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Abstract

A compressed polytope is an integral convex polytope all of whose pulling trian-
gulations are unimodular. A (q − 1)-simplex Σ each of whose vertices is a vertex of
a convex polytope P is said to be a special simplex in P if each facet of P contains
exactly q − 1 of the vertices of Σ. It will be proved that there is a special simplex
in a compressed polytope P if (and only if) its toric ring K[P] is Gorenstein. In
consequence it follows that the h-vector of a Gorenstein toric ring K[P] is unimodal
if P is compressed.

A compressed polytope [10, p. 337] is an integral convex polytope all of whose “pulling
triangulations” are unimodular. (Recall that an integral convex polytope is an convex
polytope each of whose vertices has integer coordinates.) A typical example of compressed
polytopes is the Birkhoff polytopes [10, Example 2.4 (b)]. Later, in [6], a large class
of compressed polytopes including the Birkhoff polytopes is presented. Recently, Seth
Sullivant [12] proved a surprising result that the class given in [6] does essentially contain
all compressed polytopes.
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Let P ⊂ Rn be an integral convex polytope. Let K be a field and K[x,x−1, t] =
K[x1, x

−1
1 , . . . , xn, x−1

n , t] the Laurent polynomial ring in n+1 variables over K. The toric
ring of P is the subalgebra K[P] of K[x,x−1, t] which is generated by those monomials
xat = xa1

1 · · ·xan
n t such that a = (a1, . . . , an) belongs to P ⋂

Zn. We will regard K[P] as a
homogeneous algebra [2, p. 147] by setting each deg xat = 1 and write F (K[P], λ) for its
Hilbert series. One has F (K[P], λ) = (h0+h1λ+ · · ·+hsλ

s)/(1−λ)d+1, where each hi ∈ Z

with hs 6= 0 and where d is the dimension of P. The sequence h(K[P]) = (h0, h1, . . . , hs)
is called the h-vector of K[P]. If the toric ring K[P] is normal, then K[P] is Cohen–
Macaulay. If K[P] is Cohen–Macaulay, then the h-vector of K[P] is nonnegative, i.e.,
each hi ≥ 0. Moreover, if K[P] is Gorenstein, then the h-vector of K[P] is symmetric,
i.e., hi = hs−i for all i.

A well-known conjecture is that the h-vector (h0, h1, . . . , hs) of a Gorenstein toric ring
is unimodal, i.e., h0 ≤ h1 ≤ · · · ≤ h[s/2]. One of the effective techniques to show that
(h0, h1, . . . , hs) is unimodal is to find a simplicial complex polytope of dimension s − 1
whose h-vector [11, p. 75] coincides with (h0, h1, . . . , hs) (Stanley [9]). In fact, Reiner and
Welker [8] succeeded in showing that the h-vector of a Gorenstein toric ring arising from
a finite distributive lattice (see, e.g., [4]) is equal to the h-vector of a simplicial convex
polytope.

Christos Athanasiadis [1] introduced the concept of a “special simplex” in a convex
polytope. Let P ⊂ Rn be a convex polytope. A (q − 1)-simplex Σ each of whose vertices
is a vertex of P is said to be a special simplex in P if each facet (maximal face) of P
contains exactly q − 1 of the vertices of Σ. It turns out [1, Theorem 3.5] that if P is
compressed and if there is a special simplex in P, then the h-vector of K[P] is equal to
the h-vector of a simplicial convex polytope. In particular, if P is compressed and if there
is a special simplex in P, then K[P] is Gorenstein whose h-vector is unimodal. Examples
for which [1, Theorem 3.5] can be applied include (i) toric rings of the Birkhoff polytopes
([1, Example 3.1]), (ii) Gorenstein toric rings arising from finite distributive lattices ([1,
Example 3.2]), and (iii) Gorenstein toric rings arising from stable polytopes of perfect
graphs ([7, Theorem 3.1 (b)]).

In the present paper we prove that there is a special simplex in a compressed polytope
P if (and only if) its toric ring K[P] is Gorenstein.

Theorem 0.1 Let P be a compressed polytope. Then there exists a special simplex in P
if (and only if) its toric ring K[P] is Gorenstein.

Proof. It follows from [12, Theorem 2.4] that every compressed polytope P is lattice
isomorphic to an integral convex polytope of the form Cn

⋂
L, where Cn ⊂ Rn is the

n-dimensional unit hypercube and where L is an affine subspace of Rn. Without loss of
generality, one can assume that L

⋂
(Cn \ ∂Cn) 6= ∅, where ∂Cn is the boundary of Cn. In

other words, dimP = dim L. Let P = Cn

⋂
L with d = dimP. Thus L is the intersection

of n − d hyperplanes in Rn, say

a11x1 + · · ·+ a1dxd + xd+1 = b1

a21x1 + · · ·+ a2dxd + xd+2 = b2
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· · ·
an−d,1x1 + · · · + an−d,dxd + xn = bn−d,

where aij , bi ∈ Q for all i and j. Since P possesses the integer decomposition property [6,
p. 2544], its toric ring coincides with the Ehrhart ring [5, p. 97] of P. Hence the criterion
[3, Corollary 1.2] can be applied for K[P].

To state the criterion [3, Corollary 1.2], let δ > 0 denote the smallest integer for
which δ(P \ ∂P)

⋂
Zn 6= ∅, where δ(P \ ∂P) = {δα : α ∈ P \ ∂P}, and (c1, . . . , cn) ∈

δ(P \ ∂P)
⋂

Zn. Write Q ⊂ Rd for the convex polytope defined by the inequalities

0 ≤ xi ≤ 1, 1 ≤ i ≤ d

together with

0 ≤ b1 − (a11x1 + · · ·+ a1dxd) ≤ 1

0 ≤ b2 − (a21x1 + · · ·+ a2dxd) ≤ 1

· · ·
0 ≤ bn−d − (an−d,1x1 + · · ·+ an−d,dxd) ≤ 1.

Then Q is an integral convex polytope of dimension d with K[Q] ∼= K[P]. Let Q] =
δQ− (c1, . . . , cd). Then Q] is an integral convex polytope of dimension d and the origin
of Rd belongs to the interior of Q]. By using [3, Corollary 1.2] the toric ring K[Q] is
Gorenstein if and only if the equation of the supporting hyperplane of each facet of Q] is
of the form q1x1 + · · · + qdxd = 1 with each qj ∈ Z.

Claim. Suppose that K[Q] is Gorenstein. Then, for each 1 ≤ i ≤ n, one has ci = δ − 1
(resp. ci = 1) if the hyperplane in Rn defined by the equation xi = 1 (resp. xi = 0) is a
supporting hyperplane of a facet of P.

Proof of Claim. Let 1 ≤ i ≤ d. If the equation xi = 1 (resp. xi = 0) defines a facet of P,
then the equation xi + ci = δ (resp. xi + ci = 0) defines a facet of Q]. Since 0 ≤ ci ≤ δ,
one has ci = δ − 1 (resp. ci = 1), as desired.

Let 1 ≤ i ≤ n − d. If the equation xd+i = 1 defines a facet of P, then the equation

ai1(x1 + c1) + · · · + aid(xd + cd) = δ(bi − 1)

defines a facet of Q]. Since ai1c1 + · · ·+ aidcd + cd+i = δbi, the equation

ai1x1 + · · · + aidxd = cd+i − δ (1)

defines a facet of Q]. We write the equation (1) of the form

(p/q)(a′
i1x1 + · · ·+ a′

idxd) = cd+i − δ,

where a′
i1, . . . , a

′
id are integers which are relatively prime, and where p and q > 0 are

integers which are relatively prime. Then q(cd+i − δ)/p = ±1. Hence q = 1. Thus each
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aij ∈ Z is divided by p. We write the equation ai1x1 + · · ·+ aidxd + xd+i = bi of the form
p(a′

i1x1 + · · ·+ a′
idxd) + xd+i = bi. Since L

⋂
(Cn \ ∂Cn) 6= ∅, there is a vertex (v1, . . . , vn)

of P = Cn

⋂
L with vd+i = 0. Thus bi ∈ Z is divided by p, say, bi = pb′i with b′i ∈ Z.

Let (v1, . . . , vn) be a vertex of P with vd+i = 1. However, unless p = ±1, such the vertex
cannot lie on the hyperplane defined by the equation p(a′

i1x1 + · · · + a′
idxd) + xd+i = pb′i.

Thus p = ±1. Since cd+i − δ = p and cd+i ≤ δ, one has p = −1 and cd+i = δ − 1, as
desired. On the other hand, modify the above technique slightly, and one has cd+i = 1 if
the hyperplane in Rn defined by the equation xd+i = 0.

Now, we proceed to the final step of our proof of Theorem 0.1. Since (c1, . . . , cn)
belongs to δ(P \ ∂P)

⋂
Zn, there exists δ vertices v1, . . . ,vδ of P with (c1, . . . , cn) =

v1 + · · · + vδ. Write Σ for the convex hull of {v1, . . . ,vδ}. Our work is to show that Σ
is a special simplex in P. Let a facet F of P be defined by the equation xi = 1 (resp.
xi = 0). Then ci = δ − 1 (resp. ci = 1). Since each vertex of P is a (0, 1)-vector, exactly
δ − 1 vertices of v1, . . . ,vδ lie on F . Finally, to see why Σ is a (δ − 1)-simplex, suppose
that, say, vδ belongs to the convex hull of {v1, . . . ,vδ−1} and that vδ does not lie on a
facet G of P. Then all of v1, . . . ,vδ−1 must belong to G. Hence Σ ⊂ G. Thus vn ∈ G,
which contradicts vn 6∈ G. Q. E. D.

By virtue of [1, Theorem 3.5] together with Theorem 0.1 it follows that

Corollary 0.2 Let P be a compressed polytope and suppose that the toric ring K[P] is
Gorenstein. Then the h-vector of K[P] is unimodal.

References

[1] C. A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a
conjecture of Stanley, J. Reine Angew. Math. 583 (2005), 163 – 174.

[2] W. Bruns and J. Herzog, “Cohen–Macaulay Rings,” Revised Ed., Cambridge Studies
in Advanced Mathematics 39, Canbridge University Press, Cambridge, 1998.

[3] E. De Negri and T. Hibi, Gorenstein algebras of Veronese type, J. Algebra 193 (1997),
629 – 639.

[4] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening
laws, in “Commutative Algebra and Combinatorics” (M. Nagata and H. Matsumura,
Eds.), Advanced Studies in Pure Math., Volume 11, North–Holland, Amsterdam,
1987, pp. 93 – 109.

[5] T. Hibi, “Algebraic Combinatorics on Convex Polytopes,” Carslaw, Glebe, N.S.W.,
Australia, 1992.

[6] H. Ohsugi and T. Hibi, Convex polytopes all of whose reverse lexicographic initial
ideals are squarefree, Proc. Amer. Math. Soc. 129 (2001), 2541 – 2546.

the electronic journal of combinatorics 11(2) (2005), #N4 4



[7] H. Ohsugi and T. Hibi, Special simplices and Gorenstein toric rings, J. Combin.
Theory, Ser. A, in press.

[8] V. Reiner and V. Welker, On the Charney–Davis and Neggers–Stanley conjectures,
J. Combin. Theory, Ser. A 109 (2005), 247 – 280.

[9] R. P. Stanley, The number of faces of a simplicial convex polytope, Advances in Math.
35 (1980), 236 – 238.

[10] R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math.
6 (1980), 333 – 342.

[11] R. P. Stanley, “Combinatorics and Commutative Algebra,” Second Ed., Progress in
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