Permanents of Hessenberg (0,1)-matrices

D.D. Olesky
Department of Computer Science
University of Victoria
Victoria, BC V8W 3P6 Canada
dolesky@cs.uvic.ca

Bryan Shader
Department of Mathematics
University of Wyoming
Laramie, WY 82071
bshader@uwyo.edu
P. van den Driessche

Department of Mathematics
University of Victoria
Victoria, BC V8W 3P4 Canada
pvdd@math.uvic.ca
Submitted: Apr 22, 2005; Accepted: Dec 6, 2005; Published: Dec 13, 2005
Mathematics Subject Classifications: 05C50

Abstract

Let $P(m, n)$ denote the maximum permanent of an n-by- n lower Hessenberg $(0,1)$-matrix with m entries equal to 1 . A "staircased" structure for some matrices achieving this maximum is obtained, and recursive formulas for computing $P(m, n)$ are given. This structure and results about permanents are used to determine the exact values of $P(m, n)$ for $n \leq m \leq 8 n / 3$ and for all $n n z\left(H_{n}\right)-n n z\left(H_{\lfloor n / 2\rfloor}\right) \leq$ $m \leq \mathrm{nnz}\left(H_{n}\right)$, where $\mathrm{nnz}\left(H_{n}\right)=\left(n^{2}+3 n-2\right) / 2$ is the maximum number of ones in an n-by- n Hessenberg (0,1)-matrix.

1 Introduction

A transversal of an n-by- $n(0,1)$-matrix $A=\left[a_{i j}\right]$ is a collection of n entries of A equal to 1 , no two of which are in the same row or column. The permanent of A, denoted per A, is the number of distinct transversals of A. Equivalently,

$$
\operatorname{per} A=\sum_{\sigma} a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)},
$$

where the sum is over all permutations σ of $\{1,2, \ldots, n\}$. We refer the reader to $[\mathrm{M}]$ for classic results, and to [CW] for a survey of recent research on permanents. A matrix A is a lower Hessenberg matrix if $a_{i j}=0$ whenever $j \geq i+2$. Throughout the remainder of the paper, we abbreviate lower Hessenberg to Hessenberg. Let $\mathcal{H}(m, n)$ denote the set of n-by- n Hessenberg (0,1)-matrices with m entries equal to 1 , and let $P(m, n)$ denote the maximum permanent of a matrix in $\mathcal{H}(m, n)$.

In [BR, Ch. 7], computation of the permanent of an arbitrary rectangular matrix is considered. Additionally, upper and lower bounds for the permanent of such a $(0,1)$ matrix A are given in terms of the number of ones in each row of A, the number of ones in each column of A, or the total number of ones in A. In [SHRC, Th. 2.3, 2.5], the maximum value of the permanent of a p-by- $q(0,1)$-matrix with m entries equal to 1 for $p q-\max \{p, q\} \leq m \leq p q-2$ is given, and matrices attaining this value are determined. In [BGM, Th. 2.2], the maximum value of the permanent of an n-by- $n(0,1)$-matrix with m entries equal to 1 for $n \leq m \leq 2 n$ is determined, and we observe that every matrix achieving this maximum is combinatorially equivalent to a Hessenberg matrix. In addition, the matrices attaining the maximum value of the permanent of an n-by- n $(0,1)$-matrix for $n^{2}-2 n \leq m \leq n^{2}$ are determined. In this paper, we focus on Hessenberg matrices and determine the exact value of $P(m, n)$ for $n \geq 2$ and various values of m with $n \leq m \leq \frac{n^{2}+3 n-2}{2}$.

We first state some notation and terminology (see [BR] for further details). The number of nonzero entries of the matrix A is denoted by nnz (A). For integers i and j with $i \leq j$, denote $\{i, i+1, \ldots, j\}$ by $\langle i, j\rangle$, with $\{i\}=\langle i\rangle$ abbreviated to i. The submatrix of A with entries from rows $\left\langle i_{1}, i_{2}\right\rangle$ and columns $\left\langle j_{1}, j_{2}\right\rangle$ is denoted by $A\left[\left\langle i_{1}, i_{2}\right\rangle,\left\langle j_{1}, j_{2}\right\rangle\right]$, with $A\left[\left\langle i_{1}, i_{2}\right\rangle,\left\langle i_{1}, i_{2}\right\rangle\right]$ abbreviated to $A\left[\left\langle i_{1}, i_{2}\right\rangle\right]$. Similarly, the submatrix of A obtained by deleting rows $\left\langle i_{1}, i_{2}\right\rangle$ and columns $\left\langle j_{1}, j_{2}\right\rangle$ is denoted by $A\left(\left\langle i_{1}, i_{2}\right\rangle,\left\langle j_{1}, j_{2}\right\rangle\right)$, with $A\left(\left\langle i_{1}, i_{2}\right\rangle,\left\langle i_{1}, i_{2}\right\rangle\right)$ abbreviated to $A\left(\left\langle i_{1}, i_{2}\right\rangle\right)$.

The matrix A is partly decomposable if there exist permutation matrices P and Q such that $P A Q$ has the form

$$
\left[\begin{array}{ll}
B & O \\
C & D
\end{array}\right]
$$

where B and D are square (nonvacuous) matrices. Equivalently, A is partly decomposable if and only if it contains a zero submatrix with dimensions summing to n. If A is not partly decomposable, then A is fully indecomposable. If per $A>0$, then there exist permutation matrices P and Q, and an integer b such that $P A Q$ has the form

$$
\left[\begin{array}{ccccc}
A_{1} & O & O & \cdots & O \tag{1}\\
A_{21} & A_{2} & O & \cdots & O \\
\vdots & & \ddots & & \vdots \\
A_{b-1,1} & A_{b-2,2} & & A_{b-1} & O \\
A_{b 1} & A_{b 2} & \cdots & A_{b, b-1} & A_{b}
\end{array}\right]
$$

where the matrices A_{1}, \ldots, A_{b} are fully indecomposable. The n_{i}-by- n_{i} matrices A_{i} are the fully indecomposable components of A and are unique up to permutation of rows
and columns. Note that per $A=\prod_{i=1}^{b}$ per A_{i}. The matrix A has total support provided per $A(i, j)>0$ for all i and j such that $a_{i j}=1$; i.e., every nonzero entry of A is on some transversal.

2 Preliminary Results

In this section we develop some basic preliminary results concerning the structure and permanents of matrices in $\mathcal{H}(m, n)$. The following shows that the fully indecomposable components of a Hessenberg matrix are each permutationally equivalent to a Hessenberg matrix.

Lemma 2.1 Let $A=\left[a_{i j}\right]$ be an n-by-n Hessenberg $(0,1)$-matrix with per $A>0$. Then each fully indecomposable component of A is permutationally equivalent to a Hessenberg matrix.

Proof. The proof is by induction on n, with the result clearly true for $n=1$. Without loss of generality, assume that A has total support. Since per $A>0$, column n of A contains at least one 1 . Let B be the fully indecomposable component of A that intersects column n.

If there is some j such that $a_{j, j+1}=0$, then the fully indecomposable components of A are those of $A[\langle 1, j\rangle]$ and $A[\langle j+1, n\rangle]$, and applying induction to each of these matrices yields that each fully indecomposable component of A is permutationally equivalent to a Hessenberg matrix. If $a_{n n}=0$, then the fully indecomposable components of A are the 1-by-1 matrix $\left[a_{n-1, n}\right]$, and those of the Hessenberg matrix $A(n-1, n)$. Again the inductive hypothesis applies, and hence each fully indecomposable component of A is permutationally equivalent to a Hessenberg matrix. A similar argument handles the case that $a_{11}=0$.

Now assume that $a_{11}=1, a_{n n}=1$ and $a_{j, j+1}=1$ for $j=1,2, \ldots, n-1$. If each column of A is a column of B, then $B=A$, and clearly the fully indecomposable component (namely B) of A is Hessenberg. Otherwise, some column of A does not intersect the columns of B. Let j be the largest integer such that column j of A does not intersect the columns of B. Note $j<n$. Since B intersects columns $j+1, \ldots, n$ of A, B must contain each of the entries in positions $(j, j+1),(j+1, j+2), \ldots,(n-1, n)$ and (n, n) of A (otherwise B would be partly decomposable). This implies that B intersects rows j, \ldots, n. If there is some $i \geq j$ such that $a_{i j}=1$, then the fully indecomposable component that contains $a_{i j}$ has a row in common with B, and hence must be equal to B. But B does not intersect column j. So $a_{i j}=0$ for $i=j, j+1, \ldots, n$. Now column j has just one 1, namely $a_{j-1, j}=1$. Hence the 1-by-1 matrix $\left[a_{j-1, j}\right]$ is a fully indecomposable component of A. It follows that the fully indecomposable components of A are $\left[a_{j-1, j}\right]$ and the fully indecomposable components of $A(j-1, j)$. As $A(j-1, j)$ is Hessenberg, the inductive hypothesis applies. Hence each fully indecomposable component of A is permutationally equivalent to a Hessenberg matrix.

A Hessenberg $(0,1)$-matrix A is staircased if whenever $i \geq j$ and $a_{i j}=0$, then $a_{k j}=0$ for $k=i+1, \ldots, n$ and $a_{i l}=0$ for $l=1, \ldots, j-1$. Note that if A is staircased and $a_{i j}=0$, then $a_{k l}=0$ for all $i \leq k \leq n$ and $1 \leq l \leq j$.

Lemma 2.2 The following hold for an n-by-n $\operatorname{Hessenberg}(0,1)$-matrix $A=\left[a_{i j}\right]$:
(a) If A is fully indecomposable, then $a_{11}=1, a_{n n}=1$ and $a_{i, i+1}=1$ for $i=1,2, \ldots, n-$ 1.
(b) If A is fully indecomposable and staircased, then $a_{i+1, i}=1$ for $i=1,2, \ldots, n-1$, and $a_{i i}=1$ for $i=1,2, \ldots, n$.
(c) If each $a_{i, i+1}=1(i=1,2, \ldots, n-1)$ and k and l are integers such that $n \geq k \geq$ $l \geq 1$, then

$$
\text { per } A(k, l)=\operatorname{per} A[\langle 1, l-1\rangle] \operatorname{per} A[\langle k+1, n\rangle] \text {, }
$$

in which a vacuous permanent with $l=1$ or $k=n$ is set equal to 1 .

Proof. If there is a j with $a_{j, j+1}=0$, then $A[\langle 1, j\rangle,\langle j+1, n\rangle]$ is a zero submatrix of A with dimensions summing to n, and hence A is not fully indecomposable. If $a_{11}=0$ or $a_{n n}=0$, then A has a row or column with a single 1 , and hence A is not fully indecomposable. These observations prove (a).

If there is an i such that $a_{i+1, i}=0$, then (since A is staircased) $A[\langle i+1, n\rangle,\langle 1, i\rangle]=O$, and hence A is not fully indecomposable. Similarly, if there is an i such that $a_{i i}=0$, then (since A is staircased) $A[\langle i, n\rangle,\langle 1, i\rangle]=O$, and hence A is not fully indecomposable. This proves (b).

Statement (c) follows by noting that $A(k, l)$ has the form

$$
\left[\begin{array}{ccc}
A[\langle 1, l-1\rangle] & O & O \\
* & A[\langle l, k-1\rangle,\langle l+1, k\rangle] & O \\
* & * & A[\langle k+1, n\rangle]
\end{array}\right]
$$

and that $A[\langle l, k-1\rangle,\langle l+1, k\rangle]$ is a lower triangular (possibly vacuous) matrix with each of its main diagonal entries equal to 1 .

We now show that $\mathcal{H}(m, n)$ contains a special type of matrix with maximum permanent. For a Hessenberg (0,1)-matrix A, an interchangeable column pair of A is a pair of entries (k, l) and $(k-1, l)$ with $k>l$ such that $a_{k l}=1$ and $a_{k-1, l}=0$. An interchangeable row pair of A is a pair of entries (k, l) and $(k, l+1)$ with $k>l$ such that $a_{k l}=1$ and $a_{k, l+1}=0$.

Theorem 2.3 Let m and n be positive integers with $n \leq m \leq \frac{n^{2}+3 n-2}{2}$. Then there exists a matrix $A \in \mathcal{H}(m, n)$ with permanent $P(m, n)$ such that A has the form (1), where each A_{i} is a fully indecomposable staircased Hessenberg matrix.

Proof. Let $A \in \mathcal{H}(m, n)$ with per $A=P(m, n)$. By Lemma 2.1, assume that A has the form (1), where each A_{i} is a fully indecomposable Hessenberg matrix. We prove by induction on n that there is a matrix in $\mathcal{H}(m, n)$ with permanent $P(m, n)$ having each fully indecomposable component staircased. This is clearly true for $n=1$.

First suppose that $b \geq 2$. Since per $A=\prod_{i=1}^{b}$ per A_{i}, it follows that per $A_{i}=P\left(\mathrm{nnz}\left(A_{i}\right), n_{i}\right)$ for $i=1,2, \ldots, b$. By induction, each A_{i} is staircased.

Next suppose that $b=1$, that is, A is fully indecomposable. We construct a sequence of matrices $B_{r} \in \mathcal{H}(m, n)$ as follows:
(a) $B_{0} \longleftarrow A$
(b) $r \longleftarrow 0$
(c) While (B_{r} is fully indecomposable and has an interchangeable row or column pair) do:
(c1) If B_{r} has an interchangeable column pair, then choose such a pair (k, l), $(k-1, l)$ with l largest, and define B_{r+1} to be the matrix obtained from B_{r} by interchanging the 1 in position (k, l) with the 0 in position $(k-1, l)$.
(c2) Else if B_{r} has an interchangeable row pair, then choose such a pair (k, l), $(k, l+1)$ with k smallest, and define B_{r+1} to be the matrix obtained from B_{r} by interchanging the 1 in position (k, l) with the 0 in position $(k, l+1)$.
(c3) $r \longleftarrow r+1$.
Note that this algorithm terminates since B_{r+1} is either partly decomposable (in which case the algorithm is applied to the smaller fully indecomposable components) or remains fully indecomposable with fewer pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ than B_{r} such that $j^{\prime} \leq j \leq i \leq i^{\prime}$, with $\left(i^{\prime}, j^{\prime}\right)$ entry 1 and (i, j) entry 0.

Let the sequence of matrices generated by the algorithm be $B_{0}, B_{1}, B_{2}, \ldots, B_{s}$. Clearly $B_{i} \in \mathcal{H}(m, n)$ for $i=1,2, \ldots, s$. We claim that per $B_{i} \geq$ per B_{i-1} for $i=1,2, \ldots, s$. To see this let $C=B_{i}$ and $D=B_{i-1}$. Since D is fully indecomposable, Lemma 2.2 implies that $d_{i, i+1}=1(i=1,2, \ldots, n-1)$ and $d_{11}=d_{n n}=1$. First assume that D has an interchangeable column pair. Let (k, l) and $(k-1, l)$ be the interchangeable column pair chosen to construct C. If $d_{k k}=0$, then (by the choice of l) $a_{j k}=0$ for $j>k$. This would imply that column k of D has just one nonzero entry, contrary to the full indecomposability of D. Hence $d_{k k}=1$. By Lemma 2.2 ,

$$
\begin{equation*}
\text { per } D(k, l)=\text { per } D[\langle 1, l-1\rangle] \text { per } D[\langle k+1, n\rangle] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { per } D(k-1, l)=\operatorname{per} D[\langle 1, l-1\rangle] \text { per } D[\langle k, n\rangle] . \tag{3}
\end{equation*}
$$

The first factors in the righthand sides of (2) and (3) are the same. In the second factors, note that $D[\langle k+1, n\rangle]$ is a principal submatrix of $D[\langle k, n\rangle]$. Since $d_{k k}=1$,
per $D[\langle k+1, n\rangle] \leq$ per $D[\langle k, n\rangle]$. Thus, by (2) and (3), per $D(k, l) \leq \operatorname{per} D(k-1, l)$. By expanding per C and per D about column l and noting that

$$
\operatorname{per} C(k-1, l)=\operatorname{per} D(k-1, l),
$$

the previous inequality gives per $D \leq$ per C. As $C, D \in \mathcal{H}(m, n)$ and per $D=P(m, n)$, it follows that per $C=P(m, n)=$ per D. A similar argument shows that if C is obtained from D by an interchangeable row pair, then per $C=$ per D.

Thus, $B_{s} \in \mathcal{H}(m, n)$ and per $B_{s}=P(m, n)$. Either B_{s} is partly decomposable, or B_{s} is fully indecomposable and has no interchangeable pairs. In the former case, apply induction to each fully indecomposable component of B_{s} to arrive at a matrix in $\mathcal{H}(m, n)$ of maximum permanent, with each fully indecomposable component staircased. In the latter case B_{s} is staircased, and hence each of its fully indecomposable components (of which there is only 1) is staircased.

We conclude this section with a theorem that gives a restriction on the staircased structure of each A_{i} of a matrix A in form (1) with maximum permanent.

Lemma 2.4 Let A be an n-by-n fully indecomposable staircased Hessenberg (0,1)-matrix. Then

$$
\frac{2}{3} \geq \frac{\operatorname{per} A(n)}{\operatorname{per} A} \geq \frac{1}{2} .
$$

Proof. Note that

$$
\text { per } A=\operatorname{per} A(n)+\operatorname{per} A(n-1, n)
$$

Since A is staircased $A(n-1, n) \leq A(n)$ (entrywise). Hence per $A(n-1, n) \leq$ per $A(n)$, and per $A \leq 2$ per $A(n)$. This shows that per $A(n) / \operatorname{per} A \geq 1 / 2$.

For the other inequality note that since A is a fully indecomposable staircased Hessenberg matrix, so is $A(n)$. Thus, by the above inequality, per $A(\langle n-1, n\rangle) \geq \operatorname{per} A(n) / 2$. By expansion along the last row

$$
\begin{aligned}
\operatorname{per} A & \geq \operatorname{per} A(n)+\operatorname{per} A(\langle n-1, n\rangle) \\
& \geq \operatorname{per} A(n)+\operatorname{per} A(n) / 2 \\
& =3 \operatorname{per} A(n) / 2
\end{aligned}
$$

It follows that $2 / 3 \geq$ per $A(n) /$ per A.
Observe that $A(n)$ can be replaced by $A(1)$ in the above proposition.
Theorem 2.5 Let A be an n-by-n fully indecomposable staircased Hessenberg (0, 1)-matrix. Assume that i, j, k are positive integers such that $a_{i j}$ is the first 1 in the ith row of A, $a_{i+1, k+1}$ is the first 1 in the $(i+1)$ st row of A, and $k-j \geq 2$. Let B be the matrix obtained from A by replacing its (i, j)-entry by 0 and its $(i+1, k)$-entry by 1 . Then B is a Hessenberg $(0,1)$-matrix and per $B>$ per A.

Proof. Let C be the matrix obtained from A by replacing $a_{i j}$ by 0 . Since A is fully indecomposable and staircased, so is C. Also by Lemma 2.2(c)

$$
\begin{equation*}
\operatorname{per} C(i, j)=\operatorname{per} C[\langle 1, j-1\rangle] \operatorname{per} C[\langle i+1, n\rangle] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{per} C(i+1, k)=\operatorname{per} C[\langle 1, k-1\rangle] \operatorname{per} C[\langle i+2, n\rangle] . \tag{5}
\end{equation*}
$$

By Lemma 2.4, per $C[\langle i+2, n\rangle] \geq \operatorname{per} C[\langle i+1, n\rangle] / 2$, and by repeated application of the preceding proposition

$$
\operatorname{per} C[\langle 1, k-1\rangle] \geq(3 / 2) \operatorname{per} C[\langle 1, k-2\rangle] \geq \cdots \geq(3 / 2)^{k-j} \operatorname{per} C[\langle 1, j-1\rangle]
$$

Substituting these bounds into (5) and using (4) and $k-j \geq 2$,

$$
\text { per } C(i+1, k) \geq(9 / 8) \operatorname{per} C(i, j)>\operatorname{per} C(i, j)
$$

Since per $A=$ per $C+\operatorname{per} C(i, j)$ and per $B=\operatorname{per} C+\operatorname{per} C(i+1, k)$, it follows that per $B>\operatorname{per} A$.

Note that Theorem 2.5 implies that if $A \in \mathcal{H}(m, n)$, each fully indecomposable component of A is in staircased form and per A is maximal, then no "step" of zeros has width 3 or more; that is, $\sum_{i=1}^{r}\left(a_{r i}-a_{r+1, i}\right) \leq 2$ for $r=1,2, \ldots, n-1$. Note that the bound is tight as $P(11,4)=6$ is achieved by the following matrix with a step of zeros of width 2 (i.e., $\sum_{i=1}^{3}\left(a_{3 i}-a_{4 i}\right)=2$):

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$3 \quad P(m, n)$ for $n \leq m \leq(7 n-1) / 3$

Clearly $P(m, n)=0$ for $m<n$. For $n \leq m \leq 2 n$, Brualdi, Goldwasser and Michael [BGM, Theorem 2.2] show that for an n-by- $n(0,1)$-matrix with m entries equal to 1 , the maximum permanent is $2^{\lfloor(m-n) / 2\rfloor}$. Additionally, they characterize the matrices achieving the maximum. The following proposition follows from their characterization by noting that each matrix achieving the maximum is combinatorially equivalent to a Hessenberg matrix. We give a self-contained proof here that makes use of the matrices being Hessenberg. Let $H_{n}=\left[h_{i j}\right]$ be the n-by- n Hessenberg matrix with $h_{i j}=1$ if $j \leq i+1$. Note that per $H_{n}=2^{n-1}$ and $n n z\left(H_{n}\right)=\left(n^{2}+3 n-2\right) / 2$.

Theorem 3.1 For integers m and n with $2 \leq n \leq m \leq 2 n$,

$$
P(m, n)=2^{\lfloor(m-n) / 2\rfloor} .
$$

Proof. Let $t=\lfloor(m-n) / 2\rfloor$, and let A be the direct sum of $t \geq 0$ matrices H_{2} and $n-2 t \geq 0$ matrices H_{1}. Then A is n-by- n, nnz $(A)=4 t+n-2 t=n+2 t$, and per $A=2^{t}$. If $m-n$ is even, then nnz $A=m$, and per $A=2^{t}$. If $m-n$ is odd, then the matrix A^{\prime} obtained from A by replacing the 0 in its $(n, 1)$ position by a 1 has m nonzeros and permanent 2^{t}. Hence, $P(m, n) \geq 2^{\lfloor(m-n) / 2\rfloor}$.

The proof that $P(m, n) \leq 2^{\lfloor(m-n) / 2\rfloor}$ is by induction on m. If $m=n$, then $P(n, n)$ is the largest permanent of an n-by- $n(0,1)$-matrix with n entries equal to 1 , and this is clearly at most $1=2^{0}=2^{\lfloor(m-n) / 2\rfloor}$, as desired. Assume that $m>n$, and proceed by induction. Let A be an n-by- n Hessenberg $(0,1)$-matrix with nnz $(A)=m$. By Theorem 2.3, assume that A has the form (1), where A_{i} is a fully indecomposable staircased $n_{i^{-}}$ by $-n_{i}$ Hessenberg matrix for $i=1, \ldots, b$. If each $n_{i}=1$, then per $A=1 \leq 2^{\lfloor(m-n) / 2\rfloor}$. Otherwise, there exists an i such that $n_{i} \geq 2$. Since A_{i} is staircased and Hessenberg, the observation after Lemma 2.4 implies that

$$
\begin{equation*}
\text { per } A_{i} \leq 2 \text { per } A_{i}(1) \tag{6}
\end{equation*}
$$

Let j be the row of A that intersects the first row of A_{i}. Then (6) implies that per $A \leq$ 2 per $A(j)$. Note that nnz $(A(j)) \leq n n z(A)-3=m-3$. Hence, by induction, per $A(j) \leq$ $2^{\lfloor(m-3-(n-1)) / 2\rfloor}$. It follows that per $A \leq 2^{\lfloor(m-n) / 2\rfloor}$, and hence that $P(m, n) \leq 2^{\lfloor(m-n) / 2\rfloor}$, as desired.

Letting $E_{i j}$ be the matrix with (i, j)-entry equal to 1 and all other entries zero, the complete results for $n=2$ are given by the above theorem as:
$P(2,2)=1$, with equality for $A=H_{1} \oplus H_{1}$;
$P(3,2)=1$, with equality for $A=\left(H_{1} \oplus H_{1}\right)+E_{21}$;
$P(4,2)=2$, with equality for $A=H_{2}$.
For $n \geq 5$ and a subset of values of m with $2 n+1 \leq m \leq(7 n-1) / 3$, the following recursion leads to an explicit formula for $P(m, n)$. In the next two results, we write $m=2 n+t$; thus $n \geq 3 t+1$ implies that $m \leq(7 n-1) / 3$.

Theorem 3.2 Let t and n be positive integers with $n \geq \max \{5,3 t+1\}$. Then

$$
P(2 n+t, n)=2 P(2(n-2)+t, n-2) .
$$

Proof. The assumptions on t and n imply that $2(n-2)+t \leq \frac{(n-2)^{2}+3(n-2)-2}{2}$, and hence $\mathcal{H}(2(n-2)+t, n-2) \neq \emptyset . \quad$ Let $A \in \mathcal{H}\left(2(n-2)^{2}+t, n-2\right)$ with per $A=P(2(n-2)+t, n-2)$. Then $H_{2} \oplus A \in \mathcal{H}(2 n+t, n)$ and has permanent $2 P(2(n-2)+t, n-2)$. Hence $P(2 n+t, n) \geq 2 P(2(n-2)+t, n-2)$.

We now prove that $P(2 n+t, n) \leq 2 P(2(n-2)+t, n-2)$. By Theorem 2.3, there is a matrix $A \in \mathcal{H}(2 n+t, n)$ with permanent $P(2 n+t, n)$ of the form (1) with each fully indecomposable component a staircased, Hessenberg $(0,1)$-matrix. Let the order of A_{i} be $n_{i}(i=1,2, \ldots, b)$. If some $n_{i}=2$, then $A_{i}=H_{2}$, and per $A=2$ per A^{\prime}, where A^{\prime} is the matrix obtained from A by deleting the rows and columns that intersect A_{i}. Since $\operatorname{nnz}\left(A^{\prime}\right) \leq n n z(A)-4$, per $A^{\prime} \leq P(2(n-2)+t, n-2)$, and hence per $A \leq$ $2 P(2(n-2)+t, n-2)$, as desired.

Suppose that $n_{i} \geq 3$ for $i=1, \ldots, b$. Then

$$
\begin{equation*}
n=\sum_{i=1}^{b} n_{i} \geq 3 b \tag{7}
\end{equation*}
$$

Also, by Lemma 2.2 (a) and (b), nnz $\left(A_{i}\right) \geq 3 n_{i}-2(i=1,2, \ldots, b)$. Hence

$$
2 n+t=\operatorname{nnz}(A) \geq \sum_{i=1}^{b} \operatorname{nnz}\left(A_{i}\right) \geq 3 n-2 b
$$

and thus $t \geq n-2 b$. This and (7) imply that $t \geq b$ and $3 t \geq n$, contradicting the hypothesis of the theorem.

Finally, suppose that some $n_{i}=1$, and some $n_{j} \geq 3$. Since A_{j} is staircased, per $A_{j} \leq 2$ per $A_{j}(1)$. Hence

$$
\operatorname{per}\left(A_{i} \oplus A_{j}\right) \leq \operatorname{per}\left(H_{2} \oplus A_{j}(1)\right)
$$

Let A^{\prime} be the matrix obtained from A by replacing the blocks A_{i} and A_{j} by H_{2} and $A_{j}(1)$. Then nnz $\left(A^{\prime}\right) \leq \mathrm{nnz}(A)$, and per $A^{\prime} \geq$ per A. It follows that A^{\prime} can be used rather than A. But A^{\prime} has a 2-by-2 fully indecomposable block. This leads back to a case already considered. Hence $P(2 n+t, n) \leq 2 P(2(n-2)+t, n-2)$.

Corollary 3.3 Let t be a positive integer. There exist constants e_{t} and o_{t} such that for all $n \geq \max \{5,3 t+1\}$

$$
P(2 n+t, n)=\left\{\begin{array}{cl}
e_{t} 2^{n / 2} & \text { if } n \text { is even } \\
o_{t} 2^{(n-1) / 2} & \text { if } n \text { is odd. }
\end{array}\right.
$$

Proof. Theorem 3.2 shows that for $n \geq \max \{5,3 t+1\}$, the function $P(2 n+t, n)$ grows by a factor of 2 each time n is increased by 2 . Thus, only the initial conditions need to be determined to have an exact formula for $P(2 n+t, n)$.

In particular, for $t=1$, take the initial conditions to be $e_{1}=P(9,4) / 4$ which is equal to 1 , and $o_{1}=P(7,3) / 2$ which is equal to $3 / 2$. An induction argument (using Theorem 3.2) can be given to show that $P(2 n+1, n)=e_{1} 2^{n / 2}$ if n is even and $n \geq 5$, and $P(2 n+1, n)=o_{1} 2^{(n-1) / 2}$ if n is odd and $n \geq 5$.

For $t \geq 2$, the initial conditions are obtained by setting

$$
e_{t}=\left\{\begin{array}{cl}
P(7 t, 3 t) / 2^{3 t / 2} & \text { if } t \text { is even } \\
P(7 t-2,3 t-1) / 2^{(3 t-1) / 2} & \text { if } t \text { is odd }
\end{array}\right.
$$

and

$$
o_{t}=\left\{\begin{array}{cl}
P(7 t, 3 t) / 2^{(3 t-1) / 2} & \text { if } t \text { is odd } \\
P(7 t-2,3 t-1) / 2^{(3 t-2) / 2} & \text { if } t \text { is even. }
\end{array}\right.
$$

Again, an induction argument can be used to show that the desired formula for $P(2 n+t, n)$ holds for $n \geq 3 t+1$.
In the next section, these constants e_{t} and o_{t} are explicitly determined.

$4 \quad P(m, n)$ for $2 n+1 \leq m \leq 8 n / 3$

In this section we determine the exact values of $P(m, n)$ for $2 n+1 \leq m \leq 8 n / 3$. For $n \leq 2$ and m in this range, $\mathcal{H}(m, n)=\emptyset$. Thus, we take $n \geq 3$. Denote by $T_{n}=\left[t_{i j}\right]$ the n-by- n tridiagonal matrix with $t_{i j}=1$ if $|i-j| \leq 1$. Since per $T_{1}=1$, per $T_{2}=2$ and per $T_{n}=$ per $T_{n-1}+$ per T_{n-2} for $n \geq 3$, it follows that per T_{n} equals the n-th Fibonacci number, f_{n}.

We begin by establishing lower bounds on $P(m, n)$. Note that for fixed $n, P(m, n)$ is a nondecreasing function of m. For integers m and n with $2 n+1 \leq m \leq 8 n / 3$, define

$$
u(m, n)=\left\{\begin{array}{cl}
2^{m / 4}, & \text { if } m \equiv 0 \bmod 4 \\
2^{(m-1) / 4}, & \text { if } m \equiv 1 \bmod 4 \\
\frac{5}{4} \times 2^{(m-2) / 4}, & \text { if } m \equiv 2 \bmod 4 \\
\frac{3}{2} \times 2^{(m-3) / 4}, & \text { if } m \equiv 3 \bmod 4
\end{array}\right.
$$

Proposition 4.1 If m and n are positive integers with $2 n+1 \leq m \leq 8 n / 3$, then $P(m, n) \geq u(m, n)$.

Proof. Let $m \geq 2 n+1$ and first suppose that $m \equiv 0 \bmod 4$. Let $r=(m-2 n) / 2$ and $s=(8 n-3 m) / 4$. Then $r \geq 1$ and $s \geq 0$ are integers. Define A to be the direct sum of r matrices H_{3} and s matrices H_{2}. Then $\operatorname{nnz}(A)=m, A$ is n-by- n and per $A=2^{2 r+s}=$ $2^{m / 4}=u(m, n)$. Hence $P(m, n) \geq u(m, n)$.

Second suppose that $m \equiv 1 \bmod 4$, and thus $3 m \leq 8 n-1$. Since $m \equiv 1 \bmod 4$, $u(m, n)=u(m-1, n)$. Clearly, $P(m, n) \geq P(m-1, n)$. By the previous case $P(m-1, n) \geq$ $u(m-1, n)$. Hence, $P(m, n) \geq u(m-1, n)=u(m, n)$.

Now suppose that $m \equiv 2 \bmod 4$, and thus $3 m \leq 8 n-2$. Since $2 n+1 \leq m \leq 8 n / 3$, it follows that $n \geq 4$ and $m \geq 10$. Set $r=(m-2-2 n) / 2$ and $s=(8 n-3 m-2) / 4$. Then r and s are nonnegative integers. Define A to be the direct sum of r matrices H_{3}, s matrices H_{2} and one T_{4}. Then nnz $(A)=m, A$ is n-by- n and per $A=5 \times 2^{2 r+s}=\frac{5}{4} \times 2^{(m-2) / 4}=u(m, n)$. Hence $P(m, n) \geq u(m, n)$.

Finally suppose that $m \equiv 3 \bmod 4$, and thus $3 m \leq 8 n-3$. Let $r=(m-1-2 n) / 2$ and $s=(8 n-3 m-3) / 4$. Then r and s are nonnegative integers. Let A be the direct sum of r matrices H_{3}, s matrices H_{2} and one T_{3}. Then $\operatorname{nnz}(A)=m, A$ is n-by- n and per $A=3 \times 2^{2 r+s}=\frac{3}{2} \times 2^{(m-3) / 4}=u(m, n)$. Hence $P(m, n) \geq u(m, n)$.

The main result of this section is that $P(m, n)=u(m, n)$ for $m \leq 8 n / 3$. The proof of the main result requires several preliminary lemmas. Recall that $E_{i j}$ is a matrix with (i, j)-entry equal to 1 and all other entries 0 .

Lemma 4.2 Let k, l and p be integers with $k \geq 2, l \geq 1$ and $p \geq 1$. Let B be a p-by-p Hessenberg (0,1)-matrix, and x a $(0,1)$-vector that is entrywise less than or equal to the
first column of B. Let R and S be the partitioned Hessenberg matrices

$$
R=\left[\right]
$$

and

$$
S=\left[\begin{array}{c|c|c}
T_{k} & E_{k 1} & O \\
\hline E_{1, k-1}+E_{1 k} & T_{l} & O \\
\hline O & O & B
\end{array}\right] .
$$

Then per $S \geq$ per R, and the fully indecomposable components of S are $S[\langle 1, k+l\rangle]$ and those of B.

Proof. Since every transversal of S that contains the $(k, k+1)$-entry contains either the $(k+1, k-1)$ - or $(k+1, k)$-entry,
per $S=\operatorname{per} T_{k}$ per T_{l} per $B+\left[\operatorname{per} T_{k}(k, k)+\operatorname{per} T_{k}(k, k-1)\right]$ per $T_{l}(1)$ per B
$=\operatorname{per} T_{k}$ per T_{l} per $B+\operatorname{per} T_{k} f_{l-1}$ per B.
Since every transversal of R containing the $(k+l, k+l+1)$-entry contains a 1 of x,

$$
\begin{aligned}
\operatorname{per} R & =\text { per } T_{k} \text { per } T_{l} \text { per } B+\operatorname{per} T_{k} \text { per } T_{l}(l) \text { per } B^{\prime} \\
& =\text { per } T_{k} \text { per } T_{l} \text { per } B+\operatorname{per} T_{k} f_{l-1} \text { per } B^{\prime},
\end{aligned}
$$

where B^{\prime} is the matrix obtained from B by replacing the first column of B with x. Since x is entrywise less than or equal to the first column of $B, \mathrm{~m}$ per $B^{\prime} \leq$ per B. Thus,

$$
\text { per } R \leq \operatorname{per} T_{k} \text { per } T_{l} \text { per } B+\text { per } T_{k} f_{l-1} \text { per } B=\operatorname{per} S \text {. }
$$

It is easy to verify that $S[\langle 1, k+l\rangle]$ is fully indecomposable and that $S=S[\langle 1, k+$ $l\rangle] \oplus B$. Hence the fully indecomposable components of S are $S[\langle 1, k+l\rangle]$ and the fully indecomposable components of B.

Considering $P R^{T} P$ and $P S^{T} P$, where P is the reverse permutation matrix, the following result is obtained.

Lemma 4.3 Let r, s and q be integers with $r \geq 1, s \geq 2$ and $q \geq 1$. Let C be a $q-b y-q$ Hessenberg $(0,1)$-matrix, and y^{T} a (0,1)-vector that is entrywise less than or equal to the
last row of C. Let U and V be the partitioned Hessenberg matrices

$$
U=\left[\right]
$$

and

Then per $V \geq$ per U, and the fully indecomposable components of V are $V[\langle q+1, q+r+s\rangle]$ and those of C.

Let m and n be integers with $2 n+1 \leq m \leq 8 n / 3$. Define $\mathcal{S}(m, n)$ to be the set of all n-by- $n(0,1)$-matrices A such that $n n z(A) \leq m$, per $A=P(m, n)$, A has form (1) where each A_{i} is a fully indecomposable staircased Hessenberg matrix and each $A_{i j}=0$ for $i \neq j$.

By Theorem 2.3, $\mathcal{S}(m, n) \neq \emptyset$. Since $P(m, n)$ is a nondecreasing function of m, if \widehat{A} is an n-by- n matrix that is a direct sum of fully indecomposable staircased Hessenberg matrices with nnz $(\widehat{A}) \leq m$ and per $\widehat{A} \geq P(m, n)$, then per $\widehat{A}=P(m, n)$ and $\widehat{A} \in \mathcal{S}(m, n)$. In particular, if $A \in \mathcal{S}(m, n)$ and some direct sum of fully indecomposable components of A has the form R described in Lemma 4.2 with $\operatorname{nnz}(x) \geq 2$, then the matrix A^{\prime} obtained from A by replacing R by the matrix S of Lemma 4.2 necessarily belongs to $\mathcal{S}(m, n)$. A similar statement holds for a matrix $A^{\prime \prime}$ obtained from $A \in \mathcal{S}(m, n)$ by replacing a direct sum of fully indecomposable components of the form U, as in Lemma 4.3, by the matrix V of Lemma 4.3.

The next lemma shows that if $m \leq 8 n / 3$, then $\mathcal{S}(m, n)$ contains a matrix in one of the following four special forms.

Lemma 4.4 For all positive integers m and n with $2 n+1 \leq m \leq 8 n / 3$, there is a matrix $A \in \mathcal{S}(m, n)$ with at least one of the following properties:
(a) $A_{i}=T_{n_{i}}$ for all i;
(b) $A_{i} \notin\left\{T_{2}, T_{3}, T_{4}\right\}$ for all i;
(c) $A_{i}=H_{3}$ for at least one i;
(d) $A_{i}=T_{3}$ for at least one i.

Proof. Suppose on the contrary that none of these statements hold. Then for every $A \in \mathcal{S}(m, n)$, at least one of its fully indecomposable components is not tridiagonal, at least one of its fully indecomposable components is T_{2} or T_{4}, and none of its fully indecomposable components has order 3.

Case 1: There is an $A \in \mathcal{S}(m, n)$ each of whose fully indecomposable components has order at least 4.

Among all such matrices A, choose one with the minimum number of fully indecomposable components equal to T_{4}. By assumption there is an i with $A_{i}=T_{4}$, and a j such that $A_{j} \neq T_{n_{j}}$ and $n_{j} \geq 4$. Let $R=A_{i} \oplus A_{j}$, and let l be the first index such that column l of A_{j} does not equal column l of $T_{n_{j}}$. Then $A_{i} \oplus A_{j}$ has the form R of Lemma 4.2 with $k=4$ and $\mathrm{nnz}(x) \geq 2$. Note that $1 \leq l \leq n_{j}-2$, and thus the order of B is $p \geq 2$. Since A_{j} is fully indecomposable and staircased, so is B. Define S as in Lemma 4.2, and let A^{\prime} be the matrix obtained from A by replacing R by S. Since $n n z(x) \geq 2$, nnz $\left(A^{\prime}\right) \leq n n z(A)$. By Lemma 4.2 , per $A^{\prime} \geq$ per A. Hence $A^{\prime} \in \mathcal{S}(m, n)$. The fully indecomposable components of S are one of order $4+l$ and B. The choice of A requires that $p \leq 4$ (else every component of A^{\prime} has order at least 4 and A^{\prime} has fewer fully indecomposable components equal to T_{4}).

First suppose $p=2$. Then $l=n_{j}-2$ and $A_{j}=T_{n_{j}}+E_{n_{j}, n_{j}-2}$. Let \hat{A} be obtained from A by interchanging A_{i} and A_{j}, and consider $U=A_{j} \oplus A_{i}$. Then

$$
U=\left[\begin{array}{ccccc|c|cc}
& & & & & & 0 & \\
& & & & & & \\
& & T_{n_{j}-1} & & & \vdots & & \\
& & & & & \\
& & & & & \\
\hline 0 & \cdots & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline & & O & & & O & T_{4}
\end{array}\right]
$$

Define V as in Lemma 4.3, and let $A^{\prime \prime} \in \mathcal{S}(m, n)$ be the matrix obtained from \widehat{A} by replacing U by V. The fully indecomposable components of V are $T_{n_{j}-1}$ and a matrix of order 5 . Because $n_{j} \geq 4$, none of the fully indecomposable components of $A^{\prime \prime}$ has order 1 or 2 . Since neither (c) nor (d) holds, $A^{\prime \prime}$ has no fully indecomposable component of order 3. Hence, each fully indecomposable component of $A^{\prime \prime}$ has order at least 4. By the choice of $A, A^{\prime \prime}$ has at least as many fully indecomposable components equal to T_{4} as A, and thus $n_{j}=5$. Hence $A_{i} \oplus A_{j}=T_{4} \oplus\left(T_{5}+E_{53}\right)$ is 9 -by- 9 with 24 entries equal to 1 and permanent $5 \times 10=50$. The matrix $H_{3} \oplus H_{3} \oplus H_{3}$ is 9 -by-9 with 24 entries equal to 1 and permanent 4^{3}. Thus replacing $A_{i} \oplus A_{j}$ in A by $H_{3} \oplus H_{3} \oplus H_{3}$ results in a Hessenberg $(0,1)$-matrix with the same number of ones as A, but larger permanent. This is impossible, since per $A=P(m, n)$. We conclude that $p \neq 2$.

Next suppose that $p=3$. Then $B \in\left\{T_{3}, H_{3}\right\}$, and hence A^{\prime} has either T_{3} or H_{3} as a fully indecomposable component contrary to the assumption that neither (c) nor (d) holds.

Thus $p=4$. The fully indecomposable components of S are one of order at least 5 , and B of order 4. Thus all fully indecomposable components of A^{\prime} have order at least 4.

If $B \neq T_{4}$, then we are led to the contradiction that A^{\prime} has fewer fully indecomposable components equal to T_{4} than A. Thus $B=T_{4}$. Since A_{j} is staircased and $B=T_{4}$, the definition of l implies that $A_{j}=T_{n_{j}}+E_{n_{j}-2, n_{j}-4}$. Now $U=A_{j} \oplus A_{i}$ has the form of U in Lemma 4.3 with $r=3, s=4, C=T_{q}$ and $y^{T}=\left[\begin{array}{lllll}0 & \cdots & 0 & 1 & 1\end{array}\right]$. Using Lemma 4.3, replace U in A by V to obtain a matrix $A^{\prime \prime \prime} \in \mathcal{S}(m, n)$. Arguing as with $p=2$, by the choice of A the matrix V must have a fully indecomposable component of order 4 ; thus $q=4$. Hence $n_{j}=7$ and $A_{j}=T_{7}+E_{53}$. It follows that

$$
\operatorname{per}\left(A_{i} \oplus A_{j}\right)=5 \times(21+4)=125<126=6 \times 21=\operatorname{per}\left(\left(A_{i}+E_{31}\right) \oplus T_{7}\right)
$$

Replacing A_{i} with $A_{i}+E_{31}$ and A_{j} with T_{7} gives a matrix with the same number of nonzero entries as A but with a larger permanent. Therefore, Case 1 leads to a contradiction.

Case 2: Every $A \in \mathcal{S}(m, n)$ has at least one fully indecomposable component of order less than 4.

Among the matrices in $\mathcal{S}(m, n)$, choose A to have the minimum number of fully indecomposable components of order 1 . We claim that A has no fully indecomposable component of order 1. Suppose on the contrary that some n_{i} equals 1 . Since neither (a) nor (c) holds, there is a j such that $A_{j} \notin\left\{H_{3}, T_{n_{j}}\right\}$. In particular, $n_{j} \geq 4$. Since A_{j} is staircased, (6) implies that per $A_{j} \leq 2$ per $A_{j}(1)$, and thus $\operatorname{per}\left(A_{i} \oplus A_{j}\right) \leq \operatorname{per}\left(H_{2} \oplus A_{j}(1)\right)$. Hence, replacing A_{i} and A_{j} by H_{2} and $A_{j}(1)$, respectively, results in a matrix $A^{\prime} \in \mathcal{S}(m, n)$. However, A^{\prime} has one less fully indecomposable component of order 1, contrary to the choice of A. Therefore, A has no fully indecomposable component of order 1 .

Among the matrices in $\mathcal{S}(m, n)$ with no fully indecomposable component of order 1 , now choose A to have the minimum number of fully indecomposable components of order 2. We claim that A has no fully indecomposable component of order 2 . Suppose on the contrary that n_{i} equals 2 . Since neither (a) nor (c) holds, there is a fully indecomposable component A_{j} of order at least 4 that is not $T_{n_{j}}$. Let $R=A_{i} \oplus A_{j}$, and let l be the first index such that column l of A_{j} does not equal column l of $T_{n_{j}}$. Then $A_{i} \oplus A_{j}$ has the form of R in Lemma 4.2 with $k=2$ and $\mathrm{nnz}(x) \geq 2$. Using Lemma 4.2, replace R by S to obtain a matrix $A^{\prime} \in \mathcal{S}(m, n)$. The choice of A requires that some fully indecomposable component of S has order 2 . Since the fully indecomposable components of S are B and a matrix of order $2+l, B$ must have order 2 . Thus $A_{j}=T_{n_{j}}+E_{n_{j}, n_{j-2}}$. Let \widehat{A} be obtained from A by interchanging A_{i} and A_{j}, and consider $U=A_{j} \oplus A_{i}$. Then

$$
U=\left[\begin{array}{ccccc|c|cc}
& & & & & 0 & & \\
& & & & & & & \\
& & T_{n_{j}-1} & & & & & \\
& & & & & & & \\
& & & & & \\
\hline 0 & \cdots & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline & O & & O & T_{2}
\end{array}\right]
$$

and the matrix V in Lemma 4.3 is $T_{n_{j}-1} \oplus H_{3}$. Applying Lemma 4.3, replace U in \widehat{A} by V to obtain a matrix $A^{\prime \prime} \in \mathcal{S}(m, n)$. But $A^{\prime \prime}$ has H_{3} as a fully indecomposable component,
contrary to our assumption that (c) does not hold. Thus, we are led to a contradiction, and conclude that there is an $A \in \mathcal{S}(m, n)$ with no fully indecomposable components of orders 1 or 2 . Since no fully indecomposable component of a matrix in $\mathcal{S}(m, n)$ has order 3, Case 2 leads to a contradiction.

Both Cases 1 and 2 lead to a contradiction, thus our original supposition that none of (a)-(d) hold is false.

In the next lemma, the bound $P(m, n) \leq u(m, n)$, with $u(m, n)$ as defined at the beginning of this section, is obtained in the case that $\mathcal{S}(m, n)$ contains a matrix of a special type.

Lemma 4.5 Let m and n be positive integers with $2 n+1 \leq m \leq 8 n / 3$. Suppose that there exists $A \in \mathcal{S}(m, n)$ such that $A_{i}=H_{n_{i}}$ for all i. Then

$$
\text { per } A \leq u(m, n)
$$

Proof. Note that $\frac{\mathrm{nnz}\left(H_{k}\right)}{k}>8 / 3$ for $k \geq 4, \frac{\mathrm{nnz}\left(H_{3}\right)}{3}=8 / 3$ and $\frac{\mathrm{nnz}\left(H_{k}\right)}{k}<8 / 3$ for $k=1,2$. Since $\operatorname{nnz}(A) \leq 8 n / 3$, it follows that either $n_{i}=3$ for all i or $n_{i} \leq 2$ for at least one i.

Note that per $\left(H_{a} \oplus H_{b}\right)=\operatorname{per}\left(H_{a+1} \oplus H_{b-1}\right)$ for all a, b with $b \geq 2$. In particular, since $\mathrm{nnz}\left(H_{1} \oplus H_{b}\right) \geq \mathrm{nnz}\left(H_{2} \oplus H_{b-1}\right)$ for all $b \geq 2$, we can replace each occurence of $H_{1} \oplus H_{b}$ in A by $H_{2} \oplus H_{b-1}$. Similarly, we can replace each $H_{2} \oplus H_{b}$ in A by $H_{3} \oplus H_{b-1}$ for all $b \geq 3$. Therefore, without loss of generality we may assume that one of the following holds: (a) all fully indecomposable components of A are matrices H_{3}, (b) A has a fully indecomposable component of order 2 , and all other fully indecomposable components have orders 2 or 3 , (c) A has a fully indecomposable component of order 1 , and all other fully indecomposable components have orders 1 or 2.

First suppose that (a) holds; say A is the direct sum of r matrices H_{3}. Then $n=3 r$, $\mathrm{nnz}(A)=8 r=8 n / 3$ and per $A=4^{r}=2^{2 r}$. It follows that $m=8 n / 3, m \equiv 0 \bmod 4$ and that per $A=2^{m / 4}=u(m, n)$, as desired.

Next suppose that (b) holds; say that A is the direct sum of $s \geq 1$ matrices H_{2} and $r \geq 0$ matrices H_{3}. Then $n=2 s+3 r, \operatorname{nnz}(A)=4 s+8 r$ and per $A=2^{s+2 r}=$ $2^{\mathrm{nnz}(A) / 4}$. Since A has the maximum permanent of matrices in $\mathcal{S}(m, n)$, by Proposition $4.1 m \in\{\mathrm{nnz}(A), \mathrm{nnz}(A)+1\}$. Thus, since $\mathrm{nnz}(A)$ is a multiple of $4, m \equiv 0 \bmod 4$ or $m \equiv 1 \bmod 4$. If $m \equiv 0 \bmod 4$, then $m=\operatorname{nnz}(A)$ and per $A=2^{m / 4}=u(m, n)$, as desired. If $m \equiv 1 \bmod 4$, then $m=\operatorname{nnz}(A)+1$ and per $A=2^{(m-1) / 4}=u(m, n)$, as desired.

Finally, suppose that (c) holds; say that A is the direct sum of $l \geq 1$ matrices H_{1} and $s \geq 0$ matrices H_{2}. Then $n=l+2 s, \operatorname{nnz}(A)=l+4 s$ and per $A=2^{s}=2^{(\mathrm{nnz}(A)-n) / 2}$. Since A has the maximum permanent of matrices in $\mathcal{S}(m, n)$, by Proposition $4.1 m \in$ $\{\mathrm{nnz}(A), \mathrm{nnz}(A)+1\}$. Thus $m \leq l+4 s+1 \leq 2 n$, so (c) cannot occur.

Next we use a result from the literature on arbitrary (0,1)-matrices to characterize equality for a bound on per A for $A \in \mathcal{H}(m, n)$. This lemma is useful in proving that $P(m, n) \leq u(m, n)$ in the case that $\mathcal{S}(m, n)$ contains a matrix each of whose fully indecomposable components is tridiagonal. In the next proof, the n-by- n "cycle matrix" $C_{n}=\left[c_{i j}\right]$ has $c_{i, i+1}=1$ for $1 \leq i \leq n-1, c_{n 1}=1$ and all other $c_{i j}=0$.

Lemma 4.6 Let $A \in \mathcal{H}(m, n)$ be fully indecomposable and staircased. Then

$$
\begin{equation*}
\text { per } A \leq 2^{m-2 n}+1, \tag{8}
\end{equation*}
$$

with equality if and only if $A \in\left\{T_{2}, T_{3}, T_{4}\right\}$.

Proof. By [BR, Theorem 7.4.14] and the characterization by Foregger, (8) holds for an arbitrary (0,1)-matrix with equality if and only if $n \geq 2$ and there exist permutation matrices P and Q and a positive integer p such that $P A Q$ has the form

$$
\left[\begin{array}{ccccc}
B_{1} & O & \cdots & O & E_{1} \\
E_{2} & B_{2} & \cdots & O & O \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
O & O & \cdots & B_{p-1} & O \\
O & O & \cdots & E_{p} & B_{p}
\end{array}\right]
$$

where B_{i} is n_{i}-by- $n_{i}, B_{i}=I+C_{n_{i}}$ if $n_{i} \geq 2, B_{i}=[1]$ if $n_{i}=1$, and $\operatorname{nnz}\left(E_{i}\right)=1$ $(i=1,2, \ldots, p)$.

Since A is staircased and fully indecomposable, $3 n-2 \leq m$ by Lemma 2.2 (a) and (b). Let q be the number of n_{i} that are equal to 1 . Then $3 n-2 \leq m=2 n+p-q$, giving $n+q \leq p+2$. Also $2 p-q \leq \sum_{i=1}^{p} n_{i}=n$. Adding these two inequalities gives $p \leq 2$ and thus $n+q \leq 4$.

The proof is completed by making the following observations. If $n=4$, then necessarily $q=0, p=2$ and $A=T_{4}$. If $n=2$, then since A is fully indecomposable Hessenberg, $A=T_{2}$. If $n=3$, then since A is fully indecomposable Hessenberg, $A=H_{3}$ or $A=T_{3}$. It is easy to verify that equality does not hold in (8) when $A=H_{3}$.

Using the above lemmas, we now determine an upper bound on $P(m, n)$.
Theorem 4.7 If m and n are positive integers with $2 n+1 \leq m \leq 8 n / 3$, then $P(m, n) \leq$ $u(m, n)$.

Proof. The proof is by induction on n. It is easy to verify that $P(7,3)=3$ and $P(8,3)=4$, thus for $n=3, P(m, n)=u(m, n)$.

Assume that $n \geq 4$. It suffices to show that for some (and hence every) matrix $A \in \mathcal{S}(m, n)$, we have per $A \leq u(m, n)$. Note, by Lemma 4.4, we can assume that at least one of $(a)-(d)$ holds. Also, by Lemma 4.5, if there is an $A \in \mathcal{S}(m, n)$ each of whose fully indecomposable components is an $H_{n_{i}}$, then $P(m, n) \leq u(m, n)$. Henceforth we assume that every matrix in $\mathcal{S}(m, n)$ has at least one fully indecomposable component A_{i} with $A_{i} \neq H_{n_{i}}$. In particular, this implies that $\mathrm{nnz}(A)=m$ for each $A \in \mathcal{S}(m, n)$, since if $\mathrm{nnz}(A)<m$, then a 0 in this fully indecomposable component could be changed to 1 , increasing the permanent.
Case 1: Statement (a) of Lemma 4.4 holds.

Then there is an $A \in \mathcal{S}(m, n)$ so that $A_{i}=T_{n_{i}}$ for all i. Each row of the chart below gives a Hessenberg $(0,1)$-matrix W and a Hessenberg $(0,1)$-matrix X such that W and X have the same order, $n n z(W) \geq \mathrm{nnz}(X)$ and per $W<$ per X. For $p \geq 6$, the matrix X_{p} is the matrix obtained from T_{p} by replacing the ones in positions $(2,3)$ and $(3,2)$ by zeros, and the zeros in positions $(5,3)$ and $(6,4)$ by ones. Then $n n z\left(X_{p}\right)=n n z\left(T_{p}\right)$, and on setting $f_{0}=1$ it follows that

$$
\text { per } \begin{aligned}
X_{p} & =2\left(f_{p-2}+f_{p-5}+f_{p-6}\right) \\
& =2\left(f_{p-2}+f_{p-4}\right) \\
& >2 f_{p-2}+f_{p-4}+f_{p-5} \\
& =2 f_{p-2}+f_{p-3}=f_{p}=\operatorname{per} T_{p} .
\end{aligned}
$$

W	per W	X	per X	Constraints
$T_{1} \oplus T_{p}$	f_{p}	$T_{2} \oplus T_{p-1}$	$2 f_{p-1}$	$p \geq 3$
T_{p}	f_{p}	X_{p}	$2 f_{p-2}+2 f_{p-4}$	$p \geq 6$
$T_{5} \oplus T_{5}$	64	$H_{3} \oplus H_{3} \oplus T_{4}$	80	
$T_{5} \oplus T_{4}$	40	$H_{3} \oplus H_{3} \oplus T_{3}$	48	
$T_{5} \oplus T_{3}$	24	$H_{3} \oplus H_{3} \oplus H_{2}$	32	
$T_{4} \oplus T_{4}$	25	$H_{3} \oplus H_{3} \oplus H_{2}$	32	
$T_{4} \oplus T_{3}$	15	$H_{3} \oplus H_{2} \oplus H_{2}$	16	
$T_{3} \oplus T_{3}$	9	$H_{2} \oplus T_{4}$	10	

Suppose that there is a direct sum of a subset of the fully indecomposable components of A that is equal to a W occuring in the chart. Then W can be replaced in A by X to obtain a Hessenberg $(0,1)$-matrix A^{\prime} of order n with $n n z\left(A^{\prime}\right) \leq n n z(A)$ and per $A^{\prime}>\operatorname{per} A$, contradicting the fact that per $A=P(m, n)$. Hence no subset of the fully indecomposable components of A has the form of a W in the chart. Hence, $n_{i} \leq 5$ for all i, there is at most one i with $n_{i} \in\{3,4,5\}$, and if there is an i with $n_{i}=1$ then all remaining n_{j} are at most 2 . Since $m \geq 2 n+1$, there is at least one i with $n_{i} \geq 3$. Hence each $n_{i} \in\{2,3,4,5\}$, and at least one n_{i} does not equal 2 since $m \geq 2 n+1$.

First suppose some $n_{i}=3$. Then A is the direct sum of T_{3} and $k \geq 1$ matrices T_{2}. It follows that $n=2 k+3, m=4 k+7=2 n+1, m \equiv 3 \bmod 4$ and per $A=2^{k} \times 3=$ $\frac{3}{2} \times 2^{(m-3) / 4}=u(m, n)$.

Next suppose some $n_{i}=4$. Then A is the direct sum of T_{4} and $k \geq 0$ matrices T_{2}. It follows that $n=2 k+4, m=4 k+10=2 n+2, m \equiv 2 \bmod 4$ and per $A=2^{k} \times 5=$ $\frac{5}{4} \times 2^{(m-2) / 4}=u(m, n)$.

Finally suppose some $n_{i}=5$. Then A is the direct sum of T_{5} and $k \geq 0$ matrices T_{2}. It follows that $n=2 k+5, m=4 k+13=2 n+3, m \equiv 1 \bmod 4$ and per $A=2^{k} \times 8=$ $2^{(m-1) / 4}=u(m, n)$.

Thus the result holds in this case.
Case 2: Statement (b) of Lemma 4.4 holds.

Then there is an $A \in \mathcal{S}(m, n)$ none of whose fully indecomposable components belong to $\left\{T_{2}, T_{3}, T_{4}\right\}$. By Lemma 4.6,

$$
\text { per } A=\prod_{i=1}^{b} \text { per } A_{i} \leq \prod_{i=1}^{b} 2^{\mathrm{nnz}\left(A_{i}\right)-2 n_{i}}=2^{\mathrm{nnz}(A)-2 n}=2^{m-2 n} .
$$

Let v be the unique integer $\in\{0,1,2,3\}$ such that $m \equiv v \bmod 4$. Since $m \leq 8 n / 3$, it follows that $3 m \leq 8 n-v$. If $v=0$, then $m-2 n \leq m-(3 / 4) m=m / 4$, and hence $2^{m-2 n} \leq 2^{m / 4}=u(m, n)$. If $v=1$, then $m-2 n \leq m-(3 m+1) / 4=(m-1) / 4$, and hence $2^{m-2 n} \leq 2^{(m-1) / 4}=u(m, n)$. If $v=2$, then $m-2 n \leq m-(3 m+2) / 4=(m-2) / 4$, and hence $2^{m-2 n} \leq 2^{(m-2) / 4}<(5 / 4) 2^{(m-2) / 4}=u(m, n)$. If $v=3$, then $m-2 n \leq$ $m-(3 m+3) / 4=(m-3) / 4$, and hence $2^{m-2 n} \leq 2^{(m-3) / 4}<(3 / 2) 2^{(m-3) / 4}=u(m, n)$.

Therefore the result holds for each m.
Case 3: Statement (c) of Lemma 4.4 holds.
Then there is $A \in \mathcal{S}(m, n)$ and an i such that $A_{i}=H_{3}$. Let A^{\prime} be the matrix obtained from A by deleting the rows and columns that intersect A_{i}. Then nnz $\left(A^{\prime}\right)=m-8, A^{\prime}$ is $(n-3)$-by- $(n-3)$ and per $A=4 \times$ per A^{\prime}. Since $m \leq 8 n / 3, \mathrm{nnz}\left(A^{\prime}\right)=m-8 \leq 8(n-3) / 3$.

First suppose that $m-8 \geq 2(n-3)+1$. Then by induction and the fact that $m \equiv m-8 \bmod 4$, per $A^{\prime} \leq u(m-8, n-3)=u(m, n) / 4$. As per $A=4 \times$ per A^{\prime}, the desired upper bounds now follow.

Now suppose that $m-8 \leq 2(n-3)$. As $m \geq 2 n+1$, it follows that $m=2 n+1$ or $m=2 n+2$. First consider $m=2 n+1$. Then $n n z\left(A^{\prime}\right)=2(n-3)-1<2(n-3)$. Hence, by Theorem 3.1, per $A^{\prime} \leq 2^{\lfloor(n-4) / 2\rfloor}=2^{\lfloor(m-9) / 4\rfloor}$. Thus, since m is odd,

$$
\begin{aligned}
\text { per } A \leq 2^{\lfloor(m-1) / 4\rfloor} & = \begin{cases}2^{(m-1) / 4}, & \text { if } m \equiv 1 \bmod 4 \\
2^{(m-3) / 4}, & \text { if } m \equiv 3 \bmod 4,\end{cases} \\
& \leq u(m, n)
\end{aligned}
$$

On the other hand, if $m=2 n+2$, then $n n z\left(A^{\prime}\right)=2(n-3)$. Hence, by Theorem 3.1, per $A^{\prime} \leq 2^{\lfloor(n-3) / 2\rfloor}=2^{\lfloor(m-8) / 4\rfloor}$. Thus, since m is even,

$$
\text { per } \begin{aligned}
A \leq 2^{\lfloor m / 4\rfloor} & =\left\{\begin{array}{cl}
2^{m / 4} & m \equiv 0 \bmod 4 \\
2^{(m-2) / 4} & m \equiv 2 \bmod 4,
\end{array}\right. \\
& \leq u(m, n)
\end{aligned}
$$

Case 4: Statement (d) of Lemma 4.4 holds.
Then there is an $A \in \mathcal{S}(m, n)$ and an i with $A_{i}=T_{3}$. If $A_{j}=T_{n_{j}}$ for all j, then Case 1 applies, and if some $A_{j}=H_{3}$, then Case 3 applies and per $A \leq u(m, n)$. Otherwise, there is a j such that A_{j} has a line with at least four entries equal to 1 . By Laplace expansion of per A_{j} along such a line, per A_{j} is a sum of at least 4 permanents of matrices of the form $A_{j}(r, s)$. Thus, for some (r, s) such that the (r, s)-entry of A_{j} is 1 , per $A_{j}(r, s) \leq$ per $A_{j} / 4$. Let A^{\prime} be the matrix obtained from A by changing the $(3,1)$-entry of A_{i} to

1 and the (r, s)-entry of A_{j} to 0 . Note that per $A_{i}=$ per $T_{3}=3=(3 / 4)$ per H_{3}, and per $A_{j}-\operatorname{per} A_{j}(r, s) \geq 3$ per $A_{j} / 4$. Thus nnz $\left(A^{\prime}\right)=\operatorname{nnz}(A)$, and

$$
\text { per } \begin{aligned}
A^{\prime} & =\text { per } H_{3} \times\left[\operatorname{per} A_{j}-\operatorname{per} A_{j}(r, s)\right] \times \prod_{t \neq i, j} \operatorname{per} A_{t} \\
& \geq 4 \operatorname{per} T_{3} / 3 \times 3 \operatorname{per} A_{j} / 4 \times \prod_{t \neq i, j} \operatorname{per} A_{t} \\
& =\operatorname{per} A_{i} \times \operatorname{per} A_{j} \times \prod_{t \neq i, j} \operatorname{per} A_{t} \\
& =\operatorname{per} A .
\end{aligned}
$$

It follows that per $A^{\prime}=P(m, n)$, and hence $A^{\prime} \in \mathcal{S}(m, n)$. Since A^{\prime} has H_{3} as a fully indecomposable component, Case 3 applies.

Thus, in each case there exists a matrix in $\mathcal{S}(m, n)$ with permanent having $u(m, n)$ as an upper bound.

Combining Proposition 4.1 and Theorem 4.7 gives the main result of this section, with $u(m, n)$ as defined at the beginning of this section.

Corollary 4.8 If m and n are positive integers with $2 n+1 \leq m \leq 8 n / 3$, then $P(m, n)=$ $u(m, n)$.

5 Dense Hessenberg matrices

In this section we determine the exact values of $P(m, n)$ for all values of m such that $m=\operatorname{nnz}\left(H_{n}\right)-z$ with $0 \leq z \leq \frac{k^{2}+3 k-2}{2}$ and $k=\lfloor n / 2\rfloor$. We begin with a result that gives the permanent of certain order $n-1$ submatrices of H_{n}.

Lemma 5.1 For $j \leq i$,

$$
\text { per } H_{n}(i, j)=\left\{\begin{array}{cl}
1 & \text { if } i=n \text { and } j=1, \\
2^{j-2} & \text { if } i=n \text { and } j \geq 2, \\
2^{n-i-1} & \text { if } n-1 \geq i \geq 1 \text { and } j=1, \\
2^{n-i+j-3} & \text { if } n-1 \geq i \geq 1 \text { and } j \geq 2 .
\end{array}\right.
$$

In addition, for $n-1 \geq i \geq 1$, per $H_{n}(i, i+1)=2^{n-2}$.

Proof. For $j \leq i$, the formula for per $H_{n}(i, j)$ follows from Lemma 2.2(c). Since $H_{n}(i, i+$ 1) $=H_{n-1}$, per $H_{n}(i, i+1)=2^{n-2}$.

Define $M_{n}=\left[m_{n}(i, j)\right]$ to be the n-by- n matrix with (i, j)-entry equal to per $H_{n}(i, j)$ if $j \leq i+1$ and 0 otherwise. Note that $m_{n}(i, j)$ is equal to the number of transversals of
H_{n} that contain the (i, j)-entry. For example,

$$
M_{6}=\left[\begin{array}{cccccc}
16 & 16 & 0 & 0 & 0 & 0 \\
8 & 8 & 16 & 0 & 0 & 0 \\
4 & 4 & 8 & 16 & 0 & 0 \\
2 & 2 & 4 & 8 & 16 & 0 \\
1 & 1 & 2 & 4 & 8 & 16 \\
1 & 1 & 2 & 4 & 8 & 16
\end{array}\right]
$$

Lemma 5.2 Let $A=\left[a_{i j}\right]$ be an n-by-n Hessenberg (0,1)-matrix. Then per $A \geq 2^{n-1}-$ $\sum_{\left\{(i, j): j \leq i+1, a_{i j}=0\right\}} m_{n}(i, j)$.

Proof. If $a_{i j}=0$, then the $m_{n}(i, j)$ transversals of H_{n} that contain the (i, j)-entry are not transversals of A. Since some transversals may be counted more than once, there are at most

$$
\sum_{\left\{(i, j): j \leq i+1, a_{i j}=0\right\}} m_{n}(i, j)
$$

transversals of H_{n} that are not transversals of A. The result now follows.
It is well known that every permutation can be expressed as the composition of disjoint cycles. In the following theorem, we identify a transversal τ with its permutation. Thus, by the cycles of τ we mean the cycles of the corresponding permutation.

Given a nonnegative integer z with $z \leq \operatorname{nnz}\left(H_{n}\right)$, define $\sigma_{n z}$ to be the sum of the z smallest nonzero entries of M_{n}. For example, $\sigma_{60}=0, \sigma_{61}=1, \sigma_{62}=2, \sigma_{63}=3$, $\sigma_{64}=4, \sigma_{65}=6$ and $\sigma_{66}=8$. The following theorem determines $P(m, n)$ for n even and $m \geq \frac{3 n^{2}+6 n}{8}$, i.e., for a dense Hessenberg matrix of even order.

Theorem 5.3 Let $n=2 k \geq 4$ be an even positive integer, and let z be an integer with $0 \leq z \leq \frac{k^{2}+3 k-2}{2}$. Then $P\left(n n z\left(H_{n}\right)-z, n\right)=2^{n-1}-\sigma_{n z}$.

Proof. When $n=2 k=4$, it is easily verified that:
$P(9,4)=4$, with equality for $A=\left(H_{2} \oplus H_{2}\right)+E_{32}$;
$P(10,4)=5$, with equality for $A=T_{4}$;
$P(11,4)=6$, with equality for $A=H_{4}-\left(E_{41}+E_{42}\right)$;
$P(12,4)=7$, with equality for $A=H_{4}-E_{41}$;
$P(13,4)=8$, with equality for $A=H_{4}$.
Note that $P(9,4)$ is not achieved by any fully indecomposable matrix. In the remainder of the proof, assume that $n \geq 6$.

Let \mathcal{I} be the set of all pairs of integers (i, j) with $n \geq i>j \geq 1$ and $(i, j) \neq(k+1, k)$. For each $(i, j) \in \mathcal{I}$, let $\mathcal{S}_{i j}$ denote a fixed set of transversals of H_{n} such that the sets $\mathcal{S}_{i j}$ are mutually disjoint and each element of $\mathcal{S}_{i j}$ contains the (i, j)-entry. With regard to any such sets $\mathcal{S}_{i j}$, an upper bound is now obtained (see (9) below) for the permanent of an n-by- n Hessenberg (0,1)-matrix $A=\left[a_{i j}\right]$ for which $a_{i, i+1}=1(i=1,2, \ldots, n-1), a_{i i}=1$
$(i=1,2, \ldots, n)$ and $a_{k+1, k}=1$ (and all other $a_{i j}$ with $i>j$ are 0 or 1). Note that each element in the set $\cup_{\{(i, j) \in \mathcal{I}}$ and $\left.a_{i j}=0\right\}$ S $\mathcal{S}_{i j}$ is a transversal of H_{n} that is not in A. Since the sets $\mathcal{S}_{i j}$ are mutually disjoint, there are at least

$$
\sum_{\left\{(i, j) \in \mathcal{I} \text { and } a_{i j}=0\right\}}\left|\mathcal{S}_{i j}\right|
$$

transversals of H_{n} that are not transversals of A. Hence,

$$
\begin{equation*}
\text { per } \left.A \leq 2^{n-1}-\sum_{\{(i, j) \in \mathcal{I}} \text { and } a_{i j}=0\right\}<1 \mathcal{S}_{i j} \mid . \tag{9}
\end{equation*}
$$

We construct a family of such sets $\mathcal{S}_{i j}$ as follows. There are 4 types of pairs (i, j) :
Type A: $i \geq k+1, k \geq j$ and $(i, j) \neq(k+1, k) ;$
Type B: $i>j \geq k+1$;
Type C: $k-1 \geq i>j$;
Type D: $k=i>j$.
For (i, j) of type A , let $\mathcal{S}_{i j}$ consist of all transversals of the matrix

$$
\left[\begin{array}{ccc}
H_{j-1} & O & O \\
O & C_{i-j+1} & O \\
O & O & H_{n-i}
\end{array}\right]
$$

where C_{i-j+1} is the cycle matrix defined in Section 4 and $H_{j-1}\left(H_{n-i}\right)$ is vacuous if $j=1$ $(i=n)$. We make the following observations if (i, j) is of Type A:
(A1) If $\tau \in \mathcal{S}_{i j}$, then the cycle of τ that contains k also contains $k+1$, but is not the 2 -cycle ($k, k+1$);
(A2) Each transversal of H_{n} (and thus of every $\mathcal{S}_{i j}$) contains at most one cycle that has an entry in $\langle 1, k\rangle$ and an entry in $\langle k+1, n\rangle$;
(A3) By (A1) and (A2), the sets $\mathcal{S}_{i j}$ of Type A are mutually disjoint;
(A4) If (i, j) is of type A , then $\left|\mathcal{S}_{i j}\right|=\operatorname{per} H_{j-1}$ per H_{n-i}

$$
=\left\{\begin{array}{cl}
1 & \text { if } i=n \text { and } j=1 \\
2^{j-2} & \text { if } i=n \text { and } k \geq j \geq 2, \\
2^{n-i-1} & \text { if } n-1 \geq i \geq k+1 \text { and } j=1, \\
2^{n-i+j-3} & \text { if } n-1 \geq i \geq k+1 \text { and } k \geq j \geq 2,(i, j) \neq(k+1, k)
\end{array}\right.
$$

For (i, j) of type B , let $\mathcal{S}_{i j}$ be the set of all transversals of the matrix

$$
\left[\begin{array}{cccc}
H_{k-1} & O & O & O \\
0 & I_{j-k} & O & O \\
O & O & C_{i-j+1} & O \\
O & O & O & I_{n-i}
\end{array}\right]
$$

where $H_{k-1}\left(I_{n-i}\right)$ is vacuous if $k=1(i=n)$. We make the following observations if (i, j) is of type B:
(B1) If $\tau \in \mathcal{S}_{i j}$, then τ contains the 1-cycle (k, k);
(B2) $(i, j, \ldots, i-1)$ is the unique cycle of τ of length at least 2 with all of its elements in $\langle k+1, n\rangle ;$
(B3) By (B2), the sets $\mathcal{S}_{i j}$ of type B are disjoint, and by (B1) and (A1), any set $\mathcal{S}_{i j}$ of type A and any set $\mathcal{S}_{i^{\prime} j^{\prime}}$ of type B are disjoint;
(B4) $\left|\mathcal{S}_{i j}\right|=2^{k-2}$.
For (i, j) of type C , let $\mathcal{S}_{i j}$ be the set of all transversals of the matrix

$$
\left[\begin{array}{ccccc}
I_{j-1} & O & O & O & O \\
O & C_{i-j+1} & O & O & O \\
O & O & I_{k-1-i} & O & O \\
O & O & O & 0 & 1 \\
O & O & O & O & O \\
O & H_{k-1}
\end{array}\right]
$$

where $I_{j-1}\left(I_{k-1-i} ; H_{k-1}\right)$ is vacuous if $j=1(i=k-1 ; k=1)$. We make the following observations if (i, j) is of Type C:
(C1) If $\tau \in \mathcal{S}_{i j}$, then the cycle of τ that contains k is the 2 -cycle $(k, k+1)$;
(C2) If $\tau \in \mathcal{S}_{i j}$, then the unique cycle of length at least 2 with all of its elements in $\langle 1, k-1\rangle$ is $(i, j, \ldots, i-1)$;
(C3) By (C2), the sets $\mathcal{S}_{i j}$ of types C are disjoint. By (A1), (B1) and (C1), any set $\mathcal{S}_{i j}$ of type C and any set $\mathcal{S}_{i^{\prime} j^{\prime}}$ of type A or B are disjoint;
(C4) $\left|\mathcal{S}_{i j}\right|=2^{k-2}$.
Finally, for (i, j) of type D , let $\mathcal{S}_{i j}$ be the set of all transversals of the matrix

$$
\left[\begin{array}{ccc}
I_{j-1} & O & O \\
O & C_{k-j+1} & O \\
O & O & H_{k}
\end{array}\right]
$$

where I_{j-1} is vacuous if $j=1$. We make the following observations if (i, j) is of type D :
(D1) If $\tau \in \mathcal{S}_{i j}$, then the cycle of τ that contains k has length at least 2 and each of its entries is in $\langle 1, k\rangle$.
(D2) $(k, j, j+1, \ldots, k-1)$ is the unique cycle of τ of length at least 2 with all of its elements in $\langle 1, k\rangle$;
(D3) By (D2), the sets $\mathcal{S}_{i j}$ of type D are disjoint. By (A1), (B1), (C1) and (D1), any set $\mathcal{S}_{i j}$ of type D and any set $\mathcal{S}_{i^{\prime} j^{\prime}}$ of type A, B or C are disjoint;
(D4) $\left|\mathcal{S}_{i j}\right|=2^{k-1}$.
Let S_{n} be the n-by- n matrix with (i, j)-entry equal to $\left|\mathcal{S}_{i j}\right|$ when $\mathcal{S}_{i j}$ is defined, and 0 otherwise. For example, for $n=6$

$$
S_{6}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
4 & 4 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 2 & 0 & 0 \\
1 & 1 & 2 & 2 & 2 & 0
\end{array}\right]
$$

Fix z to be an integer with $0 \leq z \leq \frac{k^{2}+3 k-2}{2}$, and let A be an n-by- n Hessenberg $(0,1)$-matrix with z entries on or below the superdiagonal equal to 0 such that per $A=$ $P\left(\operatorname{nnz}\left(H_{n}\right)-z, n\right)$. By Theorem 2.3, we may assume that each fully indecomposable component of A is Hessenberg and staircased.

We claim that A is fully indecomposable. Suppose to the contrary that A is not fully indecomposable; then without loss of generality, A is in the form (1) with $b \geq 2$ and per $A \leq 2^{n-b}$. Let H^{\prime} be the matrix obtained from $H_{k} \oplus H_{k}$ by replacing the $(k+1, k)$ and $(k, k+1)$ entries by ones. Then per $A \leq 2^{n-2}=\operatorname{per}\left(H_{k} \oplus H_{k}\right)<$ per $H^{\prime} \leq P\left(k^{2}+3 k, n\right) \leq$ $P\left(\mathrm{nnz}\left(H_{n}\right)-z, n\right)$, where the last inequality follows as $k \geq 3$. This contradicts the assumption that per $A=P\left(\operatorname{nnz}\left(H_{n}\right)-z, n\right)$, so A is fully indecomposable.

By Lemma 2.2(b), $A \geq T_{n}$ (entrywise). Thus if $i>j$ and $a_{i j}=0$, then $(i, j) \in \mathcal{I}$. Hence by (9),

$$
\text { per } \left.A \leq 2^{n-1}-\sum_{\{(i, j) \in \mathcal{I}} \text { and } a_{i j}=0\right\}<1 \mathcal{S}_{i j} \mid \leq 2^{n-1}-s_{n z},
$$

where $s_{n z}$ is the sum of the z smallest nonzero entries of S_{n}. Since $z \leq\left(k^{2}+3 k-2\right) / 2$, by Lemma 5.1 and (A4) above, the z smallest nonzero entries of S_{n} and M_{n} agree. Hence, $s_{n z}=\sigma_{n z}$ and $P\left(\mathrm{nnz}\left(H_{n}\right)-z, n\right) \leq 2^{n-1}-\sigma_{n z}$. Since, by Lemma 5.2, $P\left(\mathrm{nnz}\left(H_{n}\right)-z, n\right) \geq$ $2^{n-1}-\sigma_{n z}$, it follows that $P\left(\operatorname{nnz}\left(H_{n}\right)-z, n\right)=2^{n-1}-\sigma_{n z}$.

A corresponding result that determines $P(m, n)$ for n odd and $m \geq \frac{3 n^{2}+8 n+5}{8}$ is now derived. Let $n=2 k+1 \geq 3$ be an odd positive integer, and z an integer with $0 \leq z \leq$ $\frac{k^{2}+3 k-2}{2}$. Modifying (as described below) the proof of Theorem 5.3 gives the values of $P\left(\operatorname{nnz}\left(H_{n}\right)-z, n\right)$.

Define the types $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D as in the proof of Theorem 5.3, and the sets $\mathcal{S}_{i j}$ as before when (i, j) is of type A or B. For (i, j) of type C , we now define $\mathcal{S}_{i j}$ to be the set of all transversals of

$$
\left[\begin{array}{ccccc}
I_{j-1} & O & O & O & O \\
O & C_{i-j+1} & O & O & O \\
O & O & I_{k-1-i} & O & O \\
O & O & O & 0 & 1 \\
O & O & O & O & H_{k}
\end{array}\right]
$$

where $I_{j-1}\left(I_{k-1-i}\right)$ is vacuous if $j=1(i=k-1)$. For (i, j) of type D , we now define $\mathcal{S}_{i j}$ to be the set of all transversals of

$$
\left[\begin{array}{ccc}
I_{j-1} & O & O \\
O & C_{k-j+1} & O \\
O & O & H_{k+1}
\end{array}\right]
$$

where I_{j-1} is vacuous if $j=1$. Note that statements (A1)-(A4), (B1)-(B4), (C1)-(C3), (D1)-(D3) hold verbatim. Statement (C4) becomes $\left|\mathcal{S}_{i j}\right|=2^{k-1}$ and statement (D4) becomes $\left|\mathcal{S}_{i j}\right|=2^{k}$.

In modifying the penultimate paragraph of the proof of Theorem 5.3, let H^{\prime} be obtained from $H_{k} \oplus H_{k+1}$ by replacing the $(k+1, k)$ and $(k, k+1)$ entries by ones. Then per $A \leq 2^{n-2}=\operatorname{per}\left(H_{k} \oplus H_{k+1}\right)<$ per $H^{\prime} \leq P\left(k^{2}+4 k+2, n\right) \leq P\left(\mathrm{nnz}\left(H_{n}\right)-z, n\right)$, where the last inequality follows if $k \geq 1$. These modifications to the proof of Theorem 5.3 give the following result.

Theorem 5.4 Let $n=2 k+1 \geq 3$ be an odd positive integer, and let z be an integer with $0 \leq z \leq \frac{k^{2}+3 k-2}{2}$. Then $P\left(n n z\left(H_{n}\right)-z, n\right)=2^{n-1}-\sigma_{n z}$.

6 Concluding Remarks

For $n=3$ and $3 \leq m \leq 8$, our values of $P(m, n)$ are the same as the values given in [BGM] for the maximum permanent of an arbitrary 3 -by- $3(0,1)$-matrix with m entries equal to 1 . However, for $n=4$ and $m=10$, this larger class can attain a maximum permanent of $6\left[\mathrm{BGM}\right.$, Table 1] given by $H_{1} \oplus J_{3}$, whereas $P(10,4)=5$.

Results from previous sections give $P(m, 2), P(m, 3)$ and $P(m, 4)$ for all possible values of m. For $n=5$, theorems from Sections 3 and 4 give $P(m, 5)$ for $5 \leq m \leq 13$, whereas values of $P(m, 5)$ for $m \geq 15$ are determined from Theorem 5.4. The value of $P(14,5)$ does not follow immediately from our theorems. However, we can use previous results on the staircase structure to determine the value of $P(14,5)$. If $A \in \mathcal{H}(14,5)$ is partly decomposable, then per $A \leq 2^{4-1}=8$. If $A \in \mathcal{H}(14,5)$ is fully indecomposable, then the diagonal, super- and sub-diagonal entries are all equal to 1 (accounting for 13 ones) and $A=T_{5}+E_{i j}$, with $(i, j) \in\{(3,1),(4,2),(5,3)\}$. Such a matrix A has permanent equal to 9 or 10 , thus $P(14,5)=10$, with the maximum attained by $A=T_{5}+E_{31}$. In conclusion, we note in general that values of $P(m, n)$ for $8 n / 3<m<\left(n^{2}+3 n-2-\left(k^{2}+3 k-2\right)\right) / 2$, where $k=\lfloor n / 2\rfloor$, remain to be determined.

References

[BGM] R. A. Brualdi, J.L. Goldwasser and T.S. Michael, Maximum permanents of matrices of zeros and ones. J. Combin. Theory, Ser. A 47, (1988), 207-245.
[BR] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
[CW] G.-S. Cheon and I. M. Wanless, An update on Minc's survey of open problems involving permanents, Linear Alg. Appls., 403 (2005) 314-342.
[M] H. Minc, Permanents, in: Encyclopedia Math. Appl., vol. 6, Addison-Wesley, Reading, 1978.
[SHRC] Seok-Zun Song, Suk-Geun Hwang, Seog-Hoon Rim and Gi-Sang Cheon, Extremes of permanents of (0,1)-matrices, Linear Alg. Appls., 373 (2003), 197-210.

