥ 2, it is
always possible to reduce the number of pairs of vertices having the same cyclic ordering
of edges by assigning α2 to one of the vertices which cyclic ordering of edges was α1. So
the minimum possible number of pairs of vertices having the same cyclic ordering of edges
can only occur if |nα1 − nα2 | = 1 or |nα1 − nα2 | = 0 for all {α1, α2} ⊂ S∗

7 . Therefore

λ ≥ (6!)

(bn/6!c
2

)

Let ν be the minimum number of K2,5 subgraphs of a K2,7 whose number of crossings
must be at least 6 when cyclic ordering of the 7 edges around the vertices of the partite
with 2 elements are identical. As noted previously ν = 3.(

m−5
2

)
is the number of K2,7 subgraphs of Kn,m in which a given K2,5 appears.

θ ≥
(

m
7

)
λν(

m−5
2

)

From the above we can deduce a new lower bound on the crossing number of Km,n. We
have:

cr(Km,n) ≥ σ(
m−2

3

)

σ ≥
(
m

5

)
Z(5, n) + 2θ

cr(Km,n) ≥
(

m
5

)
Z(5, n) + 2λν

(
m
7

)
/
(

m−5
2

)
(

m−2
3

) (4)

For sufficiently large m and n, we therefore have :

cr(Km,n) ≥ (1/5)m(m − 1)bn/2cb(n − 1)/2c + 9.9 × 10−6m2n2

3 Conclusion

In this paper, we have proved a new lower bound on the crossing number of Km,n by
proving the existence of certain non optimal drawings of K5,n subgraphs in any drawing
of Km,n. By proving the existence of other non optimal drawings, we might perhaps get
improvements on the current lower bound. So this method could be one possible way to
progress on Zarankiewicz conjecture.
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