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Abstract

A subset A of a group G is called symmetric with respect to the element g ∈ G
if A = gA−1g. It is proved that in any 2-coloring, every infinite group G
contains monochrome symmetric subsets of arbitrarily large cardinality < |G|.

A topological space is called resolvable if it can be partitioned into two dense subsets
[8]. In [4] W. Comfort and J. van Mill proved that each nondiscrete topological Abelian
group with finitely many elements of order 2 is resolvable. In that paper it was also
posed the problem of describing of absolutely resolvable groups. A group is called
absolutely resolvable if it can be partitioned into two subsets dense in any nondiscrete
group topology. This problem turned out to be rather difficult even for rational group
Q [11], and for real group R it had remained unsolved. In Abelian case this problem was
finally solved by Y. Zelenyuk who proved that each infinite Abelian group with finitely
many elements of order 2 is absolutely resolvable [13].

It is easy to see that an Abelian group G is absolutely resolvable if and only if
it can be partitioned into two subsets not containing subsets of the form g + U where
U is a neighborhood of zero in some nondiscrete group topology. In [10] I. Protasov
considered a question close to the above problem. He described Abelian groups which
can be partitioned into two subsets not containing infinite subsets of the form g + U
where U = −U . Such subsets were called symmetric and groups that can be partitioned
into two subsets not containing infinite symmetric subsets – assymetrically resolvable.
More precisely, there was given the following equivalent definition of a symmetric subset.
A subset A of an Abelian group G is called symmetric with respect to the element
g ∈ G if 2g − A = A. Later on R. Grigorchuk extended this definition to arbitrary
groups. A subset A of a group G is called symmetric with respect to the element
g ∈ G if gA−1g = A. This notion turned out to be enough fruitful, especially against a
background of Ramsey Theory (see surveys [1,2]).

According [10] an infinite Abelian group is assymetrically resolvable if and only if
it is either a direct product of an infinite cyclic group and a finite Abelian group or a
countable periodic Abelian group with finitely many elements of order 2. The problem
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of describing of all assymetrically resolvable groups is considerably more complicated.
For example, it was open for the free group on two generators [2, problem 1.2], and also
for each infinite finitely generated periodic group. In case of infinite finitely generated
groups of finite torsion, it was not even known whether there exist arbitrarily large finite
monochrome symmetric subsets in any 2-coloring [2, problem 1.7].

In this note, the first theorem states if the commutator subgroup G′ of a group G
contains a finitely generated subgroup different from an almost cyclic group, then G is
not assymetrically resolvable. Recall that an almost cyclic group is a group containing
a cyclic subgroup of finite index. In particular, every finite group is almost cyclic.
By the first theorem, it follows that both the free group on two generators and every
infinite finitely generated periodic group are not assymetrically resolvable. Next, by
means of this result we prove more two theorems. One theorem states that in any 2-
coloring, every infinite group G contains monochrome symmetric subsets of arbitrarily
large cardinality < G. Another theorem concerns the problem of describing of all
assymetrically resolvable groups. It states that every such group G is either almost
cyclic or countable locally finite provided G′ is finite or G′ is infinite and G/G′ is
periodic.

The proof of the first theorem uses the following nontrivial fact: every group of
linear growth is almost cyclic. Indeed, every group of polynomial growth contains a
nilpotent subgroup G of finite index [6] and a degree d of a polynomial is evaluated by
means of the lower central series

G = G1 > G2 > · · · , Gk+1 = [G, Gk],

from formula
d =

∑

k≥1

k · r0(Gk/Gk+1),

where r0(A) is a free rank of Abelian group A [3]. If d = 1, then rank of the first section
equals 1, ranks of the others equal 0. Since G is finitely generated and nilpotent, all
terms of series are finitely generated. Then all sections are finitely generated Abelian
groups. Hence, the first section is almost cyclic, the others are finite, consequently, G
is an almost cyclic group.

Theorem 1. Let G be a group containing a finite subset X = X−1 3 1 such that a
subgroup [X, X ] = 〈[x, y] : x, y ∈ X〉 is different from an almost cyclic group. Then
in any 2-coloring, G contains an infinite monochrome subset symmetric with respect to
some element from X2 = {xy : x, y ∈ X}.
Proof. Suppose the contrary. Put F ∗ = ∪{Fz : z ∈ X2}, where Fz = {g ∈ G : g and
zg−1z is monochrome}. Then F ∗ is finite and for any g ∈ G \ F ∗ and z ∈ X2, g and
zg−1z are different colored (then g and z−1g−1z−1 are also different colored). Put

F = F ∗ ⋃{g ∈ G : there is z ∈ X2 such that z−1g−1z−1 ∈ F ∗}.
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Then F is finite and for any g ∈ G \ F and z ∈ X2, g and zgz = 1(z−1g−1z−1)−11 are
monochrome, because we have only two colors. The passages of the form g → zgz we
shall call elementary. Note that for any finite K ⊂ G and natural s there are only finitely
many elements in G from which it can be passed to K by ≤ s elementary passages.

Let U = {[x, y] : x, y ∈ X}, H = 〈U〉 = [X, X ]. The idea of the proof is following.
We choose some element a ∈ H \ F and pass from a to a−1 by means of elementary
passages, outside F , that will be a contrary. To do this passage outside F , we choose
some element b ∈ H and pass first from a to ab, then from ab to ba−1 and at last from
ba−1 to a−1. We write the element a, that has not be chosen yet, as a = z1 · · · zm,
zi ∈ X and the element b, that has not also be chosen yet, as b = u1 · · ·un, uj ∈ U ,
uj = [xj, yj ], xj , yj ∈ X . From a to ab we pass as follows:

a → x1ax1 → y1x1ax1y1 → ax1y1(y1x1)−1 = ax1y1x
−1
1 y−1

1 = a[x1, y1] = au1 → · · ·
→ au1 · · ·un = ab.

To pass from ab to ba−1, we first pass from ab = z1 · · · zmb to zm · · · z1b. We shall
content ourselves with demonstrating the passage from z1 · · · zi−1zizi+1zi+2 · · · zmb to
z1 · · · zi−1zi+1zizi+2 · · · zmb:

z1 · · · zmb → z2 · · · zmbz−1
1 → · · · → zi+2 · · · zmbz−1

1 · · · z−1
i+1 →

→ zi+1zizi+2 · · · zmbz−1
1 · · · z−1

i−1 → zi−1zi+1zizi+2 · · · zmbz−1
1 · · · z−1

i−2 → · · ·
→ z1 · · · zi−1zi+1zizi+2 · · · zmb.

Then we pass from zm · · · z1b to bz−1
m · · · z−1

1 = ba−1. As is seen, the number of elemen-
tary passages only depends on m when we pass from ab to ba−1 . At last, we do the
passage from ba−1 to a−1. To this end, we need to choose the elements a and b.

For each g ∈ H define the least length of the decomposition of g in terms of elements
from U by l(g):

l(g) = min{n < ω : g ∈ Un}.
Notice that l(g−1) = l(g), l(gh) ≤ l(g) + l(h) and then l(gh) ≥ |l(g)− l(h)|.

We shall choose a sequence 〈un〉n∈N in U by the next lemma.

Lemma 1. There exists a sequence 〈un〉n∈N in U such that l(u1 · · ·un) = n.

Proof. Given g ∈ H, l(g) = n, we fix the minimal decomposition g = u1(g) · · ·un(g).
Pick the sequence 〈gn〉n∈N in H such that l(gn) ≥ n and u1(gn) = u1 for some u1 ∈ U .
Next, pick the subsequence 〈hn〉n∈N in 〈gn〉n∈N such that u2(hn) = u2 for some u2 ∈ U
and so forth.

We shall choose the element b from the sequence of products 〈u1 · · ·un〉n∈N. We
need only to indicate the number n. This will be later. And now we choose a natural
k so that the passage

g → xgx → yxgxy → gxy(yx)−1 = g[x, y]

the electronic journal of combinatorics 10 (2003), #R28 3



holds outside F for any g ∈ H, l(g) > k and x, y ∈ X .
We shall choose the element a by the next lemma.

Lemma 2. There exists an element a ∈ H, l(a) > k such that l(au1 · · ·un) > k and
l(u1 · · ·una−1) > k for all n.

Proof. Suppose the contrary. Then for any a ∈ H there exists n ∈ N such that
either au1 · · ·un ∈ Γ(k) or u1 · · ·una−1 ∈ Γ(k), where Γ(k) = {g ∈ H : l(g) ≤ k}.
Consequently, for any a ∈ H either a ∈ (u1 · · ·unΓ(k))−1 or a ∈ Γ(k)u1 · · ·un. Hence,

H = {(u1 · · ·ung)−1, gu1 · · ·un : n ∈ N, g ∈ Γ(k)}.

It follows from this that

Γ(n) ⊆ {(u1 · · ·ung)−1, gu1 · · ·un : i ≤ n + k, g ∈ Γ(k)}.

Put γ(n) = |Γ(n)|. Clearly γ is the growth function of H and γ(n) ≤ 2γ(k)(n + k). So
the growth of H is linear, a contradiction.

We choose the number n so that the passage from au1 · · ·un = ab to ba−1 holds
outside F . Then the general passage from a to a−1 also holds outside F . The proof of
Theorem 1 is complete.

In [12] it was proved that in any 3-coloring, every uncountable Abelian group G of
regular cardinality contains either a monochrome symmetric subset of cardinality |G|
or a monochrome coset modulo subgroup of arbitrarily large cardinality < |G|.
Proposition. In any 2-coloring, every uncountable group G of regular cardinality
contains either a monochrome symmetric subset of cardinality |G| or a monochrome
coset modulo subgroup of arbitrarily large cardinality < |G|.
Proof. First notice that a coset is symmetric with respect to any its own element:

g(gH)−1g = gH−1g−1g = gH.

Now consider three cases.
Case 1. |G′| = |G|.
Suppose that G has no symmetric subsets of cardinality |G|. Let ω ≤ k < |G|.

We need to find a monochrome coset of cardinality k. Pick a set K of commutators of
G that has cardinality k. Given u ∈ K, we assign the elements xu, yu ∈ G such that
[xu, yu] = xuyux−1

u y−1
u = u. Form a subgroup A = 〈xu, yu : u ∈ K〉 generated by a

subset {xu, yu : u ∈ K}. Then |A| = |A′| = k. Next, given a ∈ A, we assign a set Sa of
all x ∈ G that the elements x and ax−1a are monochrome. By assumption, |Sa| < |G|,
therefore the cardinality of the subgroup H = 〈∪a∈ASa ∪ A〉 is also < |G|, because
|G| is regular. By constructing of the subgroup H, for every g ∈ G \ H and a ∈ A,
the elements g and ag−1a have the different color. Since we have only two colors, the
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elements g and aga = (a−1g−1a−1)−1 are monochrome. So, for every g ∈ G \ H and
a, b ∈ A, the elements g and g[a, b] are also monochrome:

g → aga → bagab → gab(ba)−1 = g[a, b].

Therefore, the coset gA′ is monochrome.
Case 2. |G′| < |G| and |{g2 : g ∈ G}| = |G|.
Suppose that G has no symmetric subsets of cardinality |G|. Let ω ≤ k < |G|. We

need to find a monochrome coset of cardinality k. We may take k ≥ |G′|. Let K be a
set of all commutators of G and let P be a subset of {g2 : g ∈ G} that has cardinality
k. Given u ∈ K, we assign the elements xu, yu ∈ G such that [xu, yu] = u. And given
v ∈ P , we assign zv ∈ G such that z2

v = v. Put A = 〈xu, yu, zv : u ∈ K, v ∈ P 〉. Then
|A| = |A2| = k, where A2 = 〈a2 : a ∈ A〉, and every commutator of elements of G
equals some commutator of elements of A. Next, as in case 1, we pick the subgroup H,
A ⊆ H ⊂ G, |H| < |G| such that for every g ∈ G\H and a ∈ A, the elements g and aga
are monochrome. Then the elements g and ga2 are also monochrome. Indeed, putting
b = x[a,g] and c = y[a,g] we obtain:

g → aga = [a, g]ga2 = [b, c]ga2 = bcb−1c−1ga2 →
→ b−1c−1ga2(bc)−1 = b−1c−1ga2c−1b−1 → c−1ga2c−1 → ga2.

Therefore, the coset gA2 is monochrome.
Case 3. |G′| < |G| and |{g2 : g ∈ G}| < |G|.
In this case we shall prove that there exists a monochrome symmetric subset of

cardinality |G|. For each a ∈ {g2 : g ∈ G}, let Ca = {g ∈ G : g2 = a}. Since
G = ∪aCa, |{g2 : g ∈ G}| < |G| and the cardinal |G| is regular, |Ca| = |G| for some
a. Similarly, since |G′| < |G|, for fixed c0 ∈ Ca there exists a subset C ⊆ Ca of
cardinality |G| such that all commutators [c, c−1

0 ], c ∈ C are equal, say to the element
b. Then a subset B = {g ∈ G : g2 = b} has also cardinality |G|. Indeed, for each
c ∈ C, (cc−1

0 )2 = [c, c−1
0 ]c−1

0 c2c−1
0 = [c, c−1

0 ] = b. Pick an arbitrary c ∈ C and put
X = {1, c0, c

−1
0 , c, c−1}. We shall show that there is a monochrome subset of cardinality

|G| in G, symmetric with respect to some element of X2 = {xy : x, y ∈ X}. Suppose
the contrary. Then there exists a subgroup H, X ⊆ H ⊂ G, |H| < |G| such that for
every g ∈ G \ H and z ∈ X2 the elements g and zgz are monochrome. Thus, for every
g ∈ G \ H and x, y ∈ X , the elements g and g[x, y] are also monochrome. So, the coset
g[X, X ] is monochrome. Pick g ∈ (G\H)∩B. Then g2 = b ∈ [X, X ]. So, both elements
g and g−1 belong to g[X, X ]. Therefore, g and g−1 are monochrome, a contradiction.

Theorem 2. In any 2-coloring, every infinite group G contains monochrome symmetric
subsets of arbitrarily large cardinality < |G|.
Proof. Assume first that G is uncountable. Let ω ≤ k < |G|. If the cardinal |G| is
regular then we apply Proposition to the group G, otherwise to any its subgroup of
cardinality k+.
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Now assume that |G| = ω. If elements orders of G are unbounded in totality,
then we use van der Waerden’s Theorem: there is a function n(r, l) on natural numbers
such that for any r-coloring of the initial set of n(r, l) natural numbers there exists a
length l monochrome arithmetic progression, see in [5]. If G has finite torsion and it
is a locally finite group, then by Kargapolov-Hall-Kulatilaka Theorem [9], we pick an
infinite Abelian subgroup and use Craham-Leeb-Rothschild Theorem: for any r-coloring
of an infinite Abelian group of finite torsion there exists an arbitrarily large monochrome
coset modulo finite subgroup, see in [5]. If G has finite torsion and it is not a locally
finite group, then, as well, its commutator subgroup is not locally finite, so use Theorem
1.

Question. Does every infinite group G contain monochrome symmetric subsets of
arbitrarily large cardinality < |G| in any finite coloring?

Theorem 3. Let G be an assymetrically resolvable group. Assume that either G′ is
finite or G′ is infinite and G/G′ is periodic. Then G is either almost cyclic or countable
locally finite.

To prove Theorem 3, we need some auxiliary assertions.
Let A be a subgroup of a group G. We refer to a subset of all elements of G that

are central with respect to some subgroup of A of finite index as an almost centralizer
of A. Clearly, an almost centralizer is a subgroup.

Lemma 3. Let A be an infinite cyclic subgroup of G and let H be an almost centralizer
of A. If number of double cosets of H modulo A is infinite, then G is not assymetrically
resolvable.

In particular, a group is not assymetrically resolvable when it contains an infinite
cyclic subgroup, that has an infinite index in its centralizer.

Proof. Let A = 〈a〉. We shall show that there is an infinite monochrome subset in H
symmetric with respect to some element of 1, a, a−1. Suppose the contrary. Then there
is a finite subset F ⊂ H such that for any element g ∈ H\F a subset {g, aga, a−1ga−1} is
monochrome. Therefore, for any element g ∈ H \AFA a subset {angan : n ∈ Z} ⊆ AgA
is monochrome. For some natural k ≥ 1 one has akgak = ga2k. Consequently, the subset
{angan : n ∈ Z} contains a coset g · 〈a2k〉.
Corollary. If a group G is assymetrically resolvable and G′ is finite, then G is either
locally finite or almost cyclic.

Proof. Let G is not locally finite. Then G is not periodic, since G′ is finite. Let
A = 〈a〉 be an infinite cyclic subgroup of G. Since xax−1 = [x, a]axx−1 = [x, a]a
and G′ is finite, the conjugation class of the element a is finite. Thus, the centralizer
H = CG(A) = CG(a) has finite index in G. By Lemma 3, index |H : A| is finite.
Therefore, index |G : A| is also finite.

Lemma 4. Let G be a group containing a normal infinite almost cyclic subgroup and
let G be different from an almost cyclic group. Then G is not assymetrically resolvable.
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Proof. First recall that for each natural n ≥ 1 there are only finitely many subgroups
of index n in a finitely generated group. Let N be a normal subgroup of G and let
A = 〈a〉 be an infinite cyclic subgroup of N of finite index. Since number of subgroups
of N , that have index |N : A|, is finite and N is normal, the conjugation class of the
element a in G is finite. Then the centralizer H = CG(A) has finite index in G. Since
G is different from almost cyclic, index |G : N | is infinite. Therefore, index |H : A| is
also infinite. To complete the proof, use Lemma 3.

Lemma 5. Let G be a non-periodic group different from an almost cyclic group such
that every finitely generated subgroup of G is almost cyclic. Then G is not assymetrically
resolvable.

Proof. Let A = 〈a〉 be an infinite cyclic subgroup of G and let H be its almost
centralizer. For each element g ∈ G, some non-identity subgroup A is normal in the
almost cyclic subgroup 〈A ∪ {g}〉. Consequently, for each g ∈ G there is a natural
number n ≥ 1 such that either gang−1 = an or gang−1 = a−n. The first case is
equivalent to g ∈ H and the second case is equivalent to g ∈ G \ H. To use lemma 3
we need to verify that number of double cosets of H modulo A is infinite. Suppose the
contrary. Then H = AFA for some finite F ⊂ G and therefore, H is finitely generated.
Since G is not finitely generated, we can choose b ∈ G \ H and c ∈ G \ 〈H ∪ {b}〉.
Hence, the elements b, c, bc belong to G \ H. Since banb−1 = a−n and canc−1 = a−n,
(bc)an(bc)−1 = bcanc−1b−1 = ba−nb−1 = an, a contradiction.

Proof of theorem 3. If G′ is finite, apply Corollary of Lemma 3. So, let G′ is infinite.
If G′ is periodic, then by Theorem 1, G′ is locally finite and then G is locally finite. So,
let G′ is non-periodic. By Theorem 1, every finitely generated subgroup of G′ is almost
cyclic. Then by Lemma 5, G′ is infinite almost cyclic and so by Lemma 4, G is almost
cyclic.

Remark 1. A. Khelif has recently supplemented Theorem 3 proving that if G is a group
with infinite G′ and non-periodic G/G′, then G is not assymetrically resolvable. From
Theorem 3 and Khelif’s result it follows that, as in the Abelian case, every assymetrically
resolvable group is either almost cyclic or countable locally finite.

Remark 2. As distinguished from the Abelian case, among groups with finitely many
elements of order 2 which are not assymetrically resolvable, there are both countable
locally finite groups and almost cyclic groups [7].

the electronic journal of combinatorics 10 (2003), #R28 7



References

[1] T. Banakh, O. Verbitsky and Y. Vorobets. A Ramsey treatment of symmetry.
Electron. J. Comb. 7 (2000), Research paper R52, 25 p.

[2] T. Banakh and I. Protasov. Symmetry and colorings: some results and open prob-
lems. Voprosy Algebry - 17, No 3 (6) (Gomel, 2001), 4-15.

[3] H. Bass. The degree of polynomial growth of finitely generated nilpotent groups.
Proc. London Math. Soc. (4) 25 (1972), 603-614.

[4] W. Comfort and J. van Mill. Groups with only resolvable group topologies. Proc.
Amer. Math. Soc. 120 (1994), 687-696.

[5] R. Graham, B. Rothschild and J. Spencer. Ramsey Theory. Wiley, New York,
1990, 196 p.

[6] M. Gromov. Groups of polynomial growth and expanding maps. Publ. Math.
INES 53 (1981), 53-73.

[7] Y. Gryshko. Symmetric subsets and colorings of groups. Ph.D. dissertation, Kyiv
Taras Shevchenko University (2002), 118 p.

[8] E. Hewitt. A problem of set-theoretic topology. Duke Math. J. 10 (1943), 309-333.
[9] M. Kargapolov. On a problem of O. Ju. Smidt. Sib. Mat.Zh. 4 (1963), 232-235

(Russian).
[10] I. Protasov. Asymmetrically resolvable Abelian groups. Math. Notes 59 (1996),

336-338; translation from Mat. Zametki 59 (1996), 468-471 (Russian).
[11] I. Protasov. Absolute resolvability of rational group. Ukr. Math. J. 48 (1996),

1953-1956; translation from Ukr. Mat. Zh. 48 (1996), 1704-1707 (Russian).
[12] I. Protasov. Monochrome symmetric subsets in colorings of Abelian groups. Dop.

NAN Ukrainy No 1 (1999), 54-57.
[13] Y. Zelenyuk. Partitions of groups into absolutely dense subsets. Math. Notes 67

(2000), 599-602; translation from Mat. Zametki 67 (2000), 706-711 (Russian).

the electronic journal of combinatorics 10 (2003), #R28 8


