On an identity for the cycle indices of rooted tree automorphism groups

Stephan G. Wagner*
Institut für Analysis und Computational Number Theory
Technische Universität Graz
Steyrergasse 30, 8010 Graz, Austria
wagner@finanz.math.tugraz.at

Submitted: Jul 25, 2006; Accepted: Sep 15, 2006; Published: Sep 22, 2006
Mathematics Subject Classifications: 05A15,05A19,05C30

Abstract

This note deals with a formula due to G. Labelle for the summed cycle indices of all rooted trees, which resembles the well-known formula for the cycle index of the symmetric group in some way. An elementary proof is provided as well as some immediate corollaries and applications, in particular a new application to the enumeration of k-decomposable trees. A tree is called k-decomposable in this context if it has a spanning forest whose components are all of size k.

1 Introduction

Pólya's enumeration method is widely used for graph enumeration problems - we refer to [6] and the references therein for instance. For the application of this method, information on the cycle indices of certain groups is needed - mostly, these are comparatively simple examples, such as the cyclic group, the dihedral group or the symmetric group. A very well-known formula gives the cycle index of the symmetric group S_{n} (we adopt the notation from [6] here):

$$
\begin{equation*}
Z\left(S_{n}\right)=\sum_{j_{1}+2 j_{2}+\ldots+n j_{n}=n} \prod_{k=1}^{n} \frac{s_{k}^{j_{k}}}{k^{j_{k} j_{k}!} .} \tag{1}
\end{equation*}
$$

One has

$$
\sum_{n=0}^{\infty} Z\left(S_{n}\right) t^{n}=\exp \sum_{k=1}^{\infty} \frac{s_{k}}{k} t^{k}
$$

an identity which is of importance in various tree counting problems (cf. again [6]).

[^0]In the past, several tree counting problems related to the automorphism groups of trees have been investigated. We state, for instance, the enumeration of identity trees (see [7]), and the question of determining the average size of the automorphism group in certain classes of trees (see $[9,10]$).

Therefore, it is not surprising that so-called cycle index series or indicatrix series $[2,8]$ are of interest in enumeration problems. Given a combinatorial species F, the indicatrix series is given by

$$
Z_{F}\left(s_{1}, s_{2}, \ldots\right)=\sum_{c_{1}+2 c_{2}+3 c_{3}+\ldots<\infty} f_{c_{1}, c_{2}, c_{3}, \ldots} \frac{s_{1}^{c_{1}} s_{2}^{c_{2}} s_{3}^{c_{3}} \ldots}{1^{c_{1}} c_{1}!2^{c_{2}} c_{2}!3^{c_{3}} c_{3}!\ldots}
$$

where $f_{c_{1}, c_{2}, c_{3}, \ldots}$ denotes the number of F-structures on $n=c_{1}+2 c_{2}+3 c_{3}+\ldots$ points which are invariant under the action of any (given) permutation σ of these n points with cycle type $\left(c_{1}, c_{2}, \ldots\right)$ (i.e. exactly c_{k} cycles of length k). See for instance $[2,6,8]$ and the references therein for more information on cycle index series. Equivalently, it can be defined via

$$
Z_{F}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!}\left(\sum_{\sigma \in S_{n}} \operatorname{fix} F[\sigma] x_{1}^{\sigma_{1}} x_{2}^{\sigma_{2}} x_{3}^{\sigma_{3}} \ldots\right),
$$

where fix $F[\sigma]$ is the number of F-structures for which the permutation σ is an automorphism and $\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ is the cycle type of $\sigma[2]$.

In this note, we deal with the special family \mathcal{T} of rooted trees. Yet another reformulation shows that the cycle index series is also

$$
\sum_{T \in \mathcal{T}} Z(\operatorname{Aut}(T))
$$

where $Z(\operatorname{Aut}(T))$ is the cycle index of the automorphism group of T. The following formula for the cycle index series is due to G. Labelle [8, Corollary A2]:

Theorem 1 The cycle index series for rooted trees is given by

$$
Z_{\mathcal{T}}\left(s_{1}, s_{2}, \ldots\right)=\sum_{c_{1}>0} \sum_{c_{2}, c_{3}, \ldots \geq 0} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i>1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}} .
$$

Note that the expression resembles (1), though it is somewhat longer. This result seems to be not too well-known, but it certainly deserves attention. In [8], Labelle proves it in a more general setting, using a multidimensional version of Lagrange's inversion formula due to Good [4]. On the other hand, Constantineau and J. Labelle provide a combinatorial proof in [3].

First of all, we will give a simple proof (though, of course, less general than Labelle's) for this formula, for which only the classical single-variable form of Lagrange inversion will be necessary; then, some immediate corrolaries are stated. Finally, the use of the cycle index series is demonstrated by applying the formula to the enumeration of weighted trees and k-decomposable trees.

2 Proof of the main theorem

By the recursive structure of rooted trees and the multiplicative properties of the cycle index, it is not difficult to see that $Z=Z_{\mathcal{T}}\left(s_{1}, s_{2}, \ldots\right)$ satisfies the relation

$$
Z=s_{1} \exp \left(\sum_{m \geq 1} \frac{1}{m} Z_{m}\right)
$$

which is given, for instance, in a paper of Robinson [12, p. 344] and the book of Bergeron et al. [2, p. 167]. Here, Z_{m} is obtained from Z by replacing every s_{i} with $s_{m i}$. Now, we prove the following by induction on k :

$$
\begin{aligned}
Z= & \sum_{\substack{c_{1}, \ldots, c_{k} \geq 0 \\
c_{1}>0}} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i=2}^{k} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}} \\
& \exp \left(\sum_{m>k} \frac{1}{m}\left(\sum_{d \mid m, d \leq k} d c_{d}\right) Z_{m}\right)
\end{aligned}
$$

in the ring of formal power series. Then, for finite k, the coefficient of $s_{1}^{c_{1}} \ldots s_{k}^{c_{k}}$ follows at once, since $\sum_{m>k} \frac{1}{m}\left(\sum_{d \mid m, d \leq k} d c_{d}\right) Z_{m}$ doesn't contain the variables s_{1}, \ldots, s_{k}.

First note that, by Lagrange's inversion formula (cf. [5, 6]), we have

$$
w=\sum_{c \geq 1} \frac{c^{c-1}}{c!} x^{c}
$$

and

$$
\exp (a w)=\sum_{c \geq 0} \frac{a(c+a)^{c-1}}{c!} x^{c}
$$

if $w=x e^{w}$. This yields

$$
Z=s_{1} \exp \left(Z+\sum_{m \geq 2} \frac{1}{m} Z_{m}\right)=\sum_{c_{1} \geq 1} \frac{c_{1}^{c_{1}-1}}{c_{1}!} s_{1}^{c_{1}} \exp \left(\sum_{m \geq 2} \frac{c_{1}}{m} Z_{m}\right),
$$

which is exactly the desired formula for $k=1$. For the induction step, we note that

$$
Z_{l}=s_{l} \exp \left(\sum_{m \geq 1} \frac{1}{m} Z_{m l}\right)
$$

and thus, by the induction hypothesis,

$$
\begin{aligned}
Z= & \sum_{\substack{c_{1}, \ldots, c_{k-1} \geq 0 \\
c_{1}>0}} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i=2}^{k-1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}} \\
& \exp \left(\frac{1}{k}\left(\sum_{\substack{ \\
c_{k}, d \neq k}} d c_{d}\right) Z_{k}+\sum_{m>k} \frac{1}{m}\left(\sum_{\substack{d \mid m, d<k}} d c_{d}\right) Z_{m}\right) \\
= & \sum_{\substack{c_{1}, \ldots, c_{k}, 1 \geq 0 \\
c_{1}>0}} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i=2}^{k-1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}} \\
& \sum_{c_{k} \geq 0} \frac{1}{c_{k}!\cdot k}\left(\sum_{j \mid k, j \neq k} j c_{j}\right)\left(c_{k}+\frac{1}{k} \sum_{j \mid k, j \neq k} j c_{j}\right)^{c_{k}-1} s_{k}^{c_{k}} \\
& \exp \left(\sum_{l>1} \frac{k c_{k}}{k l} Z_{k l}\right) \exp \left(\sum_{m>k} \frac{1}{m}\left(\sum_{d \mid m, d<k} d c_{d}\right) Z_{m}\right) \\
= & \sum_{\substack{c_{1}, \ldots, c_{c} \geq 0 \\
c_{1}>0}} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i=2}^{k} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}-1} \\
& \exp \left(\sum_{m>k} \frac{1}{m}\left(\sum_{d \mid m, d \leq k} d c_{d}\right) Z_{m}\right) .
\end{aligned}
$$

This finishes the induction.
Corollary 2 The number $t_{n}=\left|\mathcal{T}_{n}\right|$ of rooted trees on n vertices is given by

$$
t_{n}=\sum_{\substack{c_{1}+2 c_{2}+\ldots=n \\ c_{1}>0}} \frac{c_{1}^{c_{1}-1}}{c_{1}!} \prod_{i>1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) .
$$

Proof: Simply set $s_{1}=s_{2}=\ldots=1$ in the identity

$$
\sum_{T \in \mathcal{T}_{n}} Z(\operatorname{Aut}(T))=\sum_{\substack{c_{1}+2 c_{2}+\ldots=n \\ c_{1}>0}} \frac{c_{1}^{c_{1}-1} s_{1}^{c_{1}}}{c_{1}!} \prod_{i>1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) s_{i}^{c_{i}} .
$$

As a second corollary, we obtain Cayley's formula for the number of rooted labeled trees.

Corollary 3 The number of rooted labeled trees on n vertices is given by n^{n-1}.

Proof: Note that the coefficient of s_{1}^{n} in the cycle index of a rooted tree T on n vertices is precisely $|\operatorname{Aut}(T)|^{-1}$. Thus, we have

$$
\sum_{T \in \mathcal{I}_{n}}|\operatorname{Aut}(T)|^{-1}=\frac{n^{n-1}}{n!}
$$

But $\frac{n!}{|\operatorname{Aut} T|}$ is exactly the number of different labelings of T, which finishes the proof.

3 Further applications

Theorem 1 can also be applied to a general class of enumeration problems: let a set \mathcal{B} of combinatorial objects with an additive weight be given, and let $B(z)$ be its counting series. Now, if we want to enumerate trees on n vertices, where an element of \mathcal{B} is assigned to every vertex of the tree, the counting series is given by

$$
\sum_{\substack{c_{1}+2 c_{2}+\ldots=n \\ c_{1}>0}} \frac{c_{1}^{c_{1}-1}}{c_{1}!} B(z)^{c_{1}} \prod_{i>1} \frac{1}{c_{i}!!^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) B\left(z^{i}\right)^{c_{i}} .
$$

The coefficient of z equals the total weight. For example, the counting series for rooted weighted trees on n vertices (i.e. each vertex is assigned a positive integer weight, cf. Harary and Prins [7]) is given by

$$
W(z)=\sum_{\substack{c_{1}+2 c_{2}+\ldots=n \\ c_{1}>0}} \frac{c_{1}^{c_{1}-1}}{c_{1}!}\left(\frac{z}{1-z}\right)^{c_{1}} \prod_{i>1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right)\left(\frac{z^{i}}{1-z^{i}}\right)^{c_{i}} .
$$

The first few instances are

- $n=1: W(z)=\frac{z}{1-z}=z+z^{2}+z^{3}+\ldots$,
- $n=2: W(z)=\frac{z^{2}}{(1-z)^{2}}=z^{2}+2 z^{3}+3 z^{4}+\ldots$,
- $n=3: W(z)=\frac{z^{3}(2+z)}{(1-z)^{2}\left(1-z^{2}\right)}=2 z^{3}+5 z^{4}+10 z^{5}+\ldots$.

Finally, we are going to consider a new application of Theorem 1. This example deals with the decomposability of trees: we call a tree k-decomposable (a special case of the general concept of λ-decomposability, see $[1,16]$) if it has a spanning forest whose components are all of size k. It has been shown by Zelinka [17] that such a decomposition, if it exists, is always unique. The special case $k=2$, which has already been investigated by Moon [11] and Simion [13, 14], corresponds to perfect matchings. Now, let $D(x)$ denote the generating function for the number of k-decomposable rooted trees. Since a decomposable rooted tree is made up from a rooted tree on k vertices (the component
containing the root) and collections of k-decomposable rooted trees attached to each of these k vertices, we obtain the following functional equation for k-decomposable trees:

$$
D(x)=\sum_{\substack{c_{1}+2 c_{2}+\ldots=k \\ c_{1}>0}} \frac{c_{1}^{c_{1}-1}}{c_{1}!} E(x)^{c_{1}} \prod_{i>1} \frac{1}{c_{i}!i^{c_{i}}}\left(\sum_{j \mid i} j c_{j}\right)^{c_{i}-1}\left(\sum_{j \mid i, j \neq i} j c_{j}\right) E\left(x^{i}\right)^{c_{i}}
$$

where $E(x)=x \exp \left(\sum_{m \geq 1} \frac{1}{m} D\left(x^{m}\right)\right)$. For $k=2$, we obtain

$$
D(x)=x^{2} \exp \left(\sum_{m \geq 1} \frac{2}{m} D\left(x^{m}\right)\right)
$$

giving the known counting series for trees with a perfect matching (Sloane's A000151 [15], see also $[11,13,14]$):

$$
D(x)=x^{2}+2 x^{4}+7 x^{6}+26 x^{8}+107 x^{10}+458 x^{12}+\ldots
$$

For $k=3$, to give a new example, we have

$$
D(x)=\frac{3 x^{3}}{2} \exp \left(\sum_{m \geq 1} \frac{3}{m} D\left(x^{m}\right)\right)+\frac{x^{3}}{2} \exp \left(\sum_{m \geq 1} \frac{1}{m}\left(D\left(x^{m}\right)+D\left(x^{2 m}\right)\right)\right)
$$

yielding

$$
D(x)=2 x^{3}+10 x^{6}+84 x^{9}+788 x^{12}+\ldots
$$

Of course, it is possible to calculate the counting series of k-decomposable rooted trees for arbitrary k in this way. The functional equation can also be used to obtain information about the asymptotic behavior (cf. [6, 16]).

Acknowledgment

The author is highly indebted to an anonymous referee for providing him with a lot of valuable information, in particular references $[2,3,4,8,12]$.

References

[1] D. Barth, O. Baudon, and J. Puech. Decomposable trees: a polynomial algorithm for tripodes. Discrete Appl. Math., 119(3):205-216, 2002.
[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1998.
[3] I. Constantineau and J. Labelle. Calcul combinatoire du nombre d'endofonctions et d'arborescences laissées fixes par une permutation. Ann. Sci. Math. Québec, 13(2):3338, 1990.
[4] I. J. Good. Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes. Proc. Cambridge Philos. Soc., 56:367-380, 1960.
[5] I. P. Goulden and D. M. Jackson. Combinatorial enumeration. A Wiley-Interscience Publication. John Wiley \& Sons Inc., New York, 1983. Wiley-Interscience Series in Discrete Mathematics.
[6] F. Harary and E. M. Palmer. Graphical enumeration. Academic Press, New York, 1973.
[7] F. Harary and G. Prins. The number of homeomorphically irreducible trees, and other species. Acta Math., 101:141-162, 1959.
[8] G. Labelle. Some new computational methods in the theory of species. In Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture Notes in Math., pages 192-209. Springer, Berlin, 1986.
[9] K. A. McKeon. The expected number of symmetries in locally-restricted trees. I. In Graph theory, combinatorics, and applications. Vol. 2 (Kalamazoo, MI, 1988), Wiley-Intersci. Publ., pages 849-860. Wiley, New York, 1991.
[10] K. A. McKeon. The expected number of symmetries in locally restricted trees. II. Discrete Appl. Math., 66(3):245-253, 1996.
[11] J. W. Moon. The number of trees with a 1-factor. Discrete Math., 63(1):27-37, 1987.
[12] R. W. Robinson. Enumeration of non-separable graphs. J. Combinatorial Theory, 9:327-356, 1970.
[13] R. Simion. Trees with a 1-factor: degree distribution. In Proceedings of the fifteenth Southeastern conference on combinatorics, graph theory and computing (Baton Rouge, La., 1984), volume 45, pages 147-159, 1984.
[14] R. Simion. Trees with 1-factors and oriented trees. Discrete Math., 88(1):93-104, 1991.
[15] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences.
[16] S. Wagner. On the number of decomposable trees. In Proceedings of the Fourth Colloquium on Mathematics and Computer Science (Nancy 2006), pages 301-308, 2006.
[17] B. Zelinka. Partitionability of trees. Czechoslovak Math. J., 38(113)(4):677-681, 1988.

[^0]: *The author is supported by project S9611 of the Austrian Science Foundation FWF

