On Computing the Distinguishing Numbers
of Trees and Forests

Christine T. Cheng
Department of Computer Science
University of Wisconsin—Milwaukee, Milwaukee, WI 53211, USA.
ccheng@cs.uwm.edu

Submitted: Apr 28, 2005; Accepted: Jan 18, 2006; Published: Feb 8, 2006
Mathematics Subject Classification: 05C, 68R, 68W

Abstract

Let G be a graph. A vertex labeling @f is distinguishingif the only label-preserving
automorphism of7 is the identity map. Thelistinguishing numbeof G, D(G), is the
minimum number of labels needed so tldiahas a distinguishing labeling. In this paper,
we presentO(nlogn)-time algorithms that compute the distinguishing numbers of trees
and forests. Unlike most of the previous work in this area, our algorithm relies on the
combinatorial properties of trees rather than their automorphism groups to compute for
their distinguishing numbers.

1 Introduction

The notion of distinguishing numbers came about because of the following recreational prob-
lem of Rubin’s [11]: suppose a professor has a set &kys on a circular key ring that are
indistinguishable to the naked eye. To tell them apart, he attaches a colored marker on each key.
What is the fewest number of colored markers needed so he can distinguish the keys from each
other? The answer is quite surprising — iBisvhenn € {3,4,5}, but drops down t@ when

n > 6. The answer is dependent on the fact that the keyholder was circular. If, for example,
the keys were suspended from a straight rod then it is not hard to see that two colors suffice
for all n > 2. This observation motivated Albertson and Collins [2] to generalize the original
problem to arbitrary graphs. The vertices of a graph represented the keys and its edges indicate
how the keys are connected to each other; hence, the keys on a circular key ring corresponded to
C,, while the keys on a straight rod correspondedeg toThey asked the following question:

given a grapltz, what is the minimum number of colors needed to distinguish the vertices from
each other? They defined this number asdistinguishing number of;. We define it more
formally below.

Figure 1: A distinguishing labeling of the graph.

Let G be a graph and be a vertex ofz. An r-labeling ofG ¢ : V(G) — {1,2,...,r}
distinguishes: if all label-preserving automorphisms 6f mapw to itself; that is, under the
labeling¢, u cannot be confused with any other vertexaflf ¢ distinguishes all the vertices
of GG, then it is adistinguishing labelingf G. Such a labeling is said to break or destroy the
symmetries of7 because the only member of the automorphism grouob) is the identity
map. Thedistinguishing numbeof G, D(G), is the minimum number of labels needed so that
G has a distinguishing labeling.

Given G, Albertson and Collins were interested in the relationship betwé&srautomor-
phism groupAut(G), andD(G). It turns out that two graphs that have the same automorphism
group need not have the same distinguishing number. For example, t#note the graph on
2n vertices obtained fronk’,, by attaching a pendant vertex to each vertekjn(see Figure 1).
Clearly, Aut(G,,) = Aut(K,). A labeling of G, is distinguishing if and only if it assigns dif-
ferent ordered pairs of labels to each pair of vertices consisting of a vertéxamd its pendant
neighbor. ThusD(G,,) = [y/n] while D(K,) = n. Given a grougd’, Albertson and Collins
investigated the possible distinguishing numbers of graphs whose automorphism groups were
isomorphic tol". For example, they showed that whant(G) = I is abelian therD(G) = 2
and when it is dihedral theP®(G) < 3. Their work has since been extended by Potanka [10],
Russell and Sundaram [12], Tymoczko [13], Kiav, et al [8], Chan [5, 4, 6], etc. One result
that is relevant to us is due to Tymoczko: for every trfee)(7") < A(T'), whereA(T) is the
maximum degree of a vertex if.

In this paper, we are still interested in determining the distinguishing numbers of a graph
family but this time we wish to describe the graph family in terms of its combinatorial struc-
ture rather than its automorphism group. In particular, we shall focus on the family of acyclic
graphs which consists of trees and forests. We are not the first ones to do this; for example,
the distinguishing numbers of cycles, paths, complete graphs and hypercubes [3, 4] are already
known. Unlike any of these graph families, however, there is a large number of trees and forests
when the number of vertices is fixed.atand so their distinguishing numbers can range from
1 to n. Nonetheless, we shall show that the distinguishing numbers of acyclic graphs can be
computed exactly it (n logn) time, wheren is the number of vertices in the graph. Our al-
gorithm makes use of the following facts which we shall prove later: (i) everyfftemn be
mapped to a rooted trée so thatD(7") = D(T), (ii) there is a recursive formula for comput-
ing the number of inequivalent distinguishikgabelings ofT’, and (iii) the tree ismorphism
algorithm [1] can be modified so that the isomorphic subtrees rooted at the children of each

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 2

vertexv of 7' can be identified efficiently. We note that for a general gréplit is not known

if the problem of computing)(G) is polynomially-time solvable or NP-hard. Nonetheless,
Russell and Sundaram [12] were able to show that determinibgaf) > & belongs to a class

of problems called AM, the set of languages for which there are Arthur-Merlin games (see [9]
for definition).

2 Preliminaries

Recall that a permutation : V(G) — V(G) is anautomorphismof G if 7 preserves the
adjacencies of7; i.e., 7(u) is adjacent tor(v) if and only if u is adjacent ta for every pair of
verticesu, v in G. Theautomorphism groupf G, Aut(G), consists of all the automorphisms
of G. Additionally, the permutatiom is an automorphism of the labeled grah, ¢) if = not
only preserves the adjacencieobut the labels of> as well. In other wordsj(v) = ¢(m(v))
for eachv € V(G). Similar to the automorphism group 6f, Aut((G, ¢)) consists of all the
automorphisms ofG, ¢). We define the automorphisms of rooted graphs and rooted labeled
graphs in the same way with the extra condition that the root of a graph must always be mapped
to itself.

Of particular interest to us are rooted trees. Tdte a rooted tree andbe a vertex of". We
denote its root ag(7"), and the subtree df rooted atv asT,. Below, we state some properties
of automorphisms of .

Proposition 2.1. LetT be a rooted treeg € Aut(T'), andv be a vertex of . The following are
true:

a. m maps the ancestry of (i.e., its parentp(v), its grandparenp(p(v)), etc.) generation
by generation, to the ancestry ofv).
b. T, = Ty

The proposition follows directly from the fact thatpreserves the adjacencies’™f We
note that it holds true as well if is an automorphism dff’, ¢), where¢ is some labeling of".

Next, we show that given an unrooted trEewe can construct a rooted tréésuch that
D(T") = D(T). A vertex of a graph is &enterif, among all the vertices of the graph, its
maximum distance to any vertex is the least. It is well known that a tree either has one center
(i.e., it isunicentra) or has two adjacent centers (i.e., ibi€entral), and that its center(s) can
be determined in linear time. Thus,if has a unique center, simply |&tbe a copy ofl”;
otherwise, letl" be the tree formed by appending a new vertex to the two centers and
deleting the edge between the two old centers’oin both cases]” has a unique center which
we designate as its root7").

Lemma 2.2. D(T") = D(T).

Proof: Supposé (7’) = k and¢’ is a distinguishing:-labeling of 7. Let ¢ be thek-labeling
for T'whereg(v) = ¢'(v) if v € V(T) N V(T") and¢(v) = 1 otherwise. Let us now prove
that ¢ must be a distinguishing labeling @f as well. Letr € Aut((T,¢)). Then consider
the mappingr’ wheren’(v) = w(v) for eachv € V(T"). Sincer mapsr(7T) to itself, 7’ is a

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 3

mapping froml/(7”) to itself. Moreover, becausepreserves the adjacencies of the vertices in
T, ' must do so as well for the verticesT. In particular, if7” is bicentral,7” maps its two
centers to themselves becausmaps the children of(7") to themselves. And, finally, because
7 preserves the labels of the vertices(if ¢) thenn’ does so as well fofT, ¢’). Hence,x’

is an automorphism ofI”, ¢’). If = is not the identity map foi’(T") thenz’ is not either for
V(T") which leads to a contradiction singéis a distinguishing:-labeling of 7’. Thus,¢ is

a distinguishing:-labeling of7" so D(T") < D(T"). By the same argument, we can show that
every distinguishing-labeling of 7’ can be transformed into a distinguishihdabeling of T’
and soD(T") < D(T). The lemma follows. O

Based on the above lemma, we can now restrict our attention to computing the distinguish-
ing numbers of rooted trees.

3 Distinguishing labelings of rooted trees

In this section, we give a characterization of the distinguishing labelings of rooted el
show how we can determine the value/of7’) based on the characterization.
Supposep is adistinguishinglabeling of 7" andv a vertex of7T". It must be the case that
¢, when restricted td,, is also distinguishing. In addition, if andw are distinct children
of »(T') andT, = T, ¢ must label the subtreaffferently, i.e., (T, ¢) and (T, ¢) must be
non-isomorphic. Otherwise, as shown beldW, ¢) would have a non-trivial automorphism.
We prove in the following lemma that these two conditions are not only necessary but also
sufficient conditions for to be a distinguishing labeling af.

Theorem 3.1.LetT be arooted tree and'H (") be the set containing all of(7)’s children.
Suppos@ is a labeling ofT", then¢ is distinguishing if and only if these two conditions hold:

i. Foreachvin CH(T'), ¢ when restricted td, is distinguishing.
ii. Fordistinct verticesv andw in CH(T), if T, = T,,, then(T,,, ¢) 2 (T\, ¢).

Proof: Suppos® is a labeling forT" and(T,,, ¢) has a non-trivial automorphism for some
v € CH(T). ThenT has a non-trivial automorphismi, wheren’(z) = n(z) if z is part of the
subtreeT, andr’(z) = z if z is not in the subtred,,. Similarly, suppose for distinct vertices
v,w € CH(T), (T,,¢) = (T, ¢). If puis a label-preserving isomorphism froff,, ¢) to
(Tw, ¢), thenT has a non-trivial automorphispd wherep/'(z) = u(z) if z € V(T,), 1/(2) =
w(z) if z € V(T,) andi/(z) = z if z is not in the subtree¥, andT,,. Hence, we have
shown that if¢ does not satisfy conditiorisor ii of the lemma,T, ¢) will have a non-trivial
automorphism;i.eg is not a distinguishing labeling.

Suppose the two conditions of the lemma are satisfiegyt ¢ is not distinguishing. There
must exist an automorphism @f’, ¢), sayr, and vertex: whose distance from(T") is a small
as possible such thatz) # z. If x andx(z) have distinct parents, from Proposition 2.1¢a),
must mam(z) to p(x(z)) violating the assumption that the distancecdfom r(7') is as small
as possible. Thug(z) = p(7(x)). Additionally, from Proposition 2.1(b),I’;, ¢) = (Tr(x),).

If p(z) # r(T), chooseu in CH(T') so thatT,, is a subgraph of'(u). Since¢ when
restricted to7},,) is not distinguishingg when restricted tdl’, is also not distinguishing.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 4

1 1 2 2
1 2 1 2
16 20 16 20 16 20 16 2

Figure 2: An example of four inequivalent distinguishing labelings of the same tree where the
unshaded vertex is the root.

Conditioni of the lemma is violated. Ip(x) = r(7T"), andn(z) belong toCH(T'). Since
(T, 9) = (Tr(), @), conditionii of the lemma is volated. But satisfies both conditions of
the lemma; hence, the non-trivial automorphismf (7', ¢) does not exist and s must be
distinguishing. m

Supposep and ¢’ are distinguishing labelings @F. We shall say that the labelings are
equivalentf (G, ¢) = (G, ¢'). Figure 2 shows four inequivalent labelings of the same rooted
tree all of which are distinguishing. Létf(G, k) denote the set of all distinguishiriglabelings
of G. We are interested il(G, k), the number of equivalence classed.iit, k). For example,
whenG is a single nodeD (G, k) = k. Clearly,D(G) = min{k : D(G, k) > 0}.

Theorem 3.2. Let T' be a rooted tree and” be the set that contains all the subtreesiof
whose roots are children of(T"). SupposeZ has exactlyy distinct isomorphism classes of
subtrees where thgth isomorphism class consists wf; copies of the rooted treé,,;; i.e.,
T =mT,, UmyT,, U...Um,T,,. Then

D(T, k) —kH(T“J’k)

Proof: To create a distinguishiriglabeling for7’, we need to assign a label frofn, 2, ..., k}

to r(7"), and, according to Theorem 3.1, a distinguishinigbeling to each copy df’,, in 7
no two of which belong to the same equivalence class(ifi,;, k) for j = 1,...,9. Now
supposey and¢’ are two distinguishing:-labelings of7’. When are they equivalent? It must
be the case that (a)(r(7)) = ¢'(r(T")) and (b) there is a permutatiory of {1,2,...,m;}
such thal(T,, ;, ¢) = (T, (i) ¢') fori=1,...,m; for eachj. In other words, for each, the
k-labelings of them; copies ofT’,, undergb and under’ belong to the same:; equivalence
classes inL(T,, k). Itis straightforward to verify that these two conditions are sufficient as
well to guarantee that and¢’ are equivalent. This means that equivalence classégiofk)
are completely determined by (a) the label-¢f") and (b) the set whose elements aresthe
equivalence classes @f(T),,, k) that contain the distinguishing labelings of thg copies of
T,, forj =1,...,g. Since there aré ways to label(T’), and(D(Z;j]aj +)) ways to pick a set of
m; equivalence classes froMT,,,) for j = 1,...,m, our result follows. O

The following corollary is immediate.

Corollary 3.3. For the rooted tre€l’, D(T") = k* wherek* = min{k : D(T,,, k) > m;,Vj =
L,...,g}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 5

Figure 3: An example of howIND_ISOMORPH will constructL(v) andl(v) for each vertex
v of the graph on the left.

FIND_ISOMORPH(T)
do BFS and construdé; = {v : d(r(T"),v) = j} for j =0, ..., h.

for eachw € V(7))
[(v) « 0, L(v) < 0
forj=hto0
sortL(v) for eachw € B,
sort the lists in{ L(v) : v € B;} in lexicographic order
for eachv € B;
[(v) < rank of L(v) in the sorted list (where ties are not broken)
addi(v) to L(p(v))
return(, L)

Figure 4. The pseudocode fBIND_ISOMORPH. At the end of this algorithm, two vertices
andz of B; will have the same label if and only T, andT’, are isomorphic.

3.1 Computing D(T)

Before we can apply the formula in Theorem 3.2 recursively, we must be able to identify which
of the subtrees rooted at each vertexf T" are isomorphic. A brute force approach would be to
run the tree isomorphism algorithm [1] on every pair of these subtrees and group together all the
isomorphic subtrees. A more efficient way, however, is to simply modify the tree isomorphism
algorithm (where we essentially apply the algorithm to just one tree instead of two) so that the
problem can be resolved in two sweepsiof We call our algorithnFIND_ISOMORPH(T);

an example and its pseudocode can be found in Figures 3 and 4. In the first svigemof

a breadth-first-search (BFS) froniT") to construct set®,, By, ... B, whereB; contains all
vertices that are distangefrom r(7"), andh is the height of th&’. Note that ifv € B; then

all its children are inB; ;. In the second sweep, all verticesire assigned a labglv) and a

list L(v) which will contain the labels of’s children. InitializeL(v) to the empty set for each
vertexv. Start fromB,, and move up one level at a time. At each sjegort L(v) for each

v € B;. Then lexicographically order the sgt(v),v € B;}. Finally, let/(v) be equal to the

rank of L(v) in the ordering where ties are not broken. Add) to the list ofv’s parentp(v).

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 6

{(,1), (m 1)}
n

{(h1),G,1)} y {(k2)}

Figure 5: WhenESSENTIAL(T, [, L) is applied to the example in Figure 3, the remaining
essential vertices are shown above together with theiy values.

Lemma 3.4. Lety, z € B;. Atthe end oFIND_ISOMORPH(T), {(y) = I(z) if and only if the
rooted treesl), and7’, are isomorphic.

Proof: We shall show that the lemma is true by inductionjpstarting with; = A to j = 0.
Whenj = h, any vertex inBy, is a leaf. That is, for any € By, T, consists of a single node,
L(v) = 0 sol(v) = 1. Thus, the lemma is true trivially. Assume that the lemma holds when
Jj > kandletj =k — 1. If T, = T, there is some isomorphism that map® ~ and subtrees
rooted aty’s children to subtrees rooted &t children. Since; andz’s children belong ta3,,

by our assumption, the list5(y) and L(z) are exactly the same. Consequently, they have the
same rank i L(v) : v € B;} so the algorithm will maké(y) = [(z). On the other hand, if
l(y) = l(z), there is a one-to-one correspondenegfrom the children ofy to the children of

z that preserves the labels. That is, for every childf y, {(y;) = {(«(y;)). And sincey; and
a(y;) belong toBy, by assumptionT,, = T,,,). If we combine the isomorphism that map the
subtrees rooted at's children to the subtrees rooted & children and map to z, then we
have an isomorphism froff, to 7. By induction, the lemma holds. O

In Theorem 3.2, we showed that to compt€r’, k), it is necessary and sufficient to know
the values ofD(T,;, k) andT,,’s multipicity for j = 1,...g. We shall say that these;’s
areessential verticesf 7'. But to know theseD(T,,,, k)’s, we need to also consider the non-
isomorphic subtrees rooted at the childrem pfor each; as well. By transitivity, these children
of u; are also essential vertices 6f etc. Thus, we need to only consider a set of essential
vertices,V¥(T), of T so that onceD(T,, k) and the multiplicity of7,, is computed for each
u € VE(T) N By, thenD(T,,, k) for eachu’ € VZ(T) N B;_; can be computed. In algorithm
ESSENTIAL(T, !, L) (see Figures 5 and 6), we implement our approach to extract such a set of
essential vertices fdr'.

The set/; will contain the essential vertices i while the set/ (v) is a list that will consist
of the ordered pairgu;, m;) defined forZ, in Theorem 3.2. A single sweep &fis performed
starting at the only essential vertexaf, (7"). At iterationy, for eachv € V;_4, the sorted list
L(v) is examined. lfw’s label appears i.(v), we shall lethext(w) denote the vertex whose
label appears aftd(w) in L(v). One child per label together with its multiplicity is added to
U(v); this same child is added 1g. The algorithm ends when the essential verticés,in are
examined.

Lemma 3.5. At the end 0ESSENTIAL(T, I, L), VE(T) = J!_, Vi.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 7

ESSENTIAL(T, [, L)

forj=0toh
V0
Vo — {r(1)}
for eachw € V(7))
Uw) 0
foryj=1toh
for eachv € V;_; andv notaleaf /* Construct/(v) */
let w be the child ofv such that(w) is the first label inL(v)
count «— 1
while w # nil
if [(w) = l(next(w))
count < count + 1
else
add(w, count) to U(v) andw to V;
count «— 1
w «— next(w)

returnU, Vo, Vi, ..., V)

Figure 6: The pseudocode fEISSENTIAL(T', [, L). The set/; contains the essential vertices
in Bj.

Figure 7: The numbers on the nodes of each tree correspandde(v) in EVALUATE. For
the left tree k was set t@; on the right treek was set t®. Sincevalue(r(T')) on the left tree
is 0, while that of the right tree is positive, we conclude thHt") = 3.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 8

FIND_DIST_TREE(T)

(I, L) <— FIND_ISOMORPH(T)
(U, Vo, ..., Vi) «— ESSENTIAL(T, , L)
left — 1
right < n
while right — left > 1 do
k — [(left +right)/2]
if EVALUATE(T, U, Vg, ..., Vi, k) >0
right <« k
else
left —k+1
if EVALUATE(T, U, Vg, ..., Vi, left) >0
k «— left
elsek «— right
return)

EVALUATE(T, U, Vy, ..., Vi, k)

for each leaby in T’
value(v) <+ k
J+—h—-1
while 5 > 0 do
for v € V; andv not a leaf
’UCLZUB(’U) =k HUji(Uj,mj)EU(v) (Uah;jj(-uj)>
Jge—j—1
return@alue(r(T)))

Figure 8: The pseudocode algoritfiND_DIST_TREE(T). ProcedureEVALUATE deter-
mines the value oD (T, k). The main body of the algorithm performs a binary search to deter-
mine the smallest such thatD(7’, k) > 0.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 9

Once a set of essential vertices has been constructed, we can now comgué fby. We
initialize the value for each leaf tb since leaves have exactlyinequivalent distinguishing
labelings using: labels. Then starting at,_;, we apply the formula in Theorem 3.2 one level
at a time until we reach the root. If the resulting value is positive, the¢i) > k. Since
1 < D(T) < n, wheren = |V(T)|, we initially setk to [(n + 1)/2] and perform a binary
search to find the smallestso thatD (7, k) > 0. We provide an example in Figure 7 and
describe our algorithrRIND_DIST_TREE(T’) in Figure 8.

Theorem 3.6.Let T be a rooted tree om vertices. FIND_DIST_TREE(T') computesD(T)
correctly inO(nlogn) time.

Proof: The correctness 6IND_DIST_TREE(T) follows immediately from Theorem 3.2 and
Corollary 3.3. To analyze its runtime, assuffihasn vertices. INFIND_ISOMORPH(T),
the first sweep of " is just a breadth-first search and so takks) time. In the second sweep
of 7', at iterationy, two types of sorting are done: (i) for eache B;, L(v) is sorted, and
(ii) the lists in{L(v) : v € B;} are ordered lexicographically. Now, the labels in edch)
range froml to [B;.| and}_, 5 [L(v)| = [Bj41|. By carefully implementing bucket sort, all
the L(v)’s can be sorted i®(|B,4|) time (see exercise C.4.15 of [7]). Similarly, using radix
sort, ordering the lists iRL(v) : v € B;} can be done itO(|B;;:|) time (see pp. 80—-84 in
[1]). Assigning eachy € B; a rank take€)(|B,|) time. Hence, the second sweeplotakes
>% o O(|B)| +|Bj11]) = O(n) time. ThereforeFIND_ISOMORPH(T') takesO(n) time.

In ESSENTIAL(T, [, L), the list L(v) for eachv € U ,V; is examined. ButL(v)| =
deg(v) so the runtime oESSENTIAL(T, [, L) is O(n).

Finally, in the main body oFIND_DIST_TREE(T"), there are at mosD(logn) calls to
procedurdEVALUATE to determine the smallektsuch thatD (7', k) > 0. From the formula in
Theorem 3.2, the number of arithmetic operations needed to evdli@tek) is proportional to
D, +(uymy)eU () Mi» Which equalsleg(v). And since all vertices ifit may be essential vertices,
it takesEVALUATE O(n) time to computeD (T, k). Hence FIND_DIST_TREE(T") computes
D(T) in O(nlogn) time. O

4 Distinguishing Numbers of Forests

Supposé’ is a graph withg connected components:,, Gs, ..., G,. By applying the same
arguments we made for Theorem 3.1, we have the following lemma:

Lemma 4.1. Let G be a graph whose connected components &g, G, ..., G,. Letg be a
labeling of G. Theng is distinguishing if and only if the following two conditions hold:

i. (G;,¢)isdistinguishingfori =1,...,g.

ii. If G; =G, then(G;,¢) # (Gy,¢) for every pairofi, j € {1,...,¢}.

Let us now consider the case when the graph is a fdrésSuppose the connected com-
ponents ofF” haveg isomorphism classes where tjth isomorphism class contains; copies
of Tj’ e, F'=mT/UmyTi;U... U mng’. By Lemma 4.1, the trees in thigh isomorphism

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 10

class must be distinguished. The fewest number of labels that can accomplishithighisre
k; = min{k : D(Tj,k) > m;}. Hence, the smalledt such that a-labeling exists that dis-
tinguishesall g ismorphism classes isax{k;,7 = 1,...,g}. We have proved the following
theorem:

Theorem 4.2. Let F’ be a forest whose components havesomorphism classes where the
jthisomorphism class contains; copies ofl}; i.e., F' = m,T] UmyT, U ... Um,T,. Let
kj = min{k : D(T}, k) > m;}. ThenD(F') = max{k;,j =1,...,g}.

To computeD(F"), we must first identify the isomorphism classes of its connected com-
ponents. LetF] and F; consist of all the unicentral and bicentral tree components' oé-
spectively. Transform each tree component into a center-rooted tree as in the previous section.
Then transform eaclh” into a rooted treef;, by creating a new vertex which is designated
as the root ofF; and appending all the centers of the treedrto this vertex. Finally, run
FIND_ISOMORPH(F;) for i = 1, 2. The following must be true.

Lemma 4.3. Supposé| andT; are tree components éf'. ThenT| = T if and only if

i. the trees belong to the sanf and
ii. in FIND_ISOMORPH(F;}), the roots ofl; andT5 (i.e., their rooted versions) are assigned
the same labels (i.el(r(T1)) = I(r(T3))).

Proof: If T7 = T3, they either are both unicentral or both bicentral and so must belong to the
sameF. Furthermore, their rooted versiori§,and7»> must also be isomorphic. Now, the roots
of these trees are children ofF;). According to Lemma 3.4, if; = T; and their roots lie on
the same leveFFIND_ISOMORPH(F;) assigns the same label to their roots.

Conversely, ifI] and7; belong to the samé, they must be both unicentral or both bi-
central. Furthermore, the roots ©f and7; lie on the same level id;. Hence, ifr(77) and
r(T») were assigned the same label BfND_ISOMORPH(F;), then according to Lemma 3.4
the subtree§’. 1) = T,(1,). By the way we obtained; from 7 for i = 1, 2, this immediately
implies that7] = T2. O

Once the isomorphism classes of the tree componertsaoé identified then, for each class
J, we simply have to usEVALUATE to find k; and outpuinax{k;,j =1,...,g}.

Theorem 4.4.Let I’ be a forest with vertices. Its distinguishing number can be computed in
O(nlogn) time.

Proof: Constructing; and F; takesO(n) time. RunningFIND_ISOMORPH(F;) for i =
1,2 takesO(n) time. Determiningk; for each; using binary search an8VALUATE takes
O(nlogn) time. Finally, finding the maximum among all thes takesO(n) time. O

5 Conclusion

We have presented &n(n log n)-time algorithm for computing the distinguishing number of a
tree. There were two important ingredients in our algorithm: (i) the recursive structure of trees

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 11

and (ii) an efficient algorithm for determining if two trees are isomorphic. The former enabled us
to derive a formula for the number of inequivalent distinguishidgbelings of a tree; the latter
allowed us to identify the isomorphic parts of a tree that needed to be distinguished. We then
used this algorithm to compute the distinguishing number of a forest. It would be interesting to
determine if similar efficient algorithms exist for other graph families. In particular, we ask —
can the distinguishing numbers of planar graphs be computed efficiently?

Acknowledgments

Parts of this work were done while the author was at Johns Hopkins University. She would like
to thank Lenore Cowen and Alan Goldman who read and discussed parts of this paper with her.

References

[1] A. Aho, J. Hopcroft, and J. UllmanThe Design and Analysis of AlgorithmAddison-
Wesley, 1974.

[2] M. Albertson and M. Collins. Symmetry breaking in grapisectronic Journal of Com-
binatorics 3:R18, 1996.

[3] W. Bogstad and L. Cowen. The distinguishing number of the hypercDizerete Math-
ematics 283:29-35, 2004.

[4] M. Chan. The distinguishing number of the augmented cube and hypercube powers. Sub-
mitted.

[5] M. Chan. The distinguishing number of the direct product and wreath product action. To
appear in thdournal of Algebraic Combinatorics

[6] M. Chan. The maximum distinguishing number of a group. To appear ikléeronic
Journal of Combinatorics

[7] M. Goodrich and R. Tamassi&lgorithm Design John Wiley and Sons, Inc., 2001.

[8] S. Klavzar, T. Wong, and X. Zhu. Distinguishing labelings of group action on vector
spaces and graphs. To appear indbarnal of Algebra

[9] J. Kbbler, U. Sclohing, and J. Tan. The Graph Isomorphism Problem: Its Structural
Complexity Birkhauser, 1993.

[10] K. Potanka. Groups, graphs and symmetry-breaking. Master’s thesis, Virginia Polytechnic
Institute and State University, 1998.

[11] F. Rubin. Problem 729ournal of Recreational Mathematick1:128, 1979.

[12] A. Russell and R. Sundaram. A note on the asymptotics and computational complexity of
graph distinguishabilityElectronic Journal of Combinatori¢®:R23, 1998.

[13] J. Tymoczko. Distinguishing numbers for graphs and gro&tectronic Journal of Com-
binatorics 11(1):R63, 2004.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R11 12

