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Abstract

For every graph G, let

∆r (G) = max

{∑
u∈R

d (u) : R is an r-clique of G

}

and let ∆r (n,m) be the minimum of ∆r (G) taken over all graphs of order n and
size m. Write tr (n) for the size of the r-chromatic Turán graph of order n.

Improving earlier results of Edwards and Faudree, we show that for every r ≥ 2,
if m ≥ tr (n) , then

∆r (n,m) ≥ 2rm
n

, (1)

as conjectured by Bollobás and Erdős.
It is known that inequality (1) fails for m < tr (n) . However, we show that for

every ε > 0, there is δ > 0 such that if m > tr (n) − δn2 then

∆r (n,m) ≥ (1 − ε)
2rm
n

.

1 Introduction

Our notation and terminology are standard (see, e.g. [1]): thus G (n, m) stands for a
graph of n vertices and m edges. For a graph G and a vertex u ∈ V (G) , we write Γ (u)
for the set of vertices adjacent to u and set dG (u) = |Γ (u)| ; we write d (u) instead of
dG (u) if the graph G is understood. However, somewhat unusually, for U ⊂ V (G) , we

set Γ̂ (U) = |∩v∈UΓ (v)| and d̂ (U) =
∣∣∣Γ̂ (U)

∣∣∣.
We write Tr (n) for the r-chromatic Turán graph on n vertices and tr (n) for the number

of its edges.
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For every r ≥ 2 and every graph G, let ∆r (G) be the maximum of the sum of degrees
of the vertices of an r-clique, as in the abstract. If G has no r-cliques, we set ∆r (G) = 0.
Furthermore, let

∆r (n, m) = min
G=G(n,m)

∆r (G) .

Since Tr (n) is a Kr+1-free graph, it follows that ∆r (n, m) = 0 for m ≤ tr−1 (n) . In
1975 Bollobás and Erdős [2] conjectured that for every r ≥ 2, if m ≥ tr (n) , then

∆r (n, m) ≥ 2rm

n
. (2)

Edwards [3], [4] proved (2) under the weaker condition m > (r − 1)n2/2r; he also
proved that the conjecture holds for 2 ≤ r ≤ 8 and n ≥ r2. Later Faudree [7] proved the
conjecture for any r ≥ 2 and n > r2 (r − 1) /4.

For tr−1 (n) < m < tr (n) the value of ∆r (n, m) is essentially unknown even for r = 3
(see [5], [6] and [7] for partial results.) A construction due to Erdős and Faudree (see [7],
Theorem 2) shows that, for every ε > 0, there exists δ > 0 such that if tr−1 (n) < m <
tr (n) − δn2 then

∆r (n, m) ≤ (1 − ε)
2rm

n
.

The construction is determined by two appropriately chosen parameters a and d and
represents a complete (r − 1)-partite graph with (r − 2) chromatic classes of size a and a
d-regular bipartite graph inserted in the last chromatic class.

In this note we prove a stronger form of (2) for every r and n. Furthermore, we prove
that ∆r (n, m) is “stable” as m approaches tr (n) . More precisely, for every ε > 0, there
is δ > 0 such that if m > tr (n) − δn2 then

∆r (n, m) ≥ (1 − ε)
2rm

n

for n sufficiently large.

1.1 Preliminary observations

If M1, ..., Mk are subsets of a (finite) set V then

∣∣∩k
i=1Mi

∣∣ ≥ k∑
i=1

|Mi| − (k − 1) |V | . (3)

The size tr (n) of the Turán graph Tr (n) is given by

tr (n) =
r − 1

2r
n2 − s

2

(
1 − s

r

)
.

where s is the remainder of n modulo r. Hence,

r − 1

2r
n2 − r

8
≤ tr (n) ≤ r − 1

2r
n2. (4)
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2 A greedy algorithm

In what follows we shall identify a clique with its vertex set.
Faudree [7] introduced the following algorithm P to construct a clique {v1, ..., vk} in

a graph G:
Step 1: v1 is a vertex of maximum degree in G;
Step 2: having selected v1, ..., vi−1, if Γ̂ (v1, ..., vi−1) = ∅ then set k = i−1 and stop P,

otherwise P selects a vertex of maximum degree vi ∈ Γ̂ (v1, ..., vi−1) and step 2 is repeated
again.

Faudree’s main reason to introduce this algorithm was to prove Conjecture (2) for n
sufficiently large, so he did not study P in great detail. In this section we shall establish
some properties of P for their own sake. Later, in Section 3, we shall apply these results
to prove an extension of (2) for every n.

Note that P need not construct a unique sequence. Sequences that can be constructed
by P are called P-sequences; the definition of P implies that Γ̂ (v1...vk) = ∅ for every
P-sequence v1, ..., vk.

Theorem 1 Let r ≥ 2, n ≥ r and m ≥ tr (n). Then every graph G = G (n, m) is such
that:

(i) every P-sequence has at least r terms;
(ii) for every P-sequence v1, ..., vr, ...,

r∑
i=1

d (vi) ≥ (r − 1)n; (5)

(iii) if equality holds in (5) for some P-sequence v1, ..., vr, ... then m = tr (n).

Proof Without loss of generality we may assume that P constructs exactly the vertices
1, ..., k and hence d (1) ≥ ... ≥ d (k).

Proof of (i) and (ii) To prove (i) we have to show that k ≥ r. For every i = 1, ..., k,
let Mi = Γ (i) ; clearly,

k∑
i=1

d (i) ≤ (q − 1)n,

since, otherwise, (3) implies that Γ̂ (v1...vk) 6= ∅, and so 1, ..., k is not a P-sequence,
contradicting the choice of k. Suppose k < r, and let q be the smallest integer such that
the inequality

h∑
i=1

d (i) > (h − 1) n (6)

holds for h = 1, ..., q − 1, while

q∑
i=1

d (i) ≤ (q − 1)n. (7)
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Clearly, 1 < q ≤ k.
Partition V = ∪q

i=1Vi, so that

V1 = V \Γ (1) ,

Vi = Γ̂ ([i − 1]) \Γ̂ ([i]) for i = 2, ..., q − 1,

Vq = Γ̂ ([q − 1]) .

We have

2m =
∑
j∈V

d (j) =

q∑
h=1

∑
j∈Vh

d (j) ≤
q∑

i=1

d (i) |Vi|

= d (1) (n − d (1)) +

q−1∑
i=2

d (i)
(
d̂ ([i − 1]) − d̂ ([i])

)
+ d (q) d̂ ([q − 1])

= d (1)n +

q−1∑
i=1

d̂ ([i]) (d (i + 1) − d (i)) . (8)

For every i ∈ [q − 1] , set ki = n − d (i) and let kq = n − (k1 + ... + kq−1) . Clearly,
ki > 0 for every i ∈ [q]; also, k1 + ... + kq = n.

Furthermore, for every h ∈ [q − 2] , applying (3) with Mi = Γ (i), i ∈ [h] , and (6), we
see that,

d̂ ([h]) =
∣∣∣Γ̂ ([h])

∣∣∣ ≥ h∑
i=1

d (i) − (h − 1)n = n −
h∑

i=1

ki > 0.

Hence, by d (h + 1) ≤ d (h) , it follows that

d̂ ([h]) (d (h + 1) − d (h)) ≤
(

n −
h∑

i=1

ki

)
(d (h + 1) − d (h)) . (9)

Since, from (7), we have

d (q) ≤ (q − 1)n −
q−1∑
i=1

d (i) =

q−1∑
i=1

ki, (10)

in view of (9) with h = q − 1, it follows that

d̂ ([q − 1]) (d (q) − d (q − 1)) ≤
(

n −
q−1∑
i=1

ki

)
(d (q) − d (q − 1))

≤
(

n −
q−1∑
i=1

ki

)(
q−1∑
i=1

ki − d (q − 1)

)
.
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Recalling (8) and (9), this inequality implies that

2m ≤ nd (1) +

q−2∑
h=1

(
n −

h∑
i=1

ki

)
(d (h + 1) − d (h))

+

(
n −

q−1∑
i=1

ki

)(
q−1∑
i=1

ki − d (q − 1)

)
.

Dividing by 2 and rearranging the right-hand side, we obtain

m ≤
(

n −
q−1∑
i=1

ki

)(
q−1∑
i=1

ki

)
+

∑
1≤i<j≤q−1

kikj =
∑

1≤i<j≤q

kikj. (11)

Note that ∑
1≤i<j≤q

kikj = e (K (k1, ..., kq)) .

Given n and k1 + ... + kq = n, the value e (K (k1, ..., kq)) attains its maximum if and only
if all ki differ by at most 1, that is to say, when K (k1, ..., kq) is exactly the Turán graph
Tq (n) . Hence, the inequality m ≥ tr (n) and (11) imply

tr (n) ≤ m ≤ e (K (k1, ..., kq)) ≤ tq (n) . (12)

Since q < r ≤ n implies tq (n) < tr (n) , contradicting (12), the proof of (i) is complete.
To prove (ii) suppose (5) fails, i.e.,

r∑
i=1

d (i) < (r − 1)n.

Hence, (10) holds with a strict inequality and so, the proof of (12) gives tr (n) < tr (n) .
This contradiction completes the proof of (ii).

Proof of (iii) Suppose that for some P-sequence v1, ..., vr, ... equality holds in (5). We
may and shall assume that v1, ..., vr = 1, ..., r, i.e.,

r∑
i=1

d (i) = (r − 1)n.

Following the arguments in the proof of (i) and (ii), from (12) we conclude that

tr (n) ≤ m ≤ tr (n) .

and this completes the proof. �
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3 Degree sums in cliques

In this section we turn to the problem of finding ∆r (n, m) for m ≥ tr (n) . We shall apply
Theorem 1 to prove that every graph G = G (n, m) with m ≥ tr (n) contains an r-clique
R with ∑

i∈R

d (i) ≥ 2rm

n
. (13)

As proved by Faudree [7], the required r-clique R may be constructed by the algorithm P.
Note that the assertion is trivial for regular graphs; as we shall show, if G is not regular,
we may demand strict inequality in (13).

Theorem 2 Let r ≥ 2, n ≥ r, m ≥ tr (n) and let G = G (n, m) be a graph which is not
regular. Then there exists a P-sequence v1, ..., vr, ... of at least r terms such that

r∑
i=1

d (vi) >
2rm

n
.

Proof Part (iii) of Theorem 1 implies that for some P-sequence, say 1, ..., r, ..., we have

r∑
i=1

d (i) > (r − 1)n.

Since d (i) < n, we immediately obtain

s∑
i=1

d (i) > (s − 1)n (14)

for every s ∈ [r] .
The rest of the proof consists of two parts: In part (a) we find an upper bound for m

in terms of
∑r

i=1 d (i) and
∑r

i=1 d2 (i) . Then, in part (b), we prove that

1

r

r∑
i=1

d (i) ≥ 2m

n
,

and show that if equality holds then G is regular.
(a) Partition the set V into r sets V = V1 ∪ ... ∪ Vr, where,

V1 = V \Γ (1) ,

Vi = Γ̂ ([i − 1]) \Γ̂ ([i]) for i = 2, .., r − 1,

Vr = Γ̂ ([r − 1]) .
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We have,

2m =
∑
i∈V

d (i) =
r∑

h=1

∑
j∈Vh

d (j) ≤
r∑

i=1

d (i) |Vi|

=
r−1∑
i=1

(d (i) − d (r)) |Vi| + nd (r) (15)

Clearly, for every i ∈ [r − 1] , from (3), we have∣∣∣Γ̂ ([i + 1])
∣∣∣ ≥ ∣∣∣Γ̂ ([i])

∣∣∣ + |Γ (i + 1)| − n =
∣∣∣Γ̂ ([i])

∣∣∣+ d (i + 1) − n

and hence, |Vi| ≤ n − d (i) holds for every i ∈ [r − 1] . Estimating |Vi| in (15) we obtain

2m ≤
r−1∑
i=1

(d (i) − d (r)) (n − d (i)) + nd (r)

= n
r∑

i=1

d (i) −
r∑

i=1

d2 (i) + d (r)

(
r∑

i=1

d (i) − n (r − 1)

)
.

(b) Let Sr =
∑r

i=1 d (i) . From d (r) ≤ Sr/r and Cauchy’s inequality we deduce

2m ≤ nSr −
r∑

i=1

d2 (i) +
Sr

r
(Sr − (r − 1)n)

≤ nSr − 1

r
(Sr)

2 +
Sr

r
(Sr − (r − 1) n) ≤ nSr

r
,

and so,
r∑

i=1

d (i) ≥ 2rm

n
. (16)

To complete the proof suppose we have an equality in (16). This implies that

r∑
i=1

d2 (i) =
1

r

(
r∑

i=1

d (i)

)2

and so, d (1) = ... = d (r) . Therefore, the maximum degree d (1) equals the average degree
2m/n, contradicting the assumption that G is not regular. �

Since for every m ≥ tr (n) there is a graph G = G (n, m) whose degrees differ by at
most 1, we obtain the following bounds on ∆r (n, m) .

Corollary 1 For every m ≥ tr (n)

2rm

n
≤ ∆r (n, m) <

2rm

n
+ r.
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4 Stability of ∆r (n, m) as m approaches tr (n)

It is known that inequality (2) is far from being true if m ≤ tr (n) − εn for some ε > 0
(e.g., see [7]). However, it turns out that, as m approaches tr (n) , the function ∆r (n, m)
approaches 2rm/n. More precisely, the following stability result holds.

Theorem 3 For every ε > 0 there exist n0 = n0 (ε) and δ = δ (ε) > 0 such that if
m > tr (n) − δn2 then

∆r (n, m) > (1 − ε)
2rm

n

for all n > n0.

Proof Without loss of generality we may assume that

0 < ε <
2

r (r + 1)
.

Set

δ = δ (ε) =
1

32
ε2.

If m ≥ tr (n) , the assertion follows from Theorem 2, hence we may assume that

2rm

n
<

2rtr (n)

n
≤ (r − 1)n.

Clearly, our theorem follows if we show that m > tr (n) − δn2 implies

∆r (n, m) > (1 − ε) (r − 1)n (17)

for n sufficiently large.
Suppose the graph G = G (n, m) satisfies m > tr (n)−δn2. By (4), if n is large enough,

m > tr (n) − δn2 >

(
r − 1

2r
− δ

)
n2 − r

8
≥
(

r − 1

2r
− 2δ

)
n2. (18)

Let Mε ⊂ V be defined as

Mε =

{
u : d (u) ≤

(
r − 1

r
− ε

2

)
n

}
.

The rest of the proof consists of two parts. In part (a) we shall show that |Mε| < εn,
and in part (b) we shall show that the subgraph induced by V \Mε contains an r-clique
with large degree sum, proving (17).

(a) Our first goal is to show that |Mε| < εn. Indeed, assume the opposite and select
an arbitrary M ′ ⊂ Mε satisfying(

1

2
− 1

2
√

2

)
εn < |M ′| <

(
1

2
+

1

2
√

2

)
εn. (19)
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Let G′ be the subgraph of G induced by V \M ′. Then

e (G) = e (G′) + e (M ′, V \M ′) + e (M ′) ≤ e (G′) +
∑
u∈M ′

d (u) (20)

≤ e (G′) + |M ′|
(

r − 1

r
− ε

2

)
n.

Observe that second inequality of (19) implies

n − |M ′| > (1 − ε)n.

Hence, if

e (G′) ≥ r − 1

2r
(n − |M ′|)2

then, applying Theorem 2 to the graph G′, we see that

∆r (G) ≥ ∆r (G′) ≥ 2re (G′)
n − |M ′| ≥ (r − 1) (n − |M ′|) > (r − 1) (1 − ε)n,

and (17) follows. Therefore, we may assume

e (G′) <
r − 1

2r
(n − |M ′|)2

.

Then, by (18) and (20),

r − 1

2r
(n − |M ′|)2

> e (G′) > − |M ′|
(

r − 1

r
− ε

2

)
n +

(
r − 1

2r
− 2δ

)
n2.

Setting x = |M ′| /n, this shows that

r − 1

2r
(1 − x)2 + x

(
r − 1

r
− ε

2

)
−
(

r − 1

2r
− 2δ

)
> 0,

which implies that
x2 − εx + 4δ > 0.

Hence, either

|M ′| >

(
ε −√

ε2 − 16δ

2

)
n =

(
1

2
− 1

2
√

2

)
εn

or

|M ′| <

(
ε +

√
ε2 − 16δ

2

)
=

(
1

2
+

1

2
√

2

)
εn,

contradicting (19). Therefore, |Mε| < εn, as claimed
(b) Let G0 be the subgraph of G induced by V \Mε. By the definition of Mε, if u ∈

V \Mε, then

dG (u) >

(
r − 1

r
− ε

2

)
n,
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and so

dG0 (u) >

(
r − 1

r
− ε

2

)
n − |Mε| >

r − 2

r − 1
(n − |Mε|) .

Hence, by Turán’s theorem, G0 contains an r-clique and, therefore,

∆r (G) > r

(
r − 1

r
− ε

2

)
n ≥ (1 − ε) (r − 1)n,

proving (17) and completing the proof of our theorem. �
Acknowledgement. The authors are grateful to Prof. D. Todorov for pointing out

a fallacy in an earlier version of the proof of Theorem 2 and to the referee for his valuable
suggestions.

Added on July 1st, 2005. The results of this paper were first presented in a seminar
at Memphis University in February, 2002 and also form part of the second author’s Ph.D.
thesis [10], Ch. 7. The results in Theorems 1 and 2 were reproduced by Khadzhiivanov
and Nenov in [8], [9].
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