A Relationship Between the Major Index For Tableaux and the Charge Statistic For Permutations

Kendra Killpatrick
Pepperdine University
Malibu, California
Kendra.Killpatrick@pepperdine.edu

Submitted: Jul 13, 2005; Accepted: Aug 30, 2005; Published: Sep 5, 2005
Mathematics Subject Classifications: 05A15, 05E10

Abstract

The widely studied q-polynomial $f^{\lambda}(q)$, which specializes when $q=1$ to f^{λ}, the number of standard Young tableaux of shape λ, has multiple combinatorial interpretations. It represents the dimension of the unipotent representation S_{q}^{λ} of the finite general linear group $G L_{n}(q)$, it occurs as a special case of the Kostka-Foulkes polynomials, and it gives the generating function for the major index statistic on standard Young tableaux. Similarly, the q-polynomial $g^{\lambda}(q)$ has combinatorial interpretations as the q-multinomial coefficient, as the dimension of the permutation representation M_{q}^{λ} of the general linear group $G L_{n}(q)$, and as the generating function for both the inversion statistic and the charge statistic on permutations in W_{λ}. It is a well known result that for λ a partition of $n, \operatorname{dim}\left(M_{q}^{\lambda}\right)=\Sigma_{\mu} K_{\mu \lambda} \operatorname{dim}\left(S_{q}^{\mu}\right)$, where the sum is over all partitions μ of n and where the Kostka number $K_{\mu \lambda}$ gives the number of semistandard Young tableaux of shape μ and content λ. Thus $g^{\lambda}(q)-f^{\lambda}(q)$ is a q-polynomial with nonnegative coefficients. This paper gives a combinatorial proof of this result by defining an injection f from the set of standard Young tableaux of shape $\lambda, S Y T(\lambda)$, to W_{λ} such that $\operatorname{maj}(T)=\operatorname{ch}(f(T))$ for $T \in S Y T(\lambda)$.

Key words: Young tableaux, permutation statistics, inversion statistic, charge statistic, Kostka polynomials.

1 Introduction

For λ any partition of n, f^{λ} gives the number of standard Young tableaux of shape λ. The q-version of f^{λ} is a polynomial that has many important combinatorial interpretations. In particular, $f^{\lambda}(q)$ is known to give the dimension of the unipotent representation S_{q}^{λ}
of the finite general linear group $G L_{n}(q)$. The polynomial $f^{\lambda}(q)$ can be computed as the generating function for the major index $\operatorname{maj}(T)$ on the set of standard Young tableaux of shape $\lambda, S Y T(\lambda)$.

$$
f^{\lambda}(q)=\sum_{T \in S Y T(\lambda)} q^{\operatorname{maj}(T)}
$$

In addition, the q-multinomial coefficient

$$
g^{\lambda}(q)=\left[\begin{array}{cccc}
& n & & \\
\lambda_{1}, & \lambda_{2}, & \lambda_{3}, & \cdots
\end{array} \lambda_{k}\right]=\frac{[n!]}{\left[\lambda_{1}!\right]\left[\lambda_{2}!\right]\left[\lambda_{3}!\right] \cdots\left[\lambda_{k}!\right]}
$$

is known to give the dimension of the permutation representation M_{q}^{λ} of $G L_{n}(q)$. The polynomial $g^{\lambda}(q)$ also has a combinatorial interpretation as

$$
g^{\lambda}(q)=\sum_{\pi \in W_{\lambda}} q^{i n v(\pi)}
$$

where W_{λ} is the subset of permutations in S_{n} of type λ and $\operatorname{inv}(\pi)$ is the inversion statistic on π. The following is a well-known result on the representation of $G L_{n}(q)$:

Proposition 1. For λ a partition of n,

$$
\operatorname{dim}\left(M_{q}^{\lambda}\right)=\sum_{\mu \vdash n} K_{\mu \lambda} \operatorname{dim}\left(S_{q}^{\mu}\right),
$$

where $K_{\mu \lambda}$ is the Kostka number which counts the number of semi-standard tableaux of shape μ and content λ.

Thus we have

$$
g^{\lambda}(q)=\sum_{\mu \vdash n} K_{\mu \lambda} f^{\mu}(q)
$$

and in particular, since $K_{\lambda \lambda}=1$ for all λ,

$$
g^{\lambda}(q)=f^{\lambda}(q)+\sum_{\substack{\mu \vdash n \\ \mu \neq \lambda}} K_{\mu \lambda} f^{\mu}(q) .
$$

Thus

$$
g^{\lambda}(q)-f^{\lambda}(q)=\sum_{\substack{\mu \vdash n \\ \mu \neq \lambda}} K_{\mu \lambda} f^{\mu}(q)
$$

is a q-polynomial with non-negative coefficients. This implies that

$$
g^{\lambda}(q)-f^{\lambda}(q)=\sum_{\pi \in W_{\lambda}} q^{i n v(\pi)}-\sum_{T \in S Y T(\lambda)} q^{\operatorname{maj}(T)}
$$

is a q-polynomial with non-negative coefficients. It is natural, then, to seek an injection from standard Young tableaux of shape λ to permutations in W_{λ} which takes the statistic
$\operatorname{maj}(T)$ to the statistic $\operatorname{inv}(\pi)$. Cho [2] has recently given such an injection for λ a two part partition, but the given injection does not hold for general λ and finding such an injection for all partitions λ is left as an open question. In Section 3 of this paper, we give explicit proofs for some known but not well documented results on the charge statistic, $\operatorname{ch}(\pi)$, namely

$$
\sum_{\pi \in W_{\lambda}} q^{i n v(\pi)}=\sum_{\pi \in W_{\lambda}} q^{c h(\pi)} .
$$

This implies that

$$
g^{\lambda}(q)-f^{\lambda}(q)=\sum_{\pi \in W_{\lambda}} q^{c h(\pi)}-\sum_{T \in S Y T(\lambda)} q^{\operatorname{maj}(T)}
$$

The main result of this paper, in Section 4, is to answer Cho's open questions by giving a general injection h from $S Y T(\lambda)$ to W_{λ} which takes $\operatorname{maj}(T)$ to $c h(h(T))$. Section 2 of the paper contains necessary background and definitions.

2 Definitions and Background

We say $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ and $\sum_{i=1}^{k} \lambda_{i}=n$. A partition is described pictorially by its Ferrers diagram, an array of n dots into k leftjustified rows with row i containing λ_{i} dots for $1 \leq i \leq k$. For example, the Ferrers diagram for the partition $\lambda=(6,5,3,3,1)$ is:

A standard Young tableau of shape λ is a filling of the Ferrers diagram for λ with the numbers $1,2, \ldots, n$ such that rows are strictly increasing from left to right and columns are strictly increasing from top to bottom. One example of a standard Young tableau for the partition $\lambda=65331$ is shown below:

$T=$| 1 | 2 | 6 | 7 | 9 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 8 | 15 | 17 | |
| 4 | 11 | 12 | | | |
| 10 | 16 | 18 | | | |
| 13 | | | | | |

Let f^{λ} denote the number of standard Young tableaux of shape λ.
For a standard Young tableau T, the major index of T is given by

$$
\operatorname{maj}(T)=\sum_{i \in D(T)} i
$$

where $D(T)=\{i \mid i+1$ is in a row strictly below that of i in $T\}$. For the tableau T given in the previous example, $D(T)=\{2,3,7,9,12,14,15,17\}$ and $\operatorname{maj}(T)=79$.

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in S_{n}$, define an inversion to be a pair (i, j) such that $i<j$ and $\pi_{i}>\pi_{j}$. Then the inversion statistic, $\operatorname{inv}(\pi)$, is the total number of inversions in π.

For example, for $\pi=\begin{array}{lllllllll}3 & 2 & 8 & 5 & 7 & 4 & 6 & 1 & 9, \operatorname{inv}(\pi)=15 \\ \text { since each of the pairs }\end{array}$ $(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8)$, $(7,8)$ is an inversion.

Let W_{λ} be the subset of S_{n} such that

$$
\begin{gathered}
\pi_{1}<\pi_{2}<\cdots<\pi_{\lambda_{1}} \\
\pi_{\lambda_{1}+1}<\pi_{\lambda_{1}+2}<\cdots<\pi_{\lambda_{1}+\lambda_{2}} \\
\cdots \\
\pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k-1}+1}<\pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k-1}+2}<\cdots<\pi_{n}
\end{gathered}
$$

For example, for $\lambda=(4,3,3,1)$,

$$
\pi=2 \begin{array}{lllllllllll}
\\
\pi & 4 & 5 & 9 & 1 & 3 & 10 & 6 & 8 & 11 & 7
\end{array}
$$

is an element of W_{4331}.
We will use the definition of W_{λ} for λ any combination of n, not just for λ a partition of n. Note that there is no required relationship between $\pi_{\lambda_{1}}$ and $\pi_{\lambda_{1}+1}$, between $\pi_{\lambda_{1}+\lambda_{2}}$ and $\pi_{\lambda_{1}+\lambda_{2}+1}$, and so on. For any $W_{\lambda}=W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$, define $W_{\bar{\lambda}_{i}}=W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{i}-1, \ldots, \lambda_{k}}$ for $1 \leq i \leq k$.

Let π be a permutation in S_{n}. For any i in the permutation, define the charge value of $i, \operatorname{chv}(i)$, recursively as follows:

$$
\begin{aligned}
\operatorname{ch} v(1) & =0 \\
\operatorname{ch} v(i) & =\operatorname{chv}(i-1) \text { if } i \text { is to the right of } i-1 \text { in } \pi \\
\operatorname{ch} v(i) & =\operatorname{ch} v(i-1)+1 \text { if } i \text { is to the left of } i-1 \text { in } \pi
\end{aligned}
$$

Now for $\pi \in S_{n}$, define the charge of $\pi, \operatorname{ch}(\pi)$, to be

$$
\operatorname{ch}(\pi)=\sum_{i=1}^{n} \operatorname{ch} v(i)
$$

In the following example of a permutation $\pi=328574619$ with $\operatorname{ch}(\pi)=25$, the charge values of each element are given below the permutation:

$$
\pi=\begin{array}{ccccccccc}
3 & 2 & 8 & 5 & 7 & 4 & 6 & 1 & 9 \\
2 & 1 & 5 & 3 & 4 & 2 & 3 & 0 & 5
\end{array}
$$

The definition of the charge statistic was first given by Lascoux and Schützenberger [8].

For each element $i \in \pi$, define the charge contribution of $i, c c(i)$, to be zero if $i=1$ or i lies to the right of $i-1$ in π and to be $n-i+1$ if i lies to the left of $i-1$ in π. It is easy to check that $\operatorname{ch}(\pi)=\sum_{i} c c(i)$. For the previous example, the charge contribution of each element is given below that element:

$$
\pi=\begin{array}{ccccccccc}
3 & 2 & 8 & 5 & 7 & 4 & 6 & 1 & 9 \\
7 & 8 & 2 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}
$$

3 Charge and Inv

Many of the known results on the charge statistic are implicitly given in a number of papers or unpublished manuscripts [1] [5] [6] [7]. The goal of this section is to give explicit proofs of those results which are used in this paper as an aid to the interested reader.

Lascoux and Schützenberger [8] proved the following lemma:
Lemma 1. For $x \in\{2, \ldots, n\}$ and $x \sigma \in S_{n}, \operatorname{ch}(x \sigma)=\operatorname{ch}(\sigma x)+1$.
This result immediately gives

Lemma 2.

$$
\sum_{\pi \in S_{n}} q^{c h(\pi)}=\left(1+q+q^{2}+\cdots+q^{n-1}\right) \sum_{\sigma \in S_{n-1}} q^{c h(\sigma)} .
$$

Proof. Let $\sigma \in S_{n-1}$, so $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$. Rewrite σ using the numbers $2,3, \ldots, n$ by letting $\tilde{\sigma}_{i}=\sigma_{i}+1$ for every i. Let $\pi=1 \tilde{\sigma_{1}} \tilde{\sigma_{2}} \cdots \widetilde{\sigma_{n-1}}$. Then $\pi \in S_{n}$ and $\operatorname{ch}(\pi)=\operatorname{ch}(\sigma)$. By Lemma 1 ,

$$
\begin{aligned}
\operatorname{ch}\left(\widetilde{\sigma_{n-1}} 1 \tilde{\sigma_{1}} \tilde{\sigma_{2}} \cdots \widetilde{\sigma_{n-2}}\right) & =\operatorname{ch}(\pi)+1 \\
& =\operatorname{ch}(\sigma)+1
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\operatorname{ch}\left(\widetilde{\sigma_{n-2}} \widetilde{\sigma_{n-1}} 1 \tilde{\sigma_{1}} \cdots \widetilde{\sigma_{n-3}}\right) & =\operatorname{ch}(\pi)+2 \\
& =\operatorname{ch}(\sigma)+2 \\
& \cdots \\
\operatorname{ch}\left(\tilde{\sigma_{1}} \tilde{\sigma_{2}} \cdots \widetilde{\sigma_{n-1}} 1\right) & =\operatorname{ch}(\pi)+n-1 \\
& =\operatorname{ch}(\sigma)+n-1
\end{aligned}
$$

Thus

$$
\sum_{\pi \in S_{n}} q^{c h(\pi)}=\left(1+q+\cdots+q^{n-1}\right) \sum_{\sigma \in S_{n-1}} q^{c h(\sigma)} .
$$

It is well-known that the inversion statistic satisfies the same recurrence.

Lemma 3.

$$
\sum_{\pi \in S_{n}} q^{i n v(\pi)}=\left(1+q+q^{2}+\cdots+q^{n-1}\right) \sum_{\sigma \in S_{n-1}} q^{i n v(\sigma)} .
$$

Proof. For details about the inversion statistic, one can consult [3] or [4].
The following theorem [7] follows immediately from the previous Lemmas once the initial conditions are checked.

Theorem 1.

$$
\sum_{\pi \in S_{n}} q^{c h(\pi)}=\sum_{\pi \in S_{n}} q^{i n v(\pi)}
$$

We now give details that the charge statistic and the inversion statistic not only have the same generating function on S_{n}, but they in fact have the same generating function on W_{λ}.

Lemma 4. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right)$ a combination of n for any integer n,

$$
\sum_{\pi \in W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}} q^{i n v(\pi)}=\sum_{\sigma \in W_{\lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}, \lambda_{1}}} q^{i n v(\sigma)}
$$

Proof. Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$. Create $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k} \in W_{\lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}, \lambda_{1}}$ in the following manner. For $1 \leq i \leq \lambda_{1}$, let $\sigma_{n+1-i}=n+1-\pi_{i}$. Next, relabel the elements $\pi_{\lambda_{1}+1}$ through π_{n} with the remaining $n-\lambda_{1}$ numbers, in the same relative order. For example, if

$$
\pi=\begin{array}{lllllllllllllll}
2 & 7 & 11 & 3 & 6 & 1 & 10 & 12 & 15 & 5 & 8 & 14 & 4 & 9 & 13
\end{array}
$$

in $W_{3,2,4,3,3}$, we have

$$
\begin{gathered}
\sigma_{15}=16-\pi_{1}=14 \\
\sigma_{14}=16-\pi_{2}=9 \\
\sigma_{13}=16-\pi_{3}=5
\end{gathered}
$$

and the numbers

$$
\begin{array}{llllllllllllllll}
\pi_{4} & \pi_{5} & \cdots & \pi_{15} & = & 3 & 6 & 1 & 10 & 12 & 15 & 5 & 8 & 14 & 4 & 9
\end{array} 13
$$

are relabeled in the same relative order using the numbers $[n]-\{5,9,14\}$ to give

$$
\begin{array}{llll}
\sigma_{1} & \sigma_{2} & \cdots & \sigma_{n-\lambda_{1}}= \\
= & 6 & 1 & 10 \\
11 & 15 & 4 & 7 \\
13 & 3 & 8 & 12
\end{array}
$$

and $\sigma \in W_{2,4,3,3,3}$. Thus

$$
\sigma=\begin{array}{lllllllllllllll}
2 & 6 & 1 & 10 & 11 & 15 & 4 & 7 & 13 & 3 & 8 & 12 & 5 & 9 & 14 .
\end{array}
$$

It is easy to see that σ is unique and that one can reverse the process to take any $\sigma \in W_{\lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}, \lambda_{1}}$ to a unique $\pi \in W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$, so this process gives a bijection between $W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$ and $W_{\lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}, \lambda_{1}}$.

Now we prove that $\operatorname{inv}(\pi)=\operatorname{inv}(\sigma)$. Since $\pi \in W_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$, we have $\pi_{1}<\pi_{2}<$ $\cdots<\pi_{\lambda_{1}}$ so there are no inversions between elements $\pi_{1}, \pi_{2}, \cdots, \pi_{\lambda_{1}}$. Similarly, since $\sigma_{n+1-i}=n+1-\pi_{i}$ we have $\sigma_{n-\lambda_{1}+1}<\sigma_{n-\lambda_{1}+2}<\cdots<\sigma_{n}$ so there are no inversions between elements in $\sigma_{n-\lambda_{1}+1}, \sigma_{n-\lambda_{1}+2}, \cdots, \sigma_{n}$. Since $\sigma_{1} \sigma_{2} \cdots \sigma_{n-\lambda_{1}}$ are in the same relative order as $\pi_{\lambda_{1}+1} \pi_{\lambda_{1}+2} \cdots \pi_{n}$, the number of inversions between elements in these two parts is the same.

Now suppose that $\pi_{i}=j$ for $1 \leq i \leq \lambda_{1}$. Then π_{i} forms inversions with $(j-1)-(i-1)=$ $j-i$ elements in $\pi_{\lambda_{1}+1} \pi_{\lambda_{1}+2} \cdots \pi_{n}$ since there are $j-1$ total elements less than j and $i-1$ of them lie to the left of π_{i} in π. If $\pi_{i}=j$ then $\sigma_{n+1-i}=n+1-j$. There are $j-1$ total elements bigger than $n+1-j$ and $i-1$ of them lie to the right of σ_{n+1-j} in σ since there $i-1$ elements to the left of $\pi_{i}=j$ in π. This means that σ_{n+1-j}, like π_{i}, forms inversions with $(j-1)-(i-1)=j-i$ elements in $\sigma_{1} \sigma_{2} \cdots \sigma_{n-\lambda_{1}}$.

Lemma 5. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right)$ a combination of n for any integer n,

$$
\begin{aligned}
\sum_{\pi \in W_{\lambda}} q^{i n v(\pi)}= & \left(\sum_{\sigma \in W_{\lambda_{\overline{1}}}} q^{i n v(\sigma)}\right)+\left(q^{\lambda_{1}} \sum_{\sigma \in W_{\lambda_{\overline{2}}}} q^{i n v(\sigma)}\right)+\cdots \\
& +\left(q^{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k-1}} \sum_{\sigma \in W_{\lambda_{k}}} q^{i n v(\sigma)}\right)
\end{aligned}
$$

Proof. Again, for the details of results on the inversion statistic, one can consult [3] or [4].

Lemma 6. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right)$ a combination of n for any integer n,

$$
\begin{aligned}
\sum_{\pi \in W_{\lambda}} q^{c h(\pi)}= & \left(\sum_{\sigma \in W_{\lambda_{1}-1, \lambda_{2}, \ldots, \lambda_{k}}} q^{c h(\sigma)}\right)+\left(q^{\lambda_{1}} \sum_{\sigma \in W_{\lambda_{2}-1, \lambda_{3}, \ldots, \lambda_{k}, \lambda_{1}}} q^{c h(\sigma)}\right)+\cdots \\
& +\left(\left(q^{\lambda_{1}+\cdots+\lambda_{k-1}}\right) \sum_{\sigma \in W_{\lambda_{k}-1, \lambda_{1}, \ldots, \lambda_{k-1}}} q^{c h(\sigma)}\right) .
\end{aligned}
$$

Proof. Let $\pi \in W_{\lambda}$. Suppose the 1 in π lies in block λ_{i}, so

$$
\pi=\pi_{1} \pi_{2} \cdots \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}} 1 \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}+2} \cdots \pi_{n}
$$

By Lemma 1,

$$
\operatorname{ch}(\pi)=\operatorname{ch}\left(1 \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}+2} \cdots \pi_{n} \pi_{1} \pi_{2} \cdots \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}}\right)+\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1} .
$$

To form $\sigma \in W_{\lambda_{i}-1, \lambda_{i+1}, \ldots, \lambda_{k}, \lambda_{1}, \ldots, \lambda_{i-1}}$, we now remove the initial 1 and relabel each of the remaining π_{i} with $\pi_{i}-1$. Since we have removed an initial 1 , the charge of

$$
1 \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}+2} \cdots \pi_{n} \pi_{1} \pi_{2} \cdots \pi_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}}
$$

is equal to the charge of the newly formed σ. Thus for each $\pi \in W_{\lambda}$ with a 1 in the λ_{i} block and σ formed in this manner,

$$
\operatorname{ch}(\pi)=\operatorname{ch}(\sigma)+\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}\right) .
$$

which gives the desired result.
Theorem 2. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right)$ a combination of n for any integer n,

$$
\sum_{\pi \in W_{\lambda}} q^{i n v(\pi)}=\sum_{\pi \in W_{\lambda}} q^{c h(\pi)} .
$$

Proof. This result follows immediately by induction from Lemmas 4, 5 and 6.

4 An Injection from $S Y T(\lambda)$ to W_{λ}

From Section 1, we have that $g^{\lambda}(q)-f^{\lambda}(q)=\sum_{\pi \in W_{\lambda}} q^{c h(\pi)}-\sum_{\pi \in S Y T(\lambda)} q^{\operatorname{maj}(T)}$ is a polynomial with non-negative coefficients. We will now define an injection h from $S Y T(\lambda)$ to W_{λ} such that $\operatorname{maj}(T)=\operatorname{ch}(h(T))$. Let $T \in S Y T(\lambda)$. Write down the elements in T by first reading the top row of T from right to left, then the second row of T from right to left, and so on until reaching the bottom row. Call this permutation σ. For example, if

$T=$| 1 | 2 | 3 | 6 |
| :--- | :--- | :--- | :--- |
| 4 | 8 | 9 | |
| 5 | | | |
| 7 | | | |

then $\sigma=632198457$. To create $\pi \in W_{\lambda}$, let $\pi_{i}=n-\sigma_{i}+1$. In the example, $\pi=478912653$ and $\pi \in W_{4311}$. Let $h(T)=\pi$. Note that for a given $T, h(T)$ is uniquely defined. Since each row of T is strictly increasing, then the first λ_{1} elements of σ are strictly decreasing, the next λ_{2} elements of σ are strictly decreasing, and so on. Thus when π is formed, the first λ_{i} elements of π are strictly increasing, the next λ_{2} elements of π are strictly increasing, and so on, so $\pi \in W_{\lambda}$.

Theorem 3. For $T \in S Y T(\lambda), \operatorname{maj}(T)=\operatorname{ch}(h(T))$.
Proof. We will prove that if $i \in D(T)$, then the charge contribution of $n-i+1$ in $h(T)$ is equal to i. In addition, if i is not in $D(T)$, then the charge contribution of $n-i+1$ in $h(T)$ is equal to 0 .

Let $i \in D(T)$. Then i lies in a row strictly above that of $i+1$ in T. This implies that i lies to the left of $i+1$ in σ, and thus $n-i+1$ lies to the left of $n-(i+1)+1=n-i$
in π. By the definition of charge contribution, we find that since $n-i+1$ lies to the left of $n-i$ the charge contribution of $n-i+1$ is equal to $n-(n-i+1)-1=i$.

Suppose $i \notin D(T)$. Then i either lies in a row below $i+1$ in T or they lie in the same row, in which case i lies to the left of $i+1$. In either case, i lies to the right of $i+1$ in σ and thus $n-i+1$ lies to the right of $n-(i+1)+1=n-i$ in π. By the definition of charge contribution, we find that the charge contribution of $n-i+1$ is equal to zero.

Since $\operatorname{maj}(T)=\sum_{\{i \in D(T)\}} i$ and $\operatorname{ch}(\pi)=\sum_{i} c c(i)$, we have that $\operatorname{maj}(T)=\operatorname{ch}(h(T))$.

In the previous example, $D(T)=\{3,4,6\}$ so $\operatorname{maj}(T)=13$ and $\operatorname{ch}(h(T))=\operatorname{ch}(478912653)$ which is also 13 .

References

[1] L. Butler, Subgroup Lattices and Symmetric Functions, Mem. Amer. Math. Soc. 112 No. 539 (1994) vi + 160.
[2] S. Cho, Major Index for Standard Young Tableaux, ARS Combinatoria 71 (2004) pp. 93-99.
[3] D. Foata and M. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978) 143-159.
[4] I. Goulden and D. Jackson, Combinatorial Enumeration, Dover Publications, 2004.
[5] K. Killpatrick, A Combinatorial Proof of a Recursion for the q-Kostka Polynomials, Journal of Combinatorial Theory, Ser. A 92 No. 1 (2000) 29-53.
[6] K. Killpatrick, Recursions for the q-Kostka Polynomials, Ph.D. thesis, University of Minnesota, 1998.
[7] A. Lascoux and Schützenberger, M. P., Sur une conjecture de H. O. Foulkes, C.R. Acad. Sc. Paris 286A (1978) 323-324.
[8] A. Lascoux and Schützenberger, M. P., Croissance des polynomes de Foulkes-Green, C. R. Acad. Sci. Paris 228 (1979) 95-98.
[9] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1995.

