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Abstract
For n a positive integer, we show that the number of of 2n-tuples of integers

that are the row and column sums of some n × n matrix with entries in {0, 1} is
evenly divisible by n+1. This confirms a conjecture of Benton, Snow, and Wallach.

We also consider a q-analogue for m×n matrices. We give an efficient recursion
formula for this analogue. We prove a divisibility result in this context that implies
the n + 1 divisibility result.

1 Introduction

We study the number p(m, n) of (m + n)-tuples of integers that are the row and col-
umn sums of some m × n matrix with entries in {0, 1}. For each n ≥ 1, the sequence
{p(m, n)}∞m=1 is a linear recursion of degree n. Moreover, this recursion is annihilated
by the polynomial (T − (n + 1))n. It follows that if 1 ≤ n ≤ m, then p(m, n) is evenly
divisible by (n + 1)m−n+1. This confirms a conjecture of Benton, Snow, and Wallach.

For positive integers m and n, letM =Mm,n be the set of m×n matrices with entries
in {0, 1}. For M inM, we write M = (Mij).

We have two vector-valued functions on M: the vector x(M) = (x1, . . . , xm) of row
sums, where xi =

∑
1≤j≤n Mij for 1 ≤ i ≤ m, and the vector y(M) = (y1, . . . , yn) of

column sums, where yj =
∑

1≤i≤m Mij for 1 ≤ j ≤ n.
Define RC = RCm,n to be the set of pairs of row and column sums (x(M), y(M)) as

M ranges over M. Our main result concerns the cardinality p(m, n) of RCm,n.
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Theorem 1 We have

1. p(1, 1) = 2.

2. p(m, n) = p(n, m) for m, n ≥ 1.

3. If 1 ≤ n ≤ m, then p(m, n) =
∑

1≤i≤n(−1)i+1
(

n
i

)
(n + 1)ip(m− i, n).

Of these statements, part (1) is clear, and part (2) follows by taking transpose, for
x(M t) = y(M) and y(M t) = x(M).

Part (3) says that, for each n ≥ 1, the sequence {p(m, n)}∞m=1 is a linear recursion of
degree n that is annihilated by the polynomial (T − (n + 1))n. Note that, for any fixed n,
the recursion (3) is equivalent to p(m, n) = rn(m)(n + 1)m for some polynomial rn(m) of
degree ≤ n− 1.

Part (3) implies the following corollary.

Corollary 2 The number p(m, n) is evenly divisible by (n + 1)m−n+1 if 1 ≤ n ≤ m.

Indeed each of the n terms in the sum representing p(m, n) is divisible by this quantity.
A second consequence of part (3) is an efficient algorithm for computing p(m, n).

Algorithm 3 We construct a table of the values p(i, j), for 1 ≤ i, j ≤ m by induction on
j. First we fill in p(i, 1) = 2i, for 1 ≤ i ≤ m. Next, for a given j ≤ m, having filled in
p(i, j′) for 1 ≤ j′ < j, we fill in p(i, j) by induction on i, using part (2) if i ≤ j and part
(3) if i > j.

2 A generalization

We mention a mild generalization of Theorem 1 and its corollary. Define the polynomial
P = Pm,n(q) =

∑
(x,y)∈RCm,n

q|x|, where |x| = x1 + · · · + xm. We recover p(m, n) by
evaluating the polynomial Pm,n at q = 1.

Theorem 4 We have

1. P1,1 = 1 + q.

2. Pm,n = Pn,m for m, n ≥ 1.

3. If 1 ≤ n ≤ m, then Pm,n =
∑

1≤i≤n(−1)i+1
(

n
i

)
(1 + q + · · ·+ qn)iPm−i,n.

4. If 1 ≤ n ≤ m, then the polynomial Pm,n is evenly divisible by (1+ q + · · ·+ qn)m−n+1

in Z[x].

Part (4) answers a conjecture of J. Benton, R. Snow, and N. Wallach in [1].
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3 Start of the proof

Let N = {0, 1, . . .}. Define the weight of a matrix N to be the sum of its entries, and
write |N | for the weight of N . With this definition, we have |x(M)| = |M | = |y(M)| for
M ∈ M. Thus, a necessary condition for x and y to be row and column sums of a matrix
is that they have the same weight.

Clearly, the row sums of a member ofM are at most n. Conversely, if x = (x1, . . . , xm)
and 0 ≤ xi ≤ n, let R = R(x) be the m × n matrix such that Rij = 1 if 1 ≤ j ≤ xi and
Rij = 0 otherwise. Then R lies inM and has row sums equal to x. This proves:

Lemma 5 Let x = (x1, . . . , xm) ∈ Nm. Then x is the vector of row sums of an m × n
matrix with entries in {0, 1} if and only if xi ≤ n for all i.

Let aj be the number of rows of R that have exactly j ones. Write a = (a0, . . . , an) =
a(x) in Nn+1. We note that |a| = m, and write

(
m
a

)
for the multinomial coefficient m!

a0!···an!

With this notation, we have the following lemma.

Lemma 6 Let a in Nn+1 satisfy |a| = m. Then the number of x in Nm such that a(x) = a
is

(
m
a

)
.

Let λ = (λ1, . . . , λn) = λ(x) be the column sums of the matrix R constructed above.
It satisfies the dominance condition:

λ1 ≥ · · · ≥ λn. (1)

Note that a in Nn+1 with |a| = m determines a dominant λ in Nn with m ≥ λ1,
and vice versa. For, given λ, set λ0 = m and λn+1 = 0, and define aj = λj − λj+1, for
j = 0, . . . , n. Conversely, given a in Nn+1, define λj = aj + · · ·+ an.

The weights of these vectors are related by |x| = |λ| = ∑
0≤j≤n jaj .

Given y, λ in Nn with λ dominant, we define y � λ if

y1 + · · ·+ yj ≤ λ1 + · · ·+ λj , (2)

for all j in the range 1 ≤ j ≤ n.
The symmetric group Sn acts on Nn by permuting coordinates. For y ∈ Nn and

σ ∈ Sn, we set yσ = (yσ(1), . . . , yσ(n)).
The next result, proved in [2, Corollary 6.2.5] or [3, Theorem 16.1], gives necessary

and sufficient conditions for a pair of vectors to lie in RCm,n.

Lemma 7 Let x in Nm be the vector of row sums of a matrix in M, and set λ = λ(x).
Then (x, y) ∈ RC if and only if y ∈ Nn satisfies

(i) |y| = |λ|, and

(ii) yσ � λ for all σ ∈ Sn.
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Let N(λ) be the number of y ∈ Nn that satisfy (i) and (ii). Then

Pm,n(q) =
∑

x∈{0,...,n}m

N(λ(x))q|x|.

Combined with Lemma 6, this gives:

Pm,n(q) =
∑

a∈Nn+1

|a|=m

(
m

a

)
N(λ)qa1+2a2+···+nan . (3)

4 Key Lemma

Lemma 8 Let n ≥ 1. There is a polynomial G = Gn in Q[z1, . . . , zn] of total degree
≤ n− 1 such that N(λ) = G(λ1, . . . , λn) for any dominant λ = (λ1, . . . , λn) in Nn.

To count N(λ), we will condition on the first term y1 of the vector y. We will need
a subsidiary function. Let N(λ; t) be the number of solutions of (i) and (ii) with y1 = t.
By definition, N(λ) =

∑
t≥0 N(λ; t).

We need one more definition to state the next lemma. Suppose λ = (λ1, . . . , λn) has
n parts, and λj+1 < t ≤ λj . Then we define µ(t) with n− 1 parts to be

µ(t) = (λ1, . . . , λj−1, λj + λj+1 − t, λj+2, . . . , λn).

(In the definition of µ(t), λj and λj+1 have been removed and λj + λj+1 − t has been
inserted.) Note that if λ is dominant, then so also is µ(t) since λj > λj + λj+1− t ≥ λj+1.

Lemma 9 We have:

(a) If t < λn or if t > λ1, then N(λ; t) = 0.

(b) N(λ; λn) = N((λ1, . . . , λn−1)).

(c) Suppose that λj+1 < t ≤ λj. Then N(λ; t) = N(µ(t)).

Proof. If y1 > λ1 then (ii) is violated. Suppose y satisfies (i) and y1 < λn. Then

y2 + y3 + · · ·+ yn > λ1 + λ2 + · · ·+ λn−1,

thus (ii) is violated if σ(n) = 1. Therefore N(λ, y1) = 0, proving (a), and we turn to (b).
Set λ′ = (λ1, . . . , λn−1). We claim that the correspondence

(y1, y2 . . . , yn)←→ (y2 . . . , yn)

gives a bijection between the sets counting N(λ; y1) and N(λ′). One direction follows
by definition: if (y1, . . . , yn) is counted by N(λ), then (y2, . . . , yn) is counted by N(λ′).
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Conversely, suppose that (y2, . . . , yn) is counted by N(λ′). Now (i) (for y and λ) follows
since y1 = λn. To prove (ii), let σ ∈ Sn. Set k = σ−1(1). Now

yσ(1) + · · ·+ yσ(j) ≤ (λ1 + · · ·+ λj−1) + λn

≤ λ1 + · · ·+ λj

if j ≥ k. The inequality is clear if j < k.
Part (c) is proved using the same correspondence used in part (b). The straightforward

but tedious calculation is omitted.

Proof of Lemma 8. Suppose n = 1 and let λ = (λ1). Then N(λ1) = 1, a polynomial of
degree 0.

Thus the lemma holds for n = 1. We proceed by induction to prove it for all n.
Suppose the lemma has been proved for n and we wish to prove it for n + 1.

We break up the sum that counts N(λ), by conditioning on y1. By Lemma 9(a), it is
enough to consider y1 in the range λn ≤ y1 ≤ λ1. Either y1 = λn, or λj+1 < y1 ≤ λj for a
unique j in the range 1 ≤ j < n, and therefore

N(λ) = N(λ; λn) +
∑

1≤j<n

∑
λj+1<t≤λj

N(λ; t).

In view of Lemma 9(b) and (c), this yields

N(λ) = N((λ1, . . . , λn−1)) +
∑

1≤j<n

∑
λj+1<t≤λj

N(µ(t)). (4)

To see that N(λ) is a polynomial of degree at most n, it suffices to show that each
term on the right is a polynomial of total degree at most n. This is true for the first term
N((λ1, . . . , λn−1)) by the inductive hypothesis.

Each of the subsequent terms is itself a sum. By the inductive hypothesis, each
summand in each term is a polynomial of degree ≤ n− 1. But, for any polynomial f , we
have that

∑
x<t≤y f(t) is a polynomial in x and y of degree ≤ deg f + 1.

By induction and (4) it follows that the coefficients of G are rational numbers. This
proves the lemma.

5 End of the proof

Since G is a polynomial of degree ≤ n − 1 by Lemma 8, so also is H defined by
H(a0, a1, . . . , an) = Gn(λ1, . . . , λn), since the transformation from λ to a is linear.

By (3) we have

Pm,n =
∑

a∈Nn+1

|a|=m

(
m

a

)
H(a0, . . . , an)qa1+···+nan. (5)
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Proof of Theorem 4. We are free to assume n ≤ m.
We define the function E of the variables z0, . . . , zn by

E(z0, . . . , zn) =
∑

a∈Nn+1

|a|=m

(
m

a

)
H(a0, . . . , an)ea0z0+···+anzn . (6)

By (5) and (6), we have Pm,n(q) = E(0, log(q), 2 log(q), . . . , n log(q)).
The following lemma is proved by induction.

Lemma 10 Let H ∈ Q[z0, . . . , zn] be a polynomial. Write z = (z0, . . . , zn) and a =
(a0, . . . , an), and set a · z = a0z0 + · · ·+ anzn. Then there is a linear differential operator
D in z0, . . . , zn such that H(z)ea·z = Dea·z. Moreover, deg(D) = deg(H).

By the lemma, we have

E(z) =
∑

a∈Nn+1

|a|=m

(
m

a

)
Dea·z = D

(∑(
m

a

)
ea·z

)
.

By the multinomial theorem

∑
a∈Nn+1

|a|=m

(
m

a

)
ea·z = (ez0 + · · ·+ ezn)m,

whence E is (ez0 + · · ·+ ezn)m−n+1 times a polynomial f1(m, ez0, . . . , ezn) whose degree in
m is ≤ n− 1.

Set f(m, q) = f1(m, 1, q, . . . , qn). When evaluated at zi = i log(q), ez0 + · · · + ezn

becomes (1 + q + · · ·+ qn), whence Pm,n = f(m, q)(1 + q + · · ·+ qn)m−n+1. Since f(m, q)
is a polynomial in m of degree at most n− 1, part (3) follows immediately.

Set π = (1 + q + · · ·+ qn)n−m+1. Finally, to prove part (4), it remains to show that,
for each m, the coefficients of f(m, q), as a polynomial in q, are integers.

One way to see this is to regard f = Pm,n/π as a power series identity and formally
equate coefficients of qi, because π is a polynomial in q with constant term 1. Theorem 4
is proved.
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