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Abstract

We derive a new expression for the diagonal matrix elements of irreducible represen-

tations of the symmetric group. We obtain this new expression using Cherednik’s fusion

procedure. However, instead of splitting Young diagrams into their rows or columns, we

consider their principal hooks. This minimises the number of auxiliary parameters needed

in the fusion procedure.
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1 Introduction

In this article we present a new expression for the diagonal matrix elements of irreducible

representations of the symmetric group. We will obtain this new expression using Chered-

nik’s fusion procedure. This method originates from the work of Jucys [J], and has already

been used by Nazarov and Tarasov [N1, NT]. However our approach differs by minimiz-

ing the number of auxiliary parameters needed in the fusion procedure. This is done by

considering hooks of Young diagrams, rather than their rows or columns as in [N1, NT].

Irreducible representations of the group Sn are parameterized by partitions of n, [CR].

The Young diagram of a partition λ is the set of boxes (i, j) ∈ Z2 such that 1 6 j 6 λi. In

drawing such diagrams we let the first coordinate i increase as one goes downwards, and

the second coordinate j increase from left to right. For example the partition λ = (3, 3, 2)

gives the diagram

If (i, j) is a box in the diagram of λ, then the (i, j)-hook is the set of boxes in λ

{(i, j′) : j′ > j} ∪ {(i′, j) : i′ > i},

We call the (i, i)-hook the ith principal hook.
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A standard tableau, Λ, is a filling of the diagram λ in which the entries are the numbers

1 to n, each occurring once. The Young Symmetrizer of a standard tableau Λ of shape λ

generates an irreducible CSn-module, [CR], denoted Vλ.

In 1986 Ivan Cherednik proposed another description of the Young symmetrizer, [C].

The following version of Cherednik’s description can be found in [NT].

There is a basis for the space Vλ called the Young basis, with its vectors labeled by the

standard tableaux of shape λ, [JK], [OV]. Now, for any standard tableau Λ consider the

diagonal matrix element, FΛ, of the representation Vλ corresponding to the Young basis

vector vΛ, defined by,

FΛ =
∑
g∈Sn

(vΛ, gvΛ)g ∈ CSn.

Multiplying FΛ on the left and right by certain invertible elements returns the Young

symmetrizer. Hence FΛ may also be used to generate the irreducible module Vλ, [JK],

[N3, section 2].

Cherednik’s fusion procedure can be used to find an alternative expression for FΛ.

Consider a standard tableaux Λ of shape λ. For each p = 1, . . . , n, put cp = j − i if the

box (i, j) ∈ λ is filled with the number p in Λ. The difference j − i is the content of box

(i, j).

For any two distinct numbers p, q ∈ {1, . . . , n}, let (pq) be the transposition in the

symmetric group Sn. Consider the rational function of two complex variables u, v, with

values in the group ring CSn:

fpq(u, v) = 1 − (pq)

u − v
. (1)

Now introduce n complex variables z1, . . . , zn. Consider the set of pairs (p, q) with

1 6 p < q 6 n. Ordering the pairs lexicographically we form the product

FΛ(z1, . . . , zn) =

→∏
(p,q)

fpq(zp + cp, zq + cq). (2)

If p and q sit on the same diagonal in the tableau Λ, then fpq(zp + cp, zq + cq) has a pole

at zp = zq.

Let RΛ be the vector subspace in Cn consisting of all tuples (z1, . . . , zn) such that

zp = zq whenever the numbers p and q appear in the same row of the tableau Λ.

By direct calculation we can show the following the identities are true;

fpq(u, v)fpr(u, w)fqr(v, w) = fqr(v, w)fpr(u, w)fpq(u, v) (3)

for all pairwise distinct indices p, q, r, and

fpq(u, v)fst(z, w) = fst(z, w)fpq(u, v) (4)
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for all pairwise distinct p, q, s, t.

We call (3) and (4) the Yang-Baxter relations. Using these relations we obtain reduced

expressions for FΛ(z1, . . . , zn) different from the right hand side of (2). For more details

on different expressions for FΛ(z1, . . . , zn) see [GP].

Using (3) and (4) we may reorder the product FΛ(z1, . . . , zn) such that each singularity

is contained in an expression known to be regular at z1 = z2 = . . . = zn, [N2]. It is by

this method that it was shown that the restriction of the rational function FΛ(z1, . . . , zn)

to the subspace RΛ is regular at z1 = z2 = . . . = zn. Furthermore, by showing divisibility

on the left and on the right by certain elements of CSn it was shown that the value of

FΛ(z1, . . . , zn) at z1 = z1 = . . . = zn is the diagonal matrix element FΛ, [CR]. Thus we

have the following theorem,

1.1 Restriction to RΛ of the rational function FΛ(z1, . . . , zn) is regular at z1 = z2 =

. . . = zn. The value of this restriction at z1 = z2 = . . . = zn coincides with the element

FΛ ∈ CSn.

Similarly, we may form another expression for FΛ by considering the subspace in Cn

consisting of all tuples (z1, . . . , zn) such that zp = zq whenever the numbers p and q appear

in the same column of the tableau Λ [NT].

In this article we present a new expression for the diagonal matrix elements which

minimizes the number of auxiliary parameters needed in the fusion procedure. We do this

by considering hooks of standard tableaux rather than their rows or columns.

Let HΛ be the vector subspace in Cn consisting of all tuples (z1, . . . , zn) such that

zp = zq whenever the numbers p and q appear in the same principal hook of the tableau

Λ. We will prove the following theorem.

Theorem 1.2 Restriction to HΛ of the rational function FΛ(z1, . . . , zn) is regular at z1 =

z2 = . . . = zn. The value of this restriction at z1 = z2 = . . . = zn coincides with the

element FΛ ∈ CSn.

In particular, this hook fusion procedure can be used to form irreducible represen-

tations of Sn corresponding to Young diagrams of hook shape using only one auxiliary

parameter, z. By taking this parameter to be zero we find that no parameters are needed

for diagrams of hook shape. Therefore if ν is a partition of hook shape we have

Fν = Fν(z) =

→∏
(p,q)

fpq(cp, cq), (5)

with the pairs (p, q) in the product ordered lexicographically.

To motivate the study of modules corresponding to partitions of hook shape first let

us consider the Jacobi-Trudi identities [M, Chapter I3]. We can think of the following

identities as dual to the Jacobi-Trudi identities.
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If λ = (λ1, . . . , λk) such that n = λ1+. . .+λk then we have the following decomposition

of the induced representation of the tensor product of modules corresponding to the rows

of λ;

IndSn
Sλ1
×Sλ2

×···×Sλk
V(λ1) ⊗ V(λ2) ⊗ · · · ⊗ V(λk)

∼=
⊕

µ

(Vµ)
⊕Kµλ ,

where the sum is over all partitions of n. Note that V(λi) is the trivial representation

of Sλi
. The coefficients Kµλ are non-negative integers known as Kostka numbers, [M].

Importantly, we have Kλλ = 1.

On the subspace RΛ, if zi − zj /∈ Z when i and j are in different rows of Λ then the

above induced module may be realised as the left ideal in CSn generated by FΛ(z1, . . . , zn).

The irreducible representation Vλ appears in the decomposition of this induced module

with coefficient 1, and is the ideal of CSn generated by FΛ(z1, . . . , zn) when z1 = z2 = . . . =

zn. The fusion procedure of theorem 1.1 provides a way of singling out this irreducible

component.

Similarly we have the equivalent identity for columns,

IndSn
Sλ′

1
×Sλ′

2
×···×Sλ′

l

V
(1λ′

1 )
⊗ V

(1λ′
2 )
⊗ · · · ⊗ V

(1
λ′

l )
∼=
⊕

µ

(Vµ)
⊕Kµ′λ′ ,

where l is the number of columns of λ. In this case V
(1λ′

i )
is the alternating representation of

Sλ′
i
. This induced module is isomorphic to the left ideal of CSn generated by FΛ(z1, . . . , zn)

considered on the subspace RΛ′ , with zi − zj /∈ Z when i, j are in different columns of Λ.

Again the irreducible representation Vλ appears in the decomposition of this induced

module with coefficient 1, and is the ideal of CSn generated by FΛ(z1, . . . , zn) when

z1 = z2 = . . . = zn.

There is another expression known as the Giambelli identity [G]. Unlike the Jacobi-

Trudi identities, this identity involves splitting λ into its principal hooks, rather than its

rows or columns. A combinatorial proof of the Giambelli identity can be found in [ER].

Divide a Young diagram λ into boxes with positive and non-positive content. We may

illustrate this on the Young diagram by drawing ’steps’ above the main diagonal. Denote

the boxes above the steps by α(λ) and the rest by β(λ). For example, the following figure

illustrates λ, α(λ) and β(λ) for λ = (3, 3, 2).

λ α(λ) β(λ)

Figure 1: The Young diagram (3, 3, 2) divided into boxes with positive content and non-

positive content
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If we denote the rows of α(λ) by α1 > α2 > . . . > αd > 0 and the columns of β(λ) by

β1 > β2 > . . . > βd > 0, then we have the following alternative notation for λ;

λ = (α|β),

where α = (α1, . . . , αd) and β = (β1, . . . , βd).

Here d denotes the length of the side of the Durfee square of shape λ, which is the set

of boxes corresponding to the largest square that fits inside λ, and is equal to the number

of principal hooks in λ. In our example d = 2 and λ = (2, 1|3, 2).

We may consider the following identity as a dual of the Giambelli identity.

IndSn
Sh1
×Sh2

×···×Shd
V(α1|β1) ⊗ V(α2|β2) ⊗ · · · ⊗ V(αd|βd)

∼=
⊕

µ

(Vµ)
⊕Dµλ ,

where hi is the length of the ith principal hook, and the sum is over all partitions of n.

This is a decomposition of the induced representation of the tensor product of modules

of hook shape. Further these hooks are the principal hooks of λ. The coefficients, Dµλ,

are non-negative integers, and in particular Dλλ = 1.

On the subspace HΛ, if zi − zj /∈ Z when i and j are in different principal hooks of

Λ then the above induced module may be realised as the left ideal in CSn generated by

FΛ(z1, . . . , zn).

The irreducible representation Vλ appears in the decomposition of this induced module

with coefficient 1, and is the ideal of CSn generated by FΛ(z1, . . . , zn) when z1 = z2 =

. . . = zn.

Hence, in this way, our hook fusion procedure relates to the Giambelli identity in the

same way that Cherednik’s original fusion procedure relates to the Jacobi-Trudi identity.

Namely, it provides a way of singling out the irreducible component Vλ from the above

induced module.

The fusion procedure was originally developed in the study of affine Hecke algebras,

[C]. Our results may be regarded as an application of the representation theory of these

algebras, [OV].

Acknowledgements and thanks go to Maxim Nazarov for his supervision, and for

introducing me to this subject. I would also like to thank EPSRC for funding my research

and my anonymous referees for their comments.

2 Fusion Procedure for a Young Diagram

The diagonal matrix element FΛ determines the irreducible module Vλ of Sn, up to iso-

morphism, for any tableau Λ of shape λ. Therefore in the sequel we will only use one

particular tableau, the hook tableau. In which case we may denote the diagonal matrix

element FΛ by Fλ, and the space HΛ by Hλ.
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We fill a diagram λ by hooks to form a tableau Λ in the following way: For the first

principal hook we fill the column with entries 1, 2, . . . , r and then fill the row with entries

r +1, r +2, . . . , s. We then fill the column of the second principal hook with s+1, s+2,

. . . , t and fill the row with t + 1, t + 2, . . . , x. Continuing in this way we form the hook

tableau.

Example 2.1. On the left is the hook tableau of the diagram λ = (3, 3, 2), and on

the right the same diagram with the content of each box.

1 4 5
2 6 8

3 7

0 1 2
-1 0 1

-2 -1

Therefore the sequence (c1, c2, . . . , c8) is given by (0,−1,−2, 1, 2, 0,−1, 1).

Consider (2) as a rational function of the variables z1, . . . , zn with values in CSn. The

factor fpq(zp + cp, zq + cq) has a pole at zp = zq if and only if the numbers p and q stand

on the same diagonal of the tableau Λ. We then call the pair (p, q) a singularity. We call

the corresponding term fpq(zp + cp, zq + cq) a singularity term, or simply a singularity.

Let p and q be in the same hook of Λ. If p and q are next to one another in the column

of the hook then, on Hλ, fpq(zp + cp, zq + cq) = 1 − (pq). So 1
2
fpq(zp + cp, zq + cq) is an

idempotent. Similarly, if p and q are next to one another in the same row of the hook

then fpq(zp + cp, zq + cq) = 1 + (pq), and 1
2
fpq(zp + cp, zq + cq) will be an idempotent.

Also, for distinct p, q, we have

fpq(u, v)fqp(v, u) = 1 − 1

(u − v)2
. (6)

Therefore, if the contents cp and cq differ by a number greater than one, then the factor

fpq(zp + cp, zq + cq) is invertible in CSn when zp = zq with inverse (cp−cq)2

(cp−cq)2−1
fqp(cq, cp).

The presence of singularity terms in the product Fλ(z1, . . . , zn) mean this product may

or may not be regular on the vector subspace of Hλ consisting of all tuples (z1, . . . , zn)

such that z1 = z2 = . . . = zn. Using the following lemma, we will be able to show that

Fλ(z1, . . . , zn) is in fact regular on this subspace.

Lemma 2.2 The restriction of fpq(u, v)fpr(u, w)fqr(v, w) to the set (u, v, w) such that

u = v ± 1 is regular at u = w.

Proof. Under the condition u = v ± 1, the product fpq(u, v)fpr(u, w)fqr(v, w) can be

written as

(1 ∓ (pq)) ·
(

1 − (pr) + (qr)

v − w

)
.

This rational function of v, w is clearly regular at w = v ± 1.
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Notice that the three term product, or triple, in the statement of the lemma can be

written in reverse order due to (3). In particular, if the middle term is a singularity and

the other two terms are an appropriate idempotent and triple term, then the triple is

regular at z1 = z2 = . . . = zn. We may now prove the first statement of Theorem 1.2.

Proposition 2.3 The restriction of the rational function Fλ(z1, . . . , zn) to the subspace

Hλ is regular at z1 = z2 = . . . = zn.

Proof. We will prove the statement by reordering the factors of the product Fλ(z1, . . . , zn),

using relations (3) and (4), in such a way that each singularity is part of a triple which

is regular at z1 = z2 = . . . = zn, and hence the whole of Fλ(z1, . . . , zn) will be manifestly

regular.

Define gpq to be the following;

gpq =

{
fpq(zp + cp, zq + cq) if p < q

1 if p > q

Now, let us divide the diagram λ into two parts, consisting of those boxes with positive

contents and those with non-positive contents as in Figure 1. Consider the entries of the

ith column of the hook tableau Λ of shape λ that lie below the steps. If u1, u2, . . . , uk are

the entries of the ith column below the steps, we define

Ci =

n∏
q=1

gu1,qgu2,q . . . guk,q. (7)

Now consider the entries of the ith row of Λ that lie above the steps. If v1, v2, . . . , vl are

the entries of the ith row above the steps, we define

Ri =
n∏

q=1

gv1,qgv2,q . . . gvl,q. (8)

Our choice of the hook tableau was such that the following is true; if d is the num-

ber of principal hooks of λ then by relations (3) and (4) we may reorder the factors of

Fλ(z1, . . . , zn) such that

Fλ(z1, . . . , zn) =

d∏
i=1

CiRi.

Now, each singularity (p, q) has its corresponding term fpq(zp + cp, zq + cq) contain in

some product Ci or Ri. This singularity term will be on the immediate left of the term

fp+1,q(zp+1 + cp+1, zq + cq). Also, this ordering has been chosen such that the product

of factors to the left of any such singularity in Ci or Ri is divisible on the right by

fp,p+1(zp + cp, zp+1 + cp+1).
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Therefore we can replace the pair fpq(zp + cp, zq + cq)fp+1,q(zp + cp, zq + cq) in the

product by the triple 1
2
fp,p+1(zp + cp, zp+1 + cp+1)fpq(zp + cp, zq + cq)fp+1,q(zp+1 + cp+1, zq +

cq), where 1
2
fp,p+1(zp + cp, zp+1 + cp+1) is an idempotent. Divisibility on the right by

fp,p+1(zp + cp, zp+1 + cp+1) means the addition of the idempotent has no effect on the value

of the product Ci or Ri.

By Lemma 2.2, the above triples are regular at z1 = z2 = . . . = zn, and therefore, so

too are the products Ci and Ri, for all 1 6 i 6 d. Moreover, this means Fλ(z1, . . . , zn) is

regular at z1 = z2 = . . . = zn.

Example 2.4. As an example consider the hook tableau of the Young diagram

λ = (3, 3, 2), as shown in Example 2.1.

In the original lexicographic ordering the product Fλ(z1, . . . , zn) is written as follows,

for simplicity we will write fpq in place of the term fpq(zp + cp, zq + cq).

Fλ(z1, . . . , zn) = f12f13f14f15f16f17f18f23f24f25f26f27f28f34f35f36f37f38

f45f46f47f48f56f57f58f67f68f78

We may now reorder this product into the form below using relations (3) and (4) as

described in the above proposition. The terms bracketed are the singularity terms with

their appropriate triple terms.

Fλ(z1, . . . , zn) = f12f13f23f14f24f34f15f25f35(f16f26)f36f17(f27f37)f18f28f38

·f45f46f56f47f57(f48f58) · f67f68f78

So, for each singularity fpq, we can replace fpqfp+1,q by the triple 1
2
fp,p+1fpqfp+1,q, where

1
2
fp,p+1 is an idempotent, without changing the value of Fλ(z1, . . . , zn).

Fλ(z1, . . . , zn) = f12f13f23f14f24f34f15f25f35(
1
2
f12f16f26)f36f17(

1
2
f23f27f37)f18f28f38

·f45f46f56f47f57(
1
2
f45f48f58) · f67f68f78

Since each of these triples is regular at z1 = z2 = . . . = zn then so too is the whole of

Fλ(z1, . . . , zn).

Therefore, due to the above proposition an element Fλ ∈ CSn can now be defined as

the value of Fλ(z1, . . . , zn) at z1 = z2 = . . . = zn. We proceed by showing this Fλ is indeed

the diagonal matrix element. To this end we will need the following propositions.

Note that for n = 1, we have Fλ = 1. For any n > 1, we have the following fact.

Proposition 2.5 The coefficient of Fλ ∈ CSn at the unit element of Sn is 1.

Proof. For each r = 1, . . . , n − 1 let sr ∈ Sn be the adjacent transposition (r, r + 1).

Let w0 ∈ Sn be the element of maximal length. Multiply the ordered product (2) by the
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element w0 on the right. Using the reduced decomposition

w0 =

→∏
(p,q)

sq−p (9)

we get the product
→∏

(p,q)

(
sq−p − 1

zp − zq + cp − cq

)
.

For the derivation of this formula see [GP, (2.4)]. This formula expands as a sum of the

elements s ∈ Sn with coefficients from the field of rational functions of z1, . . . , zn valued

in C. Since the decomposition (9) is reduced, the coefficient at w0 is 1. By the definition

of Fλ, this implies that the coefficient of Fλw0 ∈ CSn at w0 is also 1.

In particular this shows that Fλ 6= 0 for any nonempty diagram λ. Let us now denote

by ϕ the involutive antiautomorphism of the group ring CSn defined by ϕ(g) = g−1 for

every g ∈ Sn.

Proposition 2.6 The element Fλ ∈ CSn is ϕ-invariant.

Proof. Any element of the group ring CSn of the form fpq(u, v) is ϕ-invariant. Applying

the antiautomorphism ϕ to an element of the form (2) just reverses the ordering of the

factors corresponding to the pairs (p,q). However, the initial ordering can then be restored

using relations (3) and (4), for more detail see [GP]. Therefore, any value of the function

Fλ(z1, . . . , zn) is ϕ-invariant. Therefore, so too is the element Fλ.

Proposition 2.7 Let x be last entry in the kth row of the hook tableau of shape λ. Denote

by σx the embedding CSn−x → CSn defined by σx : (pq) 7→ (p + x, q + x) for all distinct

p, q = 1, . . . , n − x.

If λ = (α1, α2, . . . , αd|β1, β2, . . . , βd) and µ = (αk+1, αk+2, . . . , αd|βk+1, βk+2, . . . , βd),

then Fλ = P · σx(Fµ), for some element P ∈ CSn.

Proof. Here the shape µ is obtained by removing the first k principal hooks of λ. By the

ordering described in Proposition 2.3,

Fλ(z1, . . . , zn) =

k∏
i=1

CiRi · σx(Fµ(zx+1, . . . , zn)),

where Ci and Ri are defined by (7) and (8).

Since all products Ci and Ri are regular at z1 = z2 = . . . = zn, Proposition 2.3 then

gives us the required statement.
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In any given ordering of Fλ(z1, . . . , zn), we want a singularity term to be placed next

to an appropriate triple term such that we may then form a regular triple. In that case

we will say these two terms are ’tied’.

We now complete the proof of Theorem 1.2. If u, v stand next to each other in the

same row, or same column, of Λ the following results show that Fλ is divisible on the

left (and on the right) by 1 − (uv), or 1 + (uv) respectively, or divisible by these terms

preceded (followed) by some invertible elements of CSn. Hence Fλ is the diagonal matrix

element.

However, proving the divisibilities described requires some pairs to be ’untied’, in

which case we must form a new ordering. This is the content of the following proofs.

Some explicit examples will then given in Example 2.10 below.

Proposition 2.8 Suppose the numbers u < v stand next to each other in the same column

of the hook tableau Λ of shape λ. First, let s be the last entry in the row containing

u. If cv < 0 then the element Fλ ∈ CSn is divisible on the left and on the right by

fu,v(cu, cv) = 1 − (uv). If cv > 0 then the element Fλ ∈ CSn is divisible on the left by the

product
←∏

i=u,...,s

( →∏
j=s+1,...,v

fij(ci, cj)

)

Proof. By Proposition 2.6, the divisibility of Fλ by the element 1 − (uv) on the left is

equivalent to the divisibility by the same element on the right. Let us prove divisibility

on the left.

By Proposition 2.7, if σx(Fµ) is divisible on the right by fuv(cu, cv), or fuv(cu, cv)

followed by some invertible terms, then so too will Fλ. If σx(Fµ) is divisible on the left

by fuv(cu, cv), or fuv(cu, cv) preceded by some invertible terms, then, by using Proposition

2.6 twice, first on σx(Fµ) then on the product Fλ = P · σx(Fµ), so too will Fλ. Hence we

only need to prove the statement for (u, v) such that u is in the first row or first column

of Λ.

Let r be the last entry in the first column of Λ, s the last entry in the first row of Λ,

and t the last entry in the second column of Λ, as shown in Figure 2.

We now continue this proof by considering three cases and showing the appropriate

divisibility in each.

(i) If cv < 0 (i.e. u and v are in the first column of Λ) then v = u + 1 and

Fλ(z1, . . . , zn) can be written as Fλ(z1, . . . , zn) = fuv(zu + cu, zv + cv) · F .

Starting with Fλ(z1, . . . , zn) written in the ordering described in Proposition 2.3 and

simply moving the term fu,v(zu + cu, zv + cv) to the left results in all the singularity terms

in the product F remaining tied to the same triple terms as originally described in that

ordering. Therefore we may still form regular triples for each singularity in F , and hence

F is regular at z1 = z2 = . . . = zn.
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1 r + 1r + 2

2 s + 1 t + 1

r

u s

t

v

. . . . . . . . .

. . . . . .

...
...

...

...

Figure 2: The first two principal hooks of the hook tableau Λ

So by considering this expression for Fλ(z1, . . . , zn) at z1 = z2 = . . . = zn we see that

Fλ will be divisible on the left/right by fuv(cu, cv) = (1 − (uv)).

(ii) If cv = 0 then v = s + 1, and Fλ(z1, . . . , zn) can be written as

Fλ(z1, . . . , zn) =
←∏

i=u,...,s

fi,s+1(zi + ci, zs+1 + cs+1) · F ′.

Again, starting with the ordering described in Proposition 2.3, this results in all the

singularity terms in the product F ′ remaining tied to the same triple terms as originally

described in that ordering. Hence F ′ is regular at z1 = z2 = . . . = zn. So Fλ is divisible

on the left by
←∏

i=u,...,s

fi,s+1(ci, cs+1).

(iii) If cv > 0 (i.e. v is above the steps) then fuv(zu + cu, zv + cv) is tied to the

singularity fu−1,v(zu−1 + cu−1, zv + cv) as a triple term. To show divisibility by fuv(zu +

cu, zv + cv) in this case we need an alternative expression for Fλ(z1, . . . , zn) that is regular

when z1 = z2 = . . . = zn. Define a permutation τ as follows,

τ =
→∏

i=u,...,s

( ←∏
j=s+1,...,v

(ij)

)

=

(
1 2 . . . u − 1 u u + 1 . . . . . . . . . . . . v − 1 v v + 1 . . . n

1 2 . . . u − 1 s + 1 s + 2 . . . v − 1 v u u + 1 . . . s − 1 s v + 1 . . . n

)
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From the definition of C1 in (7) we now define C ′1 = τC1, where τ acts on the indices

of the product C1 such that

τC1 =
n∏

j=1

(
r∏

i=1

gi,τ ·j

)
.

For the rest of this proof we will simply write fij instead of fij(zi + ci, zj + cj). Define

R′1 as,

R′1 =

←∏
i=r+2,...,u−1

( →∏
j=s+1,...,v

fij

)
·

→∏
i=s+1,...,t−1

( →∏
j=i+1,...,t

fij

)
·
( ←∏

j=s+1,...,t

fr+1,j

)

×
( →∏

j=t+1,...,v

fr+1,j

) →∏
i=r+1,...,s−1

( →∏
j=i+1,...,s

fij

)
·

→∏
j=v+1,...,n

( →∏
i=r+1,...,s

fij

)
.

Finally, define C ′2 as,

C ′2 =

→∏
j=t+1,...,n

( →∏
i=s+1,...,t

fij

)
.

Then,

Fλ(z1, . . . , zn) =

←∏
i=u,...,s

( →∏
j=s+1,...,v

fij

)
· C ′1R′1C ′2R2 ·

d∏
i=3

CiRi,

where d is the number of principal hooks of λ.

The product C ′1R
′
1C
′
2R2 ·

∏
CiRi is regular at z1 = z2 = . . . zn since, as before, for

any singularity (p, q) the terms fpqfp+1,q can be replaced by the triple 1
2
fp,p+1fpqfp+1,q –

except in the expression R′1 where the terms fplfpq are replaced by 1
2
fplfpqflq, where l is

the entry to the immediate left of q. Note that l = q − 1 when cq > 1 and l = s + 1 when

cq = 1.

So by letting z1 = z2 = . . . = zn we see that Fλ is divisible on the left by

←∏
i=u,...,s

( →∏
j=s+1,...,v

fij(ci, cj)

)
.

Proposition 2.9 Suppose the numbers u < v stand next to each other in the same row of

the hook tableau Λ of shape λ. Let r be the last entry in the column containing u. If cu > 0

then the element Fλ ∈ CSn is divisible on the left and on the right by fu,v(cu, cv) = 1+(uv).

If cu 6 0 then the element Fλ ∈ CSn is divisible on the left by the product

←∏
i=u,...,r

( →∏
j=r+1,...,v

fij(ci, cj)

)
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We omit the proof of this proposition as it is very similar to that of Proposition 2.8.

This completes our proof of Theorem 1.2. Let us now consider an example that allows

us to see how the product Fλ(z1, . . . , zn) is broken down in the proof of Proposition 2.8.

Example 2.10. We again consider the hook tableau of the Young diagram λ =

(3, 3, 2), as shown in Example 2.1.

We begin with the product Fλ(z1, . . . , zn) in the ordering described in Proposition

2.3. For simplicity we again write fpq in place of the term fpq(zp + cp, zq + cq). We have

also marked out the singularities in this expansion along with their triple terms, but no

idempotents have yet been added which would form regular triples.

Fλ(z1, . . . , zn) = f12f13f23f14f24f34f15f25f35(f16f26)f36f17(f27f37)f18f28f38

·f45f46f56f47f57(f48f58) · f67f68f78
(10)

Let u = 4 and v = 6 in Proposition 2.8. Then by that proposition we may arrange

the above product as follows. Notice since cv = 0 all singularity-triple term pairs remain

the same.

Fλ(z1, . . . , zn) = f56f46 · f12f13f23(f16f26)f36f14f24f34f15f25f35f17(f27f37)

f18f28f38 · f45f47f57(f48f58) · f67f68f78

We may now add the appropriate idempotents so that all singularities remain in regular

triples. So by considering the product at z1 = z2 = . . . = zn we have that Fλ is divisible

on the left by (1 − (46)), preceded only by invertible terms, as desired.

Now let u = 5 and v = 8. As described by Proposition 2.8 (iii) we may arrange (10) in

the following way. Singularities in R1 have been marked out with their alternative triple

terms, while all other singularity-triple term pairs remain the same.

Fλ(z1, . . . , zn) = f56f57f58 · f12f13f23f14f24f34(f16f26)f36f17(f27f37)f18f28f38

f15f25f35 · f67f47(f46f48)f45 · f68f78

In moving f58 to the left it is untied from the singularity f48. So we must form new

triples which are regular at z1 = z2 = . . . = zn. Therefore, by considering the product at

z1 = z2 = . . . = zn, we have that Fλ is divisible on the left by (1 − (58)), again preceded

only by invertible terms, as desired.
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