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Abstract

Certain necessary conditions on the face numbers and Betti numbers of sim-
plicial complexes endowed with a proper action of a prime order cyclic group are
established. A notion of colored algebraic shifting is defined and its properties are
studied. As an application a new simple proof of the characterization of the flag face
numbers of balanced Cohen-Macaulay complexes originally due to Stanley (neces-
sity) and Björner, Frankl, and Stanley (sufficiency) is given. The necessity portion
of their result is generalized to certain conditions on the face numbers and Betti
numbers of balanced Buchsbaum complexes.

1 Introduction

In this paper we study the face numbers of two classes of simplicial complexes: complexes
endowed with a group action and balanced complexes. We accomplish this by exploring
the behavior of a special (only partially generic) initial ideal of the Stanley-Reisner ideal
of a simplicial complex.

The face numbers are basic invariants of simplicial complexes and their study goes
back to Kruskal [14] and Katona [12] who characterized the face numbers of all finite sim-
plicial complexes. Since then many powerful tools and techniques have been developed,
among them are the theory of Stanley-Reisner rings and the method of algebraic shifting
introduced by Kalai and closely related to the notion of generic initial ideals. Both tech-
niques have resulted in many beautiful applications including the characterization of the
face numbers of all Cohen-Macaulay complexes (due to Stanley [20]), the characterization
of the flag face numbers of all balanced Cohen-Macaulay complexes (due to Stanley [21]
(necessity) and Björner, Frankl, and Stanley [5] (sufficiency)), and the characterization
of the face numbers of all simplicial complexes with prescribed Betti numbers (due to
Björner and Kalai [6]).
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In the first part of this paper we prove certain necessary conditions on the face numbers
and Betti numbers of simplicial complexes endowed with a group action. Our result is
similar in spirit to the necessity portion of the Björner-Kalai theorem. In the second part
we develop a version of algebraic shifting suitable for balanced simplicial complexes. We
then utilize this technique to provide a new simpler proof of the characterization of the
flag face numbers of balanced Cohen-Macaulay complexes, and to generalize the necessity
portion of this result to get conditions on the face numbers and Betti numbers of balanced
Buchsbaum complexes (e.g., simplicial manifolds).

We approach both problems by studying the combinatorics of a special (only partially
generic) initial ideal of the Stanley-Reisner ideal of a simplicial complex. This method was
first used in [17] for Buchsbaum complexes with symmetry; it is motivated by the original
symmetric algebraic shifting due to Kalai [11] and Stanley’s approach of exploiting special
systems of parameters when the simplicial complex at hand has additional structure (see
[21, 22, 23]).

We start by describing basic concepts and main results, deferring most of the defini-
tions until the following sections.

A multicomplex M on variables x1, . . . , xn is a collection of monomials in those variables
that is closed under divisibility (i.e., µ′|µ ∈ M =⇒ µ′ ∈ M). In contrast with the usual
convention we do not require that each singleton xi, 1 ≤ i ≤ n, be an element of M . The
F -vector of M is the vector F (M) = (F0, F1, . . .), where Fi = Fi(M) denotes the number
of monomials in M of degree i. (Thus F1 ≤ n and F0 = 1 unless M is empty in which
case F0 = 0.)

A multicomplex Γ is called a simplicial complex if all its elements are squarefree mono-
mials. The elements of a simplicial complex Γ are called faces, and the maximal ones
(under divisibility) are called facets. We say that µ ∈ Γ is an i-dimensional face (or an
i-face) if deg µ = i + 1. (0-faces are usually referred to as vertices.) We also define the
dimension of Γ, dim Γ, as the maximal dimension of its faces. The f -vector of a (d − 1)-
dimensional simplicial complex Γ is the vector f(Γ) = (f−1, f0, f1, . . . , fd−1), where fi

denotes the number of i-faces of Γ. Thus for a simplicial complex Γ, f(Γ) differs from
F (Γ) only by a shift in the indexing.

Denote by H̃i(Γ,k) the ith reduced simplicial homology of Γ with coefficients in k, by

βi(Γ) = dimk H̃i(Γ;k) the ith reduced Betti number of Γ, and by χi(Γ) = rk ∂i+1 the rank
of the ith differential ∂i+1 : Ci+1(Γ) → Ci(Γ) in the reduced simplicial chain complex for
Γ. In particular fi = βi +χi +χi−1, and χ−1 = f−1 −β−1 = 1 unless dim Γ = −1 in which
case χ−1 = 0. The sequence {βi(Γ)}dimΓ

i=−1 is called the Betti sequence of Γ (over k).
Our first result provides certain necessary conditions on the f -vector and the Betti

sequence of a simplicial complex endowed with a proper group action. The general state-
ment is given in Section 3. In the case of a centrally symmetric complex (that is, a complex
admitting a free action of Z/2Z) our result reduces to the following theorem.

Theorem 1.1 If Γ is a subcomplex of the m-dimensional cross polytope and 1 ≤ k ≤
dim Γ then there exists a multicomplex Mk on 2m − k variables such that

1. all elements of Mk are squarefree in the first m variables;
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2. Fk(Mk) = χk−1(Γ) and Fk+1(Mk) = fk(Γ).

For comparison recall that the theorem of Björner-Kalai [6] asserts that two sequences
of nonnegative integers (1, f0, f1, . . . , fd−1) and (0, β0, β1, . . . , βd−1) with equal alternating
sums form the f -vector and the Betti sequence of some (d − 1)-dimensional (d ≥ 1)
simplicial complex Γ if and only if for every 1 ≤ k ≤ d − 1 there exists a squarefree
multicomplex ∆k such that Fk(∆k) = χk−1(Γ) and Fk+1(∆k) = fk(Γ) − χk−1(Γ). We
remark that ∆k can be easily reconstructed from a multicomplex Mk in the statement of
Theorem 1.1 (see also Theorem 3.2).

A numerical relationship between the number of (k − 1)-faces and the number of
k-faces in a simplicial complex is given by Kruskal-Katona theorem [14, 12], and the
relationship between the number of monomials of degree k and those of degree k + 1
in a multicomplex is provided by Macaulay’s theorem [15]. Clements and Lindström [7]
generalized both results by finding explicit inequalities relating the number of monomials
of degree k to those of degree k + 1 in a multicomplex with specified upper bounds on
degrees of some of the variables (such as for example a multicomplex Mk in the statement
of Theorem 1.1).

Thus by the Clements-Lindström theorem verification of the combinatorial conditions
of Theorem 1.1 reduces to verification of a certain system of inequalities. While Theorem
1.1 is sharp in the sense that if Γ is a skeleton of (the boundary complex of) the m-
dimensional cross polytope, then all those inequalities hold as equalities (see Remark
3.4), its conditions are probably not sufficient conditions on the f -numbers and Betti
numbers of centrally symmetric complexes.

The second part of the paper deals with colored multicomplexes and balanced sim-
plicial complexes introduced in [21]. To this end, we assume that the set of variables
V is endowed with an ordered partition (V1, . . . , Vr). A multicomplex M on V is called
a-colored, where a = (a1, . . . , ar) ∈ Z

r
+ is a fixed sequence of positive integers, if for every

1 ≤ i ≤ r no element of M that involves only variables from Vi has degree > ai. We
say that a (d − 1)-dimensional simplicial complex Γ is a-balanced if it is a-colored and∑r

i=1 ai = d. Thus, (1, 1, . . . , 1)-colored multicomplexes are simplicial complexes, and a
simplicial complex is a-balanced for a ∈ Z

1 if and only if it is (a− 1)-dimensional.
In this paper we develop a notion of colored algebraic shifting — an algebraic operation

that associates with a colored simplicial complex Γ another colored simplicial complex,
∆̃(Γ). This new complex is color-shifted (as defined in section 5), has the same flag
f -vector as Γ, and is Cohen-Macaulay if Γ is a-balanced and Cohen-Macaulay.

Stanley’s celebrated theorem [20], [24, Thm. II.3.3] characterized the f -vectors of all
Cohen-Macaulay (CM for short) simplicial complexes. It was then generalized by Stanley
[21] and Björner, Frankl, and Stanley [5] to a complete (combinatorial) characterization
of the flag f -vectors of a-balanced CM complexes (see Theorem 6.3). In the language
of the ordinary face numbers their result reduces to the assertion that a sequence h =
(h0, h1, . . . , hd) ∈ Z

d+1 is the h-vector of an a-balanced CM complex if and only if h is
the F -vector of an a-colored multicomplex, where the h-vector of a (d − 1)-dimensional
simplicial complex Γ is the vector h(Γ) = (h0(Γ), h1(Γ), . . . , hd(Γ)) whose entries satisfy

the electronic journal of combinatorics 11(2) (2006), #R25 3



the following relation

d∑
i=0

hi(Γ)xd−i =

d∑
i=0

fi−1(Γ)(x − 1)d−i.

Here we use colored algebraic shifting to provide a simple proof of the Stanley-Björner-
Frankl theorem. (The original proof of the sufficiency part relied on the notion of combina-
torial shifting.) We also generalize the necessity portion of that result to certain conditions
on the f -vector and Betti sequence of an a-balanced Buchsbaum complex (Theorem 6.6).

The structure of this paper is as follows. In Section 2 we review basic facts on Stanley-
Reisner rings and initial ideals, and then introduce and study certain monomial sets that
are at the root of all our proofs. In Section 3 after recalling some notions related to group
actions, we apply the results of Section 2 to complexes with symmetry. The proof of
Theorem 1.1 is completed in Section 4. Section 5 is devoted to developing the notion of
colored algebraic shifting and studying its properties. Section 6 contains a new proof of
the Stanley-Björner-Frankl theorem as well as the proof of Theorem 6.6 on a-balanced
Buchsbaum complexes.

2 The Stanley-Reisner ring, initial ideals, and mono-

mial sets

Let k be an arbitrary infinite field. Consider the polynomial ring k[x] := k[x1, . . . , xn]
with the grading deg xi=1 for all 1 ≤ i ≤ n. Let N denote the set of non-negative
integers. Identifying a function f : [n] → N in N

[n] (here [n] = [1, n] = {1, . . . , n}) with

the monomial
∏

i∈[n] x
f(i)
i , denote by N

[n] the set of all monomials of k[x], and consider

N
[n] as a multiplicative monoid. Thus {0, 1}[n] is the set of squarefree monomials. For

σ ⊆ [n] we let N
σ denote the set of all monomials in the variables xi with i ∈ σ (e.g.

N
∅ = {1}), and N

σ
r denote the set of elements of degree r in N

σ.
If Γ ⊆ {0, 1}[n] is a simplicial complex then the Stanley-Reisner ideal of Γ [24,

Def. II.1.1] is the squarefree monomial ideal

IΓ := 〈{0, 1}[n] − Γ〉 ⊂ k[x].

The ring k[x]/IΓ is called the Stanley-Reisner ring (or the face ring) of Γ.
We fix the reverse lexicographic order � on the set of all monomials of k[x] that

refines the partial order by degree and satisfies x1 � x2 � . . . � xn (e.g. x2
1 � x1x2 �

x2
2 � x1x3 � x2x3 � x2

3 � · · · ). Every u ∈ GLn(k) defines a graded automorphism of
k[x] via u(xj) =

∑n
i=1 uijxi. In particular, for a simplicial complex Γ ⊆ {0, 1}[n], uIΓ is a

homogeneous ideal of k[x]. Thus in(uIΓ) — the reverse lexicographic initial ideal of uIΓ —
is a well-defined monomial ideal [8, Section 15.2], and hence the collection of monomials

Bu,Γ := N
[n] − in(uIΓ)
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is a multicomplex.
The central idea of this paper is that for a suitably chosen u one can read off the

f -numbers and the Betti numbers of Γ from the set Bu,Γ (see Lemma 2.2 below). The
multicomplexes appearing in the statements of Theorems 1.1 and 6.6 then can be realized
as subcomplexes of Bu,Γ. In the case of a generic u this idea is originally due to Kalai
[11]. The main novelty of our approach, a development of which was started in [17], is
that u need not be completely generic.

To state Lemma 2.2 we need to review several additional facts and definitions. We
start by remarking that the only property of reverse lexicographic order we use in this
paper is [8, Prop. 15.12], asserting that for every homogeneous ideal I ⊆ k[x],

in(I + 〈xn〉) = in(I) + 〈xn〉 and in(I : xn) = (in(I) : xn),

where the ideal (I : xn) is defined as {ν ∈ k[x] | νxn ∈ I}. This readily leads to

in(I + 〈xn−k+1, . . . , xn〉) = in(I) + 〈xn−k+1, . . . , xn〉 ∀0 ≤ k ≤ n and (1)

in((I + 〈xn−k+1, . . . , xn〉) : xn−k) = ((in(I) + 〈xn−k+1, . . . , xn〉) : xn−k). (2)

For a simplicial complex Γ ⊆ {0, 1}[n] and a matrix u ∈ GLn(k), we consider the
family

Ju,Γ〈k〉 := uIΓ + 〈xn−k+1, . . . , xn〉, 0 ≤ k ≤ n,

of graded ideals of k[x], and the following two families of subsets of Bu,Γ:

Bu,Γ〈k〉 := Bu,Γ ∩ N
[n−k] and Zu,Γ〈k〉 := {ν ∈ Bu,Γ〈k〉 : νxn−k /∈ Bu,Γ} ,

0 ≤ k ≤ n − 1. We also write Bu,Γ〈k〉l and Zu,Γ〈k〉l to denote the set of elements of
degree l in Bu,Γ〈k〉 and Zu,Γ〈k〉, respectively. The following proposition summarizes some
elementary properties of these monomial sets. (Note that Ju,Γ〈0〉 = uIΓ, Bu,Γ〈0〉 = Bu,Γ,
and that the definition of Bu,Γ〈k〉 makes sense for k < 0 as well, e.g. Bu,Γ〈−1〉 = Bu,Γ ∩
N

[n+1] = Bu,Γ. We use the case of k = −1 as the base case for several inductive proofs
below.)

Proposition 2.1 Let Γ ⊆ Λ ⊆ {0, 1}[n] be simplicial complexes, and let u ∈ GLn(k).
Then the following holds:

1. Bu,Γ ⊆ Bu,Λ.

2. For all 0 ≤ k ≤ n − 1, Bu,Γ〈k〉 = N
[n] − in(Ju,Γ〈k〉) and

Bu,Γ〈k〉 − Zu,Γ〈k〉 = N
[n] − in(Ju,Γ〈k〉 : xn−k).

Thus, the sets Bu,Γ〈k〉 and Bu,Γ〈k〉−Zu,Γ〈k〉 are multicomplexes that provide k-bases
for k[x]/Ju,Γ〈k〉 and k[x]/(Ju,Γ〈k〉 : xn−k), respectively.
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3. The generating function of B = Bu,Γ, P (B, t) :=
∑

k≥0 |Bk|tk, equals

dim Γ+1∑
k=0

fk−1(Γ)tk

(1 − t)k
.

Proof: Since Γ ⊆ Λ, it follows that IΓ ⊇ IΛ, and hence that

Bu,Γ = N
[n] − in(uIΓ) ⊆ N

[n] − in(uIΛ) = Bu,Λ,

implying part 1. Part 2 is a consequence of equations (1) and (2), and [8, Thm. 15.3].
Finally, since Bu,Γ is a k-basis of k[x]/uIΓ, and since k[x]/uIΓ is a graded algebra over k
isomorphic to k[x]/IΓ, P (B, t) coincides with the Hilbert series of k[x]/IΓ. Theorem II.1.4
of [24] then yields part 3. �

Assume now that Γ ⊆ {0, 1}[n] is a (d − 1)-dimensional simplicial complex. Since
k[x]/uIΓ is isomorphic to k[x]/IΓ, we infer from [24, Thm. II.1.3] that the Krull dimension
of k[x]/uIΓ (i.e., the maximum number of algebraically independent elements over k in
k[x]/uIΓ) is d. In fact, by the result due to Kind and Kleinschmidt [13], [24, Lemma
III.2.4(a)], the d elements xn−d+1, . . . , xn form a linear system of parameters, abbreviated
l.s.o.p., for k[x]/uIΓ (the condition that implies being algebraically independent over k)
if and only if u ∈ GLn(k) possesses the following property referred to as the Kind-
Kleinschmidt condition:

• for every face xi1 · · ·xik ∈ Γ, the submatrix of u−1 defined by the intersection of its
last d columns and the rows numbered i1, . . . , ik has rank k.

We say that u satisfies the strong Kind-Kleinschmidt condition with respect to Γ if

• for every face xi1 · · ·xik ∈ Γ, the submatrix of u−1 defined by the intersection of its
last k columns and the rows numbered i1, . . . , ik is nonsingular.

Thus if u satisfies the strong Kind-Kleinschmidt condition with respect to Γ (there is
at least one such u if k is infinite), then it satisfies this condition w.r.t. any subcomplex
of Γ. In particular, xn−k+1, . . . , xn is an l.s.o.p. for k[x]/uIΣ for every 0 ≤ k ≤ dim Γ + 1
and every (k − 1)-dimensional subcomplex Σ ⊆ Γ. Therefore, for such u and Σ, all
homogeneous components of k[x]/Ju,Σ〈k〉 starting from the (k + 1)-th component and up
vanish (see [24, Lemma III.2.4(b)]), and we conclude from Proposition 2.1(2) that

Bu,Σ〈k〉k+1 = ∅, (3)

which will be of use later.
We now come to the main tool of this paper.

Lemma 2.2 Let Γ ⊆ {0, 1}[n] be a simplicial complex and let u ∈ GLn(k) be a matrix
satisfying the strong Kind-Kleinschmidt condition with respect to Γ. Then the monomial
sets Bu,Γ〈k〉 and Zu,Γ〈k〉 have the following properties:
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1. µN
[n−k+1,n] ⊆ Bu,Γ for all µ ∈ Bu,Γ〈k − 1〉k and all 0 ≤ k ≤ n.

2. |Bu,Γ〈k − 1〉k| = fk−1(Γ) for all 0 ≤ k ≤ n.

3. |Zu,Γ〈k〉k| = βk−1(Γ) for all 0 ≤ k ≤ n − 1 and Zu,Γ〈k〉l = ∅ for all l ≥ k + 1.

If u ∈ GLn(k) is generic then it satisfies the strong Kind-Kleinschmidt condition with
respect to any simplicial complex Γ ⊆ {0, 1}[n]. In this special case (with the additional
restriction that k is a field of characteristic zero) Lemma 2.2 is not new: its parts 1 and 2
are [11, Lemma 6.3], and part 3 follows from Corollary 2.5 and Lemma 2.6 of [2].

In the rest of this section we discuss an application of Lemma 2.2 to the face numbers
and Betti numbers of simplicial complexes deferring its somewhat technical proof until
Section 4. Throughout this discussion we fix a simplicial complex Γ and a matrix u
satisfying the strong Kind-Kleinschmidt condition w.r.t Γ, and write B = Bu,Γ, Z = Zu,Γ,
fk = fk(Γ), βk = βk(Γ), and χk = χk(Γ).

Lemma 2.3 |B〈k〉k − Z〈k〉k| = χk−1 for every 0 ≤ k ≤ n − 1.

Proof: If µ ∈ B〈k − 1〉k, then either µ ∈ B〈k〉k or xn−k+1|µ. In the latter case, µ′ :=
µ/xn−k+1 is an element of B〈k − 1〉k−1 (since B〈k − 1〉k−1 is a multicomplex), but is not
an element of Z〈k − 1〉k−1 (by definition of Z〈k − 1〉). Thus

B〈k − 1〉k = B〈k〉k
⋃̇

xn−k+1 · (B〈k − 1〉k−1 − Z〈k − 1〉k−1) .

Parts 2 and 3 of Lemma 2.2 then imply that

|B〈k〉k − Z〈k〉k| = |B〈k − 1〉k| − |Z〈k〉k| − |B〈k − 1〉k−1 − Z〈k − 1〉k−1|
= (fk−1 − βk−1) − |B〈k − 1〉k−1 − Z〈k − 1〉k−1| ,

and the assertion follows by induction on k. For the k = 0 case note that

B〈0〉0 = B ∩ N
[n]
0 = B ∩ {1} =

{ {1} if uIΓ 6= 〈1〉
∅ if uIΓ = 〈1〉 =

{ {1} if Γ 6= ∅
∅ if Γ = ∅,

and so |B〈0〉0| = f−1, which together with |Z〈0〉0| = β−1 implies the assertion. �
Proposition 2.1 and Lemmas 2.2 and 2.3 yield the following result.

Theorem 2.4 Let Λ ⊆ {0, 1}[n] be a simplicial complex, let u ∈ GLn(k) be a matrix
satisfying the strong Kind-Kleinschmidt condition w.r.t. Λ, and let Γ be a subcomplex of
Λ. Then for every 0 ≤ k ≤ dim Γ, there exists a multicomplex Mk ⊆ Bu,Λ〈k〉 such that
Fk(Mk) = χk−1(Γ) and Fk+1(Mk) = fk(Γ).

Proof: Define Mk = Bu,Γ〈k〉 − Zu,Γ〈k〉. Mk is a multicomplex by Proposition 2.1(2),
Fk+1(Mk) = fk(Γ) by Lemma 2.2(2,3), and Fk(Mk) = χk−1(Γ) by Lemma 2.3. Also since
Γ ⊆ Λ, Proposition 2.1(1) yields that Mk ⊆ Bu,Γ ⊆ Bu,Λ. �
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3 Complexes with a group action

The goal of this section is to deduce Theorem 1.1 along with its generalization for com-
plexes with a proper action of a cyclic group of prime order from Theorem 2.4. We start
by setting up the notation and reviewing basic facts and definitions related to complexes
with a group action. Our exposition follows [17]. Throughout this section let Γ ⊆ {0, 1}[n]

be a simplicial complex on the vertex set {x1, . . . , xn}, and let G = Z/pZ be a cyclic group
of prime order.

A bijection σ : [n] → [n] defines a natural map σ : {0, 1}[n] → {0, 1}[n]. This map
is called a (simplicial) automorphism of Γ if for every face F ∈ Γ, σ(F) ∈ Γ as well.
Denote by Aut(Γ) the group of all automorphisms of Γ. An action of group G on Γ is a
homomorphism π : G → Aut(Γ). An action π of G is proper if

π(h)(F) = F for some h ∈ G, F = xi1 . . . xik ∈ Γ =⇒ π(h)(xij ) = xij ∀1 ≤ j ≤ k,

and is free if

π(h)(F) = F for some F ∈ Γ, F 6= 1 =⇒ h is the unit element of G.

Example 3.1

1. Let ∆p−1 be a (p − 1)-dimensional simplex with all its faces and let ∂∆p−1 be its
boundary complex. Letting the generator of G cyclically permute the p vertices of
the simplex defines a free G-action on ∂∆p−1 (but a nonfree and nonproper action
on ∆p−1.)

2. Recall that if Γ1 and Γ2 are simplicial complexes on two disjoint vertex sets V1 and
V2, then their join Γ1 ∗ Γ2 := {µ1 · µ2 : µ1 ∈ Γ1, µ2 ∈ Γ2} is a simplicial complex on
V1 ∪ V2. A pair of proper G-actions πi : G → Aut(Γi) (i = 1, 2) defines a proper
action π : G → Aut(Γ1 ∗ Γ2) via π(h)(µ1 · µ2) = π1(h)(µ1) · π2(h)(µ2).

Assume Γ is endowed with a G-action π. For a vertex v of Γ, define the G-orbit of
v as Orb (v) := {π(h)(v) : h ∈ G}. Since |G| = p is a prime number, for a vertex v
of Γ, either |Orb (v)| = 1 (in which case v is said to be G-invariant) or |Orb (v)| = p
(we call such an orbit a free G-orbit). Thus if l denotes the number of G-invariant
vertices and m the number of free G-orbits, then n = l + pm. To simplify notation we
assume from now on that the last l vertices xpm+i, 1 ≤ i ≤ l, are G-invariant and that
Orb (xi) = {xi+jm : 0 ≤ j ≤ p − 1} for 1 ≤ i ≤ m. Note that if the G-action on Γ is
proper then no free G-orbit forms a face of Γ, and hence

xixi+m · · ·xi+(p−1)m /∈ Γ for all 1 ≤ i ≤ m. (4)

For arbitrary integers p ≥ 2, m, l ≥ 0 (with p prime or composite), we define Λ(p, m, l)
to be the maximal subcomplex of {0, 1}[pm+l] satisfying Eq. (4). It is straightforward to
see that

Λ(p, m, l) := ∂∆p−1
1 ∗ . . . ∗ ∂∆p−1

m ∗ ∆l−1, (5)
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where ∂∆p−1
i (i = 1, . . . , m) is the boundary complex of the (p − 1)-dimensional simplex

on the vertex set {xi+jm : 0 ≤ j ≤ p − 1}, and ∆l−1 is the simplex (with all its faces)
on the vertex set {xpm+j : 1 ≤ j ≤ l}. In particular, Λ(2, m, 0) is the boundary of
the m-dimensional cross polytope C∆

m. If p is a prime, let G = Z/pZ act freely on
∂∆p−1

i (1 ≤ i ≤ m), and trivially on ∆l−1. This defines a proper G-action on Λ(p, m, l).
Moreover, Λ(p, m, l) is the maximal subcomplex of {0, 1}[pm+l] among all the complexes
that are endowed with a proper G-action and have m free G-orbits and l G-invariant
vertices.

Recall that in our notation, [0, p − 1][m] × N
[m+1,n] denotes the set of monomials

{xa1
1 xa2

2 · · ·xan
n ∈ N

[n] : ai ≤ p − 1 ∀i ∈ [m]}. We are now in a position to prove the
following generalization of Theorem 1.1.

Theorem 3.2 If Γ is a subcomplex of Λ(p, m, l) (where p ≥ 2, m, l ≥ 0 are arbitrary
integers), n = pm + l, and 1 ≤ k ≤ dim(Γ) then there exists a multicomplex Mk ⊆
[0, p − 1][m] × N

[m+1,n−k] such that Fk(Mk) = χk−1(Γ) and Fk+1(Mk) = fk(Γ).

Corollary 3.3 If Γ ⊆ {0, 1}[n] is a simplicial complex that admits a proper action of
G = Z/pZ for a prime p and has m free G-orbits, and 1 ≤ k ≤ dim(Γ), then there
exists a multicomplex Mk ⊆ [0, p − 1][m] × N

[m+1,n−k] such that Fk(Mk) = χk−1(Γ) and
Fk+1(Mk) = fk(Γ).

The importance of Corollary 3.3 is that (together with the Clements-Lindström theo-
rem [7]) it imposes strong restrictions on the possible face numbers and Betti numbers of
a simplicial complex with a proper Z/pZ-action.

Proof of Theorem 3.2: By Theorem 2.4, to prove the statement it suffices to construct
a matrix u satisfying the strong Kind-Kleinschmidt condition w.r.t. Λ := Λ(p, m, l) and
such that Bu,Λ ⊆ [0, p− 1][m] ×N

[m+1,n]. A construction of such a matrix was given in the
proof of [17, Theorem 3.3]. For completeness we briefly outline it here. We replace field k
by a larger field K = k(yij, wij, zij) of rational functions in (p−1)2m2 + l2 +pml variables
and perform all computations inside K[x] rather than k[x]. For instance, we regard IΛ

and Bu,Λ as an ideal and a subset of K[x], respectively. Let Y = (yij), W = (wij) and
Z = (zij) be (p − 1)m × (p − 1)m, l × l and pm × l matrices respectively. Let Im denote
the m×m identity matrix, let E = [Im|Im| · · · |Im] be the m× (p−1)m matrix consisting
of (p − 1) blocks of Im, and let O be the zero-matrix. Define

u−1 =

 [ Im −EY
O Y

]
Z

O W

 , so that u =


[

Im E
O Y −1

]
*

O W−1

 .

In particular us,i+jm = 0 for all 1 ≤ s < i ≤ m and 0 ≤ j ≤ p − 1.
Since xixi+m · · ·xi+(p−1)m ∈ IΛ for 1 ≤ i ≤ m, it follows that

uIΛ 3
p−1∏
j=0

u(xi+jm) =

p−1∏
j=0

(
xi +

∑
s>i

us,i+jmxs

)
= xp

i +
∑

{αµµ : xp
i � µ}.
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Thus xp
i ∈ in(uIΛ), 1 ≤ i ≤ m, implying that Bu,Λ ⊆ [0, p − 1][m] × N

[m+1,n].
The fact that u satisfies the strong Kind-Kleinschmidt condition w.r.t. Λ follows easily

from the definitions of u and Λ (see the proof of [17, Thm. 3.3]). �

Remark 3.4 The assertion of Theorem 3.2 is the best possible in the following sense. If
Γ is the s-dimensional skeleton of Λ(p, m, l) for some s ≥ 0, then a simple count shows
that Fk+1([0, p−1][m]×N

[m+1,n−k]) = fk(Γ) for all k ≤ s. Hence for this Γ a multicomplex
Mk = Mk(Γ) of Theorem 3.2 must coincide with the multicomplex [0, p−1][m]×N

[m+1,n−k]

in degree k + 1 and all degrees below it.

4 Monomial sets and Local cohomology

To complete the proof of Theorem 2.4, and Theorems 1.1 and 3.2 it remains to verify
Lemma 2.2. This is the goal of the present section. The proof of the first two parts of the
lemma relies on Proposition 2.1 and Eq. (3), and is similar to that of [11, Lemma 6.3],
while the proof of the last part utilizes Hochster’s theorem [24, Theorem II.4.1], the long
exact local cohomology sequence, and the first part of the lemma.

Throughout this section let Γ be a (d−1)-dimensional simplicial complex Γ ⊂ {0, 1}[n]

and let u ∈ GLn(k) be a matrix that satisfies the strong Kind-Kleinschmidt condition
w.r.t. Γ. Denote by Γ′ := Skel d−2(Γ) the (d − 2)-dimensional skeleton of Γ. Recall that
Bu,Γ = N

[n] − in(uIΓ) and Bu,Γ〈k〉 = Bu,Γ ∩ N
[n−k], −1 ≤ k ≤ n − 1. To simplify the

notation we write B = Bu,Γ and B′ = Bu,Γ′.
Several observations are in order.

1. Since u ∈ GLn(k) satisfies the strong Kind-Kleinschmidt condition w.r.t. Γ, it fol-
lows from Eq. (3) that B〈d〉d+1 = ∅ and B′〈d − 1〉d = ∅. Therefore,

B′ ∩ B〈d − 1〉d ⊆ B′ ∩ N
[n−d+1]
d = B′〈d − 1〉d = ∅,

and so
B〈d − 1〉d ⊆ B − B′. (6)

2. The following is an easily verifiable decomposition of N
[n] (see Figure 1):

N
[n] =

⋃̇n

k=0

⋃̇
µ∈N[n−k+1]

k

µN
[n−k+1,n]. (7)

Since B is a multicomplex, B∩µN
[n−k+1,n] 6= ∅ if and only if µ ∈ B. Thus B〈d〉d+1 =

∅ together with Eq. (7) implies that B ⊆ ⋃̇d

k=0

⋃̇
µ∈B〈k−1〉k µN

[n−k+1,n].

We are now ready to prove the first two parts of Lemma 2.2 asserting that |B〈k−1〉k| =
fk−1(Γ) for k ≥ 0 and that µN

[n−k+1,n] ⊆ B for all µ ∈ B〈k − 1〉k, or equivalently (by the
above remark) that |B〈k − 1〉k| = fk−1(Γ), k ≥ 0, and

B =
⋃̇d

k=0

⋃̇
µ∈B〈k−1〉k

µN
[n−k+1,n]. (8)
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1 = 1N
∅ x1 x2

1

x2
1N

{1,2}

x2

x2N
{2} x1N

{2}

Figure 1: Decomposition of N
{1,2}

Proof: We apply induction on d. If d = 0, then either Γ = {1} or Γ = ∅, and so either
IΓ = 〈x1, . . . , xn〉 or IΓ = 〈1〉. In the former case B〈−1〉 = B0 = {1} = 1N

∅, while in the
latter case B〈−1〉 = B0 = ∅, and the statement clearly holds.

Assume now that d > 0 and that Γ′ = Skel d−2(Γ) ⊂ Γ satisfies the assertion, that is,
|B′〈k − 1〉k| = fk−1(Γ

′) for k ≥ 0 and B′ =
⋃d−1

k=0

⋃
µ∈B′〈k−1〉k µN

[n−k+1,n]. Since the ideals
IΓ and IΓ′ coincide up to degree d − 1, it follows that Bk = B′

k for all k ≤ d − 1, and so
B〈k − 1〉k = B′〈k − 1〉k for all k ≤ d − 1. Thus

|B〈k − 1〉k| = |B′〈k − 1〉k| = fk−1(Γ
′) = fk−1(Γ) for all k ≤ d − 1, and

B ⊆
⋃̇d

k=0

⋃̇
µ∈B〈k−1〉k

µN
[n−k+1,n] = B′ ∪̇ (

⋃̇
µ∈B〈d−1〉d

µN
[n−d+1,n]).

Hence we have

B − B′ ⊆
⋃̇

µ∈B〈d−1〉d
µN

[n−d+1,n]. (9)

Restricting Eq. (9) to monomials of degree d and comparing it with Eq. (6), we infer that

B〈d − 1〉d = Bd − B′
d. Since P (B − B′, t) =

fd−1(Γ)td

(1−t)d (by Proposition 2.1(1,3)), it follows
that

|B〈d − 1〉d| = |Bd − B′
d| = fd−1(Γ).

Finally, since for every monomial µ, P (µN
[n−d+1,n], t) = tdeg µ

(1−t)d , we obtain that the gener-

ating function of
⋃̇

µ∈B〈d−1〉d µN
[n−d+1,n] equals |B〈d−1〉d |td

(1−t)d = fd−1(Γ)td

(1−t)d , that is, it coincides

with P (B −B′, t). The latter fact implies that the inclusion in Eq. (9) is in fact equality.
This establishes Eq. (8). �

We now turn to the proof of the last part of Lemma 2.2. This will require the following
facts and definitions. If N is a k[x]-module and I ⊆ k[x] is an ideal, then

(0 :N I) := {µ ∈ N |µI = 0} and (0 :N I∞) := {µ ∈ N |µIr = 0 for some r ≥ 1}.
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If N = k[x], we write (0 : I) instead of (0 :k[x] I). Also if I = 〈f〉, it is customary to write
(0 : f) and (0 : f∞) instead of (0 : 〈f〉) and (0 : 〈f〉∞), respectively. For a k[x]-module N ,
denote by H i(N) the ith local cohomology of N with respect to the irrelevant maximal
ideal m = 〈x1, . . . , xn〉 of k[x] (see e.g. [24, Def. I.6.1]). Recall that H i(N) is graded
whenever N is, and that

H0(N) = {µ ∈ N : µmr = 0 for some r ≥ 1} = (0 :N m∞).

If N is a graded k[x]-module, write Nj to denote its jth homogeneous component. (Thus
Nj is a k-vector space.)

As in Section 2, consider the family J〈k〉 = uIΓ + 〈xn−k+1, . . . , xn〉, 0 ≤ k ≤ n, of
graded k[x]-ideals, and define the corresponding family N〈k〉 := k[x]/J〈k〉, 0 ≤ k ≤ n, of
graded k[x]-modules. Recall that

Z〈k〉 = Zu,Γ〈k〉 = {ν ∈ B〈k〉 : νxn−k /∈ B} , 0 ≤ k ≤ n − 1.

Lemma 2.2(3) asserting that |Z〈k〉k| = βk−1(Γ) and Z〈k〉l = ∅ for l ≥ k + 1 is then an
immediate corollary of the following two claims.

Lemma 4.1 |Z〈k〉k| = dimk H0(N〈k〉)k and Z〈k〉l = ∅ for all 0 ≤ k ≤ n−1 and l ≥ k+1.

Lemma 4.2 For all i ≥ 0 and 0 ≤ s ≤ n,

H i(N〈s〉)k
∼=
{

0 if k > s

H̃i+k−1(Γ) if k = s.

In particular, dimk H0(N〈k〉)k = βk−1(Γ).

Proof of Lemma 4.1: The exact sequence

0 −→ (0 :N〈k〉 xn−k) −→ N〈k〉 = k[x]/J〈k〉 −→ k[x]/(J〈k〉 : xn−k) −→ 0

and Proposition 2.1(2) imply that

dimk(0 :N〈k〉 xn−k)l = dimk (k[x]/J〈k〉)l − dimk (k[x]/(J〈k〉 : xn−k))l

= |B〈k〉l| − |B〈k〉l − Z〈k〉l| = |Z〈k〉l| for all l ≥ 0. (10)

If l ≥ k + 1, then the fact that Z〈k〉l = ∅ is immediate from Eq. (8). Thus

(0 :N〈k〉 xn−k)l = {0} for all l ≥ k + 1, (11)

and so µm 6= 0 for some µ ∈ (N〈k〉)k implies, by Eq. (11), that (µm)xr
n−k 6= 0 for all

r ≥ 1, and hence that µmr+1 6= 0. Therefore,

H0(N〈k〉)k = (0 :N〈k〉 m∞)k = (0 :N〈k〉 m)k.
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Similarly, if ν ∈ (N〈k〉)k and i ≤ n−k are such that N〈k〉k+1 3 xiν 6= 0, then by Eq. (11),
(xiν)xn−k 6= 0, and hence νxn−k 6= 0. Therefore,

(0 :N〈k〉 m)k = (0 :N〈k〉 xn−k)k,

which together with dimk(0 :N〈k〉 xn−k)k = |Z〈k〉|k (see Eq. (10)) establishes the lemma.
�

Proof of Lemma 4.2: The proof is by induction on s. If s = 0 then N〈0〉 = k[x]/uIΓ is
isomorphic (as a graded algebra) to the Stanley-Reisner ring of Γ, and the assertion follows
from Hochster’s theorem [24, Theorem II.4.1]. For s > 0, define Ls := N〈s〉/(0 :N〈s〉 xn−s)
and consider the short exact sequence

0 −→ Ls(−1)
·xn−s−→ N〈s〉 −→ N〈s + 1〉 −→ 0,

where Ls(−1) denotes Ls with the grading shifted by 1. It gives rise to the long exact
local cohomology sequence

· · · −→ H i(N〈s〉) −→ H i(N〈s + 1〉) −→ H i+1(Ls(−1)) −→ H i+1(N〈s〉) −→ · · · .

Let k ≥ s + 1. Then by the induction hypothesis H i(N〈s〉)k = H i+1(N〈s〉)k = 0, and
thus the above sequence yields

H i(N〈s + 1〉)k
∼= H i+1(Ls)k−1

∼= H i+1(N〈s〉)k−1
∼=
{

0 if k > s + 1

H̃i+k−1(Γ) if k = s + 1.

Here the last step follows from the induction hypothesis, while the penultimate step follows
from the fact that (0 :N〈s〉 xn−s) is a module of finite length (i.e., it is finite-dimensional
over k) — see Eq. (11), and so all local cohomology modules (except the 0th one) of N〈s〉
coincide with those of Ls = N〈s〉/(0 :N〈s〉 xn−s). �

We conclude this section with several remarks.

Remark 4.3 Since, as follows from Eq. (11), (0 :N〈k〉 xn−k) is a module of finite length
for all 0 ≤ k ≤ n − 1, the sequence xn, xn−1, . . . , x1 is an almost regular N〈0〉-sequence
in the sense of [1]. The fact that |Z〈k〉k| = dimk(0 :N〈k〉 xn−k)k (see Eq. (10)) combined
with [1, Cor. 1.2] and with Hochster’s formula [10] on the algebraic Betti numbers of
the Stanley-Reisner ideal can thus be used to provide another proof of Lemma 2.2(3).
Moreover equations (10) and (11) together with [1, Thm. 1.1 and Cor. 1.2] imply that
the ideals IΓ and in(uIΓ) have the same extremal Betti numbers whenever u satisfies the
strong Kind-Kleinschmidt condition with respect to Γ, a result previously known only for
generic u ([3], [1]).

Remark 4.4 Define the squarefree operation Φ :
⋃n

k=0 N
[n−k+1]
k → {0, 1}[n] by

Φ(xi1xi2 · · ·xik) := xi1xi2+1 · · ·xik+k−1, where i1 ≤ i2 ≤ · · · ≤ ik.
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For a simplicial complex Γ ⊆ {0, 1}n and a matrix u ∈ GLn(k) let

∆u,Γ :=

n⋃
k=0

Φ(Bu,Γ〈k − 1〉k) ⊆ {0, 1}[n].

If u is generic and k is a field of characteristic zero then the set ∆(Γ) := ∆u,Γ is a
(shifted) simplicial complex [11]. This complex was introduced in [11] where it was called
the algebraic shifting of Γ. For a nongeneric u that satisfies the strong Kind-Kleinschmidt
condition w.r.t. Γ, ∆u,Γ is just a “simplicial set” that (by Lemma 2.2(2)) has the same
“f -numbers” as Γ. It would be interesting to determine which subsets of {0, 1}[n] can be
realized as ∆u,Γ for some Γ and u.

5 Shifting colored complexes

In this section we extend some of the above results, most notably Lemma 2.2(1,2), to
polynomial rings (simplicial complexes) with N

r-grading. We then introduce the notion
of colored algebraic shifting and discuss some of its properties. To this end, we assume
that the set of variables V of the polynomial ring k[V ] is endowed with an ordered
partition (V1, . . . , Vr) (i.e., a sequence of nonempty and pairwise disjoint subsets of V
whose union is V ). We write Vj = {xj,1, · · · , xj,nj

} where nj = |Vj| and 1 ≤ j ≤ r,

and we identify the set of monomials of k[V ] with N
[n1] × · · · × N

[nr] and the set of
squarefree monomials of k[V ] with {0, 1}[n1] × · · · × {0, 1}[nr] via the ring isomorphism
k[V ] ∼= k[x1, . . . , xn1] ⊗k · · · ⊗k k[x1, . . . , xnr ].

Let ej ∈ N
r, 1 ≤ j ≤ r, denote the jth unit coordinate vector in N

r, i.e., ej =
(δ1j , . . . , δrj). Define an N

r-grading of k[V ] by setting deg x = ej if x ∈ Vj , 1 ≤ j ≤ r. If
M ⊆ k[V ] is a multicomplex and b ∈ N

r, we denote by fb(M) the number of monomials
in M whose N

r-degree is b. The flag f -vector of M is the vector (fb(M) : b ∈ N
r). It

is a refinement of the usual F -vector, since Fi(M) =
∑

fb(M) where the sum is over all
b ∈ N

r such that
∑

bj = i (hence for a simplicial complex Γ, fi−1(Γ) =
∑{fb(Γ) : b ∈

N
r,
∑

bj = i}).
Let G := GLn1(k) × · · · × GLnr(k). Every matrix u = (u1, · · · , ur) ∈ G defines

an N
r-graded automorphism of k[V ] via u(xj,l) =

∑nj

i=1 uj
ilxj,i. In particular, if Γ ⊆

{0, 1}[n1] × · · · × {0, 1}[nr] is a simplicial complex, then uIΓ is a homogeneous ideal (w.r.t
N

r-grading).
Consider an arbitrary linear order � on V = ∪r

j=1Vj whose restriction to Vj (for every
1 ≤ j ≤ r) is given by xj,1 � xj,2 � · · · � xj,nj

. In contrast with the r = 1 case, many
such orders exist if r > 1. As in Section 2, we define

B = B�
u,Γ := N

[n1] × · · · × N
[nr] − in�(uIΓ) and Bc := {µ ∈ B : deg µ = c},

where in�(uIΓ) is the reverse lexicographic initial ideal of uIΓ w.r.t. order � on V , u ∈
G, and c ∈ N

r. Thus B�
u,Γ is a multicomplex that provides a k-basis for k[V ]/uIΓ.

Since k[V ]/uIΓ and k[V ]/IΓ are isomorphic N
r-graded algebras, [21, Eq. (4)] implies the
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following refinement of Proposition 2.1(3). (For t = (t1, . . . , tr) and c = (c1, · · · , cr) ∈ N
r,

write tc = tc11 · · · tcr
r .)

Proposition 5.1 The N
r-graded generating function of B = B�

u,Γ,

P (B, t) :=
∑

c∈Nr |Bc|tc, equals
∑

c∈Nr
fc(Γ)tc

(1−t1)c1 ···(1−tr)cr

We are now in a position to provide an extension of Lemma 2.2(1,2) to N
r-grading.

We start with the following observation. For a simplicial complex Γ, let Γj (1 ≤ j ≤ r)
be the induced subcomplex of Γ on the vertex set Vj. If u = (u1, · · · , ur) ∈ G then
(uIΓ)lej

∼= k ⊗ · · · ⊗ k ⊗ (ujIΓj
)l ⊗ k · · · ⊗ k for all l ∈ N and 1 ≤ j ≤ r, and so

(B�
u,Γ)lej

= {1} × · · · × (Buj ,Γj
)l × · · · × {1}. Since B�

u,Γ is a multicomplex, this yields

B�
u,Γ ⊆ Bu1,Γ1

× · · · × Bur ,Γr . (12)

We say that a matrix u = (u1, · · · , ur) ∈ G satisfies the strong colored Kind-Kleinschmidt
condition with respect to Γ if for all 1 ≤ j ≤ r, uj satisfies the strong Kind-Kleinschmidt
condition with respect to Γj (as defined in Section 2). In analogy with Section 2 we also
define

B�
u,Γ〈c〉 := B�

u,Γ ∩ (N[n−c1] × · · · × N
[n−cr]

)
, where c = (c1, . . . , cr) ∈ Z

r, ci ≤ ni.

Write e = e1 + · · · + er. Lemma 2.2(1,2) has the following multigraded version.

Lemma 5.2 Let Γ be a simplicial complex on V and let u ∈ G be a matrix satis-
fying the strong colored Kind-Kleinschmidt condition with respect to Γ. Then for all
c = (c1, . . . , cr) ∈ N

r such that 0 ≤ cj ≤ nj, 1 ≤ j ≤ r, the following holds

1. µ · (N[n1−c1+1,n1] × · · · × N
[nr−cr+1,nr ]) ⊆ B�

u,Γ for all µ ∈ B�
u,Γ〈c − e〉c.

2. |B�
u,Γ〈c − e〉c| = fc(Γ).

Proof: Since uj satisfies the strong Kind-Kleinschmidt condition with respect to Γj

(1 ≤ j ≤ r) we have by Eq. (8) that

Buj ,Γj
=
⋃̇dimΓj+1

cj=0

⋃̇
µj∈B

uj,Γj
〈cj−1〉cj

µjN
[nj−cj+1,nj ]

which together with Eq. (12) and the fact that B�
u,Γ is a multicomplex implies that

B�
u,Γ ⊆

⋃̇
c∈Nr , cj≤dimΓj+1

⋃̇
µ∈B�

u,Γ〈c−e〉c
µ · (N[n1−c1+1,n1] × · · · × N

[nr−cr+1,nr ]).

Thus to prove the lemma it suffices to show that the inclusion in the above equation is
in fact equality and that |B�

u,Γ〈c − e〉c| = fc(Γ). We verify this claim by induction on r
and on

∑r
j=1 dim Γj. The case of r = 1 is covered by the proof of Lemma 2.2(1,2), while

the case of dim Γj = −1 for some 1 ≤ j ≤ r is equivalent to having only r − 1 sets Vi.
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Hence for the inductive step assume that dim Γj ≥ 0, 1 ≤ j ≤ r, and that the assertion
holds for all complexes Γ1 ∗ · · · ∗ Γ′

j ∗ · · · ∗ Γr, 1 ≤ j ≤ r, where Γ′
j is the codimension

one skeleton of Γj , and ∗ denotes the simplicial join (as defined in Example 3.1). The
rest of the proof is completely analogous to that of Lemma 2.2(1,2): replace Bu,Γ − Bu,Γ′

with B�
u,Γ − ⋃r

j=1 B�
u,Γ1∗···∗Γ′

j∗···∗Γr
and use Proposition 5.1 instead of Proposition 2.1(3).

We omit the details. �
We now come to the central definition of this section — the notion of colored algebraic

shifting. As in the case of the classical algebraic shifting it involves generic initial ideals.
In particular we need the following fact.

Theorem 5.3 Let I ⊆ k[V ] be an N
r-graded ideal. There is a Zariski open set U = U(I)

in G and an ideal J such that in�(uI) = J for all u ∈ U .

Theorem 5.3 is a multigraded analog of [8, Theorem 15.18]. We omit its verification,
which is a straightforward generalization of the proof of [8, Theorem 15.18]. The ideal J
defined in the theorem is called the G-generic initial ideal of I, and a matrix u ∈ U(I) is
called a G-generic matrix w.r.t. I.

We say that a monomial ideal I ⊆ k[V ] is strongly color-stable if it satisfies the
following condition: for every monomial µ ∈ I and for every 1 ≤ j ≤ r, if µ is divisible
by xj,i and 1 ≤ l < i, then µxj,l/xj,i ∈ I. [8, Theorem 15.20] combined with [8, Theorem
15.23] has the following multigraded version. (We do not supply its proof here, since the
proof of [8, Theorem 15.20] carries over almost verbatim to the N

r-graded case.)

Theorem 5.4 If k is a field of characteristic zero, then the G-generic initial ideal of an
N

r-graded ideal of k[V ] is strongly color-stable.

The squarefree map Φ from Remark 4.4 gives rise to the color-squarefree map

Φ̃ :
⋃

c∈Nr , cj≤nj

N
[n−c1+1]
c1 × · · · × N

[n−cr+1]
cr

→ {0, 1}[n1] · · · × · · · {0, 1}[nr]

defined by (µ1, · · · , µr) 7→ (Φ(µ1), · · · , Φ(µr)). This is a one-to-one map that preserves
N

r-grading. In analogy with the classical algebraic shifting (see Remark 4.4) we make the
following definition.

Definition 5.5 Let Γ ⊆ {0, 1}[n1] × · · · × {0, 1}[nr] be a simplicial complex, and let u ∈
U(IΓ) be a G–generic matrix. The set

∆̃�(Γ) :=
⋃

c∈Nr , cj≤nj

Φ̃
(
B�

u,Γ〈c − e〉c
) ⊆ {0, 1}[n1] × · · · × {0, 1}[nr]

is called the colored algebraic shifting of Γ (induced by �).
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Performing colored algebraic shifting amounts to (i) computing the G-generic ideal of
the Stanley-Reisner ideal; (ii) considering the set of all monomials that do not lie in the
resulting ideal; and (iii) applying the color-squarefree operation Φ̃ to all monomials in the
above set on which it is well-defined. The reason for the name “colored shifting” is part 1
of the following theorem.

Theorem 5.6 If k is a field of characteristic zero, then the colored algebraic shifting
∆̃�(Γ) of a simplicial complex Γ is a simplicial complex. Moreover,

1. ∆̃�(Γ) is color-shifted — for every µ ∈ ∆̃�(Γ) and every 1 ≤ j ≤ r, if µ is divisible
by xj,i but is not divisible by xj,l where i < l ≤ nj, then µxj,l/xj,i ∈ ∆̃�(Γ);

2. ∆̃�(Γ) and Γ have the same flag f -vector: fc(∆̃�(Γ)) = fc(Γ) for all c ∈ N
r.

Proof: It is a routine exercise to derive the fact that ∆̃�(Γ) is closed under divisibility, and
hence is a simplicial complex, as well as the fact that it is color-shifted from Theorem 5.4
and Definition 5.5 (cf. [2, Lemma 1.2]). Since the strong colored Kind-Kleinschmidt
condition w.r.t Γ is an open condition, there exists a G-generic w.r.t IΓ matrix that
satisfies this condition. The equality fc(∆̃�(Γ)) = fc(Γ) for all c ∈ N

r then follows from
Lemma 5.2(2) and Definition 5.5. �

In analogy with shifted complexes, color-shifted complexes have a very simple combi-
natorial structure (see Theorems 5.7 and 6.2 below). At the same time (again similarly
to the usual algebraic shifting), colored algebraic shifting preserves several combinato-
rial, algebraic and topological properties of colored simplicial complexes such as the flag
f -numbers (Theorem 5.6(2)) and the property of being Cohen-Macaulay (at least when
applied to a-balanced complexes and for a particular choice of �, see Theorem 6.5). Be-
cause of these features we expect colored algebraic shifting to become a useful tool in the
study of face numbers. We however do not know at present whether β(∆̃�(Γ)) = β(Γ)
even for a completely balanced (that is, e-balanced) Γ. The desire to establish this fact
is partially explained by the following theorem.

Theorem 5.7 Let Γ be a color-shifted complex such that fe(Γ) 6= 0. Then for an arbitrary
field k and for all i ≥ 0

βi−1(Γ) = |{µ ∈ max(Γ) : degN(µ) = i and µ is not divisible by xj,nj
∀1 ≤ j ≤ r}|,

where max(Γ) denotes the set of the facets of Γ.

This theorem is a colored analog of [6, Theorem 4.3]. The proof uses the notions of
the link and the star of a face ν in Γ:

lk Γ(ν) := {µ ∈ Γ : gcd(µ, ν) = 1 and µ · ν ∈ Γ},
st Γ(ν) := {ν ′ · µ : ν ′|ν and µ ∈ lk Γ(ν)}.

st Γ(ν) is a cone over the simplex ν, and hence is a contractible complex as long as 1 6= ν.
In the following, ‖Γ‖ denotes the geometric realization of Γ.
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Proof: Consider the subcomplex Σ := ∪r
j=1st Γ(xj,nj

) of Γ. Since fe(Γ) > 0, and since Γ
is color-shifted, we infer that the monomial

∏r
j=1 xj,nj

and all its divisors are faces of Γ.
Thus for any ∅ 6= L ⊆ [r], the subcomplex ∩l∈L st Γ(xl,nl

) = st Γ(
∏

l∈L xl,nl
) is nonempty

and contractible, and so by the Nerve Theorem (see e.g. [4, (10.6)]), Σ is contractible.
Therefore the projection map ||Γ|| → ||Γ||/||Σ|| is a homotopy equivalence (see [4, (10.2)]).
Now, µ ∈ Γ − Σ if and only if µ ∈ Γ, but xj,nj

· µ /∈ Γ for all 1 ≤ j ≤ r which (by color-
shiftedness of Γ) happens if and only if x · µ 6∈ Γ for all x ∈ V . This implies that all the
elements of Γ − Σ are facets:

Γ − Σ = {µ ∈ max(Γ) : µ is not divisible by xj,nj
∀1 ≤ j ≤ r},

and so the contraction of ||Σ|| to a point turns each (i − 1)-dimensional face of Γ − Σ
into an (i − 1)-dimensional sphere. Hence ||Γ||/||Σ|| is a wedge of spheres (wedged at
the image of ||Σ||), each sphere corresponding to an element of Γ − Σ, and the assertion
follows. �

6 Cohen-Macaulay and Buchsbaum balanced com-

plexes

The goal of this section is to provide a simpler proof of the Stanley-Björner-Frankl theo-
rem ([21, 5]) that characterizes all possible flag f -vectors of a-balanced Cohen-Macaulay
complexes, and then to generalize the necessity part of this result to certain conditions
on the face numbers and Betti numbers of a-balanced Buchsbaum complexes.

Historically, a simplicial complex Γ is called Cohen-Macaulay over k (CM, for short)
if its Stanley-Reisner ring k[x]/IΓ is Cohen-Macaulay, and Γ is called Buchsbaum (over
k) if k[x]/IΓ is Buchsbaum. Here we adopt the following topological characterizations
of CM and Buchsbaum complexes due to Reisner [18] and Schenzel [19], respectively, as
their definitions. (Recall that a simplicial complex is pure if all its facets are of the same
dimension.)

Definition 6.1 A (d − 1)-dimensional simplicial complex Γ is Cohen-Macaulay (over k)

if H̃i−1(lk Γ(µ)) = 0 for every face µ ∈ Γ including µ = 1 and all i < d − deg(µ). Γ is
Buchsbaum (over k) if it is pure and the link of every vertex is Cohen-Macaulay (over k).

It follows easily from the above definition that every CM complex is pure. Although
the converse is false in general, it does hold for color-shifted complexes. (Recall that
M is an a-colored multicomplex for some a = (a1, · · · , ar) ∈ Z

r
+, if fb(M) = 0 unless

b ∈ N
r is coordinate-wise ≤ a. A simplicial complex Γ is a-balanced if it is a-colored and

dim Γ + 1 =
∑r

i=1 ai.)

Theorem 6.2 Let Γ be an a-balanced color-shifted complex. Then Γ is Cohen-Macaulay
(over any field) if and only if Γ is pure.
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Proof: We show by induction on dim(Γ) that if Γ is pure then it is CM. The base case
dim Γ = 0 holds, since all 0-dimensional complexes are CM. Write a/ei to denote the
vector a − ei if ai > 1, and the vector (a1, · · · , ai−1, ai+1, · · · , ar) otherwise. Also write
V/xi,l to denote V − {xi,l} if ai > 1, and V − Vi otherwise. Since Γ is a-balanced and
pure, the complex lk Γ(xi,l) is a/ei-balanced and pure for all 1 ≤ i ≤ r and 1 ≤ l ≤ ni.
Moreover, since Γ is color-shifted, lk Γ(xi,l) is color-shifted as a complex on the vertex set
V/xi,l. Thus by the induction hypothesis, lk Γ(x) is CM for every vertex x ∈ Γ. Finally,
since Γ is pure, Γ has no facets of dimension < dim(Γ), and so by Theorem 5.7 all Betti
numbers of Γ vanish except possibly for the top-dimensional one, yielding that Γ is CM.
(The condition fe(Γ) > 0 of Theorem 5.7 is satisfied since Γ is a-balanced, and so even
fa(Γ) > 0.) �

Let Γ be an a-balanced complex. As in [21, p. 146], define the flag h-numbers of Γ,
hc(Γ), c ∈ N

r, by the following relation∑
c∈Nr hct

c

(1 − t1)a1 · · · (1 − tr)ar
=
∑
c∈Nr

fc(Γ)tc

(1 − t1)c1 · · · (1 − tr)cr
.

Equivalently, hc(Γ) =
∑

b∈Nr , bi≤ci
fb(Γ)

∏r
i=1(−1)ci−bi

(
ai−bi

ci−bi

)
and

fc(Γ) =
∑

b∈Nr , bi≤ci

hb(Γ)
r∏

i=1

(
ai − bi

ci − bi

)
, c ∈ N

r. (13)

Thus hc(Γ) = 0 unless c is coordinate-wise ≤ a. The vector (hc(Γ) : c ∈ N
r) is called

the flag h-vector. It is a refinement of the h-vector: hi(Γ) =
∑

c hc(Γ) for all 0 ≤ i ≤
dim(Γ) + 1, where the sum is over all c ∈ N

r with
∑r

j=1 cj = i.
We now provide a simple proof of the Stanley-Björner-Frankl theorem [21, 5]. We set

W := ∪r
j=1{xj,nj−aj+1, . . . , xj,nj

} ⊂ V , and G′ := GLn1−a1(k) × · · · × GLnr−ar(k).

Theorem 6.3 A sequence h = {hb : b ∈ N
r, bi ≤ ai(i = 1, . . . , r)} is the flag h-vector

of an a-balanced CM complex on the vertex set V if and only if it is the flag f -vector of
an a-colored multicomplex on the set of variables V − W .

Proof of sufficiency: Let h be the flag f -vector of an a-colored multicomplex M on the
set of variables V − W , and let k be a field of characteristic zero. Define IM to be the
k-span of all monomials in k[V −W ] that do not lie in M . Since M is a multicomplex, IM

is a monomial ideal. Let JM be the G′-generic initial ideal of IM , and let BM be the set of
monomials of k[V −W ] that do not lie in JM . Define the following subsets of monomials
of k[V ]

B〈c − e〉 := ∪µ∈BM
µ · (N[n1−a1+1,n1−c1+1] × · · · × N

[nr−ar+1,nr−cr+1]), c ∈ N
r, ci ≤ ai

and the following a-colored set of squarefree monomials

Γ := ∪c∈Nr , ci≤ai
Φ̃(B〈c − e〉c).

the electronic journal of combinatorics 11(2) (2006), #R25 19



We claim that Γ is an a-balanced simplicial CM complex whose flag h-vector is h. Since
JM is strongly color-stable (Theorem 5.4), it follows easily from the definition of Φ̃ that
Γ is a simplicial complex and that it is color-shifted.

To show that Γ is a-balanced and CM, it suffices (by Theorem 6.2) to verify that Γ is
pure of dimension (

∑
ai)− 1. And indeed, let µ ∈ Γ be of degree c, where, say, ci0 < ai0 .

To see that µ is not a facet, consider µ̃ := Φ̃−1(µ) ∈ B〈c − e〉c and denote by k ∈ N

the maximal integer such that xk
i0,ni0

−ci0
+1 divides µ̃. Then (since ci0 < ai0 and from the

definition of B〈c− e〉),
ν̃ := µ̃xk+1

i0,ni0
−ci0

/xk
i0,ni0

−ci0
+1 (14)

is an element of B〈c+ei0 −e〉c+ei0
, and so Φ̃(ν̃) ∈ Γ. The assertion follows since applying

Φ̃ to both sides of (14) yields Φ̃(ν̃) = µxi0,ni0
−k.

Finally, since passing to G′-generic initial ideals preserves the N
r-graded Hilbert series,

P (BM , t) = P (M, t) =
∑

hbt
b, and so the definition of B〈c− e〉 implies that

P (B〈c − e〉, t) =

∑
hbt

b∏r
i=1(1 − ti)ai−ci+1

.

Hence fc(Γ) = |B〈c− e〉c| =
∑

hb

∏r
i=1(−1)ci−bi

(−(ai−ci+1)
ci−bi

)
=
∑

hb

∏r
i=1

(
ai−bi

ci−bi

)
, and we

infer from Eq. (13) that hb(Γ) = hb for all b ∈ N
r. �

For the rest of this section we consider only a-balanced complexes on V = ∪̇r
j=1Vj,

|V | = n. We set d :=
∑r

j=1 aj and we put the following interlacing restriction on the
ordering � of V : we require that the d-element subset W = ∪r

j=1{xj,nj−aj+1, . . . , xj,nj
}

form the tail segment of V w.r.t. �. We identify the i-th element of V in the �-order with
xi (1 ≤ i ≤ n), and we use this identification to embed the matrix group G into GLn(k).
Thus W is identified with {xn−d+1, . . . , xn}, and so B�

u,Γ〈a〉 = Bu,Γ〈d〉. An immediate
but useful observation is that under this identification, a matrix u = (u1, · · · , ur) ∈ G ⊂
GLn(k) that satisfies the strong colored Kind-Kleinschmidt condition w.r.t. a-balanced Γ
also satisfies the usual noncolored Kind-Kleinschmidt condition w.r.t Γ, and hence that for
such u, the elements of W provide a homogeneous (w.r.t N

r-grading) system of parameters
for k[x]/uIΓ.

Stanley [21, Eq. (7)] showed that the flag h-numbers of an a-balanced CM complex Γ
are equal to dimensions of certain vector spaces. In view of Proposition 2.1(2) his result
can be restated as follows.

Lemma 6.4 Let Γ be an a-balanced CM complex. If u ∈ G ⊂ GLn(k) satisfies the
Kind-Kleinschmidt condition w.r.t Γ, then |B�

u,Γ〈a〉b| = hb(Γ) for all b ∈ N
r.

The proof of the necessity of conditions of Theorem 6.3 is now immediate:

Proof of necessity: Assume that Γ is an a-balanced CM complex on V . Let u ∈ G be a
matrix satisfying the strong colored Kind-Kleinschmidt property w.r.t. Γ. By Lemma 6.4,
the set B�

u,Γ〈a〉 is the required a-colored multicomplex on V − W . �
We close our discussion of a-balanced CM complexes with the following result.
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Theorem 6.5 If Γ is an a-balanced CM complex, then its colored algebraic shifting,
∆̃�(Γ), (computed over a field of characteristic zero) is a CM complex as well.

Proof: Since ∆̃�(Γ) is a color-shifted a-balanced complex (Theorem 5.6), to prove that it
is CM it suffices (by Theorem 6.2) to check that it is pure. And indeed, if u ∈ G satisfies
the strong colored Kind-Kleinschmidt condition w.r.t. Γ, then

B�
u,Γ =

⋃̇
µ∈B�

u,Γ〈a〉
µ(N[n1−a1+1,n1] × · · · × N

[nr−ar+1,nr]), (15)

and the purity of ∆̃�(Γ) follows exactly as in the proof of the sufficiency part of Theo-
rem 6.3.

Eq. (15) is immediate from the usual definition of CM complexes via regular sequences.
An easy way to verify it from the results stated above is to notice that (i) since B�

u,Γ is a
multicomplex, the left-hand-side of (15) is contained in its right-hand-side, and (ii) that
by Lemma 6.4 and Proposition 5.1 both sides of (15) have the same generating function,
namely (

∑
b∈Nr hbt

b)/
∏

(1 − ti)
ai . �

The necessity portion of Theorem 6.3 has the following generalization to the face num-
bers and Betti numbers of a-balanced Buchsbaum complexes. For a (d − 1)-dimensional
Buchsbaum complex Γ define

h′
j(Γ) := hj(Γ) +

(
d

j

) j−1∑
i=0

(−1)j−i−1βi−1(Γ) for j = 0, 1, . . . , d. (16)

Thus h′
0(Γ) = 1, h′

1(Γ) = f0(Γ) − d, and if Γ is CM then h′
j(Γ) = hj(Γ) for all j.

Theorem 6.6 If Γ is an a-balanced Buchsbaum complex on V , d =
∑

ai, and 1 ≤ k ≤
d − 1 then there exists an a-colored multicomplex Mk on V − W such that Fk+1(Mk) =
h′

k+1(Γ) and Fk(Mk) = h′
k(Γ) − (d−1

k

)
βk−1(Γ).

A special case of Theorem 6.6 for a ∈ N
1 was verified in [16] (with an additional

restriction that k be of characteristic zero) and in [17] (for an arbitrary field k).

Proof: Let u = (u1, · · · , ur) ∈ G ⊂ GLn(k) be a matrix satisfying the strong colored
Kind-Kleinschmidt condition w.r.t Γ. Define Mk to be the subset of B�

u,Γ〈a〉 = Bu,Γ〈d〉
consisting of all elements of Bu,Γ〈d〉k+1, all elements of Bu,Γ〈d〉k − Zu,Γ〈d − 1〉k, and all
divisors of the latter. (Recall definition of Z〈d− 1〉 from Section 2.) Since u satisfies the
Kind-Kleinschmidt condition w.r.t. Γ, it follows from [17, Lemma 3.6(b,c)] that Zu,Γ〈d −
1〉 ⊂ Bu,Γ〈d〉, and that no divisor of Bu,Γ〈d〉 is an element of Zu,Γ〈d − 1〉, and thus that
Mk is a multicomplex. Also by [17, Lemma 3.6(a)], |Bu,Γ〈d〉j| = h′

j(Γ) for all j ≥ 0, and

Zu,Γ〈d−1〉k =
(

d−1
j

)
βk−1(Γ), implying the assertion on the F -numbers of Mk. Finally, since

ui satisfies the strong Kind-Kleinschmidt condition w.r.t. (ai − 1)-dimensional complex
Γi (1 ≤ i ≤ r), Bui,Γi

〈ai〉ai+1 = ∅ by Eq. (3). Eq. (12) then yields that Mk ⊆ B�
u,Γ〈a〉 is

a-colored. �
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There exists a purely numerical (similar in spirit to the Kruskal-Katona theorem)
characterization of the F -numbers of e-colored multicomplexes due to Frankl, Füredi and
Kalai [9, Thm. 1.2]. Hence for the a = e case one can easily verify whether two given
integer sequences {h′

j : 0 ≤ j ≤ d} and {βj : 0 ≤ j ≤ d − 1} satisfy the condition
of Theorem 6.6. However no numerical characterization of the F -numbers of a-colored
multicomplexes is known for other values of a ∈ N

r (r > 1).
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