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Abstract

Consider the problem of finding a large induced acyclic subgraph of a given
simple digraph D = (V,E). The decision version of this problem is NP -complete
and its optimization is not likely to be approximable within a ratio of O(nε) for
some ε > 0. We study this problem when D is a random instance. We show that,
almost surely, any maximal solution is within an o(ln n) factor from the optimal
one. In addition, except when D is very sparse (having n1+o(1) edges), this ratio is
in fact O(1). Thus, the optimal solution can be approximated in a much better way
over random instances.

1 Introduction

Given a simple digraph D = (V, E), we want to find a V ′ ⊆ V of as large size (|V ′|) as
possible such that the induced subgraph D[V ′] is acyclic. By ”simple”, we mean that there
is at most one arc (directed edge) between any unordered pair of vertices. Self-loops are
not allowed. Throughout, we mean vertex induced subgraphs whenever we use the term
subgraphs. The decision version (Is |V ′| ≥ k ?) is NP -complete [3]. The optimization
version is not polynomial-time approximable even within a multiplicative ratio of O(nε)
for some ε > 0 unless P = NP [4].

We show that if D is a random digraph (obtained by randomly choosing the arcs),
then, the size of any maximal solution is, almost surely, within a ratio of o(ln n) from the
optimal solution. Except for very sparse random digraphs (obtained by choosing the arcs
with probability n−1+o(1)), the ratio is in fact O(1). Thus, for random digraphs, one can
obtain a significant improvement in the quality of approximation.

We assume that V = {1, . . . , n} for the rest of the paper. Also, p ≤ 0.5 is a positive
real number. The random model is defined in the following way.
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Model D ∈ D(n, p) : Choose each undirected edge {u, v} joining elements of V
independently with probability 2p. For each chosen {u, v}, orient it in any of the two
directions {u → v, v → u} in D with equal probability (=0.5). The choices of arcs are
independent for different chosen unordered pairs. This results in a simple digraph where
each arc is chosen with probability p. When p = 0.5, there is an arc between every pair
of vertices resulting in a random tournament.

In the subsequent sections, we analyze this model for finding large acyclic subgraphs
and the size of an optimum solution.

2 Analysis of D(n, p)

For an arbitrary H , let mas(H) denote the size of a maximum acyclic subgraph of H .
The following two theorems provide respectively an upper and a lower bound on the value
of mas(D) for D ∈ D(n, p).

Theorem 2.1 Let D ∈ D(n, p), p ≤ 0.5. Then, mas(D) ≤ min
(
d 2 (ln n)
− ln(1−p)

e + 1, n
)

al-
most surely.

Proof : Without loss of generality, we can assume that d 2 (ln n)
− ln(1−p)

e + 1 < n. Define

b = d 2 (lnn)

− ln(1 − p)
e + 2.

It is sufficient to prove that, almost surely, the subgraph induced by any A of size b is not
acyclic. Fix such a subset A. Let σ : {1, . . . , b} → A denote any linear ordering of the
vertices of A. It is well-known that D[A] is acyclic if and only if there exists an ordering
σ such that each arc in D[A] is of the form σ(i) → σ(j) for some 1 ≤ i < j ≤ b. Hence,
using Stirling’s formula for factorials,

Pr( D[A] is acyclic ) ≤ b! (1 − p)(
b
2)

=

(
b

e

)b

(1 − p)(
b
2)

√
2πb [1 + o(1)]

= exp

(
b

(
ln

(
b

e

)
+

(b − 1) ln(1 − p)

2

)) √
2πb [1 + o(1)].

We have
(b − 1)

2
≥ (ln n)

− ln(1 − p)
+ 0.5

and hence
(b − 1) ln(1 − p)

2
≤ −(ln n) + 0.5 ln(1 − p).

Employing these inequalities, we get

Pr( D[A] is acyclic ) ≤ exp

(
b

(
ln

(
b

e

)
− (ln n) + 0.5 ln(1 − p)

)) √
2πb [1 + o(1)].
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This bound holds for any fixed A of size b. There are(
n

b

)
≤

(
en

b

)b

= exp
(
b ln

(
en

b

))

sets of size b. This gives us

Pr( ∃A, |A| = b, D[A] is acyclic ) ≤
√

2πn exp (0.5 b (ln(1 − p)))

≤
√

2πn exp (−(ln n) + ln(1 − p))

= O
(
n−0.5

)
.

This establishes that, almost surely, mas(D) ≤ b.

Corollary 2.1 If D is a random tournament (p = 0.5), then mas(D) ≤ d2 (ln n)
ln 2

e + 1 ≤
2.886 (ln n) almost surely.

Let G(n, p) denote the standard random model for simple undirected graphs defined by
including each of the possible edges independently with probability p. The independence
number (α(G)) (maximum size of an independent set in G) has been well-studied for this
model and very surprising concentration results [1, 2] have been obtained for this number.
The two quantities mas(D) (D ∈ D(n, p)) and α(G) (G ∈ G(n, p)) are related as shown
below.

Lemma 2.1 For any positive integer b,

Pr( mas(D) ≥ b ) ≥ Pr( α(G) ≥ b ). (1)

Proof : Given a linear ordering σ of vertices of D and a subset A of size b, we say that
D[A] is consistent with σ if each arc in D[A] is of the form σ(i) → σ(j) for some i < j.

Let τ denote an arbitrary but fixed ordering of V . Once we fix τ , the spanning
subgraph of D formed by arcs of the form τ(j) → τ(i) (j > i) is having the same
distribution as G(n, p). Hence, for any A, the event of D[A] being consistent with τ is
equivalent to the event of A being independent in G(n, p). Hence,

Pr( mas(D) ≥ b ) = Pr( ∃A, |A| = b, D[A] is acyclic )

= Pr( ∃A, |A| = b, ∃σ, D[A] is consistent with σ )

= Pr( ∃σ, ∃A, |A| = b, D[A] is consistent with σ )

≥ Pr( ∃A, |A| = b, D[A] is consistent with τ )

= Pr( α(G) ≥ b ).

Hence it is natural that we have a bigger upper bound for mas(D) than we have for α(G).
We use the inequality (1) to get a lower bound on mas(D) when p = o(1). Frieze [2]
derives a lower bound on α(G) when p = o(1). Applying this and using (1), we get
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Theorem 2.2 Write w = np. For each fixed ε > 0, there exists a sufficiently large
positive constant wε such that : If p is such that wε ≤ w = o(n), then, almost surely,

mas(D) ≥
(

2

p

)
(ln w − ln ln w − ln 2 + 1 − 0.5ε).

3 Finding an acyclic subgraph

We next analyze the following simple heuristic and estimate the size of its solution. The
heuristic always outputs a maximal solution. In the description, we use D′ both to denote
a set of vertices and also to denote the subgraph induced by it.

MaximalAcyclic(D = (V,E))

0. If V = ∅, return V .
1. Pick an arbitrary u ∈ V .
2. Let D′ = D − ({u} ∪ {v : v → u ∈ E}).
3. Apply MaximalAcyclic(D′) to get A′.
4. Return A′ ∪ {u}.

The following two facts will be used later. For p = 0, we take the limits.

p

− ln(1 − p)
≤ 1 and

− ln(1 − p)

p
≤ 1.5 for 0 ≤ p ≤ 0.5. (2)

Theorem 3.1 Write p = w/n. For each fixed positive ε < 1, there exists a sufficiently
large positive constant wε such that : If D ∈ D(n, p) with p ≤ 0.5 and w ≥ wε, then, with

probability 1 − o(1), MaximalAcyclic(D) outputs a solution of size at least b ε (ln w)
− ln(1−p)

c.

Proof : Define L = b ε (ln w)
− ln(1−p)

c. Using (2), it follows that L < n/2. We prove the theorem

for sufficiently large values of n. Define α = 0.5. For any A ⊆ V , let X(A) be defined by

X(A) =̇ { v ∈ V − A | v → u 6∈ E(D), ∀u ∈ A }.
For i ≥ 1, consider the event

Ei : ∃A ⊆ V, |A| = i, |X(A)| < (1 − α)(n − i)(1 − p)i.

We will later prove that

Pr(Ei) = o(n−1), ∀i : 1 ≤ i ≤ L. (3)

Hence, with probability 1 − o(1), none of the events Ei, i ≤ L, holds.
The function f(i) = (1− α)(n− i)(1− p)i is a decreasing function of i. Hence, for all

i ≤ L,

f(i) ≥ f(L) ≥ (1 − α)(n − L)e−ε(ln w) ≥ n

4wε
.
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Given that (3) is true, for any i ≤ L, the following holds with probability 1 − o(1) :
When we come to the recursive call of MaximalAcyclic with recursion depth i + 1, we
have already chosen i vertices to be part of the final solution and these i vertices induce
an acyclic subgraph. The input graph for this recursive call has at least f(i) ≥ f(L) ≥
n/4wε vertices. Any of these can be added to the partial solution (of i vertices) already
constructed without introducing any cycle. This guarantees that the final solution (built
in this way) has at least L vertices in it with probability 1 − o(1).

To prove (3), consider any i ≤ L and any A ⊆ V with |A| = i. For any v ∈ V − A,

Pr( ∀u ∈ A : v → u 6∈ D ) = (1 − p)i.

Since arcs going from V − A to A are independent, by Chernoff-Hoeffding bounds (see
Chapter 4 of [5]), we have

Pr( |X(A)| < f(i) ) ≤ e−α2(n−i)(1−p)i/2.

Hence

Pr( Ei ) ≤
(
n

i

)
e−α2(n−i)(1−p)i/2.

Let g(i) denote the term coming to the right of ’≤’. g(i) achieves its maximum (for our

range of i) at i = L. This follows from (a) L ≤ n/2 and hence
(

n
i

)
is maximum at i = L,

(b) (n − i)(1 − p)i achieves its minimum at i = L. Hence, to prove (3), it is enough to
show that g(L) = o(n−1). This is true since

L ≥ 1

p

(
ε (ln w)p

− ln(1 − p)

)
− 1 and

g(L) ≤
(

en

L

)L

e−α2(n−L)(1−p)L/2

≤ wLe−α2n(1−p)L/4 by using (2) and choosing sufficiently large wε

≤ eL(ln w)−α2n/4wε

.

Since ε < 1 is a constant, w ≥ wε is sufficiently large and using (2),

α2n/4wε − L(ln w) ≥ n

16wε
− nε(ln w)2

w

(
p

− ln(1 − p)

)
= Ω

(
n

wε

)
= Ω

(
n1−ε

)
.

Hence (3) follows.

Note : (i) The proof actually shows that, almost surely, the size of any maximal acyclic

subgraph is at least b ε (ln w)
− ln(1−p)

c. (ii) The failure probability of the algorithm is exponen-

tially small, that is, O(e−nγ
) for some constant γ > 0.

Combining Theorems 2.1 and 3.1, we get
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Corollary 3.1 Let D ∈ D(n, p) with p = w(n)/n where w(n) → ∞ is arbitrary. Then,
given D ∈ D(n, p), with probability 1 − o(1), MaximalAcyclic(D) outputs a solution
whose size is within a multiplicative ratio of O((lnn)/(ln np)) = o(lnn) from the optimal
solution. For p ≥ n−1+a for any fixed a > 0, the ratio is O(1). For p = 0.5, the ratio is
≤ 2 + δ for any fixed δ > 0.

4 Conclusions

The guarantee stated in Theorem 3.1 is not tight. For example, after building a solution
of guaranteed size, the remaining graph still has at least n

4wε vertices in it. By working the
analysis till D′ becomes empty, one can possibly improve the guarantee to b ln w

− ln(1−p)
c. But

it seems unlikely that one can obtain a guarantee better than this. It would be of interest
to design and analyze heuristics which actually find solutions better than the guarantee
given in Theorem 3.1. As a beginning, the following problem could be looked at.
Problem : Design a polynomial time algorithm (deterministic or randomized) which,
given D ∈ D(n, p), almost surely (over the input) finds an induced subgraph A of size at

least b (1+ε) lnw
− ln(1−p)

c for some positive constant ε.
However, it is possible that solving this problem might be difficult. A similar problem

of designing a polynomial time algorithm for finding (given a G ∈ G(n, 1/2)) an indepen-
dent set of size at least (1 + ε) times the size guaranteed by the greedy heuristic remains
unsolved for more than two decades.

Similarly, the upper bound of Theorem 2.1 does not seem tight and there is scope
for asymptotic improvement of that bound, particularly for very small p, that is, for p =
n−1+o(1). We conjecture that even for such small p, almost surely, mas(D) = Θ( ln w

− ln(1−p)
).

In fact, we believe in the following stronger statement.
Conjecture : There exist positive constants c1 and c2 such that : If p = w/n with

c1n
−1 ≤ p ≤ 0.5 and D ∈ D(n, p), then, almost surely, mas(D) = c2(ln w)

− ln(1−p)
[1±o(1)]. Here,

o(1) is with respect to n.
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