
Faster Algorithms for Frobenius Numbers

Dale Beihoffer
Lakeville, Minnesota, USA

dbeihoffer@frontiernet.net

Jemimah Hendry
Madison, Wisconsin, USA

jhendry@mac.com

Albert Nijenhuis
Seattle, Washington, USA

nijenhuis@math.washington.edu

Stan Wagon
Macalester College,

St. Paul, Minnesota, USA

wagon@macalester.edu

Submitted: Oct 10, 2004; Accepted: May 3, 2005; Published: Jun 14, 2005
Mathematics Subject Classifications: 05C85, 11Y50

Abstract

The Frobenius problem, also known as the postage-stamp problem or the money-
changing problem, is an integer programming problem that seeks nonnegative inte-
ger solutions to x1a1 + · · · + xnan = M , where ai and M are positive integers. In
particular, the Frobenius number f(A), where A = {ai}, is the largest M so that
this equation fails to have a solution. A simple way to compute this number is to
transform the problem to a shortest-path problem in a directed weighted graph;
then Dijkstra’s algorithm can be used. We show how one can use the additional
symmetry properties of the graph in question to design algorithms that are very
fast. For example, on a standard desktop computer, our methods can handle cases
where n = 10 and a1 = 107. We have two main new methods, one based on breadth-
first search and another that uses the number theory and combinatorial structure
inherent in the problem to speed up the Dijkstra approach. For both methods we
conjecture that the average-case complexity is O(a1

√
n). The previous best method

is due to Böcker and Lipták and runs in time O(a1n). These algorithms can also
be used to solve auxiliary problems such as (1) find a solution to the main equation
for a given value of M ; or (2) eliminate all redundant entries from a basis. We
then show how the graph theory model leads to a new upper bound on f(A) that is
significantly lower than existing upper bounds. We also present a conjecture, sup-
ported by many computations, that the expected value of f(A) is a small constant
multiple of

(
1
2 n! ΠA

)1/(n−1) − ΣA.

the electronic journal of combinatorics 12 (2005), #R27 1

1. Introduction: Computing the Frobenius Number

Given a finite basis A = {a1, a2, . . . , an} of positive integers, an integer M is representable
in terms of the basis if there exists a set of nonnegative integers {xi} such that

n∑
i=1

aixi = M. (1)

It is well known and easy to prove [Owe03, Ram∞] that there exists a finite largest un-
representable integer, called the Frobenius number f(a1, a2,. . . , an) = f(A), if and only if
gcd(a1, a2, . . . , an) = 1, which we assume throughout this paper. We make no assumptions
about the ordering of the basis except as explicitly stated, since the Frobenius number is
the same for any ordering of A. The monograph [Ram∞], which surveys more than 400
sources, is a tremendous collection of results that will be invaluable to anyone interested
in the Frobenius problem.

Computing the Frobenius number when n = 2 is easy: A result probably known to
Sylvester in 1884 [Syl84] showed that f(a1, a2) = a1a2 − a1 − a2. While no such simple
formula is known for the Frobenius number for any n > 2, Greenberg [Gre88] (see also
[Dav94]) developed a quadratic-time algorithm for computing the exact Frobenius number
when n = 3; this method is easy to implement and very fast. For the general problem
one runs into a familiar barrier: Ramı́rez Alfonśın [Ram96] proved that computing the
Frobenius number in the general case is NP-hard under Turing reduction.

Beck, Einstein, and Zacks [BEZ03] reported that “The fastest general algorithm we are
aware of is due to” Nijenhuis [Nij79], who developed a shortest-path graph model for the
Frobenius problem. Nijenhuis used Dijkstra’s algorithm with a binary heap priority queue
(see [CLRS01]) to find all single-source shortest paths in his graph, which immediately
yields the Frobenius number. The information in the full shortest-path table, which is
readily generated by the Nijenhuis approach, provides an almost-instantaneous solution
for any particular instance of (1). In this paper we refer to this algorithm, with the heap
implementation, as the ND algorithm. Recent work of Böcker and Lipták [BL04] contains
a new induction-based algorithm that is quite beautiful; we call it RR for Round Robin.
RR is significantly faster than ND, but not as fast as our new methods. Traditionally,
researchers have focused on the case where n is small relative to a1, say n ∼ log a1.
However, RR is arguably the first method that works very well in the case that n is very
large relative to a1 (e.g., n = a1). Our algorithms also work very well in such cases. A new
and powerful algorithm has been developed by Einstein et al [ELSW∞]; their algorithm
works when n ≤ 10 but with no limit on the size of a1.

In §2 we describe the graph used in the Nijenhuis model, which we call a Frobenius
circulant graph. In §3, we exploit the symmetry of Frobenius circulant graphs to formulate
two new algorithms to find shortest paths in which the weights along each path are in
decreasing order. The first is an extremely simple breadth-first search algorithm (BFD)
that can be implemented in just a few lines of Mathematica code. The second algorithm
(DQQD) shortens the average length of the Dijkstra heap by representing path weights
as ordered pairs (q, r) of quotients and remainders (mod a1). Our methods can compute

the electronic journal of combinatorics 12 (2005), #R27 2

the Frobenius number for bases with min(A) ∼ 107 on a desktop computer with 512 Mb
of memory. Memory availability is the primary constraint for these algorithms.

Because computing the exact Frobenius number is NP-hard, upper and lower bounds
are also of interest (see, e.g., [BDR02, EG72, Sel77]). Krawczyk and Paz [Kra88] used H.
W. Lenstra’s integer programming methods to establish the existence, for every fixed
n, of a polynomial-time algorithm to compute B yielding the tight bounds B/n ≤
f(a1, . . . , an) ≤ B. Improvements to their results can be found in [ELSW∞]. Kannan
[Kan89] used similar methods to establish, for every fixed n, the existence of a polynomial-
time algorithm to compute the exact Frobenius number. However, Kannan’s algorithm
has apparently never been implemented. Moreover, the Kannan algorithm does not solve
instances of equation (1). The general instance-solving problem has been solved by Aardal
and Lenstra [AL02] by an algorithm that works quite well (see [ELSW∞]). The algorithms
of this paper will also solve instances and in some situations (a < 105) are faster than
those of Aardal and Lenstra.

In §4, we use the symmetric properties of a Frobenius circulant graph and Greenberg’s
algorithm to construct a polynomial-time upper bound for all n. Although our general
upper bound is not as tight as the Krawczyk–Paz theoretical bound for fixed n, it is
almost always better than any of the other previously published upper bounds, usually
by orders of magnitude. Relaxing the requirement of polynomial running time allows
further significant improvements in the accuracy of the bound. Our algorithms are based
on a proof that we can always divide out the greatest common divisor dj from a j–element
subset Aj ⊆ A to obtain a reduced basis Āj for which f(A) ≤ djf(Āj)+f({dj}∪(A\Aj))+
dj.

In §5, we investigate how well a lower bound of Davison for triples estimates the
expected size of f(A) and find that it does very well. Then we generalize the simple
formula of Davison to all n and carry out experiments to learn that the new formula,
L(A), does indeed work well to estimate the expected value of f(A). Our experiments
indicate that the asymptotic expected value of f(A) is cnL(A), where c3 is near 1.5, and
c4 is near 1.35.

Acknowledgements. We are grateful to David Einstein, Christopher Groer, Joan
Hutchinson, and Mark Sheingorn for helpful comments.

2. The Frobenius Circulant Graph Model

The Model

We will work modulo a1, so that (1) reduces to

∑
i>1

aixi ≡ M (mod a1) . (2)

For a basis A = (a1, a2, . . . , an), define the Frobenius circulant graph G(A) to be
the weighted directed graph with vertices {0, . . . , a1 − 1} corresponding to the residue

the electronic journal of combinatorics 12 (2005), #R27 3

classes mod a1; thus G(A) has a1 vertices. We reserve u and v for vertices of G(A), so
0 ≤ u, v ≤ a1 − 1. The graph G(A) has a directed edge from vertex u to vertex v if and
only if there is ak ∈ A\{a1} so that

u + ak ≡ v (mod a1) ; (3)

the weight of such edge is ak. A graph on a1 vertices that satisfies the symmetry property
(3) is a circulant graph. (The customary definition of a circulant graph is that there is
a set of integers J so that if the vertices of the graph are v1, . . . , vn, then the neighbors
of vi are vi+j for j ∈ J , where subscripts are reduced mod n.) The Nijenhuis model is a
circulant graph with the additional symmetry that the edge weights of the incoming and
outgoing directed edges are the same at every vertex — one each of the weights A\{a1}
— so any vertex in the model looks like any other vertex.

Let G = G(A). If p is a path in G that starts at 0, let ei be the number of edges
of weight ai in p and let w be the total weight of the path. If the weight of the path is
minimal among all paths to the same endpoint, then the path is called a minimal path. For
any path p from vertex 0, repeated application of (3) shows that its weight w determines
the end-vertex v:

v ≡
∑
i>1

eiai = w (mod a1) . (4)

This means that, assuming gcd(A) = 1, G is strongly connected: to get a path from u
to v just choose M so large that v− u + Ma1 > f(A). Then there exists a representation∑

i eiai = v − u + Ma1. A path corresponding to the left side will go from u to v.
Setting ei = xi and v ≡ M (mod a1) obviously establishes a correspondence between

a solution {xi} in nonnegative integers to (1) and a path p in G from 0 to v having total
weight w =

∑
i>1 eiai ≡ v (mod a1). Since every path from 0 of length w ends at the same

vertex, the model is independent of the order in which edges are traversed.

Using the Model to Construct the Frobenius Number

Let Sv denote the weight of any minimal path from 0 to v in the Frobenius circulant graph
G = G(A) and suppose that M ≡ v (mod a1). Then we assert that M is representable in
terms of the basis A if and only if M ≥ Sv. By (4), v ≡ Sv (mod a1). If M ≥ Sv, then
M is representable in terms of A because M = Sv + ba1 for some nonnegative b and Sv =∑

i>1 eiai with ei ≥ 0. Conversely, if
∑n

i=1 aixi = M , then
∑

i>1 aixi ≡ v(mod a1); if then
p is a path from 0 to v corresponding to weights xi, i > 1, we have Sv ≤

∑
i>1 xiai ≤M .

The largest nonrepresentable integer congruent to v (mod a1) is Sv−a1. The maximum
weight minimal path within a graph G is known as the diameter D(G), and it follows
that

f (a1, a2, . . . , an) = D(G)− a1. (5)

the electronic journal of combinatorics 12 (2005), #R27 4

Thus to compute the Frobenius number using a Frobenius circulant graph, all we need
to do is find the minimal path weights from 0 to each vertex, take the maximum of such
path weights, and subtract a1.

We define a decreasing path to be a path in which the weights of the edges along such
path are (non-strictly) decreasing; i.e., each edge weight is less than or equal to the imme-
diately preceding edge weight. Since the model is independent of the order in which the
edges are traversed, every path in the graph can be converted to a decreasing path with-
out affecting either its end vertex or total path weight. Thus finding all decreasing paths
from 0 of minimum total weight is sufficient to identify all minimum weight paths. This
substantially reduces the number of edge weight combinations that must be examined,
which is one key to the efficiency of our new algorithms.

We define the unique smallest edge weight aj occurring in the set of all minimal paths
from 0 to a vertex v to be the critical edge weight for v. There is a unique critical path
to each vertex v in which the weight of the incoming edge to any intermediate vertex u
along such path is the critical edge weight for u; the truncation of such a critical path
at u is obviously the critical path to u. Each edge along a critical path is a critical edge
for its target vertex, which we sometimes denote informally by using just the appropriate
edge-weight index j. It is easy to verify that every critical path is a decreasing path of
minimal weight.

We call a shortest-path tree with root vertex 0 in G(A) a Frobenius tree. If we preserve
the data generated in a Frobenius tree, such data can be used to provide a specific
representation of any number M > f(a1, a2, . . . , an) in terms of the basis. There can
be many Frobenius trees for a given basis, but the unique critical tree consists entirely of
critical paths from 0 to every other vertex. In fact, the critical tree is isomorphic to the
graph derived in a natural way from a fundamental domain for a tiling that is central to
an algebraic view of the Frobenius problem; see [ELSW∞] for details.

Another definition of interest is that of a primitive reduction of a basis. A basis entry
is redundant if it can be expressed as a nonnegative integer linear combination of the
other entries. Then the primitive reduction of A is simply A with all redundant entries
deleted. The algorithms we present later are capable of finding the critical tree, and that
tree yields the primitive reduction because of the following lemma.

Lemma 1. Given a basis A of distinct entries, the primitive reduction of A equals
the weights of edges with source 0 in the critical tree. Therefore the size of the primitive
reduction is 1 greater than the degree of 0 in the critical tree.

Proof. If aj is the weight of an edge in the critical tree, then the edge is a critical
edge to some vertex v, and so aj cannot be redundant, for a representation of aj would
yield a minimal path to v that had an edge of weight less than aj. Conversely, if aj is
not redundant in A and aj ≡ v (mod a1) with v a vertex, then the edge from 0 to v
having weight aj must be in the critical tree. For otherwise use the path back from v
to the root to construct a representation of aj by the following standard technique: The
representation consists of the weights in the path and then enough copies of a1 to make
up the difference between aj and Sv, the sum of the weights in the path; this requires

the electronic journal of combinatorics 12 (2005), #R27 5

knowing that Sv ≤ aj, but this must be so because of the existence of the single-edge-path
from 0 to v with weight aj . �

A Concrete Example

We illustrate these ideas with the classic Chicken McNuggetsr example. McDonald’s
restaurants in the USA sell Chicken McNuggets only in packages of 6, 9, or 20; thus one
cannot buy exactly 11 or 23 McNuggets. Figure 1 shows the Frobenius circulant graph
G = G({6, 9, 20}). The blue edges have weight 9, and connect vertices that differ by 3
(because 9 ≡ 3(mod 6)). The thicker red edges have weight 20, and connect vertices that
differ by 2 (20 ≡ 2(mod 6)).

0

12

3

4 5

Figure 1: The circulant graph for the (6, 9, 20) Frobenius problem. There are six red edges of
weight 20 and six blue ones of weight 9.

Observe that gcd(6, 9) = 3, and the edges of weight 9 partition G into the 3 disjoint
sets of vertices {0, 3}, {1, 4}, and {2, 5}, which can be connected by edges of weight 20.
Similarly, gcd(6, 20) = 2, and the edges of weight 20 partition G into the 2 disjoint sets
of vertices {2, 4, 6} and {1, 3, 5}, which can be connected by edges of weight 9. We will
make use of such partitions in §4 to develop new upper bound algorithms.

Figure 2 shows the minimal path 0 → 2 → 4 → 1 from vertex 0 to vertex 1, which
includes x2 = 1 edge of weight 9 and x3 = 2 edges of weight 20, for a total path weight
S1 = 49; this particular path is decreasing, with weights 20, 20, 9. There are two other
equivalent minimal paths (i.e., 0 → 3 → 5 → 1 or 0 → 2 → 5 → 1), consisting of
the same edge weights in a different order. Note that the path shown can be succinctly
described as (3, 3, 2) in terms of the weight indices.

The remaining minimal path weights are shown in Figure 2: S2 = 20, S3 = 9, S4 = 40,
and S5 = 29. The Frobenius number is therefore f(6, 9, 20) = D(G)− a1 = 49− 6 = 43.

the electronic journal of combinatorics 12 (2005), #R27 6

0 12

3

4

5

4920

9

40

29

Figure 2: The critical tree for G({6, 9, 20}), showing minimal paths to each vertex. The diameter
of the graph — the largest path-weight — is 49, so the “McNugget number” is 49 − 6, or 43.

As noted in [Nij79], knowing a Frobenius tree for A allows one to solve any instance of
(1). For suppose one has the vector containing, for each vertex, its parent in the minimum
weight tree. This parent vector can then be used to get a solution (or confirmation
that none exists) to any specific instance of

∑n
i=1 aixi = M . Given M , let v be the

corresponding vertex of the graph; that is v ≡ M (mod a1). Any representable M can
be written as x1a1 + Sv, so we can generate a solution by setting, xj(j ≥ 2) equal to the
number of edges of length aj along a minimal path to vertex v, with x1 = (M − Sv)/a1.
Here is a simple illustration using the McNugget basis, A = {6, 9, 20}. The parent vector
is {−, 4, 0, 0, 2, 2}. For 6x1 + 9x2 + 20x3 = 5417, we have 5417 ≡ 5 (mod 6), so v = 5,
S5 = 29, and 5417 ≥ 29 (confirming that a solution exists). We trace the minimal path
back up the tree from 5 to 0 (5 ← 2 ← 0) and count the number of uses of each edge
length (1 · 9 + 1 · 20 = 29); then set x1 = (5417 − 29)/6 = 898 to generate the solution
{x1, x2, x3} = {898, 1, 1}. The only time-consuming step here is the path-tracing: the
worst-case would be a long path, but this typically does not happen and the computation
is instantaneous once the tree data is in hand.

Existing Algorithms

The ND algorithm. The ND algorithm maintains a vertex queue for unprocessed
vertices, which we implemented with a binary heap as described in [Nij79], and a list of
labels S = (Sv)

a−1
v=0 of weights of paths. The vertex queue can be viewed as an ordered

linear list such that Sv, the weight of the shortest path found so far to the vertex v at
the head of the queue, is always less than or equal to Su, the weight of the shortest path
found so far to any other vertex u on the queue. Initially, the vertex in position 1 at the
head of the queue is 0. Outbound edges from v are scanned once, when v is removed from
the head of the queue, to update the queue. If the combined path of weight w = Sv + ai

to vertex u is shorter than the current path weight Su, then Su is set to w and vertex u
is added to the bottom of the queue (if it is not already in the queue) or moved within
the queue, in either case by a leapfrogging process that moves it up a branch in a binary
tree until it finds its proper place. No shorter path to v can be found by examining any
subsequent vertex on the queue. The ND algorithm terminates when the queue is empty,
at which point each of the n− 1 outbound edges from the a1 vertices have been scanned

the electronic journal of combinatorics 12 (2005), #R27 7

exactly once.
The ND algorithm is a general graph algorithm and does not make use of any special

features of the Frobenius context. We will show in section 3 how one can take advantage
of the symmetry inherent in the Frobenius circulant graph to develop new algorithms,
or to modify ND so that is becomes much faster. There is also the following recently
published method that makes use of the special nature of the Frobenius problem.

The Round Robin method of Böcker and Lipták (RR [BL04]). This recently
discovered method is very elegant and simple, and much faster than ND. We refer to
their paper for details. For a basis with n elements, RR runs in time O(a1n). All our
implementations of RR include the redundancy check described in [BL04], which speeds it
up in practice, though it does not affect the worst-case running time. One should consider
two versions of this: the first, RR, computes the Frobenius number, but does not store
the data that represents the tree; the second, which we will call RRTree, stores the parent
structure of the tree. The second is a little slower, but should be used for comparison
in the n = 3 case, where the tree is the only issue because Greenberg’s method gets the
Frobenius number in almost no time at all. The RRTree algorithm can find the critical
tree, provided the basis is given in reverse sorted order (except that the first entry should
remain the smallest).

3. New Algorithms

A Breadth-First Method

Throughout our discussion of algorithms we assume that the elements of A are distinct
and given in ascending order; the time required to sort a basis is O(n log n).

Our simplest algorithm is a label-correcting procedure we call breadth-first decreasing
(BFD) because the search is restricted to decreasing paths. We maintain a label vector
S = (0, S1,S2, . . . , Sa1−1), in which each currently known minimal path weight to a vertex
is stored. This vector is initialized by setting the first entry to 0 and the others to a1an

(because of Schur’s bound; see §4). Vertices are processed from a candidate queue Q,
starting with vertex 0, so initially Q = {0}. Vertices in the queue are processed in first-in-
first-out (FIFO) order until the queue is empty. The processing of v consists of examining
the outbound edges from v that might extend the decreasing path to v. Whenever a new
shortest path (so far) to a vertex u is found (a “relaxation”), Su is lowered to the new
value and u is placed onto the queue provided it is not already there. The restriction
to decreasing paths dramatically reduces the number of paths that are examined in the
search for the shortest.

Here is a formal description of the BFD (breadth-first decreasing) algorithm. The
restriction to decreasing paths is handled by storing the indices of the incoming edges in
P and (in step 2b) scanning only those edges leaving v whose index is less than or equal
to Pv.

the electronic journal of combinatorics 12 (2005), #R27 8

BFD ALGORITHM FOR THE FROBENIUS NUMBER

Input. A set A of distinct positive integers a1, a2, . . . , an.

Assumptions. The set A is given in sorted order and gcd(a1, . . . , an) = 1. We take the
vertex set as being {0, 1, ..., a1 − 1}, but in many languages it will be more convenient
to use {1, 2, . . . , a1}.
Output. The Frobenius number f(A) (and a Frobenius tree of A).

Step 1. Initialize a FIFO queue Q to {0}; initialize P = (Pv)
a1−1
v=0 a vector of length a1,

and set P0 to n; let S = (Sv)
a1−1
v=0 be (0, a1an, a1an, . . . , a1an); let Amod be the vector A

reduced mod a1.

Step 2. While Q is nonempty:
a. Set the current vertex v to be the head of Q and remove it from Q.
b. For 2 ≤ j ≤ Pv,

i. let u be the vertex at the end of the jth edge from v:
u = v + Amodj, and then if u > a, u = u− a.

ii. compute the path weight w = Sv + aj;
iii. if w < Su, set Su = w and Pu = j and, if u is not currently on Q,

add u to the tail of Q;

Step 3. Return the Frobenius number, max(S)− a1, and, if desired, P , which encodes
the edge structure of the Frobenius tree found by the algorithm.

The queue can be handled in the traditional way, as a function with pointers to the
head and tail, but we found it more efficient to use a list. We used h to always denote
the head of the queue and t, the tail. Using Qi for the ith element of the list, then Qi is
0 if i is not on the queue and is the queue element following i otherwise. If t is the tail of
the queue, Qt = t. So enqueuing u (in the case that the queue is nonempty) just requires
setting Qt = u, Qu = u, and t = u. Dequeuing the head to v just sets v = h, h = Qh,
and Qv = 0. In this way Qv = 0 serves as a test for presence on the queue, avoiding the
need for an additional array. Because each dequeuing step requires at least one scan of
an edge, the running time of BFD is purely proportional to the total number of edges
scanned in 2b(i). We now turn to the proof of correctness.

Proof of BFD’s Correctness. We use induction on the weight of a minimal path to
a vertex to show that BFD always finds a minimal path to each vertex. Given a vertex v,
let j be the index of the critical edge for v. Choose a minimal path to v that contains this
critical edge, and sort the edges so that the path becomes a decreasing path to v; the path
then ends with an edge of weight aj . If u is the source of this edge, then the inductive
hypothesis tells us that BFD found a minimal path to u. Consider what happens to Pu

when Su is set for the final time. At that time Pu was set to a value no less than j. For
otherwise the last edge to u in the path that was just discovered would have been ai, with
i < j. But then the minimal path one would get by extending the path by the edge of
weight aj would have an edge smaller than aj, contradicting the criticality of aj . This
means that when u is dequeued, it is still the case that Pu ≥ j (as there are no further
resettings of Pu). So when the aj-edge leaving u is scanned either (1) it produces the

the electronic journal of combinatorics 12 (2005), #R27 9

correct label for v, or (2) a minimal path to v had already been discovered. In either case,
Sv ends up at the correct shortest-path distance to v. �

The restriction to decreasing paths can be easily applied to the ND method by in-
cluding a P -vector, keeping it set to the correct index, and using Pv to restrict the scan
of edges leaving v leading to an NDD method; the preceding proof of correctness works
with no change. While not as fast as BFD, it is still much faster than ND, as we shall see
when we study running times and complexity.

Now we can describe an enhancement to BFD that turns out to be important for
several reasons: (1) it is often faster; (2) it has a structure that makes a complexity
analysis simpler; (3) it produces the critical tree. In BFD, the relaxation step checks only
whether the new path weight, w, is less than the current label, Su. But it can happen
(especially when n is large relative to a1) that w = Su; then it might be that the last
edge scanned to get the w-path comes from ai, where i < Pu. In this case, we may as well
lower Pu to i, for that will serve as a further restriction on the outbound edges when u is
dequeued later. More formally, the following update step would be added as part of step
2b(iii). Note that we make this adjustment whether or not u is currently on the queue.

Update Step. If w = Su and j < Pu, set Pu = j.

This enhancement leads to an algorithm that is much faster in the dense case (meaning,
n is large relative to a1). At the conclusion of BFDU, the P -vector encodes the parent
structure of the critical tree, which provides almost instantaneous solutions to specific
instances of the Frobenius equation. Moreover, by Lemma 1, P gives us the primitive
reduction of the basis.

With this update step included, the algorithm is called BFDU. And NDD can be
enhanced in this way as well, in which case it becomes NDDU. The proof that BFDU finds
the critical tree is identical to the proof of correctness just given, provided the inductive
hypothesis is strengthened as follows: given vertex v, assume that for any vertex u whose
minimal-path weight is less than that of v, BFDU finds the critical path to u. Then in the
last line of the proof one must show that the path found to v is critical. But the update
step guarantees that the critical edge to v is found when u is dequeued (whether or not
the weight label of v is reset at this time).

The BFD algorithm is a variant of the well-known Bellman–Ford algorithm for general
graphs. In [Ber93], the Bellman–Ford method is presented as being the same as BFD,
except that all out-bound edges are examined at each step.

It takes very little programming to implement BFD or BFDU. For example, the fol-
lowing Mathematica program does the job in just a few lines of code. The queue is
represented by the list Q, the While loop examines the vertex at the head of the queue
and acts accordingly, the function S stores all the distances as they are updated, and the
function P stores the indices of the last edges in the paths, and so needs only the single
initialization at P[a]. We use {1, 2, . . ., a} as the vertex set because set-indexing starts
with 1. The weight of a scanned edge is w and its end is e; the use of Mod means that
this could be 0 when it should be a, but there is no harm because S[a] is initialized to
its optimal value, 0.

the electronic journal of combinatorics 12 (2005), #R27 10

BFD[A_] := (Clear[S, P] ; h = t = a = First[A]; b = Rest[A];
Q = Array[0 & , a]; S[_] = a*A[[-1]]; S[a] = 0; P[a] = Length[b];
While[h != 0, {v, Qh[[h]], h} = {h, 0, If[h == t, 0, Q[[h]]]};

Do[e = Mod[b[[j]] + v, a]; w = b[[j]] + S[v];
If[w < S[e], S[e] = w; P[e] = j;

If[Q[[e]] == 0, If[h == 0 , t = Q[[e]] = h = e,
t = Q[[e]] = Q[[t]] = e]]],

{j, P[v]}]];
Max[S /@ Range[a - 1]] - a);

BFD[{6, 9, 20}]

43

For a simple random example with a1 = 1000 and n = 6 this BFD code returns the
Frobenius number about twice as fast as the ND algorithm (which takes much more code
because of the heap construction). Figure 3 shows the the growth and shrinkage of the
queue as well as the decrease in the number of live edges in the graph caused by the
restriction of the search to decreasing paths. The total number of enqueued vertices is
1900.

BFD[{1000, 1476, 3764, 4864, 4871, 7773}] //Timing

{0.27 Second, 47350}

0 500 1000 1500
0

50

100

150

200

250

0 500 1000 1500 1900

2000

3000

4000

5000

Figure 3: The left graph shows the rise and decline of the queue for an example with a1 = 1000
and n = 6; a total of 1900 vertices were on the queue in all. The graph at the right shows
the reduction in the live edges in the graph as the numbers of outbound edges become smaller
because of the restriction to nonincreasing weights in the paths..

For a denser case the algorithm — BFDU in this case — behaves somewhat differently.
Suppose a1 = 1000 and n = 800. Then the graph has 799000 edges, but these get cut
down very quickly by the restrictions Pu that develop (Figure 4, right).

The graph on the right in Figure 4 shows how quickly the graph shrinks. The average
degree at the start is 799, but after 150 vertices are examined, the average degree of the

the electronic journal of combinatorics 12 (2005), #R27 11

0 200 400 600 800 1000
0

200

555

907

0 200 400 600 800 1000
13182

543817

799000

Figure 4: The left graph shows the rise and decline of the queue for BFDU working on an
example with a1 = 1000 and n = 800; a total of 1003 vertices were enqueued. The graph at
the right shows the reduction in the live edges in the circulant graph; the shrinkage to a graph
having average degree 13.2 occurs very quickly..

live graph is down to 15.4. A look at the distribution of the degrees actually used as each
vertex is examined shows that half the time the degree is 6 or under, and the average is
14. This sharp reduction in the complexity of the graph as the algorithm scans edges and
paths explains why BFDU is especially efficient in the dense case. One reason for this
shrinkage is easy to understand. For the example given, after the first round, the neighbors
of the root, 0, have restrictions on their outbound edges that delete 0, 1, 2, . . . , 798 edges,
respectively, from the 799 at each vertex. So the total deletions in the first round alone
are (n − 2)(n − 3)/2, or about 318000, a significant percentage of the total number of
edges in this example (799000). Note that such shrinkage of the live graph occurs in ND
as well, but in a linear fashion: as each vertex is dequeued, its edges are scanned and then
they need never be scanned again. For this example, ND would remove 799 edges at each
of the 1000 scanning steps.

Figure 5 shows the critical tree for the basis

{200, 230, 528, 863, 905, 976, 1355, 1725, 1796, 1808},
with nine colors used to represent the nine edge weights (red for the smallest, 230). The
labels are suppressed in the figure, but the vertex names and their path-weights are enough
to solve any instance of the Frobenius equation.

Bertsekas [Ber93] also presents several variations of the basic method, all of which try
to get the queue to be more sorted, resulting in more Dijkstra-like behavior without the
overhead of a priority queue. We tried several of these, but their performance was not
very different than the simpler BFD algorithm, so we will not discuss them in any detail.

The BFD algorithm, implemented by the short code above, is capable of handling very
large examples. It gets the Frobenius number of a 10-element basis with a1 = 106 and
a10 ∼ 107 in about three minutes using Mathematica; ND works on such a case as well,
but takes ten times as long.

Mathematica code for all the methods of this paper (ND, NDD, NDDU, BFD, BFDU,
DQQD, DQQDU, and more) is available from Stan Wagon. As a final example, consider

the electronic journal of combinatorics 12 (2005), #R27 12

Figure 5: The critical tree for the basis {200, 230, 528, 863, 905, 976, 1355, 1725, 1796, 1808}, with
different colors denoting different weights, red being the smallest (230). There are no redundant
entries and this means that each weight occurs on an edge leaving the root. The white vertices
are all the vertices in the graph G(A) that are adjacent to 0, the root.

a random basis A with a1 = 5000 and having 1000 entries below 50000. Using BFDU
to get the critical tree shows that most of the entries in such a basis will be redundant.
In a 50-trial experiment the average size of the primitive reduction of A was 178 with a
maximum of 196.

The Dijkstra Quotient Queue Method

The DQQD algorithm (Dijkstra quotient queue, decreasing) is a modification of the ND
method that combines two new ideas: (1) a representation for the edge and path weights
using ordered pairs of quotients and remainders (mod a1); (2) a vertex queue based on
the ordering by weight quotients of such ordered pairs. And of course we keep track of
parents at the scanning step so that we continue to look only at decreasing paths.

1. Weight quotients as proxies for path weights. An edge weight ai = qia1 + ri,
with 2 ≤ i ≤ n and 0 ≤ ri < a1, is represented by the ordered pair (qi, ri); we call qi an
edge-weight quotient. For any path from 0 of total weight s = wa1 + u and 0 ≤ u < a1,
path weight s similarly can be represented by the ordered pair (w, u) with path weight
quotient w; recall that in a Frobenius graph, such a path always ends at vertex u.

the electronic journal of combinatorics 12 (2005), #R27 13

The current minimum weight discovered for a path from 0 to vertex u can be encoded
implicitly by storing its weight quotient w as the entry in position u of the label vector
S; retrieving Su = w in DQQD signifies that the current minimum weight path from 0
to u has weight Sua1 + u = wa1 + u, so the weight quotient w can be used as a proxy
for the actual path weight Su. An important point is that if weight quotient w1 is less
than weight quotient w2, then the corresponding path weights are in the same order, no
matter which vertices are at the path-ends (i.e., regardless of the remainders ri). This use
of weight quotient proxies in the label vector S is not available in more general graphs,
for which there is no consistent relationship between a vertex and the path to it.

All path weights encoded by weight quotients in S are unique. The same weight
quotient w may appear in different positions Su and Sv in S but the encoded path weights,
for which Su and Sv are proxies, are different: Sva1 + v 6= Sva1 + u = Sua1 + u. Finally,
Schur’s upper bound f(A) ≤ a1(an − 1)− an (Corollary 4 to Theorem 1 in §4) allows us
to use an as an upper bound for the maximum quotient value in S, so we can initialize
S = {0, an, . . . , an}.

In BFD, each path weight w = Sv + ai must be reduced (mod a1) in order to identify
vertex u ≡ w (mod a1) for a comparison between w and the current path weight Su. The
equivalent operation in DQQD involves simpler addition/subtraction operations using
the weight quotient proxy Sv and the (qi, ri) representation of ai, but here two branches
are needed to account for the possibility that v + ri may generate a “carry” (mod a1). If
v+ri < a1, the representation of p as (w, u) is satisfied by setting u = v+ri and w = Sv+qi;
then (w, u) correctly encodes the path weight (Sv + qi)a1 + v + ri = Sv + ai = p. On the
other hand, if v + ri ≥ a1, the condition 0 ≤ u < a1 for the (w, u) representation of p
requires that u = v + ri − a1 and w = Sv + qi + 1; then (w, u) also correctly encodes the
path weight (Sv + q + 1)a1 + u = (Sv + q)a1 + v + ri = Sv + ai = p. With this (w, u)
representation, the path weight comparison by proxy in DQQD tests whether w < Su.

2. A vertex queue based on weight quotients. The vertex queue in DQQD is
constructed as a series of stacks in which each stack collects all vertices whose associated
path weight quotients are the same: vertex v is pushed onto stack Q(w) (for path weight
quotient w) when a smaller-than-current-weight path from 0 to v is discovered of weight
w. The current size of stack Q(w) is stored as L(w), so vertices can be easily pushed onto
or popped off a stack. Initially, Q(0) = {0} is the current (and only) nonempty stack,
with L(0) = 1. The head of the vertex queue is the vertex at the top of the current stack;
vertices are popped off for examination until the current stack is empty.

As with BFD, we maintain an auxiliary vector P = (P1,P2, . . . , Pa1−1) of indices of
edges leading from parents to vertices, allowing us to consider only decreasing paths. If
the examination of v identifies a path of weight quotient w to vertex u such that w < Su,
then vertex u is pushed onto stack Q(w). When the algorithm is finished, P contains the
information needed to construct a Frobenius tree.

DQQD also maintains a linear ordering for the nonempty stacks, in the form of an array
Z of pointers, which is structured as an auxiliary priority queue. When the first vertex
is pushed onto stack Q(w) (i.e., if L(w) = 0 at the start of the push), weight quotient w
is inserted into Z. The head of priority queue Z is always the smallest remaining weight

the electronic journal of combinatorics 12 (2005), #R27 14

quotient for the nonempty stacks, and is used to identify the next stack to be processed.
Initially, Z = {0}. The priority queue Z is shorter than the corresponding priority queue
used in the ND algorithm, so the overhead costs of the DQQD priority queue are much
smaller on average. As with ND, we use a binary heap for this auxiliary priority queue.

The combination of (a) the ordering of path weights by weight quotients, and (b) the
processing of the stacks from smallest weight quotient to largest, is sufficient to ensure that
no shorter path from an examined vertex v can be found by looking at any subsequent
vertex on the stacks. This is the key feature of any label-setting algorithm (such as
Dijkstra), in which each vertex needs to be processed only once. The priority queue in
the ND algorithm identifies one such vertex at a time, while the DQQD priority queue
identifies an entire stack of such vertices. This allows us to eliminate the update portion
of the corresponding step in ND in which a vertex is moved to a new position on the
vertex queue, which requires updating a set of pointers for the queue.

The complete vertex queue thus consists of the ordered set of nonempty stacks
{Q(w1), Q(w2), . . .} for the remaining unprocessed w1 < w2 < · · · that have been placed
on the auxiliary priority queue Z. Algorithm DQQD terminates when the vertex queue is
empty and the last-retrieved stack Q(h) has been processed, at which point the outgoing
edges of each of the a1 vertices have been scanned exactly once.

The complete DQQD method is formally described as follows. A proof of correctness
for DQQD is essentially identical to that for BFD.

DQQD ALGORITHM FOR THE FROBENIUS NUMBER

Input. A set A of positive integers a1, a2, . . . , an.

Assumptions. The set A is in sorted order and gcd(a1, a2, . . . , an) = 1. The vertex set
is {0, 1, . . . , a1 − 1}.
Output. The Frobenius number f(A) (and a Frobenius tree of A).

Step 1. Initialize
S = (0, an, . . . , an), a vector of length a indexed by {0, 1, . . . , a1 − 1};
P , a vector of length a1, with the first entry P0 set to n− 1;
Q, a dynamic array of stacks, with Q0 = {0};
L, a dynamic array of stack sizes, all initialized to 0 except L0 = 1;
Z = {0}, the auxiliary priority queue for weight quotients whose stack is nonempty;
Lists Amod = mod(A, a1), Aquot = quotient(A, a1).

Step 2. While Z is nonempty:
Remove weight quotient w from the head of Z;
While stack Qw is nonempty:

a. Pop vertex v from Qw;
b. For 2 ≤ j ≤ Pv, do:

Compute the end vertex u = v + Amodj

and its new weight quotient w = Sv + Aquotj;

the electronic journal of combinatorics 12 (2005), #R27 15

If u ≥ a1, set u = u− a1 and w = w − 1;
If w < Su,

push u onto stack Qw;
set Su = w and Pu = j;
if w is not in the heap Z (i.e., Lw = 0), enqueue w in Z;

End While
End While

Step 3. Return maxv(Sv a1 + v) − a1 and, if desired, P , the edge structure of the

Frobenius tree found by the algorithm (with an adjustment needed for the root, 0).

This algorithm is a little complicated, but it can be viewed as a natural extension of
the Dijkstra method that takes advantage of the number theory inherent in the Frobenius
problem by its use of the quotient structure. The priority queue in DQQD tracks only
distinct quotients, while the ND priority queue tracks all vertices, and this leads to consid-
erable savings. Table 1 shows all the steps for the simple example A = {10, 18, 26, 33, 35}.

In the example of Table 1, the total number of quotients placed on the priority queue
(qtot) is 8, but the queue never contained more than 4 elements at any one time. The
maximum size of the queue (qmax) determines how much work is needed to reorganize the
binary heap, which is O(qtot log qmax). The number of vertices placed on the stacks is 11,
as there was only one duplication (the 1 on stack indexed by 5). We will go into all this
in more detail in the complexity section, but let us just look at two large examples. In a
random case with a1 = 104 and n = 3, qtot = 1192 but qmax = 5; the number of enqueued
vertices was exactly 10000 and the total number of edges scanned was 10184 (compared
to 20000 edges in the graph). In another case with the same a1 but with n = 20, we
get qtot = 28, qmax = 9, the number of enqueued vertices was 10399 and the number of
edges examined was 17487 (out of 190,000). The following three points are what make
the performance of DQQD quite good: (1) the heap stays small; (2) very few vertices are
enqueued more than once; and (3) the number of outbound edges to be scanned is small
because of the restriction to decreasing paths.

As with BFD, we can enhance DQQD to DQQDU by updating (lowering) Pv whenever
a path weight exactly equal to the current best is found. But there is one additional
enhancement that we wish to make part of DQQDU (but not DQQD), which makes
DQQDU especially efficient for dense bases. Whenever the first examination of a vertex
v is complete, we set Pv = −Pv. Then, whenever a vertex u is examined, we can check
whether Pu < 0; if it is, then the edge-scan for u can be skipped because all the edges in
question have already been checked when u was first examined (with the same weight-label
and P -value on u, since those cannot change once the first examination of u is complete).
At the end, the P -vector contains the negatives of the indices that define the tree. This
enhancement will save time for vertices that appear more than once in the stacks (such
as vertex 1 in the chart in Table 1). The proof of correctness of BFDU carries over to
this case, showing that DQQDU finds the critical tree.

the electronic journal of combinatorics 12 (2005), #R27 16

Contents
of the
priority
queue for
quotients

Examined
vertex

Pv Edges scanned.
New weight quo-
tients requiring
stack entry
are in subscript

Quotients
indexing
stacks

Stack
bottom

Stack
entry

Stack
entry

0 0 4 0→ {81, 62, 33, 53} 0 0
1, 2, 3 8 1 8→ {6} 1 8
2, 3 6 2 6→ {44, 25} 2 6
3, 4, 5 5 4 5→ {3, 16, 8, 0} 3 3 5
3, 4, 5, 6 3 3 3→ {15, 95, 6} 4 4
4, 5, 6 4 1 4→ {2} 5 2 1 9
5, 6 9 2 9→ {77, 5} 6 1
5, 6, 7 1 1 1→ {9} 7 7
5, 6, 7 2 2 2→ {0, 8}
6, 7 1 1 1→ {9}
7 7 1 7→ {5}
—

Table 1: All the steps of the DQQD algorithm for A = {10, 18, 26, 33, 35}. The values Pv

indicate how many edges to scan. Subscripts are assigned only to those yielding new weight
quotients. Only one extra vertex is placed on the stacks (vertex 1). The graph has 10 · 4 = 40
edges, but only 21 of them are scanned. Of those 21, 10 led to lower weights. The final
weight quotients (the subscripts) are (0, 5, 5, 3, 4, 3, 2, 7, 1, 5). These correspond to actual weights
(0, 51, 52, 33, 44, 35, 26, 77, 18, 59), so the Frobenius number is 77 − 10 = 67. The final P -vector
is (−, 1, 2, 3, 1, 4, 2, 1, 1, 2) which gives the index of the edge going backward in the final tree.
Thus the actual parent structure is (−, 3, 6, 0, 6, 0, 0, 9, 0, 3).

Running Time Comparisons

Previous researchers on Frobenius algorithms ([Gre99, AL02, CUWW97]) have looked at
examples where n ≤ 10, a1 ≤ 50000, and an ≤ 150000 (except for the recent [BL04] which
went much farther). For a first benchmark for comparison, we use the five examples
presented by Cornuejols et al and the 20 of Aardal and Lenstra. Fifteen of these 25
examples were specifically constructed to pose difficulties for various Frobenius algorithms;
the other 10 are random. Throughout this paper we call these 25 problems probi, with
1 ≤ i ≤ 5 being the CUWW examples. Table 2 shows the running times (all times, unless
specified otherwise, were using Mathematica (version 5) on a 1.25 GHz Macintosh with
512 MB RAM) for each of the algorithms on the entire set of 25 problems. The clear
winner here is DQQD.

We learn here that the constructed difficulties of the CUWW examples wreak havoc
on BFD, but cause no serious problems for the other graph-based methods, or for Round
Robin. We have programmed some of these methods in C++ and the times there tend

the electronic journal of combinatorics 12 (2005), #R27 17

Method BFD ND NDD RRTree RR DQQD

Time (secs) 1365 326 248 130 84 50

Table 2: Comparison of six algorithms on 25 benchmark problems. The Dijkstra-based ND is
much slower than the others (except BFD). The Dijkstra Quotient Queue Decreasing algorithm
is the fastest.

to be about 100 times faster. For example, ND in C++ took only 2.9 seconds on the
benchmark. However, the ease of programming in Mathematica is what allowed us to
efficiently check many, many variations to these algorithms, resulting in the discovery of
the fast methods we focus on, BFD and DQQD. Recently Adam Strzebonski of Wolfram
Research, Inc., implemented DQQDU in C so as to incorporate it into a future version of
Mathematica. It is very fast and solves the entire benchmark in 1.15 seconds.

The computation of the Frobenius numbers was not the main aim of [AL02] (rather,
it was the solution of a single instance of (1), for which their lattice methods are indeed
fast), but they did compute all 25 Frobenius numbers in a total time of 3.5 hours (on
a 359-MHz computer). On the other hand, our graph methods solve instances too, as
pointed out earlier; once the tree structure is computed (it is done by the P -vector in all
our algorithms and so takes no extra time), one can solve instances in an eyeblink. Using
the million-sized example given earlier, it takes under a millisecond to solve instances
such as

∑10
i=1 xiai = 10100 − 1. A solution is (1094 − 112, 7, 8, 1, 1, 2, 1, 1, 1, 1). As a final

comparison, in [CUWW97] the first five problems of the benchmark were handled on a
Sun workstation in 50 minutes.

The benchmark problems are not random, so now we turn our attention to random
inputs, to try to see which algorithm is best in typical cases. Our experiment consisted of
generating 40 random sorted basis sets {a1, a2, . . . , an} with a1 = 50000 and an ≤ 500000.
When basis entries are randomly chosen from [a1, 10a1], we say that the spread is 10; unless
specified otherwise, we use this value in our experiments. This is consistent with examples
in the literature, where the basis entries have roughly the same size. The RR algorithm is
somewhat dependent on the factorization of a1, so for that case we used random a1 values
between 47500 and 52500; for the other algorithms such a change makes no difference in
running time. The size of the bases, n, ran from 3 to 78. If n is 2 or 3 and one wants
only the Frobenius number, then one would use the n = 2 formula or Greenberg’s fast
algorithm, respectively. But the graph algorithms, as well as the round-robin method,
all give more information (the full shortest path tree) and that can be useful. Figure 6
shows the average running times for the algorithms. As reported in [BL04], RR is much
better than ND. But BFD and DQQD are clear winners, as the times hardly increase as
n grows (more on this in the complexity section). For typical basis sizes, DQQ is a clear
winner; for very short bases RR is fastest. The RR times in this graph are based on the
simplest RR algorithm for computing only f(A); RRTree requires a little more time, but
produces the full tree.

The dense case is a little different, for there we should use the update variations of
our algorithms (as described earlier) to take account of the fact that there will likely be

the electronic journal of combinatorics 12 (2005), #R27 18

3 20 40

10

30

50

70

90

NDD
ND

RRTree

RR

DQQD

BFD

Time HsecsL

Figure 6: The average running times of several algorithms on random bases with a1 = 50000
and spread 10, and with n between 3 and 53; 40 trials were used for each n. The flat growth of
the times for NDD, BFD, and DQQD is remarkable.

0 20 40 60 80

0.5

1

1.5

2

k

Time Hsecs.L
RR

BFDU

NDDU

DQQDU

Figure 7: Timings in the dense case, where a1 is near 1000 and n runs from b5 log2 a1c to
b80 log2 a1c. Even though RR can efficiently spot redundant basis entries, our graph methods
are faster.

10 20 30 40 50
0

1

2

3

n

Time HsecsL

RR

RRTree

BFD

DQQD
NDD

Figure 8: The average running times of several algorithms on random bases with a1 = 5000
and the other entries between 5000 and 10100.

the electronic journal of combinatorics 12 (2005), #R27 19

several minimal paths having the same weight. No such update enhancement is available
for RR. Figure 7 shows an experiment where the inputs were generated as follows: a1

takes on all 100 values from 950 to 1049 with n = kblog2 ac, and k varying from 5 to
80; thus the basis size gets up to about 800. We used the exact same bases for the three
algorithms. We see that BFDU and DQQDU are essentially tied, again showing a very
small slope as the basis size increases.

Finally, one can wonder about very large spreads. To take an extreme case, suppose
a1 = 5000 with the other basis entries chosen between 5001 and 10100. In this case the
quotient structure that is the foundation of DQQD disappears, in the sense that all the
quotients will likely be different; this means that the priority queue becomes in essence a
priority queue on the vertices, and DQQD becomes essentially the same as NDD. Figure 8
shows the result of an experiment with 60 trials for each instance.

From these experiments, and many others, we learn that for normal spreads of around
10 the Round Robin algorithm is best when n is very small, DQQD is best for medium-
sized n, and DQQDU and BFDU are essentially tied in the very dense case when n is
large relative to a. As the spread grows, the performance of DQQD worsens. The most
noteworthy feature of many of the timing charts is how slowly the running times of BFD
and DQQD increase as n does.

Complexity

Here we use the “random access” model of complexity, as is standard in graph theory,
whereby the sizes of the integers are ignored and the input size is taken to be the numbers
of edges and vertices in the graph. This is inappropriate in number theory, where bit
complexity is used and the input size is the true bit-length of the input. The Frobenius
problem straddles the areas, so the choice of model is problematic. But since the integers
that would be used in a shortest-path approach will almost always be under a billion, it
seems reasonable to ignore issues relating to the size of the integers. Note that this would
not be the right approach for Greenberg’s algorithm when n = 3, since that algorithm
is pure number theory and works well on integers with hundreds or thousands of digits;
that algorithm is O(N2) in the bit-complexity sense, where N is the strict input length
of the 3-element basis.

If we view the algorithms as finding only the Frobenius numbers, then all the algo-
rithms discussed here have exponential time complexity, since they involve more than a
steps (where we use a for a1, the smallest entry of the basis). However, all the algorithms
of this paper produce the entire Frobenius tree, which, in addition to giving f(A), allows
one to quickly determine, for an integer M , whether M is representable in terms of A,
and, if so, to find a representation of M . Since the tree has a vertices, it makes sense to
view the complexity as a function of a, the size of the output. Thus an algorithm that
runs in time O(a) can be viewed as running in linear time, which is best possible up to a
constant. An algorithm running in time O(ag(n, a)) where g(n, a) is small can be viewed
as being nearly optimal. The updated U versions of our algorithms also determine, via
the critical tree, all the redundant entries in a basis, something that cannot be done in

the electronic journal of combinatorics 12 (2005), #R27 20

fewer than a steps.
For all our experiments we use data that has distinct classes mod a. In particular,

this means that n ≤ a. If we were given a purely random set of integers, a sort on the
residues could be used to quickly eliminate duplications. The resulting tree is just as good
in the sense of solving the main problems. However, such a reduction can lead to a loss
of efficiency when computing representations. That is why we have 25g coins in addition
to 5g and 10g coins.

When considering the complexities of our methods we all always use the updated
“U” versions, since that always has fewer scans of outbound edges, despite a slower
actual running time when n is small; thus we focus on NDDU, BFDU, and DQQDU. The
complexity of these algorithms depends on the number of times they look at vertices or
edges. Let σ denote the total number of scans of outbound edges in ND, NDDU, BFDU,
or DQQDU. Let λ denote the number of times a weight label gets overwritten by a smaller
number. For BFDU or DQQDU, λ is the number of vertices that are removed from the
queue (stacks for DQQDU). For Dijkstra, λ has been called the number of updating steps
in the literature, and is the number of times the heap needs to be reorganized. A final
parameter is q, for the total number of quotients placed on the priority queue in DQQDU.

10 320 640 1280 2560 5120
0

0.2

0.4

0.6

0.8

1

a

Λ
���������������������
a logn

Figure 9: The average value of λ, the number of update steps, over 10000 trials for the Nijenhuis–
Dijkstra algorithm, with n set to blog2 ac. The data points to the asymptotic average of λ being
near 0.5a log n.

Nijenhuis–Dijkstra. The worst-case complexity of the binary heap form of Dijk-
stra’s algorithm for a graph with v vertices and E edges is O(E log V), which is O(na log a)
in the Frobenius situation [CLRS01]. We do not consider the theoretically faster Fibonacci
heap version of Dijkstra, since that is difficult to implement. But Dijkstra is known to
have average-case running time better than the worst case (see [Nos85], where the Dijk-
stra average problem for undirected graphs is discussed). A modest set of experiments
shows that Dijkstra on random graphs with the same average degree as the Frobenius

the electronic journal of combinatorics 12 (2005), #R27 21

circulant graphs takes about twice as many updating steps (its λ is twice as large). This
supports the view that the ND Frobenius algorithm should perform better than Dijkstra
on general graphs. In an experiment with a random and n chosen from [3, a], counts of the
updating steps in the Frobenius case suggest that λ is asymptotically about 0.5a log n.
Since the binary heap requires O(log a) steps for each update, this leads to an overall
average time estimate of cσ + kλ log a = O(an + a log a log n); the first term comes from
the necessary scan of all the edges (σ = (n−1)a) and the second comes from the updating
steps. Figure 9 shows the results of an experiment with n = blog2 ac.

Round Robin. The Round Robin algorithm of [BL04] has a proved worst-case run-
ning time of O(na), and so is a significant improvement on ND. The basic RR algorithm
without a redundancy check always requires time Θ(na). The version that checks for
redundancy will require time Θ(n1a), where n1 is the size of the primitive reduction of A;
in the densest case, when n = a, n1 is well under n, but it is possible that, on average,
the ratio of the two is asymptotically a constant.

Breadth-First Decreasing Updated (BFDU). The running time is directly pro-
portional to σ, the number of edges scanned. The number of examined vertices, λ, is not
relevant because σ increases by at least 1 each time a vertex is examined, but in fact the
excess of λ over a is not great. This explains why BFD gets good performance: the excess
vertex examinations is 0 in the ND cases but the heap manipulation is slow; the excess in
BFDU is not far from 0 and the heap is eliminated. We conjecture that the asymptotic
average of σ is bounded by O((a+n)

√
n). In many cases this seems too conservative, but

this is the simplest form of a function that appears to bound σ in all cases. As evidence
for this conjecture, we present the results of some experiments in Figures 10 and 11. Fig-
ure 10 shows that as n varies the linear dependence of σ on a is very strong. Figure 11
shows that the dependence of the slopes on n is linear in a log-log plot, and so follows a
power rule with power near 0.4. A similar estimate for the residual after the linear term
is subtracted from σ leads to an estimate of the constant term, and so one can say that
σ behaves like 0.35an0.397 + 5.26n1.394. Since this is just an experiment, we may as well
simplify it to (a + n)

√
n.

Figure 12 shows how this bound works in some special cases, such as n = a or n =
log2 a. The square root might well be an overestimate in some special cases (see the dashed
curve in the logarithmic case), but in any case the complexity assertions are consistent
with the running time experiments.

Nijenhuis–Dijkstra Decreasing Updated (NDDU). As with ND, each update
of the binary heap requires O(log a) steps on average, but λ, the number of such updates,
goes down dramatically with the restriction to decreasing paths. We always have λ ≥ a,
so let us call λ − a the excess number of label-setting steps. In most experiments the
excess was very close to n; for example, in 100 trials with a = 1000 and n = 10 the excess
was between 2 and 86 with an average of 24. Yet this slowly grows as n and a do, and it
can be quite large in the densest case, n = a. Thus we postulate n

√
a as an upper bound

on the average excess. In ND this excess is a log n (Fig. 9). As with BFDU, experiments
to determine σ lead to the conclusion that on average σ ≤ (a + n)

√
n. In fact, σ for

the electronic journal of combinatorics 12 (2005), #R27 22

4n 5n 6n 7n 8n

0

40000

80000

120000

a

Σ

n= 4
n= 128
n= 256

n= 512

n= 1024

Figure 10: This plot shows σ as a function of a, where a varies from 4n to 8n and n varies
from 4 to 1024. Each data point is the average of 300 trials. The linearity is clear, supporting
a model of the form σ ∼ ma + b where m and b depend only on n.

4 16 64 256 1024

0

1

2

n

Log-log plot of slope ofΣ as a
function ofa for n fixed

Slope is about 0.3971

Figure 11: This double-log plot of the slopes of the lines in Figure 10 is close to linear, showing
that the slopes depend on a power of n. The slope of the line is about 0.4, leading to a model
of the form σ ∼ can0.4 + b, where c is a constant and b depends on n.

the electronic journal of combinatorics 12 (2005), #R27 23

0 1000 2000 3000 4000 5000 6000

100000

300000

500000

700000

n

Σ

Bases with n = a

4 6 8 10 12 14 16 18
0

500000

1000000

1500000

n

Σ

Bases withn = log2 a

Figure 12: Two experiments showing that the model (a+n)
√

n works as an upper bound on the
average value of σ. The dots in the graph on the left show σ as a function of n for the densest
case, where n = a. The dots on the right arise from the more typical case where n = blog2 ac.
The dashed line on the right is a graph of a log n which also does a reasonable job in this case.

NDDU cannot be larger than than σ for BFFDU by the following argument. When a
vertex v is pulled off the heap, the value of Pv is equal to its final value; this is because
any vertex dequeued later has weight label no smaller than that of v, and so cannot lead
to a path of minimal weight to v, which is the only way that Pv could be changed. This
means that σ for NDDU, being the sum of the P -values, is exactly equal to the total of
all the edge-indices in the critical tree. But the total of the edge indices in the critical
tree is also a lower bound on what σ for BFDU can be, since in BFDU the value of Pv at
the time v has its weight label set for the last time must be at least as large as its final
(critical) value. Taking all terms into account, we find that his leads to an average time
complexity estimate of O(σ + λ log a) = O((a + n)

√
n + (a + n

√
a) log a).

Dijkstra Quotient Queue Decreasing Updated (DQQDU). The running time
of DQQDU has the form O(σ + (λ − a) + q log q) where only the excess is considered
in the label-correcting count because there are always at least a such steps and each of
those leads to a vertex being pushed onto a stack and so at least one edge scan when it
is popped; thus a of the label updates are accounted for in σ. The amount of work for
the excess vertex pops is very small, because the algorithm will discover immediately that
Pv < 0; nevertheless, each pop counts as one step. As with NDDU, this excess in λ —
the number of times a label is set (and so a vertex is pushed onto a stack) beyond the
minimum of a — is generally quite small but can get large in the densest case and again
n
√

a works as a conservative bound.
The work of the binary heap is measured by qtot, which is the total number of quotients

placed on the priority queue, and qmax, which is the maximum number on the queue at
any one time; the total work for the priority queue is O(qtot log qmax). We will restrict
our experiments to the case of spread 10, since as the spread grows the quotients are less
likely to be distinct and DQQDU becomes essentially the same algorithm as NDDU. In
the extreme case that n = 2, qtot is always exactly a− 1 and qmax = 1 (these are easy to
see because every vertex has degree 1 and the paths all have weight k · b). This case is of
little interest, since there are simple ways to get f(A) and the whole Frobenius tree for

the electronic journal of combinatorics 12 (2005), #R27 24

A = {a, b}. When n = 3, the growth of qtot becomes sublinear, and various experiments
show that the following simple function serves as a bound:

√
a a1/n. We need an estimate

on qmax as well and it appears that, for any a and n, its expected value is not greater than
10. This means that the expected amount of heap work is simply O(

√
a a1/n).

The edge-count σ must be the same for DQQDU as for NDDU. This is because,
as with NDDU, once a vertex has been dequeued in DQQDU its P -value cannot change
(because new path weights are greater by at least a2, and so have greater weight quotients);
therefore it has its final P -value and σ is again just the sum of edge-indices in the critical
tree. Therefore we can use (a+n)

√
n to bound σ and give an estimate of the average time

complexity of DQQDU as O((a+n)
√

n+n
√

a+a
1
2
+ 1

n). This simplifies to O(a
√

n+n
√

a),
but because n

√
a ≤ a

√
n (we are assuming n ≤ a), this becomes simply O(a

√
n).

Table 3 summarizes the complexity situation. All the functions refer to estimates
of asymptotic average-case behavior, with the exception of Böcker and Lipták’s RR, for
which the O(a n) result is proved worst-case behavior. For the traditionally studied case
where n is small, say n = blog2 ac, the estimated complexity of BFDU and DQQDU is a
significant improvement over that of ND or RR. In this case, and in the dense case, the
complexity function for NDDU is at least as good as that for RR, and we saw earlier (Figs.
6, 7) that NDD and NDDU are in fact competitive with the other methods. Keeping in
mind that it takes a steps just to write down a complete Frobenius tree, we see that
DQQDU and BFDU do the job in near-optimal time when n = log a. If n is fixed, then
RR, DQQDU, and BFDU all work in time that is linear in terms of the output size.

Method General n = a n = log a n = 10

ND O(an + a log a log n) O(a2) O(a log a log log a) O(a log a)
RR O(an) O(a2) O(a log a) O(a)

NDDU O(a
√

n + a log a + n
√

a log a) O(a3/2 log a) O(a log a) O(a log a)
DQQDU O(a

√
n) O(a3/2 log a) O(a

√
log a) O(a)

BFDU O(a
√

n) O(a3/2) O(a
√

log a) O(a)

Table 3: The conjectured asymptotic average-case time complexity. The RR row has proved
worst-case bounds. For DQQDU, it is assumed that the basis has spread 10 or less. In terms of
the size of a Frobenius tree, the bounds for RR, DQQDU, and BFDU are optimal when n is a
fixed integer. When n = blog2 ac the bounds for DQQDU and BFDU are close to optimal.

Things might be different in the worst case. For example, the first test case of Cor-
nuejols et al. [CUWW97] causes BFD to scan 3756443 edges, compared to the estimate
of 27331. This is 137 times greater than the average behavior of σ, showing that BFD can
perform badly in specific cases. The same might be true of our other algorithms, which
is why we focus on average-case behavior.

Summary

Our methods are constrained by memory and currently work so long as a < 107, which
is several orders of magnitude greater than previously published algorithms (except for

the electronic journal of combinatorics 12 (2005), #R27 25

Round Robin, which can also handle such large numbers). For larger a, if n ≤ 10 then
the lattice methods of [ELSW∞] can be used. The comments that follow assume this
condition on a. While our label-correcting algorithms were inspired by simple label-
correcting algorithms for general graphs, such as those discussed in [Ber93], enhancements
that make use of (a) the Frobenius symmetry, and (b) the quotient-residue structure of
the graph yield large speedups. The algorithms can also compute the critical tree, solve
any instance of the Frobenius equation, and eliminate all redundant entries from a basis.

Our guidelines as to which algorithms to use to find the Frobenius number are as
follows.

1. When n = 3, Greenberg is by far the fastest.

2. When n = 4, Round Robin is best.

3. For intermediate values of n, such as those that appear in examples in the literature,
DQQD is best.

4. For very dense data BFDU or DQQDU should be used.

5. For data that is not random, and might be specifically designed to be difficult (such
as the CUWW examples) BFD should be avoided. Round Robin’s worst-case time
bound means that its performance is independent of the nature of the input. DQQD
performed very well in the specific difficult cases from the literature.

6. Because of the binary heap, NDD and NDDU are not terribly fast, but neither are
they terribly slow. They are simple in that they require only one or two very small
enhancements to the classic ND scheme.

For Frobenius instances the Aardal–Lenstra technique is fast and has no limit on
a, but experiments carried out by D. Lichtblau and A. Strzebonski (Wolfram Research,
Inc.) indicate that an instance-solver based on DQQD is faster when a < 105 or when a
is between 105 and 107 and n ≥ 20.

4. Upper Bound Algorithms

A New Upper Bound

We use the following notation throughout our discussion of upper bounds. Let G = G(A)
be the Frobenius circulant graph of A = {a1, a2, . . . , an}; for 1 ≤ j ≤ n, let Aj =
{a1, a2, . . . , aj} and dj = gcd(Aj); let Āj = {a1/dj, a2/dj, . . . , aj/dj}; with associated
graph G(Āj). Note that f(A) = f(A′) for any permutation A′ of A, so aj can be any
j-element subset of A: simply begin with an appropriate permutation.

Define an equivalence relation on the vertices of G as follows: v ∼ u if u is the endpoint
of a path that starts at v and uses edges in G(Aj), an edge subgraph of G. The relation
is reflexive and transitive and the circulant symmetry of G makes it symmetric. So this

the electronic journal of combinatorics 12 (2005), #R27 26

divides the vertices into disjoint equivalence classes Cv. Slightly abusing notation, we will
consider each such set Cv as an induced subgraph of G(Aj); it is strongly connected since
there is a path from any vertex to any other.

Lemma 2. With notation as above, and for some j ≤ n, let v and u denote vertices
of G. Then (a) D(Cv) = djD(G(Āj)); and (b) u ∈ Cv if and only if u ≡ v (mod dj); this

means that choosing 0 ≤ v < dj gives a set of representatives for the equivalence classes
of ∼.

Proof (a). We make use of the edge and weight relationships in Cv and in G(Āj) to
prove that Cv and G(Āj) are isomorphic as unweighted directed graphs. Since gcd(Āj) = 1,
G(Āj) is a Frobenius circulant graph for the reduced basis Āj . By the symmetry of
G at every vertex, every Cv is isomorphic to C0, so it is sufficient to show that C0 is
isomorphic to G(Āj). Let h be a vertex of G(Āj), so 0 ≤ h < a1/dj. Define a function
β(h) = dj · h from G(Āj) to G, so 0 ≤ β(h) ≤ a1 − dj ≤ a1 − 1, and β(h) is a vertex
of G. It is clear that β is one-one. The function β preserves edges: if there is an edge
of weight ai/dj from vertex h1 to h2 in G(Āj), then h2 ≡ h1 + (ai/dj) (mod a1/dj); it
follows that djh2 ≡ djh1 + ai (mod a1), so there is an edge of weight ai from β(h1) to
β(h2) in G. Conversely, we can divide the congruence arising from G by dj provided
the modulus is also divided by dj. So β is a graph isomorphism of G(Āj) and its image
β(G(Āj)). By the remark following (4), G(Āj) is strongly connected, so there is a path
of weight w =

∑j
i=2 eiai/dj in G(Āj) from 0 to h. Since the path from 0 in G of weight

dj w =
∑j

i=2 eiai consists entirely of edges with weights in Aj\{a1}, β(h) is in C0, so the
image β(G(Āj)) = C0. Thus, when considered as directed unweighted graphs, each Cv

is isomorphic to G(Āj). Each edge weight of Cv is dj times the corresponding weight in
G(Āj), so D(Cv) = djD(G(Āj)).

(b). If u ∈ Cv, then there must be some path in Cv from v to u of weight w =
∑j

i=2 eiai,
with u ≡ v +w (mod a1). Since dj divides a1 and w, u ≡ v (mod dj). Conversely, suppose
u ≡ v (mod dj). By the proof of (a) the unweighted graph Cv is isomorphic to G(Āj),
which is a Frobenius circulant graph containing a1/dj vertices. Therefore |Cv| = a1/dj,
which means that each one of the a1/dj vertices u that are congruent to v (mod dj) must
lie in Cv. �

Theorem 1. Suppose 1 ≤ j ≤ n and K = G({dj, aj+1, . . . , an}). Then D(G) ≤
djD(G(Āj)) + D(K).

Proof. It suffices to show that for any vertex u of G, there is a path from 0 to u
of weight at most D(Cu) + D(K), since Lemma 2 states that djD(G(Āj)) + D(K) =
D(Cu)+D(K). So let u be a vertex of G, and let ū be the mod-dj reduction of u. Then 0
and ū are vertices in K, so we can let w =

∑n
i=j+1 eiai be the minimum weight of a path

p in K from 0 to ū; this means w ≡ ū (mod dj) and w ≤ D(K). Now if ŵ is the mod-a1

reduction of w, then ŵ ≡ ū (mod dj) and so ŵ ∈ Cu (see Fig. 13). Since the edge weights
in K are all edge weights in G, we can interpret path p as a path p̂ in G of weight w. The
path p̂ ends at vertex ŵ, a vertex of G in Cu. Since there is a path q in Cu from ŵ to u

the electronic journal of combinatorics 12 (2005), #R27 27

of weight at most D(Cu), we have the desired path — p̂ followed by q — from 0 to u of
weight at most D(K) + D(Cu). �

0 1 2 u

0 1 2

dj -1

dj -1K = GH8d, aj+1,...,an<L

G = GHAL
C0 C1 C2 Cu Cdj -1

u dj -1

a1-1

dj
w

p

q

u

p

Figure 13: The diameter of G is bounded by the sum of the diameter of K and the diameter
of any equivalence class Cu . The weight of each of the paths p and p̂ is w, and w ≤ D(K).
Graphs G and K have different structures: while path p in K ends at vertex ū (mod dj), the
corresponding path p̂ in G does not end at vertex ū (mod a1). But p̂ does end in the same
equivalence class Cū, and the required weight of path q is no greater than D(Cū) = D(Cu).

Corollary 1. If j ≤ n then f(A) ≤ djf(Āj) + f(dj, aj+1, . . . , an) + dj .

Proof. This follows immediately from Theorem 1 and the relationship (5) between
the graph diameter and the Frobenius number. �

Corollary 2. If j ≤ n and if ag ∈ A\Aj such that gcd(dj, ag) = 1, then f(A) ≤
djf(Āj) + (dj − 1)ag.

Proof. By Corollary 1, f(A) ≤ djf(Āj) + D(K), so we need only show that D(K) ≤
(d− 1)ag. But D(K) ≤ D(G({dj, ag})) = (dj − 1)ag, where the last equality comes from
the formula for f(dj, ag) = djag − dj − ag. �

Brauer and Shockley [Bra62] proved that the bound of Corollary 2 can be made ex-
act, for the specific case j = n − 1, by adding an as an element of the reduced ba-
sis, thereby improving an earlier result by Johnson [Joh60]. Ramı́rez Alfonśın [Ram∞]
gives a clear statement as his Lemma 3.1.7: Let d = gcd(a1, . . . , an−1). Then f(A) =
df(a1/d, . . . , an−1/d, an)+ (d− 1)an. The equivalent form of this equation in our notation
is f(A) = dn−1f(Ān−1 ∪ {an}) + (dn−1 − 1)an.

Corollary 3. If j≤n and amax = max(A\Aj), then f(A) ≤ djf(Āj) + (dj − 1)amax.

Proof. Since K is connected, D(K) ≤ (dj − 1)amax. �
Corollary 4 (Schur). If A is sorted, then f(A) ≤ a1an − a1 − an.

the electronic journal of combinatorics 12 (2005), #R27 28

Proof. This follows from Corollary 3 with j = 1. �
If A has two coprime entries i and j then f(A) ≤ f(ai, aj) = aiaj − ai − aj . But

it can happen that no such pair exists; Corollary 4 shows that the related formula
min(A) max(A)−min(A)−max(A) is always an upper bound.

In the Chicken McNuggets example, if we take the permutation A′ = {6, 20, 9}, then
A2 = {6, 20} and d2 = 2. Referring to Figure 1, the triangular subgraph C0 is obtained
by using edges of weight 20 along the path 0 → 2 → 4 → 0 in graph G = G({6, 20, 9}),
and C0 is isomorphic to H = G({3, 10}) in which all edges are of weight a2/d2 = 20/2 =
10. Subgraph C1 isomorphic to C0 contains vertices {1, 3, 5}, so all vertices of G are in
{C0, C1} = G(A2). Another example is presented in Figure 14.

0

1

2

3

4
567

8

9

10

11

12

13

14

15

16
17 18 19

20

21

22

23

0

3

6

9

12

15

18

21

2

5
8

11

14

17
20

23

4
7

10

13

16
19

22

1

Figure 14: The graph at the left is G = G({24, 36, 42, 27, 50}) (directions and weights omitted),
with the generating set of the circulant in red. On the right, the vertices of G have differing
colors for each of the isomorphic components {C0, C1, C2} of G(A4). The red edges at the right
show C0, which is isomorphic to G({8, 12, 14, 9}). The blue edges are the minimum-weight path
from vertex 0 connecting all components of G(A4).

Figure 14 illustrates the situation for the basis A = {24, 36, 42, 27, 50} and j = 4;
thus A4 = {24, 36, 42, 27} and d4 = 3. In the full graph G = G(A) on the left, the
highlighted red outbound edges from 0 are of weights 50 ≡ 2 (mod 24), 27 ≡ 3 (mod 24),
36 ≡ 12 (mod 24), and 42 ≡ 18 (mod 24). Every other vertex in G has outbound edges
with the same weights. Lemma 2 is illustrated on the right: The red edges show C0, the
equivalence class of 0, which contains only edges whose weight is in A4\{a1} = {36, 42, 27}.
The graph C0 is isomorphic to G({8, 12, 14, 9}), where each of the edge weights in C0 is
d4 = 3 times the corresponding edge weights {12, 14, 9} in G({8, 12, 14, 9}). The vertices
in the isomorphic graphs C1 and C2 are shown in differing colors, illustrating that vertex
u of G is in Cv if and only if u ≡ v (mod 3).

the electronic journal of combinatorics 12 (2005), #R27 29

Theorem 1 is also visible: all components of G(A4) can be connected by the blue path of
weight 100 = D(K) = D(G({3, 50})). Thus, f(A) ≤ d4f(Ā4) + D(K) = 3f(8, 12, 14, 9) +
100 = 3 · 19 + 100 = 157. In fact, f(A) = 157 in this example, so the upper bound is
exact.

A Polynomial Time Upper Bound Algorithm

Corollaries 1, 2, and 3 are very powerful upper bound tools. Being able to use a reduced
basis to bound f(A) by djf(Āj) + f(dj, aj+1, . . . , an) + dj allows us to use exact methods
in an upper bound estimate even when the original basis is far beyond practical limits for
computing the exact value of f(A).

For j = 2, if d2 = gcd(A2) = 1, then f(a1, a2) = a1a2− a2− a1 returns the exact value
of f(A2) virtually instantaneously. Adding elements to A2 can only reduce the set of
nonrepresentable integers, so f(A) ≤ f(A2). However, there may be no 2-element subset
of A for which d2 = 1 (e.g., A = {30, 42, 70, 105}), so the f(a1, a2) formula cannot be
applied directly to generate an upper bound for an arbitrary basis. But since gcd(Ā2) = 1,
we can always use the 2-element formula on every reduced pair to obtain the exact value
of d2f(Ā2) in each case.

Similarly, for j = 3, if d3 = gcd(A3) = 1, Greenberg’s algorithm returns the exact
value of f(A3) in quadratic time, and f(A) ≤ f(A3). As noted, there may be no triple
from A for which d3 = 1, so Greenberg’s algorithm cannot be applied directly to generate
an upper bound. But since gcd(Ā3) = 1, we can always use Greenberg’s algorithm on
every reduced triple to obtain the exact value of d3f(Ā3).

We can compute D(K) by using the methods of our minimum-weight path algorithms
for the Frobenius number, except in the rare case when dj is large, say dj > 104. When that
happens, we can use Corollary 3 to replace f(dj, aj+1, . . . , an)+dj by (dg−1) min(ag, amax).

Taking the minimum of the foregoing computations across all 2- and 3-element subsets
of A leads to an upper bound algorithm that will always run in time that is O(N5), where
N is the length of the input A. The N5 arises from the O(n3) triples with each one requir-
ing O(N2) operations. The use of A path algorithm would normally require exponential
time, but because we have restricted it to graphs with at most 10000 vertices, it is actually
O(N) in the worst case if Dijkstra or Round Robin is used. We use the notation U2,3 for
the upper bound obtained in this way; this notation is suggestive since if one had a way
of dealing with 4-tuples or larger subsets, the bound could be correspondingly improved.

Here is a formal description of our upper bound algorithm. Note that if d = 1 in Step
2 or 3 then the term f({d} ∪ (A\B)) + d will be −1 + 1 = 0.

the electronic journal of combinatorics 12 (2005), #R27 30

FROBENIUS UPPER BOUND BY SUBSETS

Input. A set A of positive integers a1, a2, . . . , an with gcd(a1, . . . , an) = 1.

Output. An upper bound U2,3 for the Frobenius number: f(A) ≤ U2,3.

Step 1. Set dmax = 104.

Step 2. For each 2-element subset B = {ai, aj} of A:
If d = gcd(B) ≤ dmax, use Sylvester’s formula and a minimum-weight

path algorithm to compute U = df(B/d) + f({d} ∪ (A\B)) + d;
Otherwise, set bmax = max(A\B), bg = min{c ∈ A\B : gcd(c, B) = 1},

and b = min(bmax, bg); then use Sylvester’s formula to compute
U = df(B/d) + (d− 1)b;

Step 3. For each 3-element subset B = {ai, aj, ak} of A:
If d = gcd(B) ≤ dmax, use Greenberg’s algorithm and a minimum-weight

path algorithm to compute U = df(B/d) + f({d} ∪ (A\B)) + d;
Otherwise, set bmax = max(A\B), bg = min{c ∈ A\B : gcd(c, B) = 1},

and b = min(bmax, bg); then use Greenberg’s algorithm to compute
U = df(B/d) + (d− 1)b;

Step 4. Return the minimum of the
(

n
2

)
+

(
n
3

)
numbers U

One might think that the bound of step 3, using triples, would surely be better than
the one of step 2, using pairs. But it can happen that no triple has a common divisor,
while pairs do, and this can lead to cases where the pairs bound is lower than the triples
bound. This occurs for A = {6, 7, 8, 9}: the pairs bound arising from the pair {6, 9} is
11, but the four triples yield bounds of 17, 17, 19, 20.

Comparisons to Other Upper Bounds

Using the notation of the preceding subsection, Brauer [Bra42, Bra54] proved the upper
bound f(a1, a2, . . . , an) ≤ UBrauer(A) =

∑n−1
i=1 ai+1di/di+1 −

∑n
i=1 ai. He noted that this

bound “may change by varying the numbering of the ai,” so it should be taken across all
permutations of A (and is therefore not a polynomial-time algorithm).

We can rewrite Brauer’s formula as f(A) ≤ (d1

d2
− 1)a2 − a1 +

∑n
i=3(

di

di+1
− 1)ai. Since

a1 = d1, Sylvester’s formula f(a1, a2) = a1a2 − a2 − a1 tells us that

d2f(Ā2) = d2f(
a1

d2
,
a2

d2
) = (

a1a2

d2
)− a1 − a2 = (

d1

d2
− 1)a2 − a1.

The remaining summand in Brauer’s formula is therefore equivalent to constructing some
path from the edges in A\A2 in order to connect all of the components Cv in G(A2).
By Theorem 1, our approach finds the shortest such connecting path. Brauer’s method
sometimes finds the shortest path, but the example A = {100, 229, 425, 586, 635, 689}
shows that this is not always the case: Brauer’s upper bound UBrauer(A) returns f(A) ≤
4631 across all permutations of A, while our shortest path method limited just to pairs A2

returns f(A) ≤ 3142. Brauer’s upper bound is never better than the bound of Corollary 1.

the electronic journal of combinatorics 12 (2005), #R27 31

We can prove that U2,3(A) is always at least as good as several of the other up-
per bound formulas based on two or three elements of A. Each of the other upper
bounds below is based on the assumption that A is in ascending order. For example,
the Lewin [Lew72] bound for n ≥ 3 is f(a1, a2, . . . , an) ≤ b(an − 2)2 /2c = ULewin(A), but
U2,3(A) ≤ f(a1, a2, an) ≤ ULewin(a1, a2, an) = ULewin(A). Similarly, Vitek’s [Vit75] bound
is f(a1, a2, . . . , an) ≤ b(a2 − 1)(an − 2)/2c − 1 = UVitek, but U2,3(A) ≤ f(a1, a2, an) ≤
UVitek(a1, a2, an) = UVitek(A).

The Beck–Diaz–Robins [BDS02] upper bound is the following:

f(A) ≤ (
√

a1a2a3 (a1 + a2 + a3)− a1 − a2 − a3)/2 = UBDR(A).

It is useful for its simplicity, but since it is for triples only it is not of practical value since
Greenberg’s algorithm gives the exact triple answer so quickly.

A definitive comparison to upper bounds varying with n is more problematic. For
example, the Erdős and Graham [EG72] bound is f(a1, a2,..., an) ≤ 2an−1ban/nc − an =
UEG(A); while Selmer [Sel77] gives f(a1, a2, . . . , an) ≤ 2anba1/nc − a1 = USelmer(A). In
practice, however, these bounds are generally far less accurate than U2,3(A). Bounds
based on least common multiples [RC96, BB01] are even less accurate.

The comparative data in Table 4, which shows the ratios of the bound to the correct
answer, show that our algorithm often leads to an improvement in accuracy by orders of
magnitude compared to the other published upper bounds.

For very large numbers the improvement given by U2,3 can be described as follows,
where we use ρ for the ratio of an upper bound to the exact value. For reasons explained
in §5, U2,3 is usually near a3/2 while the other bounds are close to a2. Since (max A)2 is an
upper bound (Schur, see Cor. 4), in typical cases for large a the other bounds do not give
a lot of information. Of course, for such large numbers we do not know the exact value of
the Frobenius number, but the next section contains a conjecture that, if true, would say
that the expected value of f(A) is, generally, near an/(n−1). So when n is small, say n = 4,
U2,3 will be about a3/2 while the true value is near a4/3 , and therefore ρ2,3 will be about
a1/6 while the ratio for the other bounds will be about a2/3. As n increases, the true value
on average gets close to just a, a, indicating that U2,3 , while a good improvement over
the other bounds, will still be far away from f(A). On the other hand, the performance
of U2,3 when n = 4 and a is not so large is quite good: in 100 trials with a = 50000 and
n = 4, ρ2,3 was between 1.02 and 5.38 with an average of 2.94. For the best of the rest,
the ratio was between 63 and 541 with an average of 338.

To conclude, we show a random googol-sized example with n = 4:
A ≈ {1, 2.67, 7.97, 8.89}·10100. Then the best of the last four bounds in Table 4 is 4.4·10200

while U2,3(A) = 9.7 · 10150. As explained in the next section, the likely value of f(A) is
about 4 · 10134.

Narrow Domains Narrow the Frobenius Number

When the interval spanned by the basis is small, say [a, a +
√

a] or [a, a + log a] the
character of the Frobenius problem changes. A lower bound of Vizvári [Viz87] turns out

the electronic journal of combinatorics 12 (2005), #R27 32

Problem U2,3 UBDR UEG UVitek USelmer

1 1 3.23 23 5.83 4.67
2 1.001 6.61 17 15 3.33
3 1.001 7.5 17 12 4.16
4 1 3.23 20 5.83 3.33
5 1.002 8.94 20 20 5.
6 1.053 41 101 88 22
7 1.059 26 339 115 30
8 1.072 51 119 92 29
9 1.05 44 47 51 22
10 1.109 33 117 68 20
11 1.025 43 67 86 17
12 1.011 22 85 67 19
13 1.066 47 149 136 20
14 1.003 27 190 91 25
15 1.011 35 42 51 13
16 10 743 5096 3117 524
17 5.22 1122 4289 2535 461
18 9.37 731 4375 2570 546
19 7.4 552 5516 1449 481
20 9.07 995 4401 3728 522
21 13 1206 3891 2443 931
22 5.74 523 4557 2065 523
23 10 766 5202 2491 771
24 8.99 934 5852 3216 848
25 14 1286 4094 2979 943

Table 4: The ratio of various upper bounds to the actual Frobenius number for the 25 problems
of our benchmark. The first 15 problems were specially constructed and so are not typical. For
the ten random examples, the best of the other upper bounds is always at least 50 times greater
than the U2,3 upper bound.

to be very good in such cases and is quite close to the upper bound U2,3. Indeed, these two
bounds typically determine several digits of f(A). The Vizvári bound is the following,
assuming the basis is in increasing order: f(a1, . . . , an) ≥ K(a2

1 − a1)− 1, where K is the
minimum value of q/r in the representations of ai (2 ≤ i ≤ n) as qa1 +r, with 0 ≤ r < a1.

Here are some examples that show the interval that contains the Frobenius number;
the lower end is Vizvári’s bound, the upper end is U2,3.

f({10000000000, 10000008870, 10000057783, 10000072907}) ∈ [1.37 · 1015, 2.04 · 1015]

f({10000000, 10000024, 10000053, 10000072}) ∈ [1.3888 · 1012, 1.3896 · 1012]

Finally, for A = 10100 + {0, 947, 1167, 1757, 1908, 9012}, the two bounds determine the

the electronic journal of combinatorics 12 (2005), #R27 33

first 93 digits of f(A). Thus we can say with certainty that

f(A) = 1.10963160230803373280071016422547714158899245450510430537061695

517088326675543719485130936529 . . . · 10196.

These cases seem more restricted than those typically discussed in the literature, but
it is nevertheless striking that one can give several digits of the Frobenius number with
fairly simple computations.

5. A Frobenius Growth Model

Fast algorithms for f(A) can be used to generate data that can lead to estimates on the
average size of the Frobenius number. We describe such experiments here and show how
they led us to a conjecture about the expected size of the Frobenius number. We first
switch the context slightly for simplicity. The “positive Frobenius number” g(A) is the
largest integer that is not a sum of basis elements using only positive coefficients. It is
easy to see that g(A) = f(A) + ΣA. Approximations are more succinctly stated for this
variation. For typical large inputs the ΣA term is negligible.

We first review what is known when n = 3. In that case, the very fast Greenberg
algorithm allows us to compute exact Frobenius numbers when the inputs are gigantic.
Davison [Dav84] proved the lower bound g(a, b, c) ≥ √3

√
abc and proved that the constant√

3 is sharp. Computations show that the general form of this bound seems to capture
the asymptotic average behavior of g. As always, we use a spread of 10 in generating our
random bases; changing this upwards has little impact on the results presented in this
section.

Figure 15 (left) shows the ratio log g(a, b, c)/ log(abc) as a goes up to 10200, with
10 trials for each a-value. There is surely no doubt that this value converges to 1/2,
indicating that the

√
abc term in Davison’s bound is correct, asymptotically on average.

For an extreme case, this ratio was 0.50018 for a basis {101000, b, 101001 − 1}, with b
random. In Figure 15 (right; 20 trials for each power of 10 from 1010 to 10200) the ratio
g(a, b, c)/

√
3abc is plotted. The mean for these 1820 data points was 1.43. The sum of

the basis elements is negligible, so it seems fair to say that the average value of f(a, b, c)
is asymptotic to c

√
3abc , where c is near 1.45 (see Figure 16 for a more detailed look at

the mean in an experiment to 10500); the existence of such a constant was conjectured
by Davison. But it seems unlikely that a constant multiple of the Davison bound will
provide an upper bound. For example, if A = {106, 2 · 106, 2 · 106 + 1} then the Davison
bound is too low by a factor of 577. And increasing the 6 in this example to 100 or more
yields much larger ratios.

The fact that f(a, b, c) is generally near
√

abc explains why U2,3(A), which is based
on the Frobenius number of triples from A, will be near a3/2 when the entries of A have
roughly the same size.

There have been some extensions of Davison’s bound to larger n (which always denotes
the number of basis elements). The most noteworthy is that of Killingbergtrø [Kil00] who

the electronic journal of combinatorics 12 (2005), #R27 34

1010 1050 10100 10150 10200

0.5

0.55

1020 1040 1060 1080 10100

1

5

10

Figure 15: Left: The ratio log g(a, b, c)/ log(abc) with 10 trials for each value of a. Right: The
ratio g(a, b, c)/

√
3abc , with 20 trials for each value of a, and the values of a running through

10i as i goes from 10 to 200.

10100 10200 10300 10400 10500

1.4

1.5

1.6

1.5

1.45

Figure 16: The cumulative means of g(a, b, c)/
√

3abc for an experiment with a going from 1010

to 10500 and 150 trials for each a. The mean for each set of trials was computed, and then the
cumulative means of these are plotted.

proved that g(A) ≥ ((n− 1)! ΠA)1/(n−1). This bound appears to predict the correct order
of magnitude of g(A), but is unlikely to be sharp since it does not specialize to the right
answer when n = 3 (it has

√
2 where

√
3 is wanted). But it is suggestive and led us to

the following formula, which does specialize properly,

L(A) =

(
1

2
n! ΠA

) 1
n−1

While numerical evidence (we checked over one billion 4-tuples) supported the conjecture
that L(A) is a lower bound on g(A), that assertion is false. David Einstein communicated
the following counterexample which he was led to by his knowledge of a paper [DF04]
on a closely related subject. The k = 7 case in Table 8.1 of that paper leads to A =
{84, 84n + 2, 84n + 9, 84n + 35}. When n is 62, g(A)/L(A) = 0.99998.

So we see that L(A) turns out to be a good estimator of the average value of g(A),
but a word of warning: it is useful only when a is large relative to n. Roughly, a should

the electronic journal of combinatorics 12 (2005), #R27 35

102 103 104 105 106

1

1.5

2

2.5

1.35

n = 4

103 104 105 106

1

1.5

2

2.5

1.35

n = 8

Figure 17: The ratio of the positive Frobenius number to L(A) for n equal to 4 and 8, and with
a going up to a million. The means (red lines) provide evidence that the expected value of g(A)
is asymptotic to a small constant multiple of L(A).

be greater than about nn−1/n!, for otherwise L(A) < ΣA which is a useless estimate
(switching to f , this would give a negative lower bound). So if n = 20, a should be at
least one million. Figure 17 shows the result of an experiment with n = 4 and 50 trials
for values of a running up to one million. The red line connects the mean of each set of
trials. The other graph is similar, but with n = 8. The results support the claim that
L(A), whose form differs from Killingbergtrø’s bound only in the leading constant, is a
good predictor of the expected value of g(A). When n = 4, the ratio g(A)/L(A) was
never greater than 3.5 and had a mean of 1.38 and a minimum of 1.07. The data for
n = 8 are similar, but with a smaller mean at the end. Thus it appears that for each n
the expected value of g(A) is asymptotic to cnL(A) where c3 ∼ 1.5, c4 is near 1.35, and
c8 < 1.35. Whether these constants change much as n grows, or even decrease to 1 in
all cases is impossible to say without many more experiments, which would require faster
algorithms for computing f(A). But it is intriguing to think that the constants have 1
as the limit, for that would mean that, for very large n and much larger a, the expected
value of g(A) is very well estimated by L(A).

References

[AL02] K. Aardal and A. K. Lenstra, Hard equality constrained integer knapsacks.
In W. J. Cook and A. S. Schulz, eds., Integer Programming and Combinato-
rial Optimization 2002, Lecture Notes in Computer Science 2337, Springer-Verlag,
Berlin/Heidelberg (2002) 350–366.

[BDR02] M. Beck, R. Diaz, and S. Robins, The Frobenius problem, rational polytopes,
and Fourier–Dedekind sums, J. Number Theory, 96 (2002) 1–21.

[BEZ03] M. Beck, D. Einstein, S. Zacks, Some experimental results on the Frobenius
problem, Experimental Mathematics 12 (2003) 263-269.

the electronic journal of combinatorics 12 (2005), #R27 36

[BL04] S. Böcker and Z. Lipták, The money changing problem revisited: Computing
the Frobenius number in time O(ka1), Computing and Combinatorics Conference
(COCOON) Kunming, China (2005).

[Ber93] D. P. Bertsekas, A simple and fast label correcting algorithm for shortest paths,
Networks 23 (1993) 703–709.

[Bra42] A. Brauer, On a problem of partitions, Amer. J. of Math. 64 (1942) 299–312.

[Bra54] A. Brauer and B. M. Seelbinder. On a problem of partitions II, Amer. Journal
of Math. 76 (1954) 343–346.

[Bra62] A. Brauer and J. E. Shockley, On a problem of Frobenius, Journal für Reine und
Angewandte Mathematik 211:3/4 (1962) 215–220.

[BB01] V. E. Brimkov and R. P. Barneva, Gradient elements of the knapsack polytope,
Calcolo 38:1 (2001) 49–66.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, second ed., MIT Press, Cambridge, Mass., 2001.

[CUWW97] G. Cornuéjols, R. Urbaniak, R. Weismantel, and L. A. Woolsey, Decom-
position of integer programs and of generating sets. In R. E. Burkard and G. J.
Woeginger, eds., Algorithms — ESA ’97, Lecture Notes in Computer Science 1284,
Springer-Verlag, Berlin/Heidelberg (1997) 350–366.

[Dav94] J. L. Davison, On the linear diophantine problem of Frobenius, J. Number Theory
48 (1994) 353–363.

[DF04] R. Dougherty and V. Faber, The degree-diameter problem for several varieties of
Cayley graphs I: The Abelian case, SIAM J. Disc. Math. 17 (2004) 478–519.

[ELSW∞] D. Einstein, D. Lichtblau, A. Strzebonski, S. Wagon, Frobenius numbers by
lattice point enumeration, in preparation.

[EG72] P. Erdős and R. L. Graham, On a linear diophantine problem of Frobenius, Acta
Arithmetica 21 (1972) 399–408.

[Gre88] H. Greenberg, Solution to a linear Diophantine equation for nonnegative integers,
J. Algorithms 9 (1988) 343–353

[Gre99] H. Greenberg, The linear Diophantine equation in nonnegative variables, Math-
ematica in Education and Research 8 (1999) 72–74.

[Joh60] S. M. Johnson, A linear Diophantine problem, Can. J. Math. 12 (1960) 390–398.

[Kil00] H. G. Killingbergtrø, Betjening av figur i Frobenius’ problem (Using figures in
Frobenius’s problem), (Norwegian) Normat 2 (2000) 75–82.

the electronic journal of combinatorics 12 (2005), #R27 37

[Kan89] R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combi-
natorica 12(2) (1992) 161–177.

[Kra88] H. Krawczyk and A. Paz, The diophantine problem of Frobenius: a close bound,
Discrete Applied Mathematics 23 (1989) 289–291.

[Lew72] M. Lewin, A bound for a solution of a linear Diophantine problem, J. London
Math. Soc. 6 (1972) 61–69.

[Nij79] A. Nijenhuis, A minimal-path algorithm for the “money changing problem”,
Amer. Math. Monthly 86 (1979) 832–838.

[NW72] A. Nijenhuis and H. Wilf, Representation of integers by linear forms in nonneg-
ative integers, J. Number Theory 4 (1972) 98–106.

[Nos85] K. Noshita. A theorem on the expected complexity of Dijkstra’s shortest path
algorithm. J. Algorithms 6 (1985) 400–408.

[Owe03] R. W. Owens, An algorithm to solve the Frobenius problem, Mathematics Mag-
azine 76:4 (2003) 264–275.

[RC96] M. Raczunas and P. Chrza̧stowski-Wachtel, A diophantine problem of Frobenius
in terms of the least common multiple, Discrete Mathematics 150 (1996) 347–357.

[Ram96] J. Ramı́rez Alfonśın, Complexity of the Frobenius problem, Combinatorica 16
(1996) 143–147.

[Ram∞] J. Ramı́rez Alfonśın, The Diophantine Frobenius problem, 199 pp, Oxford Univ.
Press (to appear).

[Sel77] E. S. Selmer, On the linear diophantine problem of Frobenius, Journal für Reine
und Angewandte Mathematik 293/294:1 (1977) 1–17.

[Sha02] J. Shallit, The computational complexity of the local postage stamp problem,
SIGACT News 33:1 (2002) 90–94.

[Syl84] J. J. Sylvester, Mathematical questions, with their solutions. Educational Times
41 (1884) 21.

[Vit75] Y. Vitek, Bounds for a linear Diophantine problem of Frobenius, J. London Math.
Soc. 10 (1975) 79–85.

[Viz87] Y. Vizvári, An application of Gomory cuts in number theory, Periodica Math.
Hung. 18 (1987) 213–228.

the electronic journal of combinatorics 12 (2005), #R27 38

