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Abstract

It is well known that for P and Q lattice polytopes, the Ehrhart polynomial of
P×Q satisfies LP×Q(t) = LP (t)LQ(t). We show that there is a similar multiplicative
relationship between the Ehrhart series for P , for Q, and for the free sum P ⊕ Q

that holds when P is reflexive and Q contains 0 in its interior.

Let P be a lattice polytope of dimension d, i.e. a convex polytope in R
n whose vertices

are elements of Z
n and whose affine span has dimension d. A remarkable theorem due

to E. Ehrhart, [4], asserts that for non-negative integers t the number of lattice points in
the tth dilate of P is given by a degree d polynomial in t denoted by LP (t) and called the
Ehrhart polynomial of P . We let

EhrP (x) =
∑

t≥0

LP (t)xt =

∑d

j=0 h∗
jx

j

(1 − x)d+1

denote the rational generating function for this polynomial (as in [7], chapter 4), called
the Ehrhart series of P . See [3] for more information regarding Ehrhart theory. In this
note we are concerned with a multiplicative decomposition for EhrF (x) when F is a free
sum of two lattice polytopes subject to some restrictions on the summands.

For two polytopes P ⊆ R
dP and Q ⊆ R

dQ of dimension dP and dQ, define the free sum
to be P ⊕ Q = conv{(0P × Q) ∪ (P × 0Q)} ⊆ R

dP +dQ . Let

P∆ =
{

x ∈ R
dP : x · p ≤ 1 for all p ∈ P

}

denote the dual of P and P ◦ denote the interior of P . If 0 ∈ P ◦ and 0 ∈ Q◦, then the free
sum operation is dual to the product operation, i.e. (P ×Q)∆ = (P∆)⊕(Q∆), [5]. A basic
example of this duality can be seen with the dual polytopes given by the d-dimensional
crosspolytope and the d-dimensional cube, being the free sum of d copies of the interval
[−1, 1] and the product of d copies of [−1, 1], respectively.
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From the perspective of Ehrhart theory, it is natural to ask which lattice polytopes
have duals that are also lattice polytopes and hence have Ehrhart polynomials. A polytope
with this property is called reflexive. Free sums of reflexive polytopes have recently played
a crucial role in [2]. Reflexive polytopes have many rich properties, as seen in the following
lemma.

Lemma 1 ([1] and [6]) P is reflexive if and only if P is a lattice polytope with 0 ∈ P ◦

that satisfies one of the following (equivalent) conditions:

i. P∆ is a lattice polytope.

ii. LP ◦(t + 1) = LP (t) for all t ∈ N, i.e. all lattice points in R
dP sit on the boundary

of some non-negative integral dilate of P .

iii. h∗
i = h∗

dP −i for all i, where h∗
i is the ith coefficient in the numerator of the Ehrhart

series for P .

For a product of polytopes, it is easy to see that LP×Q(t) = LP (t)LQ(t). The follow-
ing theorem indicates that Ehrhart polynomials also behave nicely for the free sum if a
reflexive polytope is involved.

Theorem 1 If P is a dP -dimensional reflexive polytope in R
dP and Q is a dQ-dimensional

lattice polytope in R
dQ with 0 ∈ Q◦, then

EhrP⊕Q(x) = (1 − x)EhrP (x)EhrQ(x). (1)

The key point in the following proof is that the R
dP and R

dQ components of lattice
points in t(P⊕Q) cannot simultaneously be far from the origin. For what follows, consider
vectors in P and Q as actually being in P ⊕ 0Q and 0P ⊕ Q, respectively.

Proof: Note that (1) is equivalent to

LP⊕Q(t) = LQ(t) +

t
∑

k=1

LQ(t − k)(LP (k) − LP (k − 1)) (2)

for every t ∈ N. This equivalence is seen by expanding the product on the right hand side
of (1) as follows:

(1 − x)EhrP (x)EhrQ(x)xi = (1 − x)(
∑

r≥0

LQ(r)xr)(
∑

s≥0

LP (s)xs)

= (
∑

r≥0

LQ(r)xr)(
∑

s≥0

LP (s)xs −
∑

s≥1

LP (s − 1)xs)

= (
∑

r≥0

LQ(r)xr)(1 +
∑

s≥1

(LP (s) − LP (s − 1))xs)

=
∑

t≥0

[LQ(t) +
t

∑

k=1

LQ(t − k)(LP (k) − LP (k − 1))]xt.

We will therefore show that (2) holds for every t ∈ N and hence be done.
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Suppose first that k is a real number between 0 and t, t ∈ N. For p ∈ kP , q ∈ (t−k)Q,
we have p

k
∈ P, q

t−k
∈ Q, and we see that

(

k

t

) (

tp

k

)

+

(

t − k

t

) (

tq

t − k

)

=

[

p

q

]

∈ tP ⊕ tQ = t(P ⊕ Q).

Thus there is a copy of kP × (t − k)Q in t(P ⊕ Q) for any such k.
We will now show that t(P ⊕ Q) =

⋃

k kP × (t − k)Q. Suppose p ∈ ∂(kP ) and
[

p

q

]

∈ t(P ⊕ Q). We will show that q cannot be outside (t − k)Q.

Note that (tP )∆ = 1
t
P∆. So,

(t (P ⊕ Q))∆ =
1

t
(P∆) ×

1

t
(Q∆).

If p

k
∈ ∂P then there exists some p∆ ∈ P∆ such that p∆ · p

k
= 1. Thus

p ·
1

t
p∆ =

k

t

(

p∆ ·
p

k

)

=
k

t
.

If q

α
∈ ∂Q, where α > (t − k), then similarly there exists q∆ ∈ Q∆ such that

q ·
1

t
q∆ =

α

t

(

q∆ ·
q

α

)

=
α

t
>

t − k

t
.

But, we know that
(P ⊕ Q)∆ = P∆ × Q∆

and thus
1

t

[

p∆

q∆

]

∈
1

t
(P∆ × Q∆)

has a dot product with

[

p

q

]

∈ t(P ⊕ Q) of greater than one, a contradiction.

Thus, every lattice point in t(P ⊕Q) can be assigned uniquely to a lattice point in tP

by projection onto the R
dP coordinate. Further, as P is reflexive, all of the lattice points

in R
dP are contained in the boundary of kP for some k ∈ N. Therefore, the lattice points

in t(P ⊕ Q) can be partitioned as

⋃

k∈{0,...,t}

{[

p

q

]

: p ∈ ∂(kP ), q ∈ (t − k)Q

}

. (3)

It is immediate that (2) counts the lattice points in t(P ⊕ Q) using this partition. �

Note that the product on the right hand side of (1) corresponds to multiplying the
numerators of EhrP (x) and EhrQ(x) and dividing by (1 − x)dP +dQ+1. So, just as the
product polytope P × Q induces a product of Ehrhart polynomials, we see that the free
sum induces a product of the numerators of the Ehrhart series of the summands. It is
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interesting that the Ehrhart polynomial and the Ehrhart series are “dual” to each other
in this sense. It would also be interesting to find other examples of duality involving
polynomials and their associated series where similar patterns arise.

A simple example shows that this theorem does not hold in general. Given P = [−2, 2],
we see that

EhrP (x) =
1 + 3x

(1 − x)2
,

while

EhrP⊕P (x) =
1 + 10x + 5x2

(1 − x)3
.

Thus, even for normal polytopes, this relationship does not always hold.
However, reflexivity is not necessary either. If 0 ∈ Q, the pyramid of Q is given by

[0, 1] ⊕ Q. Though [0, 1] is not reflexive, it is well known that

Ehr[0,1]⊕Q(x) = (1 − x)Ehr[0,1](x)EhrQ(x).

Despite not being reflexive, [0, 1] shares the property with reflexive polytopes that the
lattice point in t[0, 1]− (t−1)[0, 1] lies on the boundary of t[0, 1]. Since [0, 1] is “half” of a
reflexive polytope, the lattice points in t([0, 1] ⊕ Q) are “filtered” uniquely by the lattice
points in t[0, 1] and hence we get our result. This behavior can be generalized as follows:

Corollary 1 Suppose that P and Q are as in Theorem 1 and that {Hi}
k
i=1 and {Kj}

l
j=1

are halfspaces of the form Hi =
{

y ∈ R
dP : y · ai ≥ 0

}

for some ai ∈ R
dP and Kj =

{

u ∈ R
dQ : u · bj ≥ 0

}

for some bj ∈ R
dQ , respectively. Set H = ∩Hi and K = ∩Kj. If

H ∩ P and K ∩ Q are lattice polytopes, then

Ehr(H∩P )⊕(K∩Q)(x) = (1 − x)EhrH∩P (x)EhrK∩Q(x). (4)

Proof: We can extend Hi and Kj to halfspaces Ĥi ⊆ R
dP +dQ and K̂j ⊆ R

dP +dQ by
setting

Ĥi =

{

z ∈ R
dP +dQ :

[

ai

0Q

]

· z ≥ 0

}

and

K̂j =

{

z ∈ R
dP +dQ :

[

0P

bi

]

· z ≥ 0

}

.

We will first show that

t ((H ∩ P ) ⊕ (K ∩ Q)) =
(

∩iĤi

)

∩
(

∩jK̂j

)

∩ t (P ⊕ Q) . (5)

For the “⊆” containment, let

[

p

q

]

∈ t ((H ∩ P ) ⊕ (K ∩ Q)). Then

[

p

q

]

=
∑

αmpm +
∑

βnqn

where each pm ∈ t (H ∩ P ), each qn ∈ t (K ∩ Q),
∑

αm +
∑

βn = 1, and αm, βn ≥ 0.
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Thus, for all i,
[

ai

0Q

]

·

[

p

q

]

=

[

ai

0Q

]

·

[
∑

αmpm
∑

βnqn

]

≥ 0

and, for all j,
[

0P

bj

]

·

[

p

q

]

=

[

0P

bj

]

·

[
∑

αmpm
∑

βnqn

]

≥ 0.

Hence we see that

[

p

q

]

∈
(

∩iĤi

)

∩
(

∩jK̂j

)

∩ t (P ⊕ Q).

For the “⊇” containment, let

[

p

q

]

∈
(

∩iĤi

)

∩
(

∩jK̂j

)

∩ t (P ⊕ Q). We know

that p · ai ≥ 0 for all i, q · bj ≥ 0 for all j and (from the proof of Theorem 1) that
[

p

q

]

∈ kP × (t − k)Q for some real number 0 ≤ k ≤ t. Thus, p

k
∈ H ∩ P , q

t−k
∈ K ∩ Q,

and
(

k

t

) (

tp

k

)

+

(

t − k

t

) (

tq

t − k

)

=

[

p

q

]

∈ t ((H ∩ P ) ⊕ (K ∩ Q)) ,

hence we are done with (5).
Therefore, to count the lattice points in t ((H ∩ P ) ⊕ (K ∩ Q)) we can count the lattice

points in
(

∩iĤi

)

∩
(

∩jK̂j

)

∩t (P ⊕ Q). This we can do by using our partition (3) from the

proof of Theorem 1 and restricting our count to points satisfying the halfspace inequalities.
That is exactly what is being recorded by

Ehr(H∩P )⊕(K∩Q)(x) = (1 − x)EhrH∩P (x)EhrK∩Q(x). �
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