An addition theorem on the cyclic group $\mathbb{Z}_{p^{\alpha}q^{\beta}}$

Hui-Qin Cao

Department of Applied Mathematics Nanjing Audit University, Nanjing 210029, China caohq@nau.edu.cn

Submitted: May 22, 2005; Accepted: Apr 30, 2006; Published: May 12, 2006 Mathematics Subject Classifications: 11B75, 20K99

Abstract

Let n > 1 be a positive integer and p be the smallest prime divisor of n. Let S be a sequence of elements from $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ of length n + k where $k \ge \frac{n}{p} - 1$. If every element of \mathbb{Z}_n appears in S at most k times, we prove that there must be a subsequence of S of length n whose sum is zero when n has only two distinct prime divisors.

1 Introduction

Let G be an additive abelian group and $S = \{a_i\}_{i=1}^m$ be a sequence of elements from G. Denote $\sigma(S) = \sum_{i=1}^m a_i$. We say S is zero-sum if $\sigma(S) = 0$. For each integer $1 \le r \le m$, we denote

$$\sum_{r} S = \{a_{i_1} + a_{i_2} + \dots + a_{i_r} : 1 \le i_1 < i_2 < \dots < i_r \le m\}.$$

Let h(S) denote the maximal multiplicity of the terms of S.

In 1961, Erdős-Ginzburg-Ziv [1] proved the following theorem.

EGZ Theorem If S is a sequence of elements from \mathbb{Z}_n of length 2n-1, then $0 \in \sum_n S$.

The inverse problem to EGZ Theorem is how to describe the structure of a sequence S in \mathbb{Z}_n with $0 \notin \sum_n S$. Recently W. D. Gao [2] made a conjecture as follows and proved it for $n = p^l$ for any prime p and any integer l > 1.

Conjecture Let n > 1, k be positive integers and p be the smallest prime divisor of n. Let S be a sequence of elements from \mathbb{Z}_n of length n + k with $k \ge \frac{n}{p} - 1$. If $0 \notin \sum_n S$ then h(S) > k. In this paper we shall prove the Conjecture for n which has only two distinct prime divisors.

Theorem 1 The above Conjecture is true for $n = p^{\alpha}q^{\beta}$ where p, q are distinct primes and α , β are positive integers.

2 Proof of Theorem 1

For any subset A of an abelian group G let H(A) denote the maximal subgroup of G such that A + H(A) = A. What we state below is a classical theorem of Kneser [3].

Kneser's Theorem Let G be a finite abelian group. Let A_1, A_2, \ldots, A_n be nonempty subsets of G. Then

$$|A_1 + A_2 + \dots + A_n| \ge \sum_{i=1}^n |A_i + H| - (n-1)|H|,$$

where $H = H(A_1 + A_2 + \dots + A_n).$

Lemma 1 Let $k \ge 2, n = p_1^{\alpha_1} p_2^{\alpha_2}$ be integers where p_1, p_2 are distinct primes and α_1, α_2 are positive integers. Let S be a sequence of elements from $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ of length n + k. If $h(S) \le k$ then $H(\sum_k S) \ne \{0\}$.

Proof Suppose that $H(\sum_k S) = \{0\}$. Let N_i be the subgroup of \mathbb{Z}_n with $|N_i| = p_i$ for i = 1, 2. Then $\sum_k S + N_i \not\subseteq \sum_k S$ for i = 1, 2. And so there exist subsequences $\{a_i^{(i)}\}_{i=1}^k (i = 1, 2)$ of S such that

$$\sum_{j=1}^{k} a_j^{(i)} + N_i \not\subseteq \sum_k S, \quad i = 1, 2.$$

We can assume that $a_j^{(1)} = a_j^{(2)}$ for $1 \le j \le l$ and $a_j^{(1)} \ne a_r^{(2)}$ for $l < j, r \le k$. Then

$$\{a_1^{(1)}, a_2^{(1)}, \cdots, a_l^{(1)}, a_{l+1}^{(1)}, \cdots, a_k^{(1)}, a_{l+1}^{(2)}, \cdots, a_k^{(2)}\}$$

is a subsequence of S. Now we distribute the terms of S into k subsets A_1, A_2, \ldots, A_k . At first, we put $a_j^{(1)}$ into A_j for $1 \leq j \leq l$ and $a_j^{(1)}, a_j^{(2)}$ into A_j for $l < j \leq k$. Then the other terms of S are put into A_1, A_2, \cdots, A_k such that each A_i does not include identical terms. Since $h(S) \leq k$, we can do it. Therefore

$$\sum_{j=1}^{k} a_j^{(1)} \in A_1 + A_2 + \dots + A_k,$$

The electronic journal of combinatorics 13 (2006), #N9

and

$$\sum_{j=1}^{k} a_j^{(2)} = \sum_{j=1}^{l} a_j^{(1)} + \sum_{j=l+1}^{k} a_j^{(2)} \in A_1 + A_2 + \dots + A_k.$$

As $A_1 + A_2 + \dots + A_k \subseteq \sum_k S$, we have

$$\sum_{j=1}^{k} a_{j}^{(i)} + N_{i} \not\subseteq A_{1} + A_{2} + \dots + A_{k}, \quad i = 1, 2.$$

It follows that

$$N_i \not\subseteq H(A_1 + A_2 + \dots + A_k), \quad i = 1, 2.$$

Since every nontrivial subgroup of \mathbb{Z}_n contains either N_1 or N_2 , we must have $H(A_1 + A_2 + \cdots + A_k) = \{0\}$. As a result, Kneser's Theorem implies

$$|A_1 + A_2 + \dots + A_k| \ge \sum_{j=1}^k |A_j| - (k-1) = n+1,$$

contradicting $A_1 + A_2 + \dots + A_k \subseteq \mathbb{Z}_n$.

Now the proof is complete.

Lemma 2 (Gao, [2]) Let G be a cyclic group of order n. Let S be a sequence of elements from G of length n + k where $k \ge \frac{n}{p} - 1$ and p is the smallest prime divisor of n. Then

$$\sum_{n} S \bigcap H \neq \emptyset$$

for any nontrivial subgroup H of G.

Proof For any nontrivial subgroup H of G, let $\varphi : G \to G/H$ be the natural homomorphism. Then $\varphi(S)$ is a sequence of elements from G/H of length n + k. Since $|H| \ge p$,

$$n+k \ge n+\frac{n}{p}-1 \ge |H||G/H|+|G/H|-1,$$

using EGZ Theorem repeatedly, we can find |H| disjoint zero-sum subsequences of $\varphi(S)$, each of which has length |G/H|. Thus we find a subsequence of S with length |H||G/H| = n, whose sum is in H, i.e., $\sum_n S \cap H \neq \emptyset$. We are done.

Proof of Theorem 1 Suppose that $h(S) \leq k$. By Lemma 1, $H = H(\sum_k S) \neq \{0\}$. Thus Lemma 2 implies that $\sum_n S \cap H \neq \emptyset$. Therefore we have a subsequence $\{a_i\}_{i=1}^k$ of S such that $\sigma(S) - \sum_{i=1}^k a_i \in H$. And so

$$\sigma(S) \in \sum_{i=1}^{k} a_i + H \subseteq \sum_k S + H = \sum_k S.$$

It follows that $0 \in \sum_{n} S$. This ends the proof.

Acknowledgment. I would like to thank W. D. Gao for his report in which he introduced his conjecture.

References

- P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 F(1961), 41-43.
- [2] W. D. Gao, R. Thangadurai and J. Zhuang, Addition theorems on the cyclic group \mathbb{Z}_{p^n} , preprint.
- [3] M. Kneser, Ein satz über abelsche gruppen mit anwendungen auf die geometrie der zahlen, Math. Z., 61(1955), 429-434.