A partition of connected graphs

Gus Wiseman
gus@nafindix.com

Submitted: Sep 16, 2004; Accepted: Dec 2, 2004; Published: Jan 7, 2005
Mathematics Subject Classifications: 05C30, 05C05

Abstract

We define an algorithm k which takes a connected graph G on a totally ordered vertex set and returns an increasing tree R (which is not necessarily a subtree of $G)$. We characterize the set of graphs G such that $k(G)=R$. Because this set has a simple structure (it is isomorphic to a product of non-empty power sets), it is easy to evaluate certain graph invariants in terms of increasing trees. In particular, we prove that, up to sign, the coefficient of x^{q} in the chromatic polynomial $\chi_{G}(x)$ is the number of increasing forests with q components that satisfy a condition that we call G-connectedness. We also find a bijection between increasing G-connected trees and broken circuit free subtrees of G.

We will work with finite labeled simple graphs. Usually we will identify a graph G with its edge set; this should not cause any serious ambiguities. If the vertex set is V then we say that G is a graph on V. A (spanning) subgraph Q of G is a graph with the same vertex set as G and a subset of the edges of G. The notation $Q \subseteq G$ means Q is a subgraph of G. A rooted graph is a graph with a distinguished vertex called the root.

Define $\operatorname{link}(v, S)$ to be the set of all possible edges joining v to an element of S (so if $v \notin S, \operatorname{link}(v, S)$ has $|S|$ elements). If G is a graph on V and $S \subseteq V$, we define the restriction of G to $S,\left.G\right|_{S}$, to be the graph on S whose edge set consists of all edges of G with both ends in S.

We will use the symbols π and σ to denote set partitions. The notation $\pi \vdash S$ means π is a set partition of the set S. The length (number of blocks) of π is denoted by $\ell(\pi)$. A set partition σ is called a refinement of a set partition π if every block of σ is contained in some block of π.

To each graph G on V there corresponds a set partition $s(G)$ such that two vertices $v, w \in V$ are in the same block of $s(G)$ if and only if there is a path in G from v to w. Equivalently, $s(G)$ is the maximal set partition of V whose blocks are connected. The restriction of G to a block of $s(G)$ is called a component of G.

If G is a rooted connected graph on V with root r, we will call the set partition $\pi=s\left(\left.G\right|_{V-\{r\}}\right)$ of $V-\{r\}$ the depth-first partition of G. To obtain a connected subgraph of a rooted connected graph G on V, we can choose, for each block π_{i} of π, a connected
subgraph of $\left.G\right|_{\pi_{i}}$ and a nonempty set of edges (in G) connecting r to π_{i}. In fact, every connected subgraph of G can be obtained in this way. Our Theorem 1 may be regarded as an iteration of this correspondence. The depth-first partition and this correspondence have been studied by Gessel [3].

A forest is a graph with no circuits. A tree is a connected forest. A basic property of trees is that there is a unique path (a sequence of distinct, adjacent vertices) between any two vertices. The distance between two vertices is defined to be the length of this path. In a rooted tree, the height of a vertex is defined to be its distance from the root. A vertex w is called a descendant of a vertex v (or v is called an ancestor of w) if the heights of the vertices on the unique path from v to w are increasing (so in particular v is always a descendant of itself). We define the join of v and w to be their unique common ancestor on the unique path between them.

Let R be a rooted tree on the vertex set V, and let $v \in V$. We define $\operatorname{des}(v, R) \subseteq V$ to be the set of descendants of v (including v). If v is not the root of R, we define parent $(v, R) \in V$ to be the closest vertex to v in R which is not a descendant of v. A rooted tree is increasing (according to a total order on V) if for each $v \in V$ and $w \in \operatorname{des}(v, R)$ we have $v \leq w$. Consequently, the root of an increasing tree must be the smallest element of V.

Definition 1 Let R be a rooted tree on the totally ordered vertex set V with root r, and let $v \in V-\{r\}$. Define $J(v, R)=\operatorname{link}(\operatorname{parent}(v, R), \operatorname{des}(v, R))$. If G is a graph on V and if for each $v \in V-\{r\}$ we have $J(v, R) \cap G \neq \emptyset$ then we say that R is G-connected.

Note that the sets $J(v, R)$ (as v ranges over $V-\{r\}$) are disjoint. Also note that a G-connected tree need not be a subgraph of G and that G must be connected for any rooted tree to be G-connected.

Definition 2 For each connected graph G on a totally ordered vertex set V, define an increasing G-connected tree $k(G)$ by the following algorithm:

1. Let H be an empty graph on V, and set $S=V$.
2. Let π be the depth-first partition of $\left.G\right|_{S}$ rooted at $r=$ the smallest vertex in S. Add edges to H connecting r to the smallest vertex in each block of π.
3. For each block π_{i} of π with more than one element, return to step 2 with $S=\pi_{i}$.
4. Return $k(G)=H$.

Example 1 The 6 increasing trees on $V=\{1,2,3,4\}$ are listed vertically. To the right of each increasing tree R are listed the subtrees T of the complete graph on V such that $k(T)=R$ (we have omitted the 22 connected subgraphs which are not trees). The breaks are indicated by dotted lines (see Theorem 3).

There is a different algorithm, called depth-first search, which produces subforests of G. Some enumerative applications of this algorithm have been studied by Gessel and Sagan [4]. A distinguishing difference between depth-first search and our algorithm is that depth-first search only follows the edges of G, whereas here we add edges connecting to the smallest vertex in each block of π regardless of whether these are edges of G. The algorithms are related in that if G is a connected graph and R is a depth-first search subtree of G then parts 2 and 3 of the next theorem hold (although the converse is not true).

Theorem 1 Let G be a connected graph on a totally ordered vertex set V, and let R be an increasing G-connected tree on V. Then the following are equivalent:

1. $k(G)=R$
2. For each vertex $v \in V,\left.G\right|_{\operatorname{des}(v, R)}$ rooted at v is connected and has the same depth-first partition as $\left.R\right|_{\operatorname{des}(v, R)}$ rooted at v.
3. For each non-root vertex $v \in V-\{r\}$ there is a nonempty set $E(v) \subseteq J(v, R)$ such that $G=\bigcup_{v \in V-\{r\}} E(v)$.

Proof. $1 \Leftrightarrow 2$ This follows easily from Definition 2.
$2 \Rightarrow 3$ Let $E(v)=J(v, R) \cap G$. We need to show that every edge of G lies in some $E(v)$. Let $e \in G$ and let $v<w$ be the vertices of e. We will show that w is a descendant of v. Suppose this is false, and let u be their join. Then $\left.e \in G\right|_{\operatorname{des}(u, R)}$, so v and w are in the same block of the depth first partition of $\left.G\right|_{\operatorname{des}(u, R)}$. This is a contradiction because they are in different blocks of the depth first partition of $\left.R\right|_{\operatorname{des}(u, R)}$. Now, since w is a descendant of v, there is a unique vertex $z \in V$ (possibly equal to w) such that $\operatorname{parent}(z)=v$ and $w \in \operatorname{des}(z)$. Hence $e \in J(z, R) \cap G$.
$3 \Rightarrow 2$ This is certainly true if v (in part 2) is a leaf of R (its only descendant is itself). Let $v \in V$ and suppose it is true for all $w \in \operatorname{des}(v, R)-\{v\}$. Let π be the depth-first partition of $\left.R\right|_{\operatorname{des}(v, R)}$. Then $\left.G\right|_{\pi_{i}}$ is connected by the inductive hypothesis. Furthermore, G contains an edge connecting v to π_{i} because π_{i} contains a vertex w whose parent in R is v and $J_{G}(w, R)$ consists of edges connecting v to π_{i}. Hence $\left.G\right|_{\operatorname{des}(v, R)}$ is connected. Clearly π is a refinement of the depth-first partition of $\left.G\right|_{\operatorname{des}(v, R)}$ (because $\left.G\right|_{\pi_{i}}$ is connected), so to show that they are equal we have only to show that if x and y are in different blocks of π then they are in different blocks of the depth-first partition of G. Let $x<y \in V$ be in different blocks of π, and suppose G has an edge between x and y. Then y is a descendant of x in R because every edge of $J_{G}(w, R)$ (for any $w \in V$) connects a vertex to one of its descendants. This contradicts the fact that they are in different blocks of the depth-first partition of $\left.R\right|_{\operatorname{des}(v, R)}$.

Remark 1 Actually the condition in Theorem 1 that R be G-connected is not necessary because if R is not G-connected then parts 1, 2 and 3 will be false.

Some algebraic invariants of graphs can be simply expressed in terms of connected subgraphs. We can use the algorithm k to express such invariants in terms increasing trees. Moreover, Theorem 1 shows that the set $k^{-1}(R)$ has a simple structure, as illustrated by the next theorem.

Definition 3 Let G be a connected graph on V. Define

$$
\eta^{G}(t)=\sum_{\substack{Q \subseteq G \\ \text { connected }}} t^{|Q|}
$$

where $|Q|$ denotes the number of edges in Q.

Theorem 2

$$
\eta^{G}(t)=\sum_{\substack{R \\ \text { increasing } \\ G-\text { connected }}} \prod_{v \in V-\{r\}}\left[(1+t)^{|J(v, R) \cap G|}-1\right]
$$

Proof. We have

$$
\eta^{G}(t)=\sum_{\substack{R \\ \text { increasing } \\ G-\text { connected }}} \sum_{\substack{Q \subseteq G \\ k(Q)=R}} t^{|Q|}
$$

Now, the generating function for the cardinality of nonempty subsets of a set S is

$$
f_{S}(x)=\sum_{\emptyset \neq T \subseteq S} x^{|T|}=(1+x)^{|S|}-1
$$

Hence from Theorem 1 part 3,

$$
\sum_{\substack{Q \subseteq G \\ k(Q)=R}} t^{|Q|}=\sum_{\substack{Q=\cup_{v \in V-\{r\}} E(v) \\ \emptyset \neq E(v) \subseteq J(v, R) \cap G}} t^{|Q|}=\prod_{v \in V-\{r\}} f_{J(v, R) \cap G}(t)
$$

from which the result follows.
The chromatic polynomial $\chi_{G}(x)$ of a graph G is a polynomial which evaluates to the number of proper colorings of G with x colors. The subgraph expansion of $\chi_{G}(x)$ is

$$
\chi_{G}(x)=\sum_{Q \subseteq G}(-1)^{|Q|} x^{c(Q)}
$$

where $c(Q)$ is the number of components of Q. See [1] for background on the chromatic polynomial.

We define an increasing G-connected forest R to be a forest where each component $\left.R\right|_{s(R)_{i}}$ is an increasing $\left.G\right|_{s(R)_{i}}$-connected tree. For a graph G, let $t(G)$ be the (integer) partition whose parts are the sizes of the blocks of $s(G)$. For background on the chromatic symmetric function $X_{G}=X_{G}\left(x_{1}, x_{2}, \ldots\right)$ of a graph G, see [5] and [6]. For background on the chromatic symmetric function in non-commuting variables $Y_{G}=Y_{G}\left(x_{1}, x_{2}, \ldots\right)$, see [2].

Corollary 1 Let G be a graph on a totally ordered vertex set V with $|V|=n$.

1. The coefficient of $(-1)^{n-1} x$ in the chromatic polynomial $\chi_{G}(x)$ is the number of increasing G-connected trees.
2. The coefficient of $(-1)^{n-q} x^{q}$ in the chromatic polynomial $\chi_{G}(x)$ is the number of increasing G-connected forests with q components (or, equivalently, with $n-q$ edges).
3. The coefficient of $(-1)^{n-\ell(\lambda)} p_{\lambda}$ in the chromatic symmetric function X_{G} is the number of increasing G-connected forests R such that $t(R)=\lambda$.
4. The coefficient of $(-1)^{n-\ell(\pi)} p_{\pi}$ in the chromatic symmetric function in non-commuting variables Y_{G} is the number of increasing G-connected forests R such that $s(R)=\pi$.

Proof. 1. Let a^{G} be the coefficient of x in $\chi_{G}(x)$. From the subgraph expansion we have

$$
a^{G}=\sum_{\substack{Q \subseteq G \\ \text { connected }}}(-1)^{|Q|}=\eta^{G}(-1)=\sum_{\substack{R \\ \text { increasing } \\ G-\text { connected }}} \prod_{v \in V-\{r\}}(-1)
$$

We don't need to worry about 0^{0} because the G-connectedness of R implies that $J(v, R) \cap G$ is never empty.
4. We will prove part 4, the others being simple specializations. Let H_{π}^{G} be the number of increasing G-connected forests R such that $s(R)=\pi$, and let H^{G} be the number of increasing G-connected trees. Then using part 1 we have

$$
\begin{equation*}
H_{\pi}^{G}=\prod_{i=1}^{\ell(\pi)} H^{G \mid \pi_{i}}=(-1)^{n-\ell(\pi)} \prod_{i=1}^{\ell(\pi)} \sum_{\substack{Q \subseteq G| |_{i} \\ \text { connected }}}(-1)^{|Q|} \tag{1}
\end{equation*}
$$

The subgraph expansion of Y_{G} is

$$
Y_{G}=\sum_{Q \subseteq G}(-1)^{|Q|} p_{s(Q)}
$$

Hence

$$
Y_{G}=\sum_{\pi \vdash V} p_{\pi} \sum_{\substack{Q \subseteq G \\ s(Q)=\pi}}(-1)^{|Q|}=\sum_{\pi \vdash V} p_{\pi} \prod_{i=1}^{\ell(\pi)} \sum_{\substack{\left.Q \subseteq G\right|_{\pi_{i}} \\ \text { connected }}}(-1)^{|Q|}
$$

Substituting (1), we obtain the desired result.
If G is a graph on a totally ordered vertex set V, we extend the ordering of the vertices to an ordering of the edges lexicographically. A broken circuit of $H \subseteq G$ is a set of edges $B \subseteq H$ such that there is some edge $e \in G$, smaller than every edge of B, such that $B \cup e$ is a circuit. Note that B being a broken circuit of H depends both on H and G. If $H \subseteq G$ contains no broken circuits then it is called broken circuit free. Note that if H contains a circuit then it also contains a broken circuit. Consequently, a broken circuit free subgraph is always a forest. If $T \subseteq G$ is a subtree of G and the edge $e \in G, e \notin T$ is the smallest edge in the unique circuit in $T \cup\{e\}$ then we will call e a break in T. Hence the set of breaks in a subtree T is in bijection with the set of broken circuits of T.

Whitney's Broken Circuit Theorem [7] shows that if G is a connected graph with n vertices, the coefficient of $(-1)^{n-1} x$ in $\chi_{G}(x)$ is the number of broken circuit free subtrees of G. Hence there should be a bijection between broken circuit free subtrees and increasing G-connected trees.

Theorem 3 Let V be a totally ordered vertex set with smallest element r, and let G be a connected graph on V. Let $T \subseteq G$ be a subtree of G, and let $R=k(T)$. Let $E(v)$ for $v \in V-\{r\}$ be as in Theorem 1 part 3. Then $E(v)$ contains only one element $e(v)$ (otherwise T would have more than $|V|-1$ edges so it could not be a tree). For $v \in V-\{r\}$, let $d(v)$ be the set of elements of $J(v, R) \cap G$ which are smaller than $e(v)$. Then the set of breaks in T is

$$
\bigcup_{v \in V-\{r\}} d(v)
$$

Proof. Let $J=\bigcup_{v \in V-\{r\}} J(v, R) \cap G$. Since $k(G)$ may be different from R, J may be different from G. We will first show that if $e \in G$ but $e \notin J$ then e is not a break. Let $v<w \in V$ be the vertices of e. Then w is not a descendant of v because otherwise we would have $e \in J$. Let $u \in V$ be the join of v and w in R. Then Theorem 1 part 2 implies that u is also the join of v and w in $\left.T\right|_{\operatorname{des}(u, R)}$ (rooted at u). Therefore, the cycle created by adding e to T contains an edge connected to u. Since $u<v<w$, e cannot be a break.

Now suppose $e \in J(v, R) \cap G$ is smaller than $e(v)$. We will show that e is a break. Let $H=\left.T\right|_{\operatorname{des}(v, R) \cup \operatorname{parent}(v, R)}$. Then parent (v, R) is the smallest vertex in the vertex set of H. Therefore, e is smaller than any other edge in H. Since H is a tree, adding e would create a unique circuit in H. Hence e is a break.

Now suppose $e \in J(v, R) \cap G$ is larger than $e(v)$. Then, letting H be as before, we see that $e(v)$ must belong to the circuit which e creates. But $e(v)$ is smaller than e, so e cannot be a break.

Corollary 2 The function

$$
f(R)=\bigcup_{v \in V-\{r\}} \min (J(v, R) \cap G)
$$

is a bijection between increasing G-connected trees and broken circuit free subtrees, and $f^{-1}(T)=k(T)$.

Of course, this bijection generalizes to a bijection between increasing G-connected forests with q components and broken circuit free subforests of G with q components.

References

[1] Norman Biggs. Algebraic graph theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 1993.
[2] David D. Gebhard and Bruce E. Sagan. A chromatic symmetric function in noncommuting variables. J. Algebraic Combin., 13(3):227-255, 2001.
[3] Ira M. Gessel. Enumerative applications of a decomposition for graphs and digraphs. Discrete Math., 139(1-3):257-271, 1995. Formal power series and algebraic combinatorics (Montreal, PQ, 1992).
[4] Ira M. Gessel and Bruce E. Sagan. The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions. Electron. J. Combin., 3(2):Research Paper 9, approx. 36 pp. (electronic), 1996. The Foata Festschrift.
[5] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math., 111(1):166-194, 1995.
[6] Richard P. Stanley. Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, \& notable open problems. Discrete Math., 193(1-3):267-286, 1998. Selected papers in honor of Adriano Garsia (Taormina, 1994).
[7] Hassler Whitney. A logical expansion in mathematics. Bull. Amer. Math. Soc., 38:572579, 1932.

