Construction of Codes Identifying Sets of Vertices

Sylvain Gravier
CNRS - UJF, ERTé "Maths à Modeler", Groupe de Recherche GéoD
Laboratoire Leibniz, 46, avenue Félix Viallet, 38031 Grenoble Cedex (France)
sylvain.gravier@imag.fr
Julien Moncel
CNRS - UJF, ERTé "Maths à Modeler", Groupe de Recherche GéoD
Laboratoire Leibniz, 46, avenue Félix Viallet, 38031 Grenoble Cedex (France)
julien.moncel@imag.fr

Submitted: Feb 8, 2005; Accepted: Mar 1, 2005; Published: Mar 8, 2005
Mathematics Subject Classifications: 05C99, 94B60, 94C12

Abstract

In this paper the problem of constructing graphs having a ($1, \leq \ell$)-identifying code of small cardinality is addressed. It is known that the cardinality of such a code is bounded by $\Omega\left(\frac{\ell^{2}}{\log \ell} \log n\right)$. Here we construct graphs on n vertices having a $(1, \leq \ell)$-identifying code of cardinality $O\left(\ell^{4} \log n\right)$ for all $\ell \geq 2$. We derive our construction from a connection between identifying codes and superimposed codes, which we describe in this paper.

1 Codes identifying sets of vertices

Let $G=(V, E)$ be a simple, non-oriented graph. For a vertex $v \in V$, let us denote by $N[v]$ the closed neighborhood of $v: N[v]=N(v) \cup\{v\}$. Let $C \subseteq V$ be a subset of vertices of G, and for all nonempty subset of at most ℓ vertices $X \subseteq V$, let us denote

$$
I(X)=I(X, C):=\bigcup_{x \in X} N[x] \cap C
$$

If all the $I(X, C)$'s are distinct, then we say that C separates the sets of at most ℓ vertices of G, and if all the $I(X, C)$'s are nonempty then we say that C covers the sets of at most ℓ vertices of G. We say that C is a code identifying sets of at most ℓ vertices of G if and only if C covers and separates all the sets of at most ℓ vertices of G. The dedicated terminology [12] for such codes is $(1, \leq \ell)$-identifying codes. The sets $I(X)$ are said to be the identifying sets of the corresponding X 's.

Whereas $C=V$ is trivially always a code covering the sets of at most ℓ vertices of any graph $G=(V, E)$, not every graph has a $(1, \leq \ell)$-identifying code. For example, if G contains two vertices u and v such that $N[u]=N[v]$, then G has no ($1, \leq \ell$)-identifying code, since for any subset of vertices C we have $N[u] \cap C=N[v] \cap C$. Actually, a graph admits a $(1, \leq \ell)$-identifying code if and only if for every pair of subsets $X \neq Y$, $|X|,|Y| \leq \ell$, we have $N[X] \neq N[Y]$, where $N[X]$ denotes $\bigcup_{x \in X} N[x]$. In the case where G admits a $(1, \leq \ell)$-identifying code, then $C=V$ is always a ($1, \leq \ell$)-identifying code of G, hence we are usually interested in finding a $(1, \leq \ell)$-identifying code of minimum cardinality.

These codes are used for fault diagnosis in multiprocessor systems, and were first defined in [9]. The problem of constructing such codes has already been addressed in $[1,2,12,9,10,7]$. In these papers the authors used covering codes, that are quite well known [3]. We refer the reader to [14] for an online up-to date bibliography about identifying codes.

In the general case $\ell \geq 1$, another good framework to construct such codes is to use ℓ-superimposed codes, as suggested in [6]. Indeed, given a graph $G=(V, E)$ together with a $(1, \leq \ell)$-identifying code C of G, the characteristic vectors of the subsets $I(X, C)$, for $|X| \leq \ell$, satisfy the following property :

The boolean sum (OR) of any set of at most ℓ vectors is distinct from the boolean sum of any other set of at most ℓ vectors.

A set of vectors satisfying (1) is a $U D_{\ell}$-code, or ℓ-superimposed code. These codes were defined by Kautz and Singleton in [11], and about such codes we know the following :

Theorem 1 Let K be a maximum ℓ-superimposed code of $\{0,1\}^{N}$. Then there exist two constants c_{1} and c_{2}, not depending on N or ℓ, such that

$$
2^{c_{1} N / \ell^{2}} \leq|K| \leq 2^{c_{2} N \log \ell / \ell^{2}} .
$$

Moreover the lower bound is constructive : there exists an algorithm which, given N and ℓ, constructs an ℓ-superimposed code of $\{0,1\}^{N}$ of cardinality $2^{c_{1} N / \ell^{2}}$.

The lower bound comes from [11], and a combinatorial proof of the upper bound, originally established in [4], can be found, for example, in [13]. A greedy algorithm constructing an ℓ-superimposed code of cardinality $2^{c_{1} N / \ell^{2}}$ can be found in [8].

It was already explained in [6] that it was easy to get an ℓ-superimposed code from a $(1, \leq \ell)$-identifying code. In this paper we show that we can also get a $(1, \leq \ell)$-identifying code from an ℓ-superimposed code, which answers to a question of [6]. We give such a construction and prove the following :

Theorem 2 For all $\ell \geq 1$, there exists a function $c(n)=O\left(\ell^{4} \log n\right)$ and an infinite family of graphs $\left(G_{i}\right)_{i \in \mathbb{N}}$, such that, for all $i \in \mathbb{N}$, G_{i} has n_{i} vertices and admits a $(1, \leq \ell)$ identifying code of cardinality $c\left(n_{i}\right)$, with $n_{i} \rightarrow \infty$ when $i \rightarrow \infty$. Moreover we can explicitly construct such a family of graphs $\left(G_{i}\right)_{i \in \mathbb{N}}$.

In the next section we describe our construction. In section 3 we show the validity of our construction, which proves Theorem 2. In the last section, we give an open problem connected to our construction.

2 Construction of Identifying Codes

Let $\ell \geq 2$. In this section we describe the construction of a graph \mathcal{G} together with a $(1, \leq \ell)$-identifying code C of \mathcal{G}. Its validity is proved in the next section.

1. Let $N=\left\lceil\ell^{2} \log n\right\rceil$ and let K be a maximal ℓ-superimposed code of $\{0,1\}^{N}$, that is to say there is no $K^{\prime} \supset K, K^{\prime} \neq K$, such that K^{\prime} is an ℓ-superimposed code. Let k denote the cardinality of $K: K=V_{1}, \ldots, V_{k}$.
2. Consider the $N \times k$ matrix M whose columns are the vectors of K. Let M^{\prime} be a $N \times N$ submatrix of M such that there is a 1 on every row of M^{\prime}.
3. Let H be a connected graph admitting a $(1, \leq \ell)$-identifying code. From M and M^{\prime}, let us construct a graph $\mathcal{G}=G\left(M, M^{\prime}\right)$ together with $C=C\left(M, M^{\prime}\right)$ a $(1, \leq \ell)$ identifying code of \mathcal{G} as follows. The subgraph induced by the code $\mathcal{G}[C]$ consists in the disjoint union of N copies of H. In each copy H_{i} of H we specify one vertex $h_{i}, i=1, \ldots, N$. These vertices h_{1}, \ldots, h_{N} will be such that

$$
N(V(\mathcal{G}) \backslash C)=\left\{h_{1}, \ldots, h_{N}\right\}
$$

Now, to each column V_{j} of $M \backslash M^{\prime}$ we associate a vertex $v_{j}=\phi\left(V_{j}\right)$ of \mathcal{G}, whose neighbors are the h_{i} 's for each i such that the i-th coordinate of V_{j} is equal to 1 (see Figure 1). There are no edges between the v_{j} 's, hence V_{j} is the characteristic vector of the identifying set of v_{j}, which is also the neighborhood of v_{j}.

3 Proof of the validity of the construction

We show the validity of the construction described in the previous section and we prove Theorem 2. In Step 2 of the construction, we needed the following:

Lemma 1 Let M be an $n \times m(n \leq m) 0-1$-matrix which has no row consisting only of 0 's. Then there exists an $n \times n^{\prime}\left(n^{\prime} \leq n\right)$ submatrix M^{\prime} of M such that there is a 1 on every row of M^{\prime}.

Proof : Let M be a matrix satisfying the requirements of the lemma. Let M_{1}, \ldots, M_{m} be the columns of M.

The proof works by induction on n. Without loss of generality, we may assume that there exists $p \leq n$ such that $M_{i, 1}=1$ for all $i \leq p$ and $M_{j, 1}=0$ for all $j>p$. If $p=n$ then the lemma holds. Otherwise, let P be the matrix consisting in the restriction of the

Figure 1: Construction of a graph $\mathcal{G}=\mathcal{G}\left(M, M^{\prime}\right)$ together with a ($1, \leq \ell$)- identifying code $C=C\left(M, M^{\prime}\right)$ of \mathcal{G} from M and M^{\prime}.
columns M_{2}, \ldots, M_{m} to the rows indexed by $p+1, \ldots, n$. By induction, there exists a submatrix P^{\prime} of P such that there is a 1 on every row of P^{\prime}. Now, the submatrix M^{\prime} of M defined by the columns of P^{\prime} plus M_{1} satisfies the requirement.

Since a matrix of a maximal ℓ-superimposed code of $\{0,1\}^{N}$ is a $0-1$-matrix with no row consisting only of 0 's, we get, by the previous lemma :

Lemma 2 Let M be an $N \times k$ matrix whose columns are the vectors of a maximal ℓ superimposed code of $\{0,1\}^{N}$. Then there exists an $N \times N^{\prime}\left(N^{\prime} \leq N\right)$ submatrix M^{\prime} of M such that there is a 1 on every row of M^{\prime}.

Later we will also need the following :
Lemma 3 Let M be an $N \times k$ matrix whose columns are the vectors of K, a maximal ℓ-superimposed code of $\{0,1\}^{N}$, and let M^{\prime} be an $N \times N^{\prime}\left(N^{\prime} \leq N\right)$ submatrix of M such that there is a 1 on every row of M^{\prime} (by the previous Lemma such a submatrix exists). Then every column of $M \backslash M^{\prime}$ has at least ℓ nonzero coordinates.

Proof : Let V be a column of $M \backslash M^{\prime}$ having less than ℓ nonzero coordinates. Since there is a 1 on every row of M^{\prime} then we can find $\left\{V_{1}, \ldots, V_{m}\right\}, m \leq \ell-1$, a set of at most $\ell-1$ columns of M^{\prime}, such that

$$
V \leq \sum_{i=1}^{m} V_{i}
$$

where \sum stands for the boolean sum. This implies $\sum_{i=1}^{m} V_{i}+V=\sum_{i=1}^{m} V_{i}$, which contradicts the fact that K is an ℓ-superimposed code.

With the use of projective planes, we can prove that, in the case where ℓ is a prime power, there exist connected graphs admitting ($1, \leq \ell$)-identifying codes of cardinality $\Theta\left(\ell^{2}\right)$. We recall that a projective plane of order n is an hypergraph on $n^{2}+n+1$ vertices such that:

- Any pair of vertices lie in a unique hyperedge,
- Any two hyperedges have a unique common vertex,
- Every vertex is contained in $n+1$ hyperedges, and
- Every hyperedge contains $n+1$ vertices.

Note that some of these properties are redundant. We denote \mathbb{P}_{n} the projective plane of order n. It is known that \mathbb{P}_{n} exists if n is the power of a prime number. Projective planes of order n are also known as $2-\left(n^{2}+n+1, n+1,1\right)$ designs, or $S\left(2, n+1, n^{2}+n+1\right)$ Steiner systems.

Lemma 4 If q is a prime power, then there exists a connected graph G_{q} on $2\left(q^{2}+q+1\right)$ vertices admitting a $(1, \leq q)$-identifying code. Moreover, G_{q} is $(q+1)$-regular.

Proof : Assume that q is a prime power, and consider a finite projective plane \mathbb{P}_{q} of order q. In other words, we have a $\left(q^{2}+q+1\right)$-element set S and \mathbb{P}_{q} consists of $q^{2}+q+1$ hyperedges, each hyperedge being a $(q+1)$-element subset of $S . \mathbb{P}_{q}$ has the property that every pair of elements of S is contained in a unique hyperedge. The number of hyperedges is $q^{2}+q+1$; each element of S is contained in exactly $q+1$ hyperedges; and, finally, every two hyperedges have exactly one element in common.

Denote by A the adjacency matrix of \mathbb{P}_{q}, where the rows are labelled by the elements of S and the columns by the hyperedges, and the entry $A_{i j}$ is 1 if the i-th element is in the j-th hyperedge, and 0 , otherwise. (By labelling the elements and hyperedges suitably, we could make A symmetric, but we do not need it here.) Now, every row (resp. column) of A has exactly $q+1$ ones; and every two rows (resp. every two columns) of A have exactly one 1 in common.

We now use A to construct a graph G_{q} as follows. Let

$$
B=\left(\begin{array}{ll}
0 & A \\
A^{T} & 0
\end{array}\right)
$$

and let G_{q} be the simple, non-oriented graph whose adjacency matrix is B, i.e. vertices i and j are adjacent in G_{q} if and only if $B_{i j}=1$. The graph G_{q} is well-defined since B is a symmetric matrix having only 0 's on its diagonal.

Obviously, the graph G_{q} has $2\left(q^{2}+q+1\right)$ vertices and is $(q+1)$-regular. Moreover, G_{q} is bipartite, as all the edges go between the first $q^{2}+q+1$ and the last $q^{2}+q+1$ vertices. Clearly, G_{q} is connected: Given any two of the first $q^{2}+q+1$ vertices, there is a unique vertex among the last $q^{2}+q+1$ vertices which is connected to both of them, and the connectivity easily follows.

Moreover, we can prove that the whole vertex set is a $(1, \leq q)$-identifying code of G_{q}. Assume that X is a subset of the vertex set having at most q elements. Assume further that we do not know X, but that we know $I(X)$. Let v be an arbitrary vertex. Clearly $|I(v)|=q+2$, and

For every vertex $u \neq v$, the set $I(u)$ contains at most one element of $I(v) \backslash\{v\}$.
(Remark that we can obtain the identifying sets of individual vertices by changing all the diagonal elements of B into 1's: We get a matrix B^{\prime} where the i-th row gives the identifying set of the i-th vertex.) For the vertices u in the same part of the bipartition as $v,(2)$ follows from the properties of projective planes; and for the other vertices (2) is trivial by construction. Consequently, if $v \in X$, then all the $q+2$ elements of $I(v)$ are in $I(X)$; but if $v \notin X$, then at most $q+1$ elements of $I(v)$ are in $I(X)$. So, we can immediately tell by looking at $I(X)$, whether v is in X or not; and this is true for all $v \in X$, completing the proof.

Finally, we need the following :
Lemma 5 Let C be a $(1, \leq \ell)$-identifying code of a graph G, and let X and Y be distinct subsets of at most ℓ vertices of G. Then we have either

$$
|X|+|I(X) \Delta I(Y)|>\ell \quad \text { or } \quad|Y|+|I(X) \Delta I(Y)|>\ell
$$

Proof : Let $X^{\prime}:=X \cup I(X) \Delta I(Y)$ and $Y^{\prime}:=Y \cup I(X) \Delta I(Y)$. It is easy to see that $I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)=\emptyset$. Since C is a $(1, \leq \ell)$-identifying code, this implies $\left|X^{\prime}\right|>\ell$ or $\left|Y^{\prime}\right|>\ell$.

Now we are ready to prove the validity of the construction described in the previous section.
Proof of Theorem 2: The case $\ell=1$ is already known [9], and derive from the case $\ell=2$. Now let $\ell \geq 2$. Let $N=\left\lceil\ell^{2} \log n\right\rceil$ and let K be a maximal ℓ-superimposed code of $\{0,1\}^{N}$. By Theorem 1 we know that there exists such a K satisfying $|K| \geq \Omega(n)$. Let M be the matrix whose columns are the vectors of K. In Step 2 of the construction we need to find an $N \times N$ submatrix M^{\prime} of M having a 1 on each one of its rows : since K is maximal, then by Lemma 2 such a submatrix exists. In Step 3 of the construction we need a graph H having a $(1, \leq \ell)$-identifying code. If ℓ is a prime power then we take $H=G_{\ell}$ as constructed in Lemma 4. If ℓ is not a prime power, then by Bertrand's Conjecture proved in 1850 by Chebyshev and later by Erdős in his first paper [5] - we know that there exists a prime number p in the interval $[\ell, 2 \ell]$, and we take $H=G_{p}$ as constructed in Lemma 4. Since $p \geq \ell$, then G_{p} admits a $(1, \leq p)$-identifying code implies that G_{p} admits a $(1, \leq \ell)$-identifying code. Both $H=G_{\ell}$ and $H=G_{p}$ have $\Theta\left(\ell^{2}\right)$ vertices.

Now let \mathcal{G} and C be as constructed in Step 3 of the construction. We prove that C is a $(1, \leq \ell)$-identifying code of \mathcal{G}. Let X and Y be two subsets of vertices of \mathcal{G} of cardinality less or equal to ℓ. We show that $I(X)=I(Y)$ if and only if $X=Y$. We proceed in
two steps: first we prove that $I(X)=I(Y) \Rightarrow X \cap C=Y \cap C$, and then we prove that $I(X)=I(Y) \Rightarrow X \backslash C=Y \backslash C$. In the rest of the proof, we assume that $I(X)=I(Y)$.
(a) By way of contradiction, let us assume that $X \cap C \neq Y \cap C$, and let H_{i} be a connected component of $\mathcal{G}[C]$ on which X and Y differ. Denoting $X_{i}=X \cap H_{i}$ and $Y_{i}=Y \cap H_{i}$, we have $X_{i} \neq Y_{i}$. Since $H_{i} \subset C$ and $V\left(H_{i}\right)$ is a $(1, \leq \ell)$-identifying code of H_{i}, then we have $I\left(X_{i}\right) \neq I\left(Y_{i}\right)$. If there is an $h \in H_{i}, h \neq h_{i}$, such that $h \in I\left(X_{i}\right) \Delta I\left(Y_{i}\right)$, then we obtain a contradiction since $h \notin N\left(X \backslash X_{i}\right) \cup N\left(Y \backslash Y_{i}\right)$: the neighborhood of $h \neq h_{i}$ is contained in H_{i}, and consequently $h \in I\left(X_{i}\right) \Delta I\left(Y_{i}\right) \Rightarrow h \in I(X) \Delta I(Y)$. Hence $I\left(X_{i}\right) \Delta I\left(Y_{i}\right)=\left\{h_{i}\right\}$. By Lemma 5 we may assume that $\left|X_{i}\right|=\ell$, that is to say $X=X_{i} \subseteq H_{i}$ and $h_{i} \in I(X) \backslash I\left(Y_{i}\right)$. Since our assumption is that $I(X)=I(Y)$, it means that there exists a neighbor y of h_{i} belonging to $Y \backslash C$. By Lemma 3, y is neighbor of at least ℓ vertices of C (remember that to each column vector W of $M-M^{\prime}$ we associated a vertex $\phi(W)$ which is neighbor to h_{i} for all i such that the i-th coordinate of W is 1). Since $\ell \geq 2$, then there exists $h_{j} \in C, h_{j} \neq h_{i}$, such that $h_{j} \in I(Y) \backslash I(X)$: this contradicts $I(X)=I(Y)$.
(b) Set $X^{\prime}=X \backslash C$ and $Y^{\prime}=Y \backslash C$. Assume that $X^{\prime} \neq Y^{\prime}$. Now, to each $h_{i} \in$ $I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)$, we can associate a unique $h_{i}^{\prime} \in X \cap C=Y \cap C$. Indeed, since $I(X)=I(Y)$, then for each h_{i} in, say, $I\left(X^{\prime}\right) \backslash I\left(Y^{\prime}\right)$, there exists an $h_{i}^{\prime} \in Y \cap H_{i}=X \cap H_{i}$ such that $h_{i} \in N\left(h_{i}^{\prime}\right)$. Hence there exists an injection $I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right) \hookrightarrow X \cap C=Y \cap C$. This shows that:

$$
\begin{equation*}
|X| \geq\left|X^{\prime}\right|+\left|I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)\right| \quad \text { and } \quad|Y| \geq\left|Y^{\prime}\right|+\left|I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)\right| \tag{3}
\end{equation*}
$$

Now, remind that $X^{\prime}=\left\{v_{p}\right\}_{p \in P}$ and $Y^{\prime}=\left\{v_{q}\right\}_{q \in P}$ correspond to two different sets $\phi^{-1}(X)=\left\{V_{p}\right\}_{p \in P}$ and $\phi^{-1}(Y)=\left\{V_{q}\right\}_{q \in Q}$ of column vectors of the matrix $M \backslash M^{\prime}$. Note that $\left|I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)\right|$ is the number of coordinates on which $\sum_{p \in P} V_{p}$ and $\sum_{q \in Q} V_{q}$ differ, where \sum stands for the boolean sum. Let \mathcal{I} denote the set of coordinates on which $\sum_{p \in P} V_{p}$ and $\sum_{q \in Q} V_{q}$ differ: $|\mathcal{I}|=\left|I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)\right|$. Now, for each coordinate $i \in \mathcal{I}$, let $W_{\tau(i)}$ be a column vector of M^{\prime} having its i-th coordinate equal to 1 . By definition of the $W_{\tau(i)}$'s, we have :

$$
\sum_{p \in P} V_{p}+\sum_{i \in \mathcal{I}} W_{\tau(i)}=\sum_{q \in Q} V_{q}+\sum_{i \in \mathcal{I}} W_{\tau(i)} .
$$

Since M is the matrix of an ℓ-superimposed code, this implies that:

$$
|P|+|\mathcal{I}|>\ell \quad \text { or } \quad|Q|+|\mathcal{I}|>\ell .
$$

Recalling (3), since $|P|=\left|X^{\prime}\right|,|Q|=\left|Y^{\prime}\right|$, and $|\mathcal{I}|=\left|I\left(X^{\prime}\right) \Delta I\left(Y^{\prime}\right)\right|$, we obtain:

$$
|X|>\ell \quad \text { or } \quad|Y|>\ell
$$

which is a contradiction.
Hence C is a $(1, \leq \ell)$-identifying code of $\mathcal{G} . C$ has cardinality $N \times|H|$, and \mathcal{G} has $N \times|H|+(|K|-N)$ vertices. Since $N=\left\lceil\ell^{2} \log n\right\rceil,|K| \geq \Omega(n)$ and $|H|=\Theta\left(\ell^{2}\right)$, then we have

$$
|C|=\Theta\left(\ell^{2}\right)\left\lceil\ell^{2} \log n\right\rceil \quad \text { and } \quad|\mathcal{G}|=\Omega(n)
$$

hence

$$
|C|=O\left(\ell^{4} \log |\mathcal{G}|\right) .
$$

4 Conclusion

In this paper we showed a correspondence between $(1, \leq \ell)$-identifying codes and ℓ superimposed codes, which enabled us to construct a ($1, \leq \ell$)-identifying code of cardinality $O\left(\ell^{4} \log n\right)$ in a graph on n vertices from a maximal ℓ-superimposed code of length $\left\lceil\ell^{2} \log n\right\rceil$. This answers a question of [6].

Our method can be used to answer another interesting question. In [12] it is shown that a graph admitting a $(1, \leq \ell)$-identifying code has its minimum degree greater or equal to ℓ. We wondered if there existed graphs admitting a ($1, \leq \ell$)-identifying code with minimum degree equal to ℓ. The idea of the construction of Section 2 can be used to answer this question : take ℓ copies H_{1}, \ldots, H_{ℓ} of a connected graph H admitting a ($1, \leq \ell$)-identifying code (from Lemma 4 we know that such an H exists), specify ℓ vertices $h_{i} \in H_{i}$ for $i=1, \ldots, \ell$ and then construct a graph \mathcal{G}^{\prime} by joining the H_{i} 's with a new vertex u such that $u h_{i}$ is an edge of \mathcal{G}^{\prime} for all $i=1, \ldots, \ell$. It is easy to see that \mathcal{G}^{\prime} is a graph admitting a $(1, \leq \ell)$-identifying code. Indeed, let X and Y be two distinct subsets of at most ℓ vertices of \mathcal{G}^{\prime}. If $u \notin X \cup Y$, then clearly $N[X] \neq N[Y]$ since H admits a $(1, \leq \ell)$-identifying code. If $u \in X \cap Y$, then let i be such that $X \cap H_{i}=: X_{i} \neq Y_{i}:=Y \cap H_{i}$. As $|X i| \leq \ell-1$ and $|Y i| \leq \ell-1$, then by Lemma 5 we know that $|N[X i] \Delta N[Y i]| \geq 2$. Since u has only one neighbor h_{i} in H_{i}, then $N[X] \neq N[Y]$. Finally, if, say, $u \in X \backslash Y$, then Y has to have a nontrivial intersection with each copy H_{1}, \ldots, H_{ℓ}. Hence $|Y|=\ell$ and for all $i=1, \ldots, \ell$ we have $\left|Y \cap H_{i}\right|=1$. Since H admits a ($1, \leq \ell$)-identifying code then $\delta(H) \geq \ell \geq 1$ and then $\left|N[Y] \cap H_{i}\right| \geq 2$ for all $i=1, \ldots, \ell$. This implies that for all $i=1, \ldots, \ell$ there exists an $x_{i} \in X \cap H_{i}$. Since X contains also u, this contradicts $|X| \leq \ell$.

Thus, we proved the following :
Proposition 1 For all $\ell \geq 1$ there exists a graph G_{ℓ} admitting a $(1, \leq \ell)$ - identifying code with minimum degree equal to ℓ.

We wonder if there exists ℓ-regular graphs admitting $(1, \leq \ell)$-identifying codes. Remind that Lemma 4 says that, if ℓ is a prime power, then there exists $(\ell+1)$-regular graphs admitting a $(1, \leq \ell)$-identifying code.

We recall from [6] that a $(1, \leq \ell)$-identifying code of a graph on n vertices has a cardinality greater or equal to $\Omega\left(\frac{\ell^{2}}{\log \ell} \log n\right)$. This is a direct consequence of Theorem 1 . Here we showed how to construct graphs having a $(1, \leq \ell)$-identifying code of cardinality $O\left(\ell^{4} \log n\right)$. Our construction is based on the existence of connected graphs on $\Theta\left(\ell^{2}\right)$ vertices admitting a $(1, \leq \ell)$ - identifying code (Lemma 4). If we could improve Lemma 4 by constructing graphs on less than $\Theta\left(\ell^{2}\right)$ vertices admitting a $(1, \leq \ell)$-identifying code, then this would directly result in an improvement of Theorem 2.

Hence the minimum number of vertices of a connected graph admitting a $(1, \leq \ell)$ identifying code is an interesting question, that we pose here as an open problem.

Acknowledgment

The authors would like to thank the anonymous referee, who made very helpful comments and suggested the use of projective planes to construct a graph on $\Theta\left(\ell^{2}\right)$ vertices admitting a $(1, \leq \ell)$-identifying code (Lemma 4). This resulted in a significant improvement of our main result (Theorem 2).

References

[1] U. Blass, I. Honkala, S. Litsyn, On Binary Codes for Identification, Journal of Combinatorial Designs 8 (2000), 151-156
[2] U. Blass, I. Honkala, S. Litsyn, Bounds on Identifying Codes, Discrete Mathematics 241 (2001), 119-128.
[3] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, Elsevier, NorthHolland Mathematical Library (1997).
[4] A. G. D'yachkov, V. V. Rykov, Bounds on the length of disjunctive codes, Problems of Information Transmission 18 (1983), 166-171.
[5] P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Litterarum ac Scientiarum, Szeged 5 (1932), 194-198.
[6] A. Frieze, R. Martin, J. Moncel, M. Ruszinkó, C. Smyth, Codes Identifying Sets of Vertices in Random Networks, submitted.
[7] I. Honkala, T. Laihonen, S. Ranto, On Codes Identifying Sets of Vertices in Hamming Spaces, Designs, Codes and Cryptography 24(2) (2001), 193-204.
[8] F. K. Hwang, V. Sós, Non-adaptive hypergeometric group testing, Studia Scientiarum Mathematicarum Hungaricae 22(1-4) (1987), 257-263.
[9] M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, On a New Class of Codes for Identifying Vertices in Graphs, IEEE Transactions on Information Theory 44(2) (1998), 599-611.
[10] M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, D. R. Avreky, On the Covering of Vertices for Fault Diagnosis in Hypercubes, Information Processing Letters, 69 (1999), 99-103.
[11] W. H. Kautz, R. R. Singleton, Nonrandom binary superimposed codes, IEEE Transformations on Information Theory 10(4) (1964), 363-377.
[12] T. Laihonen, S. Ranto, Codes Identifying Sets of Vertices, Lecture Notes in Computer Science 2227 (2001), 82-91.
[13] M. Ruszinkó, On the upper bound of the size of the r-cover-free families, Journal of Combinatorial Theory Series A 66(2) (1994), 302-310.
[14] http://www.infres.enst.fr/~1obstein/debutBIBidetlocdom.ps

