
BOTTOM SCHUR FUNCTIONS

Peter Clifford
CNRI, Dublin Institute of Technology, Ireland

peterc@alum.mit.edu

Richard P. Stanley 1

Department of Mathematics, Massachusetts Institute of Technology
Cambridge, MA 02139, USA

rstan@math.mit.edu

Submitted: Nov 19, 2003; Accepted: Aug 27, 2004; Published: Sep 24, 2004
MR Subject Classifications: 05E05, 05E10

Abstract

We give a basis for the space spanned by the sum ŝλ of the lowest degree terms
in the expansion of the Schur symmetric functions sλ in terms of the power sum
symmetric functions pµ, where deg(pi) = 1. These lowest degree terms correspond
to minimal border strip tableaux of λ. The dimension of the space spanned by ŝλ,
where λ is a partition of n, is equal to the number of partitions of n into parts
differing by at least 2. Applying the Rogers-Ramanujan identity, the generating
function also counts the number of partitions of n into parts 5k + 1 and 5k − 1.

We also show that a symmetric function closely related to ŝλ has the same coef-
ficients when expanded in terms of power sums or augmented monomial symmetric
functions.

1 Introduction

Let λ = (λ1, λ2, . . .) be a partition of the integer n, i.e., λ1 > λ2 > · · · > 0 and
∑

λi = n.
The length `(λ) of a partition λ is the number of nonzero parts of λ. The (Durfee or
Frobenius) rank of λ, denoted rank(λ), is the length of the main diagonal of the diagram
of λ, or equivalently, the largest integer i for which λi > i. The rank of λ is the least
integer r such that λ is a disjoint union of r border strips (defined below).

Nazarov and Tarasov [1, Sect. 1], in connection with tensor products of Yangian
modules, defined a generalization of rank to skew partitions (or skew diagrams) λ/µ. The
paper [3, Proposition 2.2] gives several simple equivalent definitions of rank(λ/µ). One of
the definitions is that rank(λ/µ) is the least integer r such that λ/µ is a disjoint union
of r border strips. It develops a general theory of minimal border strip tableaux of skew
shapes, introducing the concepts of the snake sequence and the interval set of a skew shape
λ/µ. These tools are used to count the number of minimal border strip decompositions
and minimal border strip tableaux of λ/µ. In particular, the paper [3] gives an explicit
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combinatorial formula for the coefficients of the pν , where `(ν) = rank(λ/µ), which appear
in the expansion of sλ/µ.

The paper [3] considered a degree operator deg(pν) = `(ν) and defined the bottom
Schur functions to be the sum of the terms of lowest degree which appear in the expansion
of sλ/µ as a linear combination of the pν . We study the bottom Schur functions in detail
when µ = ∅. In particular, in Section 4 we give a basis for the vector space they span.

In Section 7 we show that when we substitute ipi for pi in the expansion of a bottom
Schur function in terms of power sums, then the resulting symmetric function has the same
coefficients when expanded in terms of power sums or augmented monomial symmetric
functions.

2 Definitions

In general we follow [2, Ch. 7] for notation and terminology involving symmetric functions.
Let λ be a partition of n with Frobenius rank k. Recall that k is the length of the
main diagonal of the diagram of λ, or equivalently, the largest integer i for which λi >
i. Let mi(λ) = #{j : λj = i}, the number of parts of λ equal to i. Define zλ =
1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · · . A border strip (or rim hook or ribbon) is a connected skew
shape with no 2 × 2 square. An example is 75443/4332 whose diagram is illustrated in
Figure 1. Define the height ht(B) of a border strip B to be one less than its number of
rows.

Figure 1: The border strip 75443/4332

Let α = (α1, α2, . . .) be a weak composition of n, i.e., αi > 0 and
∑

αi = n. Define a
border strip tableau of shape λ and type α to be an assignment of positive integers to the
squares of λ such that:

(a) every row and column is weakly increasing,

(b) the integer i appears αi times, and

(c) the set of squares occupied by i forms a border strip.

Equivalently, one may think of a border-strip tableau as a sequence ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆
λr ⊆ λ of partitions such that each skew shape λi/λi+1 is a border-strip of size αi. For
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Figure 2: A border strip tableau of 53321 of type (3, 1, 3, 0, 7)

instance, Figure 2 shows a border strip tableau of 53321 of type (3, 1, 3, 0, 7). It is easy
to see (in this nonskew case) that the smallest number of strips in a border-strip tableau
is rank(λ). Define the height ht(T ) of a border-strip tableau T to be

ht(T ) = ht(B1) + ht(B2) + · · · + ht(Bk)

where B1, . . . , Bk are the (nonempty) border strips appearing in T . In the example we
have ht(T ) = 1 + 0 + 2 + 3 = 6. Now we can define

χλ(ν) =
∑

T

(−1)ht(T ),

summed over all border-strip tableaux of shape λ and type ν. Since there are at least
rank(λ) strips in every tableau, we have that χλ(ν) = 0 if `(ν) < rank(λ). The numbers
χλ(ν) for λ, ν ` n are the values of the irreducible characters χλ of the symmetric group
Sn.

Finally we can express the Schur function sλ in terms of power sums pν , viz.,

sλ =
∑

ν

χλ(ν)
pν

zν
. (2.1)

Define deg(pi) = 1, so deg(pν) = `(ν). The bottom Schur function ŝλ is defined to be
the lowest degree part of sλ, so

ŝλ =
∑

ν:`(ν)=rank(λ)

χλ(ν)
pν

zν
.

Also write p̃i = pi

i
. For instance,

s321 =
1

45
p6

1 −
1

9
p3p

3
1 +

1

5
p1p5 − 1

9
p2

3.

Hence

ŝ321 =
1

5
p1p5 − 1

9
p2

3

= p̃1p̃5 − p̃2
3.
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We identify a partition λ with its diagram

λ = {(i, j) : 1 6 j 6 λi}.
Let e be an edge of the lower envelope of λ, i.e., no square of λ has e as its upper or
left-hand edge. We will define a certain subset Se of squares of λ, called a snake. If e is
horizontal and (i, j) is the square of λ having e as its lower edge, define

Se = (λ) ∩ {(i, j), (i− 1, j), (i− 1, j − 1),

(i − 2, j − 1), (i − 2, j − 2), . . .}. (2.2)

If e is vertical and (i, j) is the square of λ having e as its right-hand edge, define

Se = (λ) ∩ {(i, j), (i, j − 1), (i− 1, j − 1),

(i − 1, j − 2), (i − 2, j − 2), . . .}. (2.3)

In Figure 3 the nonempty snakes of the shape 533322 are shown with dashed paths through
their squares, with a single bullet in the two snakes with just one square. The length `(S)
of a snake S is one fewer than its number of squares; a snake of length i − 1 (so with i
squares) is call an i-snake. Call a snake of even length a left snake if e is horizontal and
a right snake if e is vertical. It is clear that the snakes are linearly ordered from lower
left to upper right. In this linear ordering, replace a left snake with the symbol L, a right
snake with R, and a snake of odd length with O. The resulting sequence (which does not
determine λ) is called the snake sequence of λ, denoted SS(λ). For instance, from Figure
3 we see that

SS(533322) = LLOOLORROOR.

Figure 3: Snakes for the shape 533322

Lemma 2.1. The L’s in the snake sequence correspond exactly to horizontal edges of the
lower envelope of λ which are below the line x + y = 0. The R’s correspond exactly to
vertical edges of the lower envelope of λ which are above the line x + y = 0. All other
edges of the lower envelope of λ are labelled by O’s.
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Clearly we could have defined the snake sequence this way; however, the definitions
above also hold for skew shapes. Lemma 2.1 only holds when λ is a straight (i.e., nonskew)
shape.

Proof. Let e be an edge of the lower envelope of λ below the line x + y = 0. Let (i, j) be
the square of λ having e as its lower edge. The last square in the snake is some square in
the first column of λ. So if e is horizontal then the last square is (i − j + 1, 1), the snake
has an odd number of squares and so has even length, and is labelled by L. If e is vertical
then the last square is (i − j, 1), the snake has an even number of squares, so has odd
length, and is labelled by R. The case when e is above x + y = 0 is proved similarly.

Corollary 2.2. In the snake sequence of λ, the L’s occur strictly to the left of the R’s.

The number of horizontal edges of the lower envelope of λ which are below the line
x + y = 0 equals the length of the main diagonal of the diagram of λ, which is the rank
of λ. Similarly the number of vertical edges of the lower envelope of λ which are above
the line x + y = 0 also equals the rank of λ. Henceforth we fix k = rank(λ).

Let SS(λ) = q1q2 · · · qm, and define an interval set of λ to be a collection I of k ordered
pairs,

I = {(u1, v1), . . . , (uk, vk)},
satisfying the following conditions:

(a) the ui’s and vi’s are all distinct integers,

(b) 1 6 ui < vi 6 m,

(c) qui
= L and qvi

= R.

Figure 4 illustrates the interval set {(1, 11), (2, 7), (5, 8)} of the shape 533322.

LLOOLORROOR
Figure 4: An interval set of the shape 533322

Given an interval set I = {(u1, v1), . . . , (uk, vk)}, define the crossing number c(I) to
be the number of crossings of I, i.e. the number of pairs (i, j) for which ui < uj < vi < vj .

Let T be a border strip tableau of shape λ. Recall that

ht(T ) =
∑
B

ht(B),

where B ranges over all border strips in T and ht(B) is one less than the number of rows
of B. Define z(λ) to be the height ht(T ) of a “greedy border strip tableau” T of shape λ
obtained by starting with λ and successively removing the largest possible border strip.
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(Although T may not be unique, the set of border strips appearing in T is unique, so
ht(T ) is well-defined.)

The connection between bottom Schur functions and interval sets was given by Stanley
[3, Theorem 5.2]:

ŝν = (−1)z(ν)
∑

I={(u1,v1),...,(uk,vk)}
(−1)c(I)

k∏
i=1

p̃vi−ui
,

where I ranges over all interval sets of ν.
For example the shape 321 has snake sequence LOLROR. There are two interval sets,

{(1, 4), (3, 6)} with crossing number 1, and {(1, 6), (3, 4)} with crossing number 0. So as
we saw before

ŝ321 = p̃1p̃5 − p̃2
3.

3 Bottom Schur Functions of straight shapes

Lemma 3.1. The lexicographic order on shapes ν whose length `(ν) equals their rank k is
equal to the reverse lexicographical order (with respect to the ordering L<R<O) on their
snake sequences.

Proof. Since `(ν) = k, the snake sequence begins with k L’s. If the length of the ith row
of ν is k + j, then there are j O’s to the left of the (k − i + 1)st R.

Denote the complete homogeneous symmetric functions by hλ. Recall that the Jacobi-
Trudi identity expresses the sλ’s in terms of the hµ’s:

sλ = det(hλi−i+j)
n
i,j=1,

where we define hi = 0 for i < 0. For example

s554421 = det




h5 h6 h7 h8 h9 h10

h4 h5 h6 h7 h8 h9

h2 h3 h4 h5 h6 h7

h1 h2 h3 h4 h5 h6

0 0 1 h1 h2 h3

0 0 0 0 1 h1




.

Since hn =
∑

λ`n
pλ

zλ
, the term of lowest degree (in p) in the expansion of a given hn

in terms of the pj is just pn

n
= p̃n. For a product hn1hn2 · · ·hnj

the term of lowest degree
in the expansion in terms of the pj is just p̃n1 p̃n2 · · · p̃nj

. So we have that ŝλ = terms
of lowest order in det(p̃λi−i+j)

n
i,j=1 (since the pλ are algebraically independent, and since
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det(hλi−i+j) = sλ 6= 0, this determinant will not vanish). For example

ŝ554421 = terms of lowest order in det




p̃5 p̃6 p̃7 p̃8 p̃9 p̃10

p̃4 p̃5 p̃6 p̃7 p̃8 p̃9

p̃2 p̃3 p̃4 p̃5 p̃6 p̃7

p̃1 p̃2 p̃3 p̃4 p̃5 p̃6

0 0 1 p̃1 p̃2 p̃3

0 0 0 0 1 p̃1




.

Since p0 = 1, the terms of lowest order are those which contain the most number of 1’s.
Row i of the matrix will have a 1 in position (i, j) if λi − i + j = 0, i.e. if λi < i (this

shows that the number of rows of JTλ which do not contain a 1 is another definition of
rank(λ) [3, Prop. 2.2]).

Let JT ∗
p be the matrix obtained from the original Jacobi-Trudi matrix by removing

every row and column which contains a 1 and replacing the hi with p̃i. We show below
that this matrix is not singular and so we have

ŝλ = det JT ∗
p .

For example

ŝ554421 = det




p̃5 p̃6 p̃8 p̃10

p̃4 p̃5 p̃7 p̃9

p̃2 p̃3 p̃5 p̃7

p̃1 p̃2 p̃4 p̃6


 .

Any minor of the Jacobi-Trudi matrix for a shape λ is the Jacobi-Trudi matrix for
some skew shape µ/σ. For let JT ∗ be some minor of size m of some Jacobi-Trudi matrix
JT . If the entry in position (i, j) is hx put jt∗i,j = x. Now we can set

σi = jt∗1,m − jt∗1,i − m + i,

and
µi = jt∗i,i + σi.

Again note that since the pλ are algebraically independent and det JT ∗ = sµ/σ 6= 0, we
have det JT ∗

p 6= 0.
In our running example, we have σ1 = 10 − 5 − 4 + 1 = 2, σ2 = 10 − 6 − 4 + 2 =

2, σ3 = 10 − 8 − 4 + 3 = 1 and σ4 = 10 − 10 − 4 + 4 = 0. Hence σ = (2210). Also
µ1 = 5 + 2, µ2 = 5 + 2, µ3 = 5 + 1 and µ4 = 6 + 0. Thus µ = (7766). Therefore we have
that ŝ554421 equals the determinant of the Jacobi-Trudi matrix of 7766/2210 with the h’s
replaced by p̃’s.

Lemma 3.2. If the skew shape µ/σ has the Jacobi-Trudi matrix JT ∗ obtained by removing
all rows and columns with a 1 from a Jacobi-Trudi matrix JT of a shape λ with rank k,
then µ/σ contains a square of size k.
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The rank of 554421 is 4, and the diagram of 7766/2210 does indeed contain a square
of size 4:

Proof. We give a proof due to Christine Bessenrodt, greatly improving our original proof.
Define µ′

i = `(λ)−k +λi (i = 1, . . . , k) and σ′
i = #{s|λs 6 k− i} (i = 1, . . . , k). We give

a diagrammatic definition of µ′ and σ′ which also illustrates that the skew diagram µ′/σ′

contains a square of size k. Consider λ as a k × k square with two partitions α and β
glued to it, i.e. λ = (k + β1, . . . , k + βk, α1, . . . , α`(λ)−k). Flip α over its anti-diagonal and
then glue the bottom right corner of the result to the bottom left corner of the square.
The final diagram is the skew diagram of µ′/σ′. We show that µ = µ′ and σ = σ′.

The k rows of JT ∗ are contained in the first k rows of JT , so µi = λi + c for some
constant c. The last column of JT does not have a 1 in it, so it will not be removed, and
its first k entries will be the last column of JT ∗. Hence jt∗1,k = jt1,`(λ) = λ1 + `(λ) − 1.
Since jt∗1,k = µ1 − σk + k − 1, we have µi = `(λ) − k + λi = µ′

i.
The first k entries of the last column of JT are retained. Then we remove the next

#{s|λs = 1} columns to its left, do not remove the next column, remove the next #{s|λs =
2} columns to the left, and so on. Formally we have jt∗1,k−j = jt∗1,k−j+1−1−#{s|λs = j}.
Combining this with σi = jt∗1,k − jt∗1,i − k + i gives us σi = #{s|λs 6 k − i} = σ′

i.

4 The space spanned by the bottom Schur functions

Before we use the above results to give a basis for the space spanned by the bottom Schur
functions, we must first recall some classical tableaux theory.

If λ/µ is a skew shape, then a standard Young tableau (SYT) of shape λ/µ is a labelling
of the squares of λ/µ with the numbers 1, 2, . . . , n, each number appearing once, so that
every row and column is increasing. A semistandard Young tableau (SSYT) of shape λ/µ
is a labelling of the squares of λ/µ with positive integers that is weakly increasing in every
row and strictly increasing in every column. We say that T has type α = (α1, α2, . . .) if T
has αi parts equal to i.

1

2

3

4

5 6

7 8 9

1 1 3 3

2 4 4 4

5

SYT SSYT

Now we define an operation (of Schützenberger) on standard Young tableaux called a
jeu de taquin slide. Given a skew shape λ/µ, consider the squares b0 that can be added to
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λ/µ, so that b0 shares at least one edge with λ/µ, and {b0} ∪ λ/µ is a valid skew shape.
Suppose that b0 shares a lower or right edge with λ/µ (the other situation is completely
analogous). There is at least one square b1 in λ/µ that is adjacent to b0; if there are
two such squares, then let b1 be the one with a smaller entry. Move the entry occupying
b1 into b0. Then repeat this procedure, starting at b1. The resulting tableau will be a
standard Young tableau. Analogously if b0 shares an upper or left edge, the operation is
the same except we let b1 be the square with the bigger entry from two possibilities. For
example we illustrate both situations in Figure 5; the tableau on the right results from
playing jeu de taquin beginning at the square marked by a bullet on the tableau on the
left (and vice versa).

1

2

3

4

5 6

7 8 9

1 5 6

2 3 8 9

4 7

Figure 5: Jeu de taquin slides

Two tableaux T and T ′ are called jeu de taquin equivalent if one can be obtained from
another by a sequence of jeu de taquin slides. Given an SYT T of shape λ/µ, there is
exactly one SYT P of straight shape, denoted jdt(T ), that is jeu de taquin equivalent to
T [2, Thm. A1.2.4].

The reading word of a (semi)standard Young tableau is the sequence of entries of T
obtained by concatenating the rows of T bottom to top. For example, the tableau on the
left in Figure 5 has the reading word 472389156. The reverse reading word of a tableau
is simply the reading word read backwards.

A lattice permutation is a sequence a1a2 · · ·an such that in any initial factor a1a2 · · ·aj ,
the number of i’s is at least as great as the number of i + 1’s (for all i). For example
123112213 is a lattice permutation.

The Littlewood-Richardson coefficients cλ
µν are the coefficients in the expansion of a

skew Schur function in the basis of Schur functions:

sλ/µ =
∑

ν

cλ
µνsν .

The Littlewood-Richardson rule is a combinatorial description of the coefficients cλ
µν . We

will use two different versions of the rule.

Theorem 4.1 (Schützenberger, Thomas). Fix an SYT P of shape ν. The Littlewood-
Richardson coefficient cλ

µν is equal to the number of SYT of shape λ/µ that are jeu de
taquin equivalent to P .

For example, let λ = (5, 3, 3, 1), µ = (3, 1), and ν = (3, 3, 2). Consider the tableau P of
shape ν shown above. There are exactly two SYTs T of shape λ/µ such that jdt(T ) = P ,
namely,
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P =

1 2 3

4 5 6

7 8

2 3

1 6

4 5 8

7

2 3

5 6

1 7 8

4

and

Theorem 4.2 (Schützenberger, Thomas). The Littlewood-Richardson coefficient cλ
µν

is equal to the number of semistandard Young tableaux of shape λ/µ and type ν whose
reverse reading word is a lattice permutation.

For example, with λ = (5, 3, 3, 1), µ = (3, 1), and ν = (3, 3, 2) as above, there are
exactly two SSYTs T of shape λ/µ and type ν whose reverse reading word is a lattice
permutation:

1 1

1 2

2 2 3

3

1 1

2 2

1 3 3

2

Now we have enough machinery to state and prove this section’s main theorem.

Theorem 4.3. Fix n and k. The set {ŝν : ν ` n, rank(ν) = k and `(ν) = k} is a basis
for the space spanQ{ŝλ : λ ` n and rank(λ) = k}.

For example if n = 12 and k = 3, we have that {ŝ633, ŝ543, ŝ444} is a basis for
spanQ{ŝ633, ŝ543, ŝ5331, ŝ444, ŝ4431, ŝ4332, ŝ43311, ŝ3333, ŝ33321, ŝ333111}.
Proof. First we prove that the ŝν are linearly independent. We show that given any such
ν, there is some term in the expansion of ŝν which does not occur in the expansion of any
ŝν′ for ν ′ lexicographically less than ν.

From [3, Theorem 5.2] we have that

ŝν = (−1)z(ν)
∑

I={(u1,v1),...,(uk,vk)}
(−1)c(I)

k∏
i=1

p̃vi−ui
,

where I ranges over all interval sets of ν. Let t = ±pj1>···>jk
be the term corresponding

to the noncrossing interval set I of the snake sequence of ν. We claim that t does not
occur in the expansion of any ŝν′ for ν ′ lexicographically less than ν. Assume by way of
contradiction that it does occur for some such ν ′ with corresponding interval set I ′.
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Assume inductively that the first i−1 L’s are matched with the last i−1 R’s without
crossings in I ′. Let rj (and r′j respectively) be the position of the jth R in the snake
sequence of ν (ν ′ respectively). By Lemma 3.1 rj > r′j. But the length of the interval
matching the ith R from the right in I is rk−i+1 − i. So for there to be an interval of this
length in I ′ we must match the ith R from the right with the ith L; this interval has no
crossing. Proceeding by induction we see that I ′ is also noncrossing, and so must equal
I. This shows that the snake sequences corresponding to ν and ν ′ are equal. Identical
snake sequences and equal lengths guarantee that ν = ν ′, a contradiction.

Now we prove that the ŝν span the space of all ŝλ. We have shown that ŝλ = ŝµ/σ.
Expand sµ/σ in terms of (straight) Schur functions using the Littlewood Richardson rule

sµ/σ =
∑

ν

cµ
σνsν .

We need to show that cµ
σν = 0 unless ν is of rank k and length k.

Fix an SYT P of shape ν. The Littlewood-Richardson coefficient cµ
σν is equal to the

number of SYT of shape µ/σ that are jeu de taquin equivalent to P. Playing jeu de taquin
on a straight-shape tableau of shape ν can only increase the length of the shape. Hence
if cµ

σν 6= 0, `(ν) 6 `(µ) = k.
The Littlewood-Richardson coefficient cµ

σν is also equal to the number of semistandard
Young tableaux of shape µ/σ and type ν whose reverse reading word is a lattice permu-
tation. But we know that µ/σ contains a square of size k (by Lemma 3.2). Therefore the
bottom k boxes of this square must have labels at least k. Since `(ν) 6 k, the labels are
exactly k. So νk > k, i.e. rank(ν) > k. Since `(ν) 6 k, we must have rank(ν) = `(ν) = k.

Taking terms of lowest degree on both sides of

sµ/σ =
∑

ν

cµ
σνsν ,

we have that
ŝλ = ŝµ/σ =

∑
ν

cµ
σν ŝν ,

where the sum is over ν of length k and rank k as required.

5 Dimension of the space spanned by the bottom

Schur functions

Let p6k(n) be the number of partitions of n with length at most k, and define p6k(0) = 1.
A partition ν ` n of length k and rank k decomposes into a k × k square of boxes and a
partition of n − k2 of length at most k.

Corollary 5.1. The dimension of the space of bottom Schur functions
spanQ{ŝλ : λ ` n} is

b√nc∑
k=1

p6k(n − k2).
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For example, the first 27 terms in this sequence (beginning with n = 1) are

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79.

There is a nice bijection between the above partitions and the set of partitions {λ ` n :
λi − λi+1 > 2}. For, given a k and a partition λ∗ ` n − k2 with fewer than k parts, we
can set λi = λ∗

i + 2k − 2i + 1. This gives a partition of n with k rows with λi − λi+1 > 2
as required. This is clearly a bijection.

This classical sequence also gives the number of partitions of n into parts congruent
to 1 or 4 mod 5; equivalently these numbers are the coefficients in the expansion of the
Rogers-Ramanujan identity

1 +
∑
n>1

tn
2

(1 − t)(1 − t2) · · · (1 − tn)
=

∏
n>1

1

(1 − t5n−1)(1 − t5n−4)

6 2-bottom Schur functions

We have shown that a basis for the space spanned by the bottom Schur functions consists
of the ŝλ where `(λ) 6 rank(λ). It is natural to define for fixed j > 1 the j-bottom Schur
function ŝj

λ to be the sum of those terms of degree at most rank(λ)+j−1 in the expansion
(2.1) (with deg pi = 1 as usual). When j = 2 we have verified (using Stembridge’s SF
package for Maple [4]) that for n 6 14 the dimension of the space spanned by {ŝ2

λ : λ ` n}
equals the number of λ ` n satisfying `(λ) 6 rank(λ) + 1. This suggests the following
conjecture.

Conjecture 6.1. A basis for the space spanned by the 2-bottom Schur functions consists
of all 2-bottom Schur functions ŝ2

λ, where λ is a partition of n satisfying `(λ) 6 rank(λ)+1.

However in the j = 3 case, the dimensions of the spaces spanned by the 3-bottom
Schur functions are 1, 2, 3, 4, 6, 9, 11, 15, 19, 24, 30, . . .. We have computed that the num-
bers of λ ` n satisfying `(λ) 6 rank(λ) + 2 are given by 1, 2, 3, 4, 5, 8, 10, 14, 17, 22, 27, . . ..
Unfortunately these sequences do not agree.

7 A condition satisfied by bottom Schur functions

We prove a surprising identity satisfied by a variant of the bottom Schur functions related
to their expansion in terms of power sum and monomial symmetric functions.

Fix a shape λ of rank k. Given an interval set I = {(u1, v1), . . . , (uk, vk)}, of λ and a
labelling of the intervals (α1, . . . , αk) such that αi ∈ P, define

xI =

k∏
i=1

xvi−ui
αi

.

Recall that c(I) is the number of crossings of the interval set I. Figure 6 shows a labelled
interval set of the shape 533322 with the snake sequence LLOOLORROOR. For this
interval set c(I) = 1 and for this labelling xI = x10

4 x5
2x

3
4 = x5

2x
13
4 .
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LLOOLORROOR
2 4

4

Figure 6: A labelled interval set of the shape 533322

Example 7.1. For the shape λ = (4, 4, 4) with snake sequence LLLORRR, Figure 7 de-
picts some of the labelled interval sets. In the top left we have (−1)c(I)xI = (−1)3x4

ax
4
ax

4
b =

−x8
ax

4
b . In the top right we have (−1)c(I)xI = (−1)2x5

ax
3
ax

4
b = x8

ax
4
b . In fact in every row

the term (−1)c(I)xI in the left column is exactly the negative of the corresponding term
(−1)c(I)xI in the right column.

L L L O R R R

L L L O R R R

a

a

b a b
a

a c
a

a
ac

c
a a

c

a
a

L L L O R R R

L L L O R R R L L L O R R R

L L L O R R R
Figure 7: Some labelled interval sets of the shape 444

Lemma 7.1. Fix a shape λ. Then
∑

(−1)c(I)xI = 0, where the sum is over all labelled
interval sets of λ with at least one label repeated.

Proof. We give a sign reversing involution on these labelled interval sets. Examine a
specific labelled interval set I. Since we are dealing with straight (non-skew) shapes, we
know by Corollary 2.2 that the snake sequence has all the L’s before any of the R’s, or
uk < v1. So any two intervals i and j (> i say) either intersect (ui < uj < vi < vj) or are
nested (ui < uj < vj < vi).

Let a be the smallest label which is repeated. The intervals in I are ordered by where
they start, so identifying the first two intervals i and j (> i) labelled by a is well-defined.

Simply change the interval (ui, vi) to (ui, vj) and the interval (uj, vj) to (uj, vi), while
preserving the label a on both. Where the intervals start remains unchanged, so these
intervals remain the first two intervals labelled by a. Hence this operation is an involution.
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Note that if the two intervals initially nested, they now intersect, and if they initially
intersected, they now nest. The parity of the number of crossings of these two with any
other interval is preserved under this operation. So the parity of the total number of
crossings has changed, and this involution is sign reversing. The rows of Figure 7 are
some examples of this involution (if a 6= c).

Thus given any labelled interval set with repeated labels, there is a unique labelled
interval set with one more (or fewer) crossings, and so the sum of all such terms (−1)c(I)xI

is zero.

Fix a shape λ. Recall that

ŝλ = (−1)z(λ)
∑

I={(u1,v1),...,(uk,vk)}
(−1)c(I)

k∏
i=1

p̃vi−ui
,

where I ranges over all interval sets of λ.
For another shape µ, define cµ to be the coefficient of p̃µ in the above sum, i.e.

cµ = (−1)z(λ)
∑
I

(−1)c(I),

where the sum is over all interval sets (of λ) of type µ.

Lemma 7.2. cµpµ = (−1)z(λ)
∑

(−1)c(I)xI , where the sum is over all labelled interval
sets of type µ.

Example 7.2. Consider as before the shape λ = (4, 4, 4) with snake sequence LLLORRR.
In particular, consider the interval set {(1, 7), (2, 5), (3, 6)} of type (6, 3, 3) labelled by
(a, b, c). This interval set is illustrated in Figure 8. If a = b = c then xI = x12

a and
the sum over all such labellings will give x12

1 + x12
2 + · · · = m(12). If a = b 6= c the

sum over all such labellings will give x6
1x

3
1x

3
2 + x6

1x
3
1x

3
3 + x6

2x
3
2x

3
1 + · · · = x9

1x
3
2 + x9

1x
3
3 +

x9
2x

3
1 + · · · = m93. Similarly if a = c 6= b we will get m93, and if b = c 6= a we will get

x6
1x

3
2x

3
2 + x6

2x
3
1x

3
1 + · · · = 2x6

1x
6
2 + · · · = 2m66. Finally if the three labels are all different,

the sum will give x6
1x

3
2x

3
3 + x6

1x
3
3x

3
2 + · · · = 2m633. So the sum over all such labellings is

m(12) + 2m66 + 2m93 + 2m633 = p633.

L L L O R R R
a

b c

Figure 8: A labelled interval set of the shape 444

Proof. We need to show that for every interval set I of type µ,
∑

xI = pµ, where the
sum is over all labellings of I. First note that the intervals can be ordered largest first
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and left to right among intervals of the same length. So the ith interval is well defined,
and has length µi.

By definition pµ = pµ1pµ2 · · · pµ`(µ)
= (xµ1

1 + xµ1

2 + · · · )(xµ2

1 + xµ2

2 + · · · ) · · · (xµ`(µ)

1 +

x
µ`(µ)

2 +· · · ). But if we expand this product into monomials xµ1

i1
xµ2

i2
· · ·xµ`(µ)

i`(µ)
, each monomial

corresponds uniquely to the labelling of I where the jth interval is labelled by ij, and so
occurs exactly once in

∑
xI as required.

The augmented monomial symmetric function m̃µ is defined by

m̃µ = m1(µ)!m2(µ)! · mµ,

where mµ denotes a monomial symmetric function.

Lemma 7.3. cµm̃µ = (−1)z(λ)
∑

(−1)c(I)xI , where the sum is over all labelled interval
sets of λ of type µ with no label repeated.

Note that we have already demonstrated this result in Example 7.2. Indeed for that
interval set when the labels were all different we saw that

∑
xI = 2m633.

Proof. Fix a specific interval set I of type µ. We need to show m̃µ =
∑

xI where the
sum is over all labellings with no label repeated. As before we can order the intervals
and say that the ith interval is labelled by αi. Note that if µj = µj+1, the two labellings
(α1, α2, . . . , αj , αj+1, . . .) and (α1, α2, . . . , αj+1, αj, . . .) both produce the same term xI =
xµ1

α1
xµ2

α2
· · · . So we have

∑
(α1,α2,...) xI =

∑
(β1,β2,...) m1(µ)!m2(µ)! · · ·xI where we impose

the condition that if µj = µj+1, then βj < βj+1. Recall that mµ =
∑

(β1,β2,...) xI by

definition. So we have m̃µ =
∑

xI
(α1,α2,...) as required.

Theorem 7.4. For each shape λ, write the bottom Schur function ŝλ =
∑

µ cµp̃µ. Then∑
µ cµpµ =

∑
µ cµm̃µ.

Example 7.3. For λ = (4, 4, 4) we have

ŝλ = −p̃642 + p̃633 + p̃552 − 2p̃543 + p̃444.

So our result states that

−p642 + p633 + p552 − 2p543 + p444 = −m642 + 2m633 + 2m552 − 2m543 + 6m444.

Proof. From Lemma 7.2 we have cµpµ = (−1)z(λ)
∑

(−1)c(I)xI , where the sum is over all
labelled interval sets of type µ. But by Lemma 7.1

(−1)z(λ)
∑

(−1)c(I)xI = 0

if we sum over all labelled interval sets with a repeated label, while by Lemma 7.3 we
have

(−1)z(λ)
∑

(−1)c(I)xI = cµm1(µ)!m2(µ)! · · ·mµ

if we sum over all labelled interval sets with no label repeated. So
∑

µ cµpµ =
∑

µ cµm̃µ.
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Let Γ denote the space of all symmetric functions f with rational coefficients such
that if f =

∑
µ cµp̃µ, then ∑

µ

cµpµ =
∑

µ

cµm̃µ.

Theorem 7.4 shows that ŝλ ∈ Γ. However, there are elements of Γ that are not linear
combinations of ŝλ’s, such as f = p̃511 − 3p̃421 + p̃331 + p̃322. Let R denote the transition
matrix from monomial symmetric functions to the power sums, i.e.,

pλ =
∑

µ

Rλµmµ.

Let D denote the diagonal matrix whose diagonal coincides with that of R, so

Dλλ = Rλλ =
∏
i>1

mi(λ)!.

It is easy to see that Γ = ker(R −D), the kernel (or null space) of R−D. Let Γn denote
the elements of Γ that are homogeneous of degree n, and let γn = dim Γn. We have
computed that

(γ1, γ2, . . . ) = (1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 15, 19, 24, . . .).

Compare this with the dimension βn of the space spanned by the bottom Schur functions
of degree n, given in general by Corollary 5.1 and for n 6 27 just below this corollary. In
particular, the least n for which βn < γn is n = 7. We don’t have a conjecture for the
value of γn.
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