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Abstract

Let A be a finite multiset of integers. A second multiset of integers T is said to be
an A-tiling of level d if every integer can be expressed in exactly d ways as the sum
of an element of A and of an element of T . The set T is indecomposable if it cannot
be written as the disjoint union of two proper subsets that are also A-tilings. In
this paper we show how to construct indecomposable tilings that have exponentially
long periods. More precisely, we give a sequence of multisets (Ak)∞k=1 such that each

Ak admits an indecomposable tiling Tk of period greater than ec 3
√

nk log(nk) where
nk = diam(Ak) = max{j ∈ Ak} − min{j ∈ Ak} tends to infinity and where c > 0 is
some constant independent of k.

Introduction

Let A be a finite multiset of integers (which we shall call a tile) and let d be a nonnegative
integer. Another multiset T of integers is said to be an A-tiling of level d if every integer
can be written in exactly d ways as the sum of an element of T and an element of A.

For example if A = {0, 2} then T = {4k, 4k + 1 : k ∈ Z} is an A-tiling of level d = 1.
One can understand the set T as specifying a set of positions for translates of the set
A such that each integer is included exactly d times in the union of all the translates.
We illustrate this for the above example in Fig. 1, where we shade the original copy of
A = {0, 2} and show which points belong to the same translate of {0, 2} by connecting

0 4 8 12 16 20 24

Figure 1: A {0, 2}-tiling of level 1 (T = {4k, 4k + 1 : k ∈ Z}).
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Figure 2: A {0, 2}-tiling of level 2 (T = Z).

them with a dashed line. Tilings of level greater than 1 can be similarly illustrated by
using more than one row of dots, as in Fig. 2. In such a figure the vertical dimension serves
only to alleviate clutter, and the reader should not be fooled into thinking there is any
formal “under-over” relationship between elements of different translates that occupy the
same position. Tilings of level greater than 1 are traditionally called “multiple tilings”,
but we shall not emphasize this distinction here.

A simple pigeonhole argument (see e.g. [7]) shows that all A-tilings of level d are
periodic with period less than (d+1)diam(A) where diam(A) = max{j ∈ A}−min{j ∈ A}.
In fact, Ruzsa [6] and Kolountzakis [3] have shown there is an upper bound on the longest
period of an A-tiling that is independent of the level d. Ruzsa gives the explicit upper
bound

H(A) < ecR

√
diam(A) ln(diam(A))

where H(A) stands for the longest minimal period of an A-tiling, cR > 0 is a constant
and where diam(A) is sufficiently large. If we define a function

D(n) = max{H(A) : diam(A) ≤ n}
then Ruzsa’s upper bound can be more succinctly restated as saying that

D(n) < ecR

√
n ln(n) (1)

for all n sufficiently large. Ruzsa’s upper bound is tight in the sense that the exists some
constant cS > 0 such that

D(n) > ecS

√
n ln(n) (2)

for all n sufficiently large. The lower bound (2) is derived in a previous paper of ours [9].
The tilings which are used in [9] to derive the lower bound (2) have the major aesthet-

ical drawback of being so-called “decomposable tilings”. An A-tiling is “decomposable” if
it can be written as the disjoint union of two A-tilings of lower level (thus the {0, 2}-tiling
of Fig. 2 is decomposable, unlike the {0, 2}-tiling of Fig. 1 which is de facto indecompos-
able because it has level 1). The construction in [9] essentially functions by finding tiles
A that admit many different tilings of small period length and then taking the disjoint
union of these tilings to form a large decomposable A-tiling whose period is the lcm of
all the smaller periods. The purpose of this paper is to show that indecomposable tilings
can also have long periods. More precisely, if we let H′(A) stand for the longest minimal
period of an indecomposable A-tiling and if we let D′(n) = max{H′(A) : diam(A) ≤ n},
then we show that

D′(n) > ecT
3
√

n ln(n) (3)
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for all n sufficiently large, and where cT > 0 is another constant independent of n. This
is the paper’s main result.

We shall arrive at the lower bound (3) by a constructive approach, i.e. by exhibiting
specific tilings with long periods. The tiles which we use for this construction are closely
related to those used in [9] to establish the lower bound (2). In particular, these tiles
have the property of admitting many different tilings of small period such that the lcm
of the different periods is exponentially large compared to the diameter of the tile. The
principal difference between the approach of this paper and the approach in [9] is that,
rather than superimposing all the tilings with small period lengths such as to obtain a
tiling with long period (which does not yield an indecomposable tiling), we shall instead
take a linear combination of the tilings with small period in such a way as to scramble
the periods while ending up with an indecomposable tiling.

Naturally, any level 1 tiling is indecomposable so any lower bound on the longest period
of a level 1 tiling is automatically a lower bound for D′(n). Kolountzakis [3] and Biró [1]
hold respectively the best lower and upper bounds on the periods of level 1 tilings. Letting
D1(n) be the analog of the function D(n) for level 1 tilings (i.e. D1(n) = max{H1(A) :
diam(A) ≤ n} where H1(A) is the longest minimal period of a level 1 A-tiling), then
Kolountzakis shows there is some constant cK > 0 such that

D1(n) > cKn2

for all n sufficiently large, whereas Biró shows that

D1(n) < en
1
3 +ε

for all ε > 0 and all n sufficiently large. In particular the reader will notice that the
current lower and upper bounds for D1(n) suffer from a huge gap. It seems that most
researchers suspect there exists a polynomial upper bound for D1(n). Our contribution in
this paper is to show that indecomposability is not the key factor which prevents tilings
from having long periods.

Background and Ideas

It will be convenient to encode multisets of integers as power series. Let A[i] denote the
multiplicity of integer i in the multiset of integers A. We define

A(x) =

∞∑
k=−∞

A[k]xk.

It is easy to verify that if A is a finite multiset then another multiset T is an A-tiling if
and only if

T (x)A(x) = d
∞∑

t=−∞
xt. (4)
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Figure 3: The tile P3,5 (at top, where the number of times an integer appears in the tile
is equal to the number of dots in the column above the integer) shown with a P3,5-tiling
of level 3 (middle) and a P3,5-tiling of level 5 (bottom). The level 3 tiling corresponds to
taking T = 5Z whereas the level 5 tiling corresponds to taking T = 3Z.

For example, Fig. 1 simply bears testimony to the fact that

(· · ·+ x−4 + x−3 + 1 + x + x4 + x5 + · · · )(1 + x2) =

∞∑
t=−∞

xt.

We will start with the same class of tiles that are used in [9]. Let Pn1,...,nk
be a tile

parameterized by k natural numbers n1, . . . , nk and defined by

Pn1,...,nk
(x) =

k∏
j=1

(1 + x + · · ·+ xnj−1).

Fig. 3 shows for example the tile P3,5, together with a P3,5-tiling of level 3 and a P3,5-
tiling of level 5. In general, the set Ti = niZ is a Pn1,...,nk

-tiling of level N/ni where
N = n1n2 · · ·nk since

Ti(x)Pn1,...,nk
(x) =

∞∑
m=−∞

xmni

k∏
j=1

(1 + x + · · · + xnj−1)

=

k∏
j=1
j 6=i

(1 + x + · · · + xnj−1)

∞∑
t=−∞

xt

= (N/ni)

∞∑
t=−∞

xt

in accordance with (4).
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If we take the disjoint unions of the Pn1,...,nk
-tilings T1, . . . , Tk we obtain a Pn1,...,nk

-
tiling of period M = lcm(n1, . . . , nk). If the ni’s have few prime factors in common then
M can become very large compared to diam(Pn1,...,nk

). This simple observation leads to
the lower bound (2) given in [9]. Taking disjoint unions, however, is a non-starter if we
want indecomposable tilings. What we will do here instead is to construct a Pn1,...,nk

-
tiling of minimal period M as a linear combination of (translates of) the k power series
T1(x), . . . , Tk(x). Finding such a linear combination may not be possible, as we will see,
if the ni’s have too few prime factors in common, which accounts for the discrepancy
between the lower bounds (2) and (3).

We first need to establish some general facts about Pn1,...,nk
-tilings. Let T be any

Pn1,...,nk
-tiling. An elementary pigeonhole argument (cf. [7], for example) shows that all

tilings in the sense discussed here are periodic, so that T must be periodic mod L for
some L > 0. We can assume L is chosen large enough that M = lcm(n1, . . . , nk) divides
L (since we are not assuming that L is the minimal period of T , but simply that L is
a period of T ). Let T ′ be the restriction of T to the ground set {0, 1, . . . , L − 1} (i.e.
T ′[i] = T [i] if i ∈ {0, . . . , L − 1} and T ′[i] = 0 otherwise). We then have

T ′(x)Pn1,...,nk
(x) ≡ d(1 + x + · · ·+ xL−1) mod (1 − xL)

where d is the level of T , so

(1 − x)T ′(x)Pn1,...,nk
(x) ≡ 0 mod (1 − xL). (5)

It follows from (5) that every L-th root of unity except for ‘1’ is either a root of T ′(x) or
a root of Pn1,...,nk

(x). But every root of Pn1,...,nk
(x) is an M-th root of unity, so every L-th

root of unity is a root of T ′(x)(1 − xM ), i.e.

T ′(x)(1 − xM ) ≡ 0 mod (1 − xL). (6)

Since M |L equation (6) states precisely that T ′ is periodic mod M . In other words, we
have just proved that every Pn1,...,nk

(x)-tiling is periodic mod M = lcm(n1, . . . , nk). The
above argument is due to Kolountzakis [3]. A variant also appears in Ruzsa [6].

Knowing that Pn1,...,nk
(x)-tilings are periodic mod M = lcm(n1, . . . , nk) allows us

to study them in an essentially finite setting. Namely, Pn1,...,nk
(x)-tilings are in 1-to-1

correspondence with polynomials T ′(x) ∈ Z[x]/(1 − xM ) with nonnegative coefficients
such that

T ′(x)Pn1,...,nk
(x) ≡ d(1 + x + · · · + xM−1) mod (1 − xM )

or which is to say to such that

(1 − x)T ′(x)Pn1,...,nk
(x) ≡ 0 mod (1 − xM ).

We know in particular that every M-th root of unity except ‘1’ which is not a root of
Pn1,...,nk

(x) must be a root of T ′(x). Let θ be a primitive M-th root of unity. Then θM/ni ,
θ2M/ni , . . ., θ(ni−1)M/ni are all the roots of 1 + x + · · ·+ xni−1, so all roots in the set

C = {θ, θ2, . . . , θM−1}\
k⋃

i=1

{θM/ni, . . . , θ(ni−1)M/ni}
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must be roots of T ′(x). Conversely, if a polynomial S(x) ∈ Z[x]/(1 − xM) has all
the roots C then S(x)Pn1,...,nk

(x) has all M-th roots of unity except (maybe) for ‘1’ so
S(x)Pn1,...,nk

(x) ≡ d(1 + x + · · ·+ xM−1) mod (1 − xM) for some d. We therefore have:

Proposition 1. A polynomial S(x) ∈ Z[x]/(1 − xM) with nonnegative coefficients corre-
sponds to a Pn1,...,nk

-tiling if and only if every element of C is a root of S(x).

Now consider the polynomials

T ′
i (x) = 1 + xni + x2ni + · · ·+ xM−ni

defined for 1 ≤ i ≤ k. Note the roots of T ′
i (x) are all M-th roots of unity except for those

roots in the set {1, θM/ni, . . . , θ(ni−1)M/ni}, so the roots of R(x) = gcd(T ′
1(x), . . . , T ′

k(x))
are precisely the roots in C. By Proposition 1, therefore, Pn1,...,nk

(x)-tilings are in 1-
to-1 correspondence with those polynomials in Q[x]/(1 − xM ) with nonnegative integer
coefficients that are in the ideal of Q[x]/(1 − xM) generated by R(x), which is also equal
to the ideal generated by the polynomials T ′

1(x), . . . , T ′
k(x).

The ideal generated by T ′
1(x), . . . , T ′

k(x) in Q[x]/(1 − xM) is therefore very much of
interest to us. We now take a more geometric look at this ideal. For concreteness,
suppose first that n1 = p1, . . . , nk = pk are distinct primes (note that in this case the
ratio M/ diam(Pn1,...,nk

) ≈ n1 · · ·nk/(n1 + · · ·+ nk) becomes quite large as k → ∞). The
numbers between 0 and M−1 are uniquely given by their value mod pi for 1 ≤ i ≤ k by the
Chinese Remainder Theorem so it makes sense to think of polynomials in Q[x]/(1 − xM)
as arrays of size p1 × . . .× pk whereby the coefficient of xn becomes the entry in the array
with coordinate (n mod p1, . . . , n mod pk). Then the polynomial T ′

i (x) corresponds to the
array whose (j1, . . . , jk)-th entry is 1 if ji = 0 and is 0 otherwise since the exponents with
nonzero coefficients in T ′

i (x) = 1 + xpi + . . . + xM−pi are precisely the numbers between 0
and M − 1 equal to 0 mod pi.

Say that a slab is an array whose entries are all 0 except for those entries with a given
value of the i-th coordinate (for any i), which entries are set to 1. We have just remarked
that the array corresponding to the polynomial T ′

i (x) is a slab. It is equally easy to see
that the polynomials xjT ′

i (x) for 1 ≤ j < pi also correspond to slabs—indeed these are
just the (pi − 1) “translates” of the slab corresponding to T ′

i (x) along the i-th coordinate
direction of the array. Thus a polynomial in the ideal generated by T ′

1(x), . . . , T ′
k(x) in

Q[x]/(1−xM ) simply corresponds to an array of size p1× . . .×pk that can be written as a
linear combination of slabs. We shall call such an array a “C1 array” where “C1” stands
for “codimension 1” (which somehow reflects our intuition that slabs are codimension 1
objects).

To reformulate the above observations, Pp1,...,pk
-tilings are in 1-to-1 correpondence with

nonnegative, integer-valued C1 arrays of dimension p1 × . . . × pk. We will say that a C1
array is minimal if it is nonzero, nonnegative and integer-valued and if it cannot be written
as the sum of two other nonzero, nonnegative, integer-valued C1 arrays. It is clear from
the relevant definitions that a nonempty Pp1,...,pk

-tiling is indecomposable if and only its
associated C1 array is minimal. (Connoisseurs may also note that the set of minimal C1
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arrays forms the so-called “Hilbert basis” of the cone obtained by intersecting the space
of all C1 arrays with the nonnegative orthant in Rp1···pk .)

A Pp1,...,pk
-tiling has a minimal period of M if and only if it is not periodic mod M/pi

for every 1 ≤ i ≤ k. In terms of the associated array this means that for every 1 ≤ i ≤ k
there are two coordinates (j1, . . . , jk) and (h1, . . . , hk) differing only in the i-th position
such that the (j1, . . . , jk)-th entry of the associated array is not equal to the (h1, . . . , hk)-
th entry. We will say for shortness that an array is “non-periodic” if it possesses this
property. Thus a Pp1,...,pk

-tiling has a minimal period of M if and only if its associated
array is non-periodic. Our quest for tilings with long periods therefore leads us to ask
whether there exist minimal non-periodic C1 arrays. Unfortunately, the following theorem
puts an end to such hopes:

Theorem 1. The only minimal C1 arrays are slabs.

Proof. Let C be a minimal C1 array of size n1 × . . . × nk. We assume by contradiction
that C is not equal to a slab. We write Ci1,...,ik for the (i1, . . . , ij)-th entry of C where
ij ∈ Znj

= {0, 1, . . . , nj − 1} for 1 ≤ j ≤ k (note that we are indexing coordinates of the
array starting from 0 instead of from 1).

Remark that if A is any slab of size n1×. . .×nk then for any (j1, . . . , jk) ∈ Zn1×. . .×Znk

we have

A0,...,0 − Aj1,0,...,0 − A0,j2,...,jk
+ Aj1,...,jk

= 0. (7)

Since C is a linear combination of slabs we then likewise have

C0,...,0 − Cj1,0,...,0 − C0,j2,...,jk
+ Cj1,...,jk

= 0 (8)

for any (j1, . . . , jk) ∈ Zn1 × . . . × Znk
.

Since C does not dominate any slab C must have some zero entry. Because permuting
the coordinates of an array maps slabs to slabs (and thus maps minimal C1 arrays to
minimal C1 arrays) we can assume that C0,...,0 = 0. Take j1 ∈ Zn1 . Again because C does
not dominate any slab, there must be (j2, . . . , jk) ∈ Zn2 × . . .×Znk

such that Cj1,...,jk
= 0.

Applying Eq. 8 we get that

−Cj1,0,...,0 − C0,j2,...,jk
= 0

but C is nonnegative, so we get (in particular) that Cj1,0,...,0 = 0. Since j1 was arbitrary,
we thus have Cj,0,...,0 = 0 for all j ∈ Zn1 . Treating other indices symmetrically we get
that all entries in any line containing a zero are zero, which implies that C = 0, a
contradiction.

In a sense, Theorem 1 reflects our intuition that slabs are too clumsy a set of gener-
ators to construct interesting arrays. An immediate corollary of Theorem 1 is that the
only indecomposable Pp1,...,pk

-tilings are translates of p1Z, . . . , pkZ. One can apply the
same argument to show that the only indecomposable Pn1,...,nk

-tilings are the translates
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Figure 4: A 2×2×2 cyclotomic array shown decomposed as a linear combination of lines
of 1’s; shaded cubes denote 1’s, other entries are 0.

of n1Z, . . . , nkZ when the ni’s are pairwise coprime (this is a special case of one of the
main results of [9]).

We now take a look at the structure of the ideal generated by T ′
1(X),. . . , T ′

k(x) when
the ni’s have many prime factors in common. For concreteness, say that n1 = M/p1, . . .,
nk = M/pk where p1 < . . . < pk are distinct primes and where M = p1 · · · pk. In this case
the ratio M/ diam(Pn1,...,nk

) is very poor but we consider these tiles nonetheless for the
sake of example.

We again think of polynomials in Q[x]/(1 − xM ) as arrays of size p1 × . . . × pk under
the map given by the Chinese Remainder Theorem. This time we have

T ′
i (x) = 1 + xM/pi + x2M/pi + · · ·+ x(pi−1)M/pi

so the exponents of T ′
i (x) with nonzero coefficients are precisely those numbers between

0 and M − 1 which are 0 mod pj for all j 6= i. This means that T ′
i (x) corresponds to the

p1 × . . . × pk array whose (l1, . . . , lk)-th entry is 1 if lj = 0 for all j 6= i and 0 otherwise.
This type of array looks like a single line of 1’s running parallel to the i-th coordinate
axis, and running the full length of the array.

Call a fiber any array consisting of a single line of 1’s running parallel to one of the co-
ordinate axes and running the full length of the array. By the above remarks, a polynomial
of the form xjT ′

i (x) mod 1 − xM maps to a fiber running parallel to the i-th coordinate
axis. Thus elements of the ideal generated by T ′

1(x), . . . , T ′
k(x) in Q[x]/(1 − xM) map to

arrays that are linear combinations of fibers and vice-versa. We might call such arrays “D1
arrays” by analogy with our previous terminology (“D1” for “dimension 1” as opposed to
“codimension 1”) but these kinds of arrays have already been tagged “cyclotomic” else-
where in the literature ([8], [2]), and we will adhere to the latter terminology. As above,
we say that a nonnegative, integer-valued cyclotomic array is “minimal” if it cannot be
written as the sum of two other nonzero, nonnegative, integer-valued cyclotomic arrays.
Note that an array may be minimal as a C1 array but not minimal as a cyclotomic array
(it will be clear in each context which we mean). Indecomposable PM/p1,...,M/pk

-tilings are
thus in 1-to-1 correspondence with minimal cyclotomic arrays of dimension p1 × . . .× pk.

As for Pp1,...,pk
-tilings a PM/p1,...,M/pk

-tiling has minimal period M if and only its as-
sociated array is non-periodic. Since we are looking for tilings with long periods we are
thus again led to ask whether there exist minimal non-periodic cyclotomic arrays. This
time (and by opposition with C1 arrays) the answer is yes, provided the dimension k of
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Figure 5: A 2 × 2 × 2 array that is orthogonal to all fibers, and thus to all 2 × 2 × 2
cyclotomic arrays. Each entry of the array is ±1; a ‘+’ sign denotes an entry of 1 and a
‘-’ signs denotes an entry of −1.

the array is greater than or equal to 3 and also provided the sidelengths of the array are
all greater than or equal to 2 (which latter condition is a trivial requirement for an array
to be non-periodic). A construction for a minimal non-periodic 2×2×2 cyclotomic array
is shown in Fig. 4, where the array is shown on the left and its decomposition as a linear
combination of fibers is shown on the right. The Fig. 4 cyclotomic array is obviously
non-periodic since for each coordinate direction there is a line in the array containing
different values. It is maybe not quite so obvious to see the same array is minimal. We
give a formal proof that the Fig. 4 is minimal in the next proposition.

Proposition 2. The Fig. 4 cyclotomic array is minimal.

Proof. Let C denote the 2×2×2 array of Fig. 4. We will write the coordinates of entries
in C as binary strings of length 3 instead of as triplets (i, j, k), putting Cijk = Ci,j,k. If the
lower front corner of the Fig. 4 array has coordinate 000 and the axes are ordered as on
the right of Fig. 4 we then have C101 = C010 = 1 and C000 = C001 = C011 = C111 = C110 =
C100 = 0. Let A be an integer-valued 2 × 2 × 2 cyclotomic array such that 0 ≤ A ≤ C.
We need to show that A = 0 or A = C. Consider the 2×2×2 array of Fig. 5 with entries
of ±1. The Fig. 5 array is orthogonal in R8 to any 2× 2× 2 fiber so it is also orthogonal
to A, which is by assumption a linear combination of fibers. We therefore have

A000 − A001 − A010 − A100 + A011 + A101 + A110 − A111 = 0 (9)

but A000 = A001 = A011 = A111 = A110 = A100 = 0 so we get A010 = A101. Therefore A is
a scalar multiple of C and thus, since A is integer-valued, A = 0 or A = C, as desired.

It might seem to the reader that constructing a 2 × 2 × 2 non-periodic minimal cy-
clotomic array is a waste of breath when our bijection is only between indecomposable
PM/p1,...,M/pk

-tilings and minimal cyclotomic arrays of size p1 × . . .×pk for distinct primes
p1, . . . , pk. However, larger cyclotomic arrays of unequal sidelengths can easily be obtained
from smaller cyclotomic arrays of same sidelength by using a process called inflation. We
say that an array C ′ of size n′

1×. . .×n′
k is an inflate of an array C of size n1×. . . nk if there

exists surjections κ1 : Zn′
1
→ Zn1 , . . . , κk : Zn′

k
→ Znk

such that C ′
i1,...,ik

= Cκ1(i1),...,κk(ik)

for all (i1, . . . , ik) ∈ Zn′
1
× . . . × Zn′

k
. The basic idea behind the process of inflation is

shown in Fig. 6.
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Figure 6: Inflating a 2 × 2 × 2 array.

1

1

1

1

1

1

Figure 7: A non-minimal inflate of a minimal cyclotomic array.

It is quite easy to check that the inflate of a cyclotomic array is again a cyclotomic
array (and likewise for C1 arrays) and that inflates of non-periodic arrays are non-periodic.
On the other hand inflation does not always preserve minimality, as shown by Fig. 7. Say
that an n1 × . . . × nk array C is “full-dimensional” if there does not exist 1 ≤ j ≤ k and
q ∈ Znj

such that Ci1,...,ik 6= 0 =⇒ ij = q. We have the following proposition from [8]
concerning the minimality of inflates of cyclotomic arrays:

Proposition 3. ([8] Cor. 1) If C is a minimal cyclotomic array of size n1 × . . .× nk and
n′

1 ≥ n1, . . ., n′
k ≥ nk then there exists an inflate C ′ of C of size n′

1 × . . .× n′
k that is also

minimal. Moreover, if C is full-dimensional then any inflate of C is minimal.

By Proposition 3, any inflate of the Fig. 4 array is minimal. Consider in particular the
2 × 3 × 5 inflate shown in Fig. 8. If the lower corner closest to the viewer has coordinate
(0, 0, 0) then this array corresponds to the polynomial x5 + x6 + x12 + x18 + x24 + x25 in
Q[x]/(1 − x30) under the map given by the Chinese Remainder Theorem (whereby the
coefficient of xn becomes the value of the entry (n mod 2, n mod 3, n mod 5)). Thus the

a

aa

aa

a

Figure 8: A 2 × 3 × 5 inflate of the 2 × 2 × 2 array of Fig. 4.
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0

180

Figure 9: The P15,10,6-tiling corresponding to the cyclotomic array of Fig. 8. Each shaded
region corresponds to one translate of P15,10,6.

subset T of Z with power series

T (x) =
∞∑

k=−∞
x30k(x5 + x6 + x12 + x18 + x24 + x25)

is an indecomposable P15,10,6-tiling of minimal period 30 (where 15 = M/p1 = 30/2,
10 = M/p2 = 30/3, etc). Notice the period of T is longer than the period of any of the
“obvious” P15,10,6-tilings 15Z, 10Z and 6Z. Since there are 6 copies of P15,10,6 per interval
of length 30 the level of T is 6 · (15 ·10 ·6)/30 = 180. If we illustrate the P15,10,6-tiling T in
the style of Fig. 3 we get something like Fig. 9, where sets of points are approximated by
shaded regions because of the large scale involved. (Recall that the layering of the tiles
in such a figure is arbitrary.)

Thus far, our discussion has mainly served to illustrate the following points:

• If n1, . . . , nk are pairwise coprime, then there do not exist indecomposable Pn1,...,nk
-

tilings of minimal period M = lcm(n1, . . . , nk) (assuming that M 6= ni for some i,
which means assuming that k ≥ 2 and that nj > 1 for all j)

• In certain cases when the ni’s have many factors in common, it is possible to con-
struct indecomposable Pn1,...,nk

-tilings of minimal period M = lcm(n1, . . . , nk)

• The ratio M/ diam(Pn1,...,nk
) is best maximized when the ni’s have few prime factors

in common

Given the above comments, the next most logical tile to look at is Pp1p2,p2p3,..., pk−1pk, pkp1

where p1, . . . , pk are distinct primes. This is indeed what works, as Pp1p2,...,pkp1 admits an
indecomposable tiling of minimal period M = lcm(p1p2, p2p3, . . . , pkp1) = p1 · · · pk.
Choosing p1, . . . , pk to be the first k primes and letting k tend to infinity and examining
the growth of M compared to the growth of diam(Pp1p2,...,pkp1) ≈ p1p2 + . . . + pkp1 yields
the lower bound (3). We do this asymptotical computation at the end of the section.

As the asymptotical computation is easy our main job is really to explain how to
construct the indecomposable Pp1p2,...,pkp1-tiling of period M . We do this for k = 4 in
this section and give a general construction and proof in the next section (note that
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Figure 10: A minimal non-periodic CC2 array of size 2 × 2 × 2 × 2.

Pp1p2,...,pkp1 = PM/p1,...,M/pk
when k = 3 so we already know how to construct an indecom-

posable Pp1p2,...,pkp1-tiling of minimal period M in this case).
Since all Pp1p2,...,pkp1-tilings are periodic mod M = p1 · · ·pk we can again understand

Pp1p2,..., pkp1-tilings as arrays of size p1 × . . .× pk (under the same bijective map as usual).
Now that n1 = p1p2, n2 = p2p3, . . ., nk = pkp1, the exponents of T ′

i (x) with nonzero
coefficients are the integers between 0 and M − 1 that are divisible by pipi+1 (where we
put pk+1 = p1; indices referring to numbers in the set {1, 2, . . . , k} will be taken in ‘wrap-
around fashion’ from now on). Thus a polynomial of the type xnT ′

i (x) becomes an array
whose (j1, . . . , jk)-th entry is 1 if ji ≡ n mod pi, ji+1 ≡ n mod pi+1 and is 0 otherwise.
We will call an array of this type an adjacent index co-slab. Put otherwise, an adjacent
index co-slab is a 0-1 array whose support is the set of all entries with given i-th and
(i + 1)-th coordinates. An array that can be written as a linear combination of adjacent
index co-slabs will be called a ‘CC2 array’ (for “Cyclic Codimension 2”).

Pp1p2,...,pkp1-tilings are therefore in 1-to-1 correspondence with nonnegative, integer-
valued CC2 arrays of size p1 × . . .× pk. What we want is to be able to construct minimal
non-periodic CC2 arrays for arbitrarily large k. For k = 2 an array with a single entry of 1
is an adjacent index co-slab, so gives us a minimal non-periodic CC2 array, whereas when
k = 3 CC2 arrays are the same as cyclotomic arrays, which we have already discussed.
The first case of interest to us is therefore k = 4. We can simplify our task by using the
following analog of Theorem 3 for CC2 arrays:

Proposition 4. If C is a minimal CC2 array of size n1 × . . . × nk and n′
1 ≥ n1, . . .,

n′
k ≥ nk then there exists an inflate C ′ of C of size n′

1 × . . . × n′
k that is also minimal.

Moreover, if C is full-dimensional then any inflate of C is minimal.

We omit the proof of Proposition 4 since it is exactly the same as its counterpart for
cyclotomic arrays, which is given in [8].

Proposition 4 implies it is sufficient to construct a 4-dimensional minimal non-periodic
CC2 array of any size, say, 2× 2× 2× 2, in order to establish the existence of a minimal
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0000 1000

0100 1100

0010 1010

0110 1110

0011 1011

0111 1111

0001 1001

0101 1101

Figure 11: The coordinatization for the 2× 2× 2× 2 array of Fig. 10 (and for subsequent
2 × 2 × 2 × 2 arrays).

Figure 12: An array orthogonal to all 2 × 2 × 2 × 2 CC2 arrays. Pluses denote entries of
1, minuses entries of -1.

non-periodic CC2 array whose sides are distinct primes p1, p2, p3, p4. Fig. 10 shows a
promising candidate for such a 2×2×2×2 CC2 array (the coordinatization of this array
is shown in Fig. 11). While the array of Fig. 10 is obviously non-periodic, it is somewhat
touchier to tell whether it is minimal. We devote a proposition to this. The proof we
give is slightly more complicated than necessary as we are setting up a blueprint for the
k-dimensional case.

Proposition 5. The CC2 array of Fig. 10 is minimal.

Proof. Let C denote the CC2 array of Fig. 10. As in the proof of Proposition 2 we write

Figure 13: The ground set Q = Z2 × Z2 × {0} × {0} ∪ Z2 × Z2 × {1} × {1} ⊆ (Z2)
4.
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Figure 14: Two more arrays that are orthogonal to all 2 × 2 × 2 × 2 CC2 arrays.

Figure 15: Two more.

the coordinates of entries in C as binary strings of length 4, putting Cijkh for Ci,j,k,h. Let
A be an integer-valued CC2 array such that 0 ≤ A ≤ C. We need to show that A = 0 or
A = C. Since A is integer-valued it is sufficient to show that A is a scalar multiple of C.

Consider the 2 × 2 × 2 × 2 array of Fig. 12 with entries of 0 and ±1. It is easy to
check this array is orthogonal to every adjacent index co-slab (the 4 basic types of which
appear in Fig. 10), so must be orthogonal to A, which is a linear combination of such
co-slabs. Let us restrict our attention for a moment to the portion of A with ground set
Q = Z2 ×Z2 ×{0}×{0}∪Z2 ×Z2 ×{1}×{1} ⊆ (Z2)

4 (shown in Fig. 13). If we consider
Z2 × Z2 × {0} × {0} and Z2 × Z2 × {1} × {1} as the two 2 × 2 layers of a 2 × 2 × 2
array then C restricted to Q looks exactly like the Fig. 4 array whereas the Fig. 12 array
restricted to Q looks exactly like the Fig. 5 array. It follows from the same argument as
in the proof of Proposition 2 that A0100 = A1011. Thus there exists a λ ∈ R such that
Aijkh = λCijkh for all (i, j, k, h) ∈ Q. All that we have left to show is that Aij01 = λCij01

and that Aij10 = λCij10 for all (i, j) ∈ Z2 × Z2.
Say for now that we know of some pair (i0, j0) ∈ Z2 × Z2 such that Ai0j001 = λCi0j001.

Let i′0 = 1 − i0, j′0 = 1 − j0. Note the two 2 × 2 × 2 × 2 arrays of Fig. 14 are orthogonal
(like the array of Fig. 12) to all adjacent co-slabs, so are orthogonal to A and C. It follows
that

Ai0j000 − Ai0j′000 − Ai0j001 + Ai0j′001 = 0

and also
λCi0j000 − λCi0j′000 − λCi0j001 + λCi0j′001 = 0

but Ai0j000 = λCi0j000, Ai0j′000 = λCi0j′000 and Ai0j001 = λCi0j001 so we get Ai0j′001 = λCi0j′001.
A similar argument which uses the fact that the arrays of Fig. 15 are orthogonal to
all adjacent index co-slabs shows that Ai′0j001 = λCi′0j001. We therefore have that both
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Ai0j′001 = λCi0j′001 and Ai′0j001 = λCi′0j001 if Ai0j001 = λCi0j001 from which it follows (by
repeated applications of the same argument) that Aij01 = λCij01 for all (i, j) ∈ Z2 ×Z2 if
Ai0j010 = λCi0j010 for some (i0, j0) ∈ Z2 × Z2. But we know of such a pair (i0, j0), namely
the pair (0, 0), since A0001 = C0001 = 0. Therefore Aij01 = λCij01 for all (i, j) ∈ Z2 × Z2.
A symmetric argument shows that Aij10 = λCij10 for all (i, j) ∈ Z2 ×Z2, which completes
the proof.

It follows from Propositions 4 and 5 that there exist indecomposable Pp1p2,p2p3,p3p4,p4p1-
tilings of minimal period p1p2p3p4 for any distinct primes p1, p2, p3, p4. In the next section
we generalize the construction of Fig. 10 and the proof of Proposition 5 to show there
exist non-periodic minimal k-dimensional CC2 arrays of size 2 × . . . × 2 for any k ≥ 2,
from which it likewise follows that there are indecomposable Pp1p2,...,pkp1-tilings of minimal
period p1 · · · pk for any distinct primes p1, . . . , pk. Meanwhile we show that the lower bound
(3) holds if we assume the existence of such tilings:

Proposition 6. If there exist indecomposable Pp1p2,...,pkp1-tilings of minimal period p1 · · ·pk

for any distinct primes p1, . . . , pk and any k ≥ 2 then there is some constant c > 0
such that for all n sufficiently large there is a tile of diameter n or less admitting an

indecomposable tiling of minimal period ec 3
√

n ln(n) or more.

Proof. Recall that D′(n) is defined as the longest minimal period of an indecomposable

tiling of a tile of diameter n or less (so the proposition states that D′(n) ≥ ec 3
√

n ln(n)

for all n sufficiently large). Let π(r) denote the number of primes at most r and let
p1, . . . , pπ(r) be the first π(r) primes. Let σr = (p1 + . . . + pπ(r))pπ(r). Note that σr ≥
diam(Pp1p2,p2p3,...,pπ(r)p1) = p1p2 + . . . + pπ(r)p1 − π(r). By the prime number theorem
π(r) ≈ r

ln(r)
so

σr ≤ r3

ln(r)

for all r sufficiently large. If r ≤ 3

√
σr ln( 3

√
σ(r)) then we get

σr ≤ r3

ln(r)
≤ σr ln( 3

√
σ(r))

ln( 3

√
σr ln( 3

√
σ(r)))

a contradiction, so

r ≥ 3

√
σr ln( 3

√
σ(r)) =

1
3
√

3
3
√

σr ln(σr)

for all r sufficiently large. Since σr ≥ diam(Pp1p2,...,pπ(r)p1) and Pp1p2,...,pπ(r)p1 admits (by
assumption) an indecomposable tiling of period p1 · · · pπ(r), we have

D′(σr) ≥ p1 · · · pπ(r)

≥ εer

≥ εe
1
3√3

3
√

σr ln(σr)
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for all ε < 1, for all r sufficiently large. Thus, since for any n ∈ N there is some r ∈ N

such that n ≤ σr ≤ 4n, there is a constant c > 0 such that

D′(n) ≥ ec 3
√

n ln(n)

for all n sufficiently large, as desired.

The main proof

We have so far reduced the proof of lower bound (3) to showing there exist minimal non-
periodic k-dimensional CC2 arrays of size 2 × . . . × 2 for all k, say, greater than or equal
to 3. We will index the entries of our 2× . . .×2 arrays as binary strings, like in the proofs
of Proposition 2 and 5. We let

δj1j2
i1i2

= δi1j1δi2j2

where δij is the Kronecker delta. We start with a simple lemma.

Lemma 1. Let C be a 2 × . . . × 2 CC2 array of dimension k ≥ 3 and let τ(C) be a
2 × . . . × 2 array of dimension k − 1 given by

(τ(C))i1...ik−1
= Ci1...ik−1ik−1

Then τ(C) is also a CC2 array.

Proof. It suffices to show that τ(C) is a CC2 array when C is an adjacent index co-slab.
Say therefore that Ci1...ik = δz1z2

ilil+1
where z1, z2 ∈ {0, 1} and 1 ≤ l ≤ k (with ik+1 = i1). If

1 ≤ l ≤ k−2 then (τ(C))i1...ik−1
is also equal to δz1z2

ilil+1
, so τ(C) is an adjacent index co-slab

and therefore a CC2 array. If l = k − 1 then (τ(C))i1...ik−1
= δz1

ik−1
= δ0 z1

ik−2ik−1
+ δ1 z1

ik−2ik−1

if z1 = z2 and is equal to 0 otherwise, so in either case τ(C) is a CC2 array. Lastly, if
l = k then (τ(C))i1...ik−1

= δz1z2
ik−1i1

so τ(C) is again an adjacent index co-slab, completing
the proof.

We now introduce our family {Ck : k ≥ 3} of minimal non-periodic CC2 arrays of size
2 × . . . × 2, where Ck has dimension k. The array Ck is defined by:

Ck
i1...ik

=

(
k−1∑
l=1

δ0 1
ilil+1

)
− δ0 1

i1ik
. (10)

Put more verbally, the value of Ck
i1...ik

is the number ‘01’ substrings in the binary string
i1i2 . . . ik, minus one if the first and last characters of the string are respectively a 0 and a 1.
The array C3 is the one already shown in Fig. 4 (under the coordinatization of Proposition
2) whereas the array C4 is the one shown in Fig. 10 and discussed in Proposition 5. It
follows directly from (10) that Ck is a CC2 array and that Ck is integer-valued. We prove
a few more easy things about the arrays Ck:

the electronic journal of combinatorics 12 (2005), #R36 16



Proposition 7. The array Ck is nonnegative for all k ≥ 3.

Proof. This simply follows from the fact that any binary string which starts with a ‘0’
and ends with a ‘1’ must contain a substring ‘01’.

Proposition 8. The array Ck is non-periodic for all k ≥ 3.

Proof. Let 1 ≤ l ≤ k. We need to find some i1, . . . , il−1, il+1, . . . , ik ∈ Z2 such that
Ck

i1...il−10il+1...ik
6= Ck

i1...il−11il+1...ik
. If 1 < l < k then we can take i1, . . . , il−1, il+1, . . . , ik all

equal to 0 since 0 = Ck
0...0 6= Ck

0...010...0 = 1 if the ‘1’ in the right-hand subscript appears
neither as the first or last character. If l = 1 then we can take i2 = . . . = ik−1 = 0,
ik = 1 since 0 = Ck

0...01 6= Ck
10...01 = 1. Similarly if l = k then we can take i1 = 1,

i2 = . . . = ik−1 = 0 since 0 = Ck
10...0 6= Ck

10...01 = 1.

Proposition 9. Let τ be the projection from k-dimensional arrays of size 2 × . . . × 2 to
(k − 1)-dimensional arrays of size 2 × . . . × 2 defined in Lemma 1. Then τ(Ck) = Ck−1

for all k ≥ 4.

Proof. This is simply because the number of ‘01’ substrings in a binary string i1 . . . ik−1

minus δ0 1
i1ik−1

is equal to the number of ‘01’ substrings in the string i1 . . . ik−1ik−1 minus

δ0 1
i1ik−1

.

We have left to show that Ck is minimal for all k ≥ 3. Note that Ck always contains
some entries equal to 1, since for example Ck

010...0 = 1. It is therefore sufficient to show
that any nonnegative CC2 array whose support is contained in the support of Ck is a
scalar multiple of Ck. We will do this using an induction on k.

Theorem 2. The array Ck is minimal for all k ≥ 3.

Proof. We prove by induction on k that any nonnegative CC2 array whose support is
contained in the support of Ck is a scalar multiple of k. Our basis is the case k = 3,
which was proved in Proposition 2 (the case k = 4 was proved in Proposition 5).

Therefore let k ≥ 4 and let A ≥ 0 be a k-dimensional 2 × . . . × 2 CC2 array whose
support is contained in the support of Ck. Since by Lemma 1 τ(A) is a nonnegative (k−1)-
dimensional CC2 array whose support is contained in the support of τ(Ck) = Ck−1, it
follows from the induction hypothesis that τ(A) = λτ(Ck) for some λ ∈ R. Put another
way, Ai1...ik−200 = λCk

i1...ik−200
and Ai1...ik−211 = λCk

i1...ik−211
for all (i1, . . . , ik−2) ∈ (Z2)

k−2.

We have left to show that Ai1...ik−201 = λCk
i1...ik−201 and that Ai1...ik−210 = λCk

i1...ik−210
for

all (i1, . . . , ik−2) ∈ (Z2)
k−2.

Assume that Aj1...jk−201 = λCk
j1...jk−201

for some (j1, . . . , jk−2) ∈ (Z2)
k−2. Let j′l =

1 − jl for 1 ≤ l ≤ k − 2. We first wish to prove that Aj1...jk−201 = λCk
j1...jk−201

=⇒
(Aj1...jl−1j′ljl+1...jk−201 = λCk

j1...jl−1j′ljl+1...jk−201
for all 1 ≤ l ≤ k − 2). We distinguish between

the cases 1 ≤ l ≤ k − 3 and 2 ≤ l ≤ k − 2 (the two cases overlap when k ≥ 5, which does
not bother us).
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Assume first that 2 ≤ l ≤ k − 2. Let B be any k-dimensional adjacent index co-slab
of size 2 × . . . × 2. It is easy to check that

Bj1...jk−200 − Bj1...jl−1j′ljl+1...jk−200 − Bj1...jk−201 + Bj1...jl−1j′ljl+1...jk−201 = 0

so it follows that

Aj1...jk−200 − Aj1...jl−1j′ljl+1...jk−200 − Aj1...jk−201 + Aj1...jl−1j′ljl+1...jk−201 = 0 (11)

and that

λCk
j1...jk−200

− λCk
j1...jl−1j′ljl+1...jk−200

− λCk
j1...jk−201

+ λCk
j1...jl−1j′ljl+1...jk−201

= 0. (12)

But we know that Aj1...jk−200 = λCk
j1...jk−200

, Aj1...jl−1j′ljl+1...jk−200 = λCk
j1...jl−1j′ljl+1...jk−200

and

we are assuming Aj1...jk−201 = λCk
j1...jk−201

so (11), (12) imply that Aj1...jl−1j′ljl+1...jk−201 =

λCk
j1...jl−1j′ljl+1...jk−201

, as desired. The case 1 ≤ l ≤ k − 3 is treated similarly by observing

that
Bj1...jk−211 − Bj1...jl−1j′ljl+1...jk−211 − Bj1...jk−201 + Bj1...jl−1j′ljl+1...jk−201 = 0

for all 2 × . . . × 2 k-dimensional adjacent index co-slabs B when 1 ≤ l ≤ k − 3.
We have thus shown that if Aj1...jk−201 = λCk

j1...jk−201
for some (j1, . . . , jk−2) ∈ (Z2)

k−2

then Aj1...jl−1j′ljl+1...jk−201 = λCk
j1...jl−1j′ljl+1...jk−201

for all 1 ≤ l ≤ k − 2. To put things more

graphically, say that a coordinate (i1, . . . , ik−2) ∈ (Z2)
k−2 has smallpox if Ai1...ik−201 =

λCk
i1...ik−201. What we have just shown is that any coordinate in (Z2)

k−2 that differs in
a single position from a coordinate with smallpox also has smallpox. Thus if a single
coordinate in (Z2)

k−2 has smallpox, then all coordinates have smallpox. However we do
know of one coordinate in (Z2)

k−2 with smallpox: namely the coordinate (0, . . . , 0), since
A0...01 = λC0...01 = 0. Thus Ai1...ik−201 = λCk

i1...ik−201 for all (i1, . . . , ik−2) ∈ (Z2)
k−2. A

symmetric argument using the fact that A1...10 = λC1...10 = 0 shows that Ai1...ik−210 =
λCk

i1...ik−210 for all (i1, . . . , ik−2) ∈ (Z2)
k−2. Thus A = λC and we are done.

Further remarks

If k is even then Ck
0101...01 = k/2 − 1 and if k is odd Ck

0101...11 = (k − 1)/2 − 1. Thus the
maximum entry of Ck grows arbitrarily large with k, and it follows from our construction
that there exist indecomposable tilings in which individual tile translates appear with
arbitrarily high multiplicity (that is, for every m ∈ N there is some tile A and some
indecomposable A-tiling T such that T [i] ≥ m for some i ∈ Z). Even more, if we inflate
Ck to an array of size p1 × p2 × · · · × pk such that (p1 − 1)(p2 − 1) · · · (pk − 1) entries of
the inflate are equal to the highest entry of Ck (which is obviously possible to do) then
we obtain an indecomposable tiling which is “almost everywhere thick”. We summarize
this with a theorem:

Theorem 3. For every ε > 0 and every m ∈ N there some tile A and some indecomposable
A-tiling T such that limc→∞ 1

c
|{i : 1 ≤ i ≤ c, T [i] ≥ m}| > 1 − ε.
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Figure 16: A P2·7,7·3,3·5,5·2-tiling obtained from an inflate of C4. The tile has diameter 56
and the tiling has period 210.

k diam(P...) M

3 28 30
4 56 210
5 116 2310
10 1022 > 109

15 4202 > 1017

20 11502 > 1026

30 48142 > 1046

Table 1

Some constructions of minimal cyclotomic arrays with arbitrarily large entries can be
found in [8].

The ratio M/ diam(Pn1,...,nk
) is slightly better maximized if we put n1 = p1pk, n2 =

pkp2, n3 = p2pk−1, n4 = pk−1p3, . . . (etc.) instead of n1 = p1p2, n2 = p2p3, n3 = p3p4, . . .
where p1, . . . , pk are the first k primes (this small change does not significantly affect
the asymptotical computation). Fig. 16 shows, for the reader’s amusement and for the
satisfaction of our own curiosity, a P2·7,7·3,3·5,5·2-tiling of period 210 obtained from an
inflate of C4. Table 1 also compares the period M = p1 · · · pk with the diameter of
Pp1pk,pkp2,...,pd(k+1)/2ep1

for some larger values of k. Numerical experiments with k ∼ 5000
suggest that the constant c of Proposition 6 may be taken greater than 1, but we cannot
vouch for this value.
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