An addition theorem on the cyclic group $\mathbb{Z}_{p^{\alpha} q^{\beta}}$

Hui-Qin Cao
Department of Applied Mathematics
Nanjing Audit University, Nanjing 210029, China
caohq@nau.edu.cn

Submitted: May 22, 2005; Accepted: Apr 30, 2006; Published: May 12, 2006
Mathematics Subject Classifications: 11B75, 20K99

Abstract

Let $n>1$ be a positive integer and p be the smallest prime divisor of n. Let S be a sequence of elements from $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ of length $n+k$ where $k \geq \frac{n}{p}-1$. If every element of \mathbb{Z}_{n} appears in S at most k times, we prove that there must be a subsequence of S of length n whose sum is zero when n has only two distinct prime divisors.

1 Introduction

Let G be an additive abelian group and $S=\left\{a_{i}\right\}_{i=1}^{m}$ be a sequence of elements from G. Denote $\sigma(S)=\sum_{i=1}^{m} a_{i}$. We say S is zero-sum if $\sigma(S)=0$. For each integer $1 \leq r \leq m$, we denote

$$
\sum_{r} S=\left\{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}: 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq m\right\}
$$

Let $h(S)$ denote the maximal multiplicity of the terms of S.
In 1961, Erdős-Ginzburg-Ziv [1] proved the following theorem.
EGZ Theorem If S is a sequence of elements from \mathbb{Z}_{n} of length $2 n-1$, then $0 \in \sum_{n} S$.

The inverse problem to EGZ Theorem is how to describe the structure of a sequence S in \mathbb{Z}_{n} with $0 \notin \sum_{n} S$. Recently W. D. Gao [2] made a conjecture as follows and proved it for $n=p^{l}$ for any prime p and any integer $l>1$.

Conjecture Let $n>1, k$ be positive integers and p be the smallest prime divisor of n. Let S be a sequence of elements from \mathbb{Z}_{n} of length $n+k$ with $k \geq \frac{n}{p}-1$. If $0 \notin \sum_{n} S$ then $h(S)>k$.

In this paper we shall prove the Conjecture for n which has only two distinct prime divisors.

Theorem 1 The above Conjecture is true for $n=p^{\alpha} q^{\beta}$ where p, q are distinct primes and α, β are positive integers.

2 Proof of Theorem 1

For any subset A of an abelian group G let $H(A)$ denote the maximal subgroup of G such that $A+H(A)=A$. What we state below is a classical theorem of Kneser [3].

Kneser's Theorem Let G be a finite abelian group. Let $A_{1}, A_{2}, \ldots, A_{n}$ be nonempty subsets of G. Then

$$
\left|A_{1}+A_{2}+\cdots+A_{n}\right| \geq \sum_{i=1}^{n}\left|A_{i}+H\right|-(n-1)|H|
$$

where $H=H\left(A_{1}+A_{2}+\cdots+A_{n}\right)$.
Lemma 1 Let $k \geq 2, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ be integers where p_{1}, p_{2} are distinct primes and α_{1}, α_{2} are positive integers. Let S be a sequence of elements from $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ of length $n+k$. If $h(S) \leq k$ then $H\left(\sum_{k} S\right) \neq\{0\}$.

Proof Suppose that $H\left(\sum_{k} S\right)=\{0\}$. Let N_{i} be the subgroup of \mathbb{Z}_{n} with $\left|N_{i}\right|=p_{i}$ for $i=1,2$. Then $\sum_{k} S+N_{i} \nsubseteq \sum_{k} S$ for $i=1,2$. And so there exist subsequences $\left\{a_{j}^{(i)}\right\}_{j=1}^{k}(i=1,2)$ of S such that

$$
\sum_{j=1}^{k} a_{j}^{(i)}+N_{i} \nsubseteq \sum_{k} S, \quad i=1,2
$$

We can assume that $a_{j}^{(1)}=a_{j}^{(2)}$ for $1 \leq j \leq l$ and $a_{j}^{(1)} \neq a_{r}^{(2)}$ for $l<j, r \leq k$. Then

$$
\left\{a_{1}^{(1)}, a_{2}^{(1)}, \cdots, a_{l}^{(1)}, a_{l+1}^{(1)}, \cdots, a_{k}^{(1)}, a_{l+1}^{(2)}, \cdots, a_{k}^{(2)}\right\}
$$

is a subsequence of S. Now we distribute the terms of S into k subsets $A_{1}, A_{2}, \ldots, A_{k}$. At first, we put $a_{j}^{(1)}$ into A_{j} for $1 \leq j \leq l$ and $a_{j}^{(1)}, a_{j}^{(2)}$ into A_{j} for $l<j \leq k$. Then the other terms of S are put into $A_{1}, A_{2}, \cdots, A_{k}$ such that each A_{i} does not include identical terms. Since $h(S) \leq k$, we can do it. Therefore

$$
\sum_{j=1}^{k} a_{j}^{(1)} \in A_{1}+A_{2}+\cdots+A_{k}
$$

and

$$
\sum_{j=1}^{k} a_{j}^{(2)}=\sum_{j=1}^{l} a_{j}^{(1)}+\sum_{j=l+1}^{k} a_{j}^{(2)} \in A_{1}+A_{2}+\cdots+A_{k}
$$

As $A_{1}+A_{2}+\cdots+A_{k} \subseteq \sum_{k} S$, we have

$$
\sum_{j=1}^{k} a_{j}^{(i)}+N_{i} \nsubseteq A_{1}+A_{2}+\cdots+A_{k}, \quad i=1,2
$$

It follows that

$$
N_{i} \nsubseteq H\left(A_{1}+A_{2}+\cdots+A_{k}\right), \quad i=1,2 .
$$

Since every nontrivial subgroup of \mathbb{Z}_{n} contains either N_{1} or N_{2}, we must have $H\left(A_{1}+\right.$ $\left.A_{2}+\cdots+A_{k}\right)=\{0\}$. As a result, Kneser's Theorem implies

$$
\left|A_{1}+A_{2}+\cdots+A_{k}\right| \geq \sum_{j=1}^{k}\left|A_{j}\right|-(k-1)=n+1
$$

contradicting $A_{1}+A_{2}+\cdots+A_{k} \subseteq \mathbb{Z}_{n}$.
Now the proof is complete.
Lemma 2 (Gao, [2]) Let G be a cyclic group of order n. Let S be a sequence of elements from G of length $n+k$ where $k \geq \frac{n}{p}-1$ and p is the smallest prime divisor of n. Then

$$
\sum_{n} S \bigcap H \neq \emptyset
$$

for any nontrivial subgroup H of G.
Proof For any nontrivial subgroup H of G, let $\varphi: G \rightarrow G / H$ be the natural homomorphism. Then $\varphi(S)$ is a sequence of elements from G / H of length $n+k$. Since $|H| \geq p$,

$$
n+k \geq n+\frac{n}{p}-1 \geq|H||G / H|+|G / H|-1
$$

using EGZ Theorem repeatedly, we can find $|H|$ disjoint zero-sum subsequences of $\varphi(S)$, each of which has length $|G / H|$. Thus we find a subsequence of S with length $|H||G / H|=$ n, whose sum is in H, i.e., $\sum_{n} S \cap H \neq \emptyset$. We are done.

Proof of Theorem 1 Suppose that $h(S) \leq k$. By Lemma 1, $H=H\left(\sum_{k} S\right) \neq\{0\}$. Thus Lemma 2 implies that $\sum_{n} S \cap H \neq \emptyset$. Therefore we have a subsequence $\left\{a_{i}\right\}_{i=1}^{k}$ of S such that $\sigma(S)-\sum_{i=1}^{k} a_{i} \in H$. And so

$$
\sigma(S) \in \sum_{i=1}^{k} a_{i}+H \subseteq \sum_{k} S+H=\sum_{k} S
$$

It follows that $0 \in \sum_{n} S$. This ends the proof.
Acknowledgment. I would like to thank W. D. Gao for his report in which he introduced his conjecture.

References

[1] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 F(1961), 41-43.
[2] W. D. Gao, R. Thangadurai and J. Zhuang, Addition theorems on the cyclic group $\mathbb{Z}_{p^{n}}$, preprint.
[3] M. Kneser, Ein satz über abelsche gruppen mit anwendungen auf die geometrie der zahlen, Math. Z., 61(1955), 429-434.

