
On Computing the Distinguishing Numbers
of Trees and Forests

Christine T. Cheng
Department of Computer Science

University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA.
ccheng@cs.uwm.edu

Submitted: Apr 28, 2005; Accepted: Jan 18, 2006; Published: Feb 8, 2006
Mathematics Subject Classification: 05C, 68R, 68W

Abstract

Let G be a graph. A vertex labeling ofG is distinguishingif the only label-preserving
automorphism ofG is the identity map. Thedistinguishing numberof G, D(G), is the
minimum number of labels needed so thatG has a distinguishing labeling. In this paper,
we presentO(n log n)-time algorithms that compute the distinguishing numbers of trees
and forests. Unlike most of the previous work in this area, our algorithm relies on the
combinatorial properties of trees rather than their automorphism groups to compute for
their distinguishing numbers.

1 Introduction

The notion of distinguishing numbers came about because of the following recreational prob-
lem of Rubin’s [11]: suppose a professor has a set ofn keys on a circular key ring that are
indistinguishable to the naked eye. To tell them apart, he attaches a colored marker on each key.
What is the fewest number of colored markers needed so he can distinguish the keys from each
other? The answer is quite surprising – it is3 whenn ∈ {3, 4, 5}, but drops down to2 when
n ≥ 6. The answer is dependent on the fact that the keyholder was circular. If, for example,
the keys were suspended from a straight rod then it is not hard to see that two colors suffice
for all n ≥ 2. This observation motivated Albertson and Collins [2] to generalize the original
problem to arbitrary graphs. The vertices of a graph represented the keys and its edges indicate
how the keys are connected to each other; hence, the keys on a circular key ring corresponded to
Cn while the keys on a straight rod correspondeded toPn. They asked the following question:
given a graphG, what is the minimum number of colors needed to distinguish the vertices from
each other? They defined this number as thedistinguishing number ofG. We define it more
formally below.

2
1

3
1

12
2 2

1

1

Figure 1: A distinguishing labeling of the graphG5.

Let G be a graph andu be a vertex ofG. An r-labeling ofG φ : V (G) → {1, 2, . . . , r}
distinguishesu if all label-preserving automorphisms ofG mapu to itself; that is, under the
labelingφ, u cannot be confused with any other vertex ofG. If φ distinguishes all the vertices
of G, then it is adistinguishing labelingof G. Such a labeling is said to break or destroy the
symmetries ofG because the only member of the automorphism group of(G, φ) is the identity
map. Thedistinguishing numberof G, D(G), is the minimum number of labels needed so that
G has a distinguishing labeling.

GivenG, Albertson and Collins were interested in the relationship betweenG’s automor-
phism group,Aut(G), andD(G). It turns out that two graphs that have the same automorphism
group need not have the same distinguishing number. For example, letGn denote the graph on
2n vertices obtained fromKn by attaching a pendant vertex to each vertex inKn (see Figure 1).
Clearly,Aut(Gn) ∼= Aut(Kn). A labeling ofGn is distinguishing if and only if it assigns dif-
ferent ordered pairs of labels to each pair of vertices consisting of a vertex inKn and its pendant
neighbor. Thus,D(Gn) = d

√
ne while D(Kn) = n. Given a groupΓ, Albertson and Collins

investigated the possible distinguishing numbers of graphs whose automorphism groups were
isomorphic toΓ. For example, they showed that whenAut(G) ∼= Γ is abelian thenD(G) = 2
and when it is dihedral thenD(G) ≤ 3. Their work has since been extended by Potanka [10],
Russell and Sundaram [12], Tymoczko [13], Klav˘zar, et al [8], Chan [5, 4, 6], etc. One result
that is relevant to us is due to Tymoczko: for every treeT , D(T) ≤ ∆(T), where∆(T) is the
maximum degree of a vertex inT .

In this paper, we are still interested in determining the distinguishing numbers of a graph
family but this time we wish to describe the graph family in terms of its combinatorial struc-
ture rather than its automorphism group. In particular, we shall focus on the family of acyclic
graphs which consists of trees and forests. We are not the first ones to do this; for example,
the distinguishing numbers of cycles, paths, complete graphs and hypercubes [3, 4] are already
known. Unlike any of these graph families, however, there is a large number of trees and forests
when the number of vertices is fixed atn and so their distinguishing numbers can range from
1 to n. Nonetheless, we shall show that the distinguishing numbers of acyclic graphs can be
computed exactly inO(n log n) time, wheren is the number of vertices in the graph. Our al-
gorithm makes use of the following facts which we shall prove later: (i) every treeT ′ can be
mapped to a rooted treeT so thatD(T ′) = D(T), (ii) there is a recursive formula for comput-
ing the number of inequivalent distinguishingk-labelings ofT , and (iii) the tree ismorphism
algorithm [1] can be modified so that the isomorphic subtrees rooted at the children of each

the electronic journal of combinatorics 13 (2006), #R11 2

vertexv of T can be identified efficiently. We note that for a general graphG, it is not known
if the problem of computingD(G) is polynomially-time solvable or NP-hard. Nonetheless,
Russell and Sundaram [12] were able to show that determining ifD(G) > k belongs to a class
of problems called AM, the set of languages for which there are Arthur-Merlin games (see [9]
for definition).

2 Preliminaries

Recall that a permutationπ : V (G) → V (G) is an automorphismof G if π preserves the
adjacencies ofG; i.e.,π(u) is adjacent toπ(v) if and only if u is adjacent tov for every pair of
verticesu, v in G. Theautomorphism groupof G, Aut(G), consists of all the automorphisms
of G. Additionally, the permutationπ is an automorphism of the labeled graph(G, φ) if π not
only preserves the adjacencies ofG but the labels ofG as well. In other words,φ(v) = φ(π(v))
for eachv ∈ V (G). Similar to the automorphism group ofG, Aut((G, φ)) consists of all the
automorphisms of(G, φ). We define the automorphisms of rooted graphs and rooted labeled
graphs in the same way with the extra condition that the root of a graph must always be mapped
to itself.

Of particular interest to us are rooted trees. LetT be a rooted tree andv be a vertex ofT . We
denote its root asr(T), and the subtree ofT rooted atv asTv. Below, we state some properties
of automorphisms ofT .

Proposition 2.1. LetT be a rooted tree,π ∈ Aut(T), andv be a vertex ofT . The following are
true:

a. π maps the ancestry ofv (i.e., its parentp(v), its grandparentp(p(v)), etc.) generation
by generation, to the ancestry ofπ(v).

b. Tv
∼= Tπ(v).

The proposition follows directly from the fact thatπ preserves the adjacencies ofT . We
note that it holds true as well ifπ is an automorphism of(T, φ), whereφ is some labeling ofT .

Next, we show that given an unrooted treeT ′ we can construct a rooted treeT such that
D(T ′) = D(T). A vertex of a graph is acenter if, among all the vertices of the graph, its
maximum distance to any vertex is the least. It is well known that a tree either has one center
(i.e., it isunicentral) or has two adjacent centers (i.e., it isbicentral), and that its center(s) can
be determined in linear time. Thus, ifT ′ has a unique center, simply letT be a copy ofT ′;
otherwise, letT be the tree formed by appending a new vertex to the two centers ofT ′ and
deleting the edge between the two old centers ofT ′. In both cases,T has a unique center which
we designate as its rootr(T).

Lemma 2.2. D(T ′) = D(T).

Proof: SupposeD(T ′) = k andφ′ is a distinguishingk-labeling ofT ′. Let φ be thek-labeling
for T whereφ(v) = φ′(v) if v ∈ V (T) ∩ V (T ′) andφ(v) = 1 otherwise. Let us now prove
that φ must be a distinguishing labeling ofT as well. Letπ ∈ Aut((T, φ)). Then consider
the mappingπ′ whereπ′(v) = π(v) for eachv ∈ V (T ′). Sinceπ mapsr(T) to itself, π′ is a

the electronic journal of combinatorics 13 (2006), #R11 3

mapping fromV (T ′) to itself. Moreover, becauseπ preserves the adjacencies of the vertices in
T , π′ must do so as well for the vertices inT ′. In particular, ifT ′ is bicentral,π′ maps its two
centers to themselves becauseπ maps the children ofr(T) to themselves. And, finally, because
π preserves the labels of the vertices in(T, φ) thenπ′ does so as well for(T, φ′). Hence,π′

is an automorphism of(T ′, φ′). If π is not the identity map forV (T) thenπ′ is not either for
V (T ′) which leads to a contradiction sinceφ′ is a distinguishingk-labeling ofT ′. Thus,φ is
a distinguishingk-labeling ofT soD(T) ≤ D(T ′). By the same argument, we can show that
every distinguishingk-labeling ofT ′ can be transformed into a distinguishingk-labeling ofT
and soD(T ′) ≤ D(T). The lemma follows.

Based on the above lemma, we can now restrict our attention to computing the distinguish-
ing numbers of rooted trees.

3 Distinguishing labelings of rooted trees

In this section, we give a characterization of the distinguishing labelings of rooted treeT , and
show how we can determine the value ofD(T) based on the characterization.

Supposeφ is a distinguishinglabeling ofT andv a vertex ofT . It must be the case that
φ, when restricted toTv, is also distinguishing. In addition, ifv andw are distinct children
of r(T) andTv

∼= Tw, φ must label the subtreesdifferently; i.e., (Tv, φ) and(Tw, φ) must be
non-isomorphic. Otherwise, as shown below,(T, φ) would have a non-trivial automorphism.
We prove in the following lemma that these two conditions are not only necessary but also
sufficient conditions forφ to be a distinguishing labeling ofT .

Theorem 3.1. Let T be a rooted tree andCH(T) be the set containing all ofr(T)’s children.
Supposeφ is a labeling ofT , thenφ is distinguishing if and only if these two conditions hold:

i. For eachv in CH(T), φ when restricted toTv is distinguishing.
ii. For distinct verticesv andw in CH(T), if Tv

∼= Tw, then(Tv, φ) 6∼= (Tw, φ).

Proof: Supposeφ is a labeling forT and(Tv, φ) has a non-trivial automorphismπ for some
v ∈ CH(T). ThenT has a non-trivial automorphismπ′, whereπ′(z) = π(z) if z is part of the
subtreeTv andπ′(z) = z if z is not in the subtreeTv. Similarly, suppose for distinct vertices
v, w ∈ CH(T), (Tv, φ) ∼= (Tw, φ). If µ is a label-preserving isomorphism from(Tv, φ) to
(Tw, φ), thenT has a non-trivial automorphismµ′ whereµ′(z) = µ(z) if z ∈ V (Tv), µ′(z) =
µ−1(z) if z ∈ V (Tw) andµ′(z) = z if z is not in the subtreesTv andTw. Hence, we have
shown that ifφ does not satisfy conditionsi or ii of the lemma,(T, φ) will have a non-trivial
automorphism; i.e.,φ is not a distinguishing labeling.

Suppose the two conditions of the lemma are satisfied byφ butφ is not distinguishing. There
must exist an automorphism of(T, φ), sayπ, and vertexx whose distance fromr(T) is a small
as possible such thatπ(x) 6= x. If x andπ(x) have distinct parents, from Proposition 2.1(a),π
must mapp(x) to p(π(x)) violating the assumption that the distance ofx from r(T) is as small
as possible. Thus,p(x) = p(π(x)). Additionally, from Proposition 2.1(b),(Tx, φ) ∼= (Tπ(x), φ).

If p(x) 6= r(T), chooseu in CH(T) so thatTp(x) is a subgraph ofT (u). Sinceφ when
restricted toTp(x) is not distinguishing,φ when restricted toTu is also not distinguishing.

the electronic journal of combinatorics 13 (2006), #R11 4

1

1 1

1

1 12

2

2

2 2

2

1 12 2

Figure 2: An example of four inequivalent distinguishing labelings of the same tree where the
unshaded vertex is the root.

Condition i of the lemma is violated. Ifp(x) = r(T), x andπ(x) belong toCH(T). Since
(Tx, φ) ∼= (Tπ(x), φ), conditionii of the lemma is volated. Butφ satisfies both conditions of
the lemma; hence, the non-trivial automorphismπ of (T, φ) does not exist and soφ must be
distinguishing.

Supposeφ andφ′ are distinguishing labelings ofG. We shall say that the labelings are
equivalentif (G, φ) ∼= (G, φ′). Figure 2 shows four inequivalent labelings of the same rooted
tree all of which are distinguishing. LetL(G, k) denote the set of all distinguishingk-labelings
of G. We are interested inD(G, k), the number of equivalence classes inL(G, k). For example,
whenG is a single node,D(G, k) = k. Clearly,D(G) = min{k : D(G, k) > 0}.

Theorem 3.2. Let T be a rooted tree andT be the set that contains all the subtrees ofT
whose roots are children ofr(T). SupposeT has exactlyg distinct isomorphism classes of
subtrees where thejth isomorphism class consists ofmj copies of the rooted treeTuj

; i.e.,
T = m1Tu1 ∪m2Tu2 ∪ . . . ∪mgTug . Then

D(T, k) = k

g∏
j=1

(
D(Tuj

, k)

mj

)
.

Proof: To create a distinguishingk-labeling forT , we need to assign a label from{1, 2, . . . , k}
to r(T), and, according to Theorem 3.1, a distinguishingk-labeling to each copy ofTuj

in T
no two of which belong to the same equivalence class inL(Tuj

, k) for j = 1, . . . , g. Now
supposeφ andφ′ are two distinguishingk-labelings ofT . When are they equivalent? It must
be the case that (a)φ(r(T)) = φ′(r(T)) and (b) there is a permutationπj of {1, 2, . . . , mj}
such that(Tuj ,i, φ) ∼= (Tuj ,πj(i), φ

′) for i = 1, . . . , mj for eachj. In other words, for eachj, the
k-labelings of themj copies ofTuj

underφ and underφ′ belong to the samemj equivalence
classes inL(Tuj

, k). It is straightforward to verify that these two conditions are sufficient as
well to guarantee thatφ andφ′ are equivalent. This means that equivalence classes ofL(T, k)
are completely determined by (a) the label ofr(T) and (b) the set whose elements are themj

equivalence classes ofL(Tuj
, k) that contain the distinguishing labelings of themj copies of

Tuj
for j = 1, . . . , g. Since there arek ways to labelr(T), and

(
D(Tuj ,k)

mj

)
ways to pick a set of

mj equivalence classes fromL(Tuj
) for j = 1, . . . , m, our result follows.

The following corollary is immediate.

Corollary 3.3. For the rooted treeT , D(T) = k∗ wherek∗ = min{k : D(Tuj
, k) ≥ mj , ∀j =

1, . . . , g}.

the electronic journal of combinatorics 13 (2006), #R11 5

f
gd ecba

h i j k

m

1

21

1 33

n

l

2

{1,2}

{1,2} {3,3}

{1,1,1}{1,1,1}{ }{1}

1
{ } { }{ }{ }{ } { } { }

1 1 1 1 1 1

Figure 3: An example of howFIND ISOMORPH will constructL(v) andl(v) for each vertex
v of the graph on the left.

FIND ISOMORPH(T)

do BFS and constructBj = {v : d(r(T), v) = j} for j = 0, . . . , h.

for eachv ∈ V (T)
l(v)← 0, L(v)← ∅

for j = h to 0
sortL(v) for eachv ∈ Bj

sort the lists in{L(v) : v ∈ Bj} in lexicographic order
for eachv ∈ Bj

l(v)← rank ofL(v) in the sorted list (where ties are not broken)
addl(v) to L(p(v))

return(l, L)

Figure 4: The pseudocode forFIND ISOMORPH. At the end of this algorithm, two verticesy
andz of Bj will have the same label if and only ifTy andTz are isomorphic.

3.1 ComputingD(T)

Before we can apply the formula in Theorem 3.2 recursively, we must be able to identify which
of the subtrees rooted at each vertexv of T are isomorphic. A brute force approach would be to
run the tree isomorphism algorithm [1] on every pair of these subtrees and group together all the
isomorphic subtrees. A more efficient way, however, is to simply modify the tree isomorphism
algorithm (where we essentially apply the algorithm to just one tree instead of two) so that the
problem can be resolved in two sweeps ofT . We call our algorithmFIND ISOMORPH(T);
an example and its pseudocode can be found in Figures 3 and 4. In the first sweep ofT , run
a breadth-first-search (BFS) fromr(T) to construct setsB0, B1, . . . Bh whereBj contains all
vertices that are distancej from r(T), andh is the height of theT . Note that ifv ∈ Bj then
all its children are inBj+1. In the second sweep, all verticesv are assigned a labell(v) and a
list L(v) which will contain the labels ofv’s children. InitializeL(v) to the empty set for each
vertexv. Start fromBh and move up one level at a time. At each stepj, sortL(v) for each
v ∈ Bj. Then lexicographically order the set{L(v), v ∈ Bj}. Finally, let l(v) be equal to the
rank ofL(v) in the ordering where ties are not broken. Addl(v) to the list ofv’s parentp(v).

the electronic journal of combinatorics 13 (2006), #R11 6

i

n

{(a,1)}

l m

{(l,1), (m,1)}

h k
{(g,3)}

g{ } { }

{(h,1),(i,1)} {(k,2)}

{ }

a

Figure 5: WhenESSENTIAL(T, l, L) is applied to the example in Figure 3, the remaining
essential vertices are shown above together with theirU(v) values.

Lemma 3.4. Lety, z ∈ Bj . At the end ofFIND ISOMORPH(T), l(y) = l(z) if and only if the
rooted treesTy andTz are isomorphic.

Proof: We shall show that the lemma is true by induction onj, starting withj = h to j = 0.
Whenj = h, any vertex inBh is a leaf. That is, for anyv ∈ Bh, Tv consists of a single node,
L(v) = ∅ so l(v) = 1. Thus, the lemma is true trivially. Assume that the lemma holds when
j ≥ k and letj = k − 1. If Ty

∼= Tz, there is some isomorphism that mapsy to z and subtrees
rooted aty’s children to subtrees rooted atz’s children. Sincey andz’s children belong toBk,
by our assumption, the listsL(y) andL(z) are exactly the same. Consequently, they have the
same rank in{L(v) : v ∈ Bj} so the algorithm will makel(y) = l(z). On the other hand, if
l(y) = l(z), there is a one-to-one correspondence,α, from the children ofy to the children of
z that preserves the labels. That is, for every childyi of y, l(yi) = l(α(yi)). And sinceyi and
α(yi) belong toBk, by assumption,Tyi

∼= Tα(yi). If we combine the isomorphism that map the
subtrees rooted aty’s children to the subtrees rooted atz’s children and mapy to z, then we
have an isomorphism fromTy to Tz. By induction, the lemma holds.

In Theorem 3.2, we showed that to computeD(T, k), it is necessary and sufficient to know
the values ofD(Tuj

, k) andTuj
’s multipicity for j = 1, . . . g. We shall say that theseuj ’s

areessential verticesof T . But to know theseD(Tuj
, k)’s, we need to also consider the non-

isomorphic subtrees rooted at the children ofuj for eachj as well. By transitivity, these children
of uj are also essential vertices ofT , etc. Thus, we need to only consider a set of essential
vertices,V E(T), of T so that onceD(Tu, k) and the multiplicity ofTu is computed for each
u ∈ V E(T) ∩ Bj, thenD(Tu′, k) for eachu′ ∈ V E(T) ∩ Bj−1 can be computed. In algorithm
ESSENTIAL(T, l, L) (see Figures 5 and 6), we implement our approach to extract such a set of
essential vertices forT .

The setVj will contain the essential vertices inBj while the setU(v) is a list that will consist
of the ordered pairs(uj, mj) defined forTv in Theorem 3.2. A single sweep ofT is performed
starting at the only essential vertex ofV0, r(T). At iterationj, for eachv ∈ Vj−1, the sorted list
L(v) is examined. Ifw’s label appears inL(v), we shall letnext(w) denote the vertex whose
label appears afterl(w) in L(v). One child per label together with its multiplicity is added to
U(v); this same child is added toVj . The algorithm ends when the essential vertices inVh−1 are
examined.

Lemma 3.5. At the end ofESSENTIAL(T, l, L), V E(T) =
⋃h

j=0 Vh.

the electronic journal of combinatorics 13 (2006), #R11 7

ESSENTIAL(T, l, L)

for j = 0 to h
Vj ← ∅

V0 ← {r(T)}
for eachv ∈ V (T)

U(v)← ∅
for j = 1 to h

for eachv ∈ Vj−1 andv not a leaf /* ConstructU(v) */
let w be the child ofv such thatl(w) is the first label inL(v)
count← 1
while w 6= nil

if l(w) = l(next(w))
count← count + 1

else
add(w, count) to U(v) andw to Vj

count← 1
w ← next(w)

return(U, V0, V1, . . . , Vh)

Figure 6: The pseudocode forESSENTIAL(T, l, L). The setVj contains the essential vertices
in Bj .

0

222

2

2

ml

n

j
ih

dca

m

4 3

bc db

2187

81

9

9

3

3333

0

016
l

n

j
ih

a

Figure 7: The numbers on the nodes of each tree correspond tovalue(v) in EVALUATE. For
the left tree,k was set to2; on the right tree,k was set to3. Sincevalue(r(T)) on the left tree
is 0, while that of the right tree is positive, we conclude thatD(T) = 3.

the electronic journal of combinatorics 13 (2006), #R11 8

FIND DIST TREE(T)

(l, L)← FIND ISOMORPH(T)
(U, V0, . . . , Vh)← ESSENTIAL(T, l, L)
left← 1
right← n
while right− left > 1 do

k ← d(left + right)/2e
if EVALUATE(T, U, V0, . . . , Vh, k) > 0

right← k
else

left← k + 1
if EVALUATE(T, U, V0, . . . , Vh, left) > 0

k ← left
elsek ← right

return(k)

EVALUATE(T, U, V0, . . . , Vh, k)

for each leafv in T
value(v)← k

j ← h− 1
while j ≥ 0 do

for v ∈ Vj andv not a leaf
value(v) = k

∏
uj :(uj ,mj)∈U(v)

(
value(uj)

mj

)
j ← j − 1

return(value(r(T)))

Figure 8: The pseudocode algorithmFIND DIST TREE(T). ProcedureEVALUATE deter-
mines the value ofD(T, k). The main body of the algorithm performs a binary search to deter-
mine the smallestk such thatD(T, k) > 0.

the electronic journal of combinatorics 13 (2006), #R11 9

Once a set of essential vertices has been constructed, we can now compute forD(T, k). We
initialize the value for each leaf tok since leaves have exactlyk inequivalent distinguishing
labelings usingk labels. Then starting atVh−1, we apply the formula in Theorem 3.2 one level
at a time until we reach the root. If the resulting value is positive, thenD(T) ≥ k. Since
1 ≤ D(T) ≤ n, wheren = |V (T)|, we initially setk to d(n + 1)/2e and perform a binary
search to find the smallestk so thatD(T, k) > 0. We provide an example in Figure 7 and
describe our algorithmFIND DIST TREE(T) in Figure 8.

Theorem 3.6. Let T be a rooted tree onn vertices. FIND DIST TREE(T) computesD(T)
correctly inO(n log n) time.

Proof: The correctness ofFIND DIST TREE(T) follows immediately from Theorem 3.2 and
Corollary 3.3. To analyze its runtime, assumeT hasn vertices. InFIND ISOMORPH(T),
the first sweep ofT is just a breadth-first search and so takesO(n) time. In the second sweep
of T , at iterationj, two types of sorting are done: (i) for eachv ∈ Bj , L(v) is sorted, and
(ii) the lists in{L(v) : v ∈ Bj} are ordered lexicographically. Now, the labels in eachL(v)
range from1 to |Bj+1| and

∑
v∈Bj
|L(v)| = |Bj+1|. By carefully implementing bucket sort, all

theL(v)’s can be sorted inO(|Bj+1|) time (see exercise C.4.15 of [7]). Similarly, using radix
sort, ordering the lists in{L(v) : v ∈ Bj} can be done inO(|Bj+1|) time (see pp. 80–84 in
[1]). Assigning eachv ∈ Bj a rank takesO(|Bj|) time. Hence, the second sweep ofT takes∑h

j=0 O(|Bj|+ |Bj+1|) = O(n) time. Therefore,FIND ISOMORPH(T) takesO(n) time.
In ESSENTIAL(T, l, L), the list L(v) for eachv ∈ ∪h

i=0Vi is examined. But|L(v)| =
deg(v) so the runtime ofESSENTIAL(T, l, L) is O(n).

Finally, in the main body ofFIND DIST TREE(T), there are at mostO(log n) calls to
procedureEVALUATE to determine the smallestk such thatD(T, k) > 0. From the formula in
Theorem 3.2, the number of arithmetic operations needed to evaluateD(Tv, k) is proportional to∑

uj :(uj ,mj)∈U(v) mj , which equalsdeg(v). And since all vertices inT may be essential vertices,
it takesEVALUATE O(n) time to computeD(T, k). Hence,FIND DIST TREE(T) computes
D(T) in O(n logn) time.

4 Distinguishing Numbers of Forests

SupposeG is a graph withg connected components:G1, G2, . . . , Gg. By applying the same
arguments we made for Theorem 3.1, we have the following lemma:

Lemma 4.1. Let G be a graph whoseg connected components areG1, G2, . . . , Gg. Letφ be a
labeling ofG. Thenφ is distinguishing if and only if the following two conditions hold:

i. (Gi, φ) is distinguishing fori = 1, . . . , g.
ii. If Gi

∼= Gj, then(Gi, φ) 6∼= (Gj, φ) for every pair ofi, j ∈ {1, . . . , g}.

Let us now consider the case when the graph is a forestF ′. Suppose the connected com-
ponents ofF ′ haveg isomorphism classes where thejth isomorphism class containsmj copies
of T ′

j ; i.e.,F ′ = m1T
′
1 ∪m2T

′
2 ∪ . . . ∪mgT

′
g. By Lemma 4.1, the trees in thejth isomorphism

the electronic journal of combinatorics 13 (2006), #R11 10

class must be distinguished. The fewest number of labels that can accomplish this iskj where
kj = min{k : D(T ′

j , k) ≥ mj}. Hence, the smallestk such that ak-labeling exists that dis-
tinguishesall g ismorphism classes ismax{kj, j = 1, . . . , g}. We have proved the following
theorem:

Theorem 4.2. Let F ′ be a forest whose components haveg isomorphism classes where the
jth isomorphism class containsmj copies ofT ′

j ; i.e., F ′ = m1T
′
1 ∪ m2T

′
2 ∪ . . . ∪ mgT

′
g. Let

kj = min{k : D(T ′
j , k) ≥ mj}. ThenD(F ′) = max{kj, j = 1, . . . , g}.

To computeD(F ′), we must first identify the isomorphism classes of its connected com-
ponents. LetF ′

1 andF ′
2 consist of all the unicentral and bicentral tree components ofF re-

spectively. Transform each tree component into a center-rooted tree as in the previous section.
Then transform eachF ′

i into a rooted tree,Fi, by creating a new vertex which is designated
as the root ofFi and appending all the centers of the trees inF ′

i to this vertex. Finally, run
FIND ISOMORPH(Fi) for i = 1, 2. The following must be true.

Lemma 4.3. SupposeT ′
1 andT ′

2 are tree components ofF ′. ThenT ′
1
∼= T ′

2 if and only if

i. the trees belong to the sameF ′
i and

ii. in FIND ISOMORPH(Fi), the roots ofT1 andT2 (i.e., their rooted versions) are assigned
the same labels (i.e.,l(r(T1)) = l(r(T2))).

Proof: If T ′
1
∼= T ′

2, they either are both unicentral or both bicentral and so must belong to the
sameF ′

i . Furthermore, their rooted versions,T1 andT2 must also be isomorphic. Now, the roots
of these trees are children ofr(Fi). According to Lemma 3.4, ifT1

∼= T2 and their roots lie on
the same level,FIND ISOMORPH(Fi) assigns the same label to their roots.

Conversely, ifT ′
1 andT ′

2 belong to the sameF ′
i , they must be both unicentral or both bi-

central. Furthermore, the roots ofT1 andT2 lie on the same level inFi. Hence, ifr(T1) and
r(T2) were assigned the same label byFIND ISOMORPH(Fi), then according to Lemma 3.4
the subtreesTr(T1)

∼= Tr(T2). By the way we obtainedTi from T ′
i for i = 1, 2, this immediately

implies thatT ′
1
∼= T ′

2.

Once the isomorphism classes of the tree components ofF are identified then, for each class
j, we simply have to useEVALUATE to findkj and outputmax{kj , j = 1, . . . , g}.

Theorem 4.4.LetF ′ be a forest withn vertices. Its distinguishing number can be computed in
O(n log n) time.

Proof: ConstructingF1 and F2 takesO(n) time. RunningFIND ISOMORPH(Fi) for i =
1, 2 takesO(n) time. Determiningkj for eachj using binary search andEVALUATE takes
O(n log n) time. Finally, finding the maximum among all thekj ’s takesO(n) time.

5 Conclusion

We have presented anO(n logn)-time algorithm for computing the distinguishing number of a
tree. There were two important ingredients in our algorithm: (i) the recursive structure of trees

the electronic journal of combinatorics 13 (2006), #R11 11

and (ii) an efficient algorithm for determining if two trees are isomorphic. The former enabled us
to derive a formula for the number of inequivalent distinguishingk-labelings of a tree; the latter
allowed us to identify the isomorphic parts of a tree that needed to be distinguished. We then
used this algorithm to compute the distinguishing number of a forest. It would be interesting to
determine if similar efficient algorithms exist for other graph families. In particular, we ask –
can the distinguishing numbers of planar graphs be computed efficiently?

Acknowledgments

Parts of this work were done while the author was at Johns Hopkins University. She would like
to thank Lenore Cowen and Alan Goldman who read and discussed parts of this paper with her.

References

[1] A. Aho, J. Hopcroft, and J. Ullman.The Design and Analysis of Algorithms. Addison-
Wesley, 1974.

[2] M. Albertson and M. Collins. Symmetry breaking in graphs.Electronic Journal of Com-
binatorics, 3:R18, 1996.

[3] W. Bogstad and L. Cowen. The distinguishing number of the hypercube.Discrete Math-
ematics, 283:29–35, 2004.

[4] M. Chan. The distinguishing number of the augmented cube and hypercube powers. Sub-
mitted.

[5] M. Chan. The distinguishing number of the direct product and wreath product action. To
appear in theJournal of Algebraic Combinatorics.

[6] M. Chan. The maximum distinguishing number of a group. To appear in theElectronic
Journal of Combinatorics.

[7] M. Goodrich and R. Tamassia.Algorithm Design. John Wiley and Sons, Inc., 2001.

[8] S. Klavz̆ar, T. Wong, and X. Zhu. Distinguishing labelings of group action on vector
spaces and graphs. To appear in theJournal of Algebra.

[9] J. Köbler, U. Sch¨oning, and J. Tor´an. The Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser, 1993.

[10] K. Potanka. Groups, graphs and symmetry-breaking. Master’s thesis, Virginia Polytechnic
Institute and State University, 1998.

[11] F. Rubin. Problem 729.Journal of Recreational Mathematics, 11:128, 1979.

[12] A. Russell and R. Sundaram. A note on the asymptotics and computational complexity of
graph distinguishability.Electronic Journal of Combinatorics, 5:R23, 1998.

[13] J. Tymoczko. Distinguishing numbers for graphs and groups.Electronic Journal of Com-
binatorics, 11(1):R63, 2004.

the electronic journal of combinatorics 13 (2006), #R11 12

