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Abstract

In this paper the problem of constructing graphs having a (1,≤ `)-identifying
code of small cardinality is addressed. It is known that the cardinality of such a
code is bounded by Ω

(
`2

log ` log n
)
. Here we construct graphs on n vertices having

a (1,≤ `)-identifying code of cardinality O
(
`4 log n

)
for all ` ≥ 2. We derive our

construction from a connection between identifying codes and superimposed codes,
which we describe in this paper.

1 Codes identifying sets of vertices

Let G = (V, E) be a simple, non-oriented graph. For a vertex v ∈ V , let us denote by
N [v] the closed neighborhood of v : N [v] = N(v)∪{v}. Let C ⊆ V be a subset of vertices
of G, and for all nonempty subset of at most ` vertices X ⊆ V , let us denote

I(X) = I(X, C) :=
⋃
x∈X

N [x] ∩ C.

If all the I(X, C)’s are distinct, then we say that C separates the sets of at most `
vertices of G, and if all the I(X, C)’s are nonempty then we say that C covers the sets
of at most ` vertices of G. We say that C is a code identifying sets of at most ` vertices
of G if and only if C covers and separates all the sets of at most ` vertices of G. The
dedicated terminology [12] for such codes is (1,≤ `)-identifying codes. The sets I(X) are
said to be the identifying sets of the corresponding X’s.
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Whereas C = V is trivially always a code covering the sets of at most ` vertices of
any graph G = (V, E), not every graph has a (1,≤ `)-identifying code. For example, if G
contains two vertices u and v such that N [u] = N [v], then G has no (1,≤ `)-identifying
code, since for any subset of vertices C we have N [u] ∩ C = N [v] ∩ C. Actually, a
graph admits a (1,≤ `)-identifying code if and only if for every pair of subsets X 6= Y ,
|X|, |Y | ≤ `, we have N [X] 6= N [Y ], where N [X] denotes

⋃
x∈X N [x]. In the case where

G admits a (1,≤ `)-identifying code, then C = V is always a (1,≤ `)-identifying code
of G, hence we are usually interested in finding a (1,≤ `)-identifying code of minimum
cardinality.

These codes are used for fault diagnosis in multiprocessor systems, and were first
defined in [9]. The problem of constructing such codes has already been addressed in
[1, 2, 12, 9, 10, 7]. In these papers the authors used covering codes, that are quite
well known [3]. We refer the reader to [14] for an online up-to date bibliography about
identifying codes.

In the general case ` ≥ 1, another good framework to construct such codes is to use
`-superimposed codes, as suggested in [6]. Indeed, given a graph G = (V, E) together with
a (1,≤ `)-identifying code C of G, the characteristic vectors of the subsets I(X, C), for
|X| ≤ `, satisfy the following property :

The boolean sum (OR) of any set of at most ` vectors is distinct from
the boolean sum of any other set of at most ` vectors.

(1)

A set of vectors satisfying (1) is a UD`-code, or `-superimposed code. These codes were
defined by Kautz and Singleton in [11], and about such codes we know the following :

Theorem 1 Let K be a maximum `-superimposed code of {0, 1}N . Then there exist two
constants c1 and c2, not depending on N or `, such that

2c1N/`2 ≤ |K| ≤ 2c2N log `/`2 .

Moreover the lower bound is constructive : there exists an algorithm which, given N and
`, constructs an `-superimposed code of {0, 1}N of cardinality 2c1N/`2.

The lower bound comes from [11], and a combinatorial proof of the upper bound,
originally established in [4], can be found, for example, in [13]. A greedy algorithm
constructing an `-superimposed code of cardinality 2c1N/`2 can be found in [8].

It was already explained in [6] that it was easy to get an `-superimposed code from a
(1,≤ `)-identifying code. In this paper we show that we can also get a (1,≤ `)-identifying
code from an `-superimposed code, which answers to a question of [6]. We give such a
construction and prove the following :

Theorem 2 For all ` ≥ 1, there exists a function c(n) = O (`4 log n) and an infinite
family of graphs (Gi)i∈N , such that, for all i ∈ N, Gi has ni vertices and admits a (1,≤ `)-
identifying code of cardinality c(ni), with ni → ∞ when i → ∞. Moreover we can explicitly
construct such a family of graphs (Gi)i∈N.
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In the next section we describe our construction. In section 3 we show the validity of
our construction, which proves Theorem 2. In the last section, we give an open problem
connected to our construction.

2 Construction of Identifying Codes

Let ` ≥ 2. In this section we describe the construction of a graph G together with a
(1,≤ `)-identifying code C of G. Its validity is proved in the next section.

1. Let N = d`2 log ne and let K be a maximal `-superimposed code of {0, 1}N , that is
to say there is no K ′ ⊃ K, K ′ 6= K, such that K ′ is an `-superimposed code. Let k
denote the cardinality of K : K = V1, . . . , Vk.

2. Consider the N × k matrix M whose columns are the vectors of K. Let M ′ be a
N × N submatrix of M such that there is a 1 on every row of M ′.

3. Let H be a connected graph admitting a (1,≤ `)-identifying code. From M and
M ′, let us construct a graph G = G(M, M ′) together with C = C(M, M ′) a (1,≤ `)-
identifying code of G as follows. The subgraph induced by the code G[C] consists
in the disjoint union of N copies of H . In each copy Hi of H we specify one vertex
hi, i = 1, . . . , N . These vertices h1, . . . , hN will be such that

N(V (G) \ C) = {h1, . . . , hN}.

Now, to each column Vj of M \ M ′ we associate a vertex vj = φ(Vj) of G, whose
neighbors are the hi’s for each i such that the i-th coordinate of Vj is equal to 1 (see
Figure 1). There are no edges between the vj’s, hence Vj is the characteristic vector
of the identifying set of vj , which is also the neighborhood of vj .

3 Proof of the validity of the construction

We show the validity of the construction described in the previous section and we prove
Theorem 2. In Step 2 of the construction, we needed the following:

Lemma 1 Let M be an n × m (n ≤ m) 0 − 1-matrix which has no row consisting only
of 0’s. Then there exists an n × n′ (n′ ≤ n) submatrix M ′ of M such that there is a 1 on
every row of M ′.

Proof : Let M be a matrix satisfying the requirements of the lemma. Let M1, . . . , Mm

be the columns of M .
The proof works by induction on n. Without loss of generality, we may assume that

there exists p ≤ n such that Mi,1 = 1 for all i ≤ p and Mj,1 = 0 for all j > p. If p = n
then the lemma holds. Otherwise, let P be the matrix consisting in the restriction of the
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Figure 1: Construction of a graph G = G(M, M ′) together with a (1,≤ `)- identifying
code C = C(M, M ′) of G from M and M ′.

columns M2, . . . , Mm to the rows indexed by p + 1, . . . , n. By induction, there exists a
submatrix P ′ of P such that there is a 1 on every row of P ′. Now, the submatrix M ′ of
M defined by the columns of P ′ plus M1 satisfies the requirement. 2

Since a matrix of a maximal `-superimposed code of {0, 1}N is a 0 − 1-matrix with no
row consisting only of 0’s, we get, by the previous lemma :

Lemma 2 Let M be an N × k matrix whose columns are the vectors of a maximal `-
superimposed code of {0, 1}N . Then there exists an N × N ′ (N ′ ≤ N) submatrix M ′ of
M such that there is a 1 on every row of M ′.

Later we will also need the following :

Lemma 3 Let M be an N × k matrix whose columns are the vectors of K, a maximal
`-superimposed code of {0, 1}N , and let M ′ be an N ×N ′ (N ′ ≤ N) submatrix of M such
that there is a 1 on every row of M ′ (by the previous Lemma such a submatrix exists).
Then every column of M \ M ′ has at least ` nonzero coordinates.

Proof : Let V be a column of M \ M ′ having less than ` nonzero coordinates. Since
there is a 1 on every row of M ′ then we can find {V1, . . . , Vm}, m ≤ `−1, a set of at most
` − 1 columns of M ′, such that

V ≤
m∑

i=1

Vi

where
∑

stands for the boolean sum. This implies
∑m

i=1 Vi +V =
∑m

i=1 Vi, which contra-
dicts the fact that K is an `-superimposed code. 2
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With the use of projective planes, we can prove that, in the case where ` is a prime
power, there exist connected graphs admitting (1,≤ `)-identifying codes of cardinality
Θ(`2). We recall that a projective plane of order n is an hypergraph on n2 +n+1 vertices
such that :

• Any pair of vertices lie in a unique hyperedge,

• Any two hyperedges have a unique common vertex,

• Every vertex is contained in n + 1 hyperedges, and

• Every hyperedge contains n + 1 vertices.

Note that some of these properties are redundant. We denote Pn the projective plane of
order n. It is known that Pn exists if n is the power of a prime number. Projective planes
of order n are also known as 2-(n2 + n + 1, n + 1, 1) designs, or S(2, n + 1, n2 + n + 1)
Steiner systems.

Lemma 4 If q is a prime power, then there exists a connected graph Gq on 2(q2 + q + 1)
vertices admitting a (1,≤ q)-identifying code. Moreover, Gq is (q + 1)-regular.

Proof : Assume that q is a prime power, and consider a finite projective plane Pq of
order q. In other words, we have a (q2 + q + 1)-element set S and Pq consists of q2 + q +1
hyperedges, each hyperedge being a (q +1)-element subset of S. Pq has the property that
every pair of elements of S is contained in a unique hyperedge. The number of hyperedges
is q2 + q +1; each element of S is contained in exactly q +1 hyperedges; and, finally, every
two hyperedges have exactly one element in common.

Denote by A the adjacency matrix of Pq, where the rows are labelled by the elements
of S and the columns by the hyperedges, and the entry Aij is 1 if the i-th element is in the
j-th hyperedge, and 0, otherwise. (By labelling the elements and hyperedges suitably, we
could make A symmetric, but we do not need it here.) Now, every row (resp. column) of
A has exactly q +1 ones; and every two rows (resp. every two columns) of A have exactly
one 1 in common.

We now use A to construct a graph Gq as follows. Let

B =

(
0 A
AT 0

)
,

and let Gq be the simple, non-oriented graph whose adjacency matrix is B, i.e. vertices
i and j are adjacent in Gq if and only if Bij = 1. The graph Gq is well-defined since B is
a symmetric matrix having only 0’s on its diagonal.

Obviously, the graph Gq has 2(q2 + q + 1) vertices and is (q + 1)-regular. Moreover,
Gq is bipartite, as all the edges go between the first q2 + q + 1 and the last q2 + q + 1
vertices. Clearly, Gq is connected: Given any two of the first q2 + q + 1 vertices, there is
a unique vertex among the last q2 + q + 1 vertices which is connected to both of them,
and the connectivity easily follows.
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Moreover, we can prove that the whole vertex set is a (1,≤ q)-identifying code of Gq.
Assume that X is a subset of the vertex set having at most q elements. Assume further
that we do not know X, but that we know I(X). Let v be an arbitrary vertex. Clearly
|I(v)| = q + 2, and

For every vertex u 6= v, the set I(u) contains at most one element of I(v) \ {v}. (2)

(Remark that we can obtain the identifying sets of individual vertices by changing all
the diagonal elements of B into 1’s: We get a matrix B′ where the i-th row gives the
identifying set of the i-th vertex.) For the vertices u in the same part of the bipartition
as v, (2) follows from the properties of projective planes; and for the other vertices (2)
is trivial by construction. Consequently, if v ∈ X, then all the q + 2 elements of I(v)
are in I(X); but if v /∈ X, then at most q + 1 elements of I(v) are in I(X). So, we can
immediately tell by looking at I(X), whether v is in X or not; and this is true for all
v ∈ X, completing the proof. 2

Finally, we need the following :

Lemma 5 Let C be a (1,≤ `)-identifying code of a graph G, and let X and Y be distinct
subsets of at most ` vertices of G. Then we have either

|X| + |I(X)∆I(Y )| > ` or |Y | + |I(X)∆I(Y )| > `.

Proof : Let X ′ := X ∪ I(X)∆I(Y ) and Y ′ := Y ∪ I(X)∆I(Y ). It is easy to see that
I(X ′)∆I(Y ′) = ∅. Since C is a (1,≤ `)-identifying code, this implies |X ′| > ` or |Y ′| > `.
2

Now we are ready to prove the validity of the construction described in the previous
section.

Proof of Theorem 2 : The case ` = 1 is already known [9], and derive from the case
` = 2. Now let ` ≥ 2. Let N = d`2 log ne and let K be a maximal `-superimposed code
of {0, 1}N . By Theorem 1 we know that there exists such a K satisfying |K| ≥ Ω(n). Let
M be the matrix whose columns are the vectors of K. In Step 2 of the construction we
need to find an N ×N submatrix M ′ of M having a 1 on each one of its rows : since K is
maximal, then by Lemma 2 such a submatrix exists. In Step 3 of the construction we need
a graph H having a (1,≤ `)-identifying code. If ` is a prime power then we take H = G`

as constructed in Lemma 4. If ` is not a prime power, then by Bertrand’s Conjecture –
proved in 1850 by Chebyshev and later by Erdős in his first paper [5] – we know that
there exists a prime number p in the interval [`, 2`], and we take H = Gp as constructed
in Lemma 4. Since p ≥ `, then Gp admits a (1,≤ p)-identifying code implies that Gp

admits a (1,≤ `)-identifying code. Both H = G` and H = Gp have Θ(`2) vertices.
Now let G and C be as constructed in Step 3 of the construction. We prove that C is a

(1,≤ `)-identifying code of G. Let X and Y be two subsets of vertices of G of cardinality
less or equal to `. We show that I(X) = I(Y ) if and only if X = Y . We proceed in
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two steps: first we prove that I(X) = I(Y ) ⇒ X ∩ C = Y ∩ C, and then we prove that
I(X) = I(Y ) ⇒ X \ C = Y \ C. In the rest of the proof, we assume that I(X) = I(Y ).
(a) By way of contradiction, let us assume that X∩C 6= Y ∩C, and let Hi be a connected
component of G[C] on which X and Y differ. Denoting Xi = X ∩ Hi and Yi = Y ∩ Hi,
we have Xi 6= Yi. Since Hi ⊂ C and V (Hi) is a (1,≤ `)-identifying code of Hi, then
we have I(Xi) 6= I(Yi). If there is an h ∈ Hi, h 6= hi, such that h ∈ I(Xi)∆I(Yi),
then we obtain a contradiction since h 6∈ N(X \ Xi) ∪ N(Y \ Yi) : the neighborhood
of h 6= hi is contained in Hi, and consequently h ∈ I(Xi)∆I(Yi) ⇒ h ∈ I(X)∆I(Y ).
Hence I(Xi)∆I(Yi) = {hi}. By Lemma 5 we may assume that |Xi| = `, that is to say
X = Xi ⊆ Hi and hi ∈ I(X) \ I(Yi). Since our assumption is that I(X) = I(Y ), it means
that there exists a neighbor y of hi belonging to Y \C. By Lemma 3, y is neighbor of at
least ` vertices of C (remember that to each column vector W of M − M ′ we associated
a vertex φ(W ) which is neighbor to hi for all i such that the i-th coordinate of W is
1). Since ` ≥ 2, then there exists hj ∈ C, hj 6= hi, such that hj ∈ I(Y ) \ I(X) : this
contradicts I(X) = I(Y ).
(b) Set X ′ = X \ C and Y ′ = Y \ C. Assume that X ′ 6= Y ′. Now, to each hi ∈
I(X ′)∆I(Y ′), we can associate a unique h′

i ∈ X ∩C = Y ∩C. Indeed, since I(X) = I(Y ),
then for each hi in, say, I(X ′) \ I(Y ′), there exists an h′

i ∈ Y ∩ Hi = X ∩ Hi such that
hi ∈ N(h′

i). Hence there exists an injection I(X ′)∆I(Y ′) ↪→ X ∩C = Y ∩C. This shows
that :

|X| ≥ |X ′| + |I(X ′)∆I(Y ′)| and |Y | ≥ |Y ′| + |I(X ′)∆I(Y ′)| (3)

Now, remind that X ′ = {vp}p∈P and Y ′ = {vq}q∈P correspond to two different sets
φ−1(X) = {Vp}p∈P and φ−1(Y ) = {Vq}q∈Q of column vectors of the matrix M \M ′. Note
that |I(X ′)∆I(Y ′)| is the number of coordinates on which

∑
p∈P Vp and

∑
q∈Q Vq differ,

where
∑

stands for the boolean sum. Let I denote the set of coordinates on which∑
p∈P Vp and

∑
q∈Q Vq differ: |I| = |I(X ′)∆I(Y ′)|. Now, for each coordinate i ∈ I, let

Wτ(i) be a column vector of M ′ having its i-th coordinate equal to 1. By definition of the
Wτ(i)’s, we have : ∑

p∈P

Vp +
∑
i∈I

Wτ(i) =
∑
q∈Q

Vq +
∑
i∈I

Wτ(i).

Since M is the matrix of an `-superimposed code, this implies that :

|P |+ |I| > ` or |Q| + |I| > `.

Recalling (3), since |P | = |X ′|, |Q| = |Y ′|, and |I| = |I(X ′)∆I(Y ′)|, we obtain:

|X| > ` or |Y | > `

which is a contradiction.
Hence C is a (1,≤ `)-identifying code of G. C has cardinality N × |H|, and G has

N × |H| + (|K| − N) vertices. Since N = d`2 log ne, |K| ≥ Ω(n) and |H| = Θ(`2), then
we have

|C| = Θ(`2)d`2 log ne and |G| = Ω(n)

hence
|C| = O

(
`4 log |G|) . 2
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4 Conclusion

In this paper we showed a correspondence between (1,≤ `)-identifying codes and `-
superimposed codes, which enabled us to construct a (1,≤ `)-identifying code of car-
dinality O (`4 log n) in a graph on n vertices from a maximal `-superimposed code of
length d`2 log ne. This answers a question of [6].

Our method can be used to answer another interesting question. In [12] it is shown
that a graph admitting a (1,≤ `)-identifying code has its minimum degree greater or
equal to `. We wondered if there existed graphs admitting a (1,≤ `)-identifying code
with minimum degree equal to `. The idea of the construction of Section 2 can be used
to answer this question : take ` copies H1, . . . , H` of a connected graph H admitting
a (1,≤ `)-identifying code (from Lemma 4 we know that such an H exists), specify `
vertices hi ∈ Hi for i = 1, . . . , ` and then construct a graph G ′ by joining the Hi’s with a
new vertex u such that uhi is an edge of G ′ for all i = 1, . . . , `. It is easy to see that G ′ is a
graph admitting a (1,≤ `)-identifying code. Indeed, let X and Y be two distinct subsets
of at most ` vertices of G′. If u /∈ X ∪ Y , then clearly N [X] 6= N [Y ] since H admits a
(1,≤ `)-identifying code. If u ∈ X∩Y , then let i be such that X∩Hi =: Xi 6= Yi := Y ∩Hi.
As |Xi| ≤ ` − 1 and |Y i| ≤ ` − 1, then by Lemma 5 we know that |N [Xi]∆N [Y i]| ≥ 2.
Since u has only one neighbor hi in Hi, then N [X] 6= N [Y ]. Finally, if, say, u ∈ X \ Y
, then Y has to have a nontrivial intersection with each copy H1, . . . , H`. Hence |Y | = `
and for all i = 1, . . . , ` we have |Y ∩ Hi| = 1. Since H admits a (1,≤ `)-identifying code
then δ(H) ≥ ` ≥ 1 and then |N [Y ] ∩Hi| ≥ 2 for all i = 1, . . . , `. This implies that for all
i = 1, . . . , ` there exists an xi ∈ X ∩Hi. Since X contains also u, this contradicts |X| ≤ `.

Thus, we proved the following :

Proposition 1 For all ` ≥ 1 there exists a graph G` admitting a (1,≤ `)- identifying
code with minimum degree equal to `.

We wonder if there exists `-regular graphs admitting (1,≤ `)-identifying codes. Re-
mind that Lemma 4 says that, if ` is a prime power, then there exists (` + 1)-regular
graphs admitting a (1,≤ `)-identifying code.

We recall from [6] that a (1,≤ `)-identifying code of a graph on n vertices has a

cardinality greater or equal to Ω
(

`2

log `
log n

)
. This is a direct consequence of Theorem 1.

Here we showed how to construct graphs having a (1,≤ `)-identifying code of cardinality
O (`4 log n). Our construction is based on the existence of connected graphs on Θ(`2)
vertices admitting a (1,≤ `)- identifying code (Lemma 4). If we could improve Lemma 4
by constructing graphs on less than Θ(`2) vertices admitting a (1,≤ `)-identifying code,
then this would directly result in an improvement of Theorem 2.

Hence the minimum number of vertices of a connected graph admitting a (1,≤ `)-
identifying code is an interesting question, that we pose here as an open problem.
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