On some Ramsey and Turán-type numbers for paths and cycles

Tomasz Dzido
Institute of Mathematics, University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk, Poland
tdz@math.univ.gda.pl
Marek Kubale
Algorithms and System Modelling Department, Gdańsk University of Technology
G. Narutowicza 11/12, 80-952 Gdańsk, Poland
kubale@eti.pg.gda.pl
Konrad Piwakowski
Algorithms and System Modelling Department, Gdańsk University of Technology
G. Narutowicza 11/12, 80-952 Gdańsk, Poland
coni@eti.pg.gda.pl

Submitted: Nov 15, 2005; Accepted: Jul 3, 2006; Published: Jul 11, 2006
Mathematics Subject Classifications: 05C55, 05C15, 05C38

Abstract

For given graphs $G_{1}, G_{2}, \ldots, G_{k}$, where $k \geq 2$, the multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of G_{i} colored with i, for some $1 \leq i \leq k$. Let P_{k} (resp. C_{k}) be the path (resp. cycle) on k vertices. In the paper we show that $R\left(P_{3}, C_{k}, C_{k}\right)=R\left(C_{k}, C_{k}\right)=$ $2 k-1$ for odd k. In addition, we provide the exact values for Ramsey numbers $R\left(P_{4}, P_{4}, C_{k}\right)=k+2$ and $R\left(P_{3}, P_{5}, C_{k}\right)=k+1$.

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor multiple edges. Let G be such a graph. The vertex set of G is denoted by $V(G)$, the edge set of G by $E(G)$, and the number of edges in G by $e(G) . C_{m}$ denotes the cycle of length m and P_{m} - the path on m vertices. For given graphs $G_{1}, G_{2}, \ldots, G_{k}, k \geq 2$, the multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with k colors, then it always contains a monochromatic copy of G_{i} colored with i, for some $1 \leq i \leq k$. We only
consider 3-color Ramsey numbers $R\left(G_{1}, G_{2}, G_{3}\right)$ (in other words we color the edges of K_{n} with colors red, blue and green). The Turán number $T(n, G)$ is the maximum number of edges in any n-vertex graph which does not contain a subgraph isomorphic to G. By $T^{\prime}(n, G)$ we denote the maximum number of edges in any n-vertex non-bipartite graph which does not contain a subgraph isomorphic to G. A non-bipartite graph on n vertices is said to be extremal with respect to G if it does not contain a subgraph isomorphic to G and has exactly $T^{\prime}(n, G)$ edges. By $T^{*}(n, G)$ we denote the maximum number of edges in any n-vertex bipartite graph which does not contain a subgraph isomorphic to G. For any $v \in V(G)$, by $r(v), b(v)$ and $g(v)$ we denote the number of red, blue and green edges incident to v, respectively. The degree of vertex v will be denoted by $d(v)$ and the minimum degree of a vertex of G by $\delta(G)$. The open neighbourhood of vertex v is $N(v)=\{u \in V(G) \mid\{u, v\} \in E(G)\} . G_{1} \cup G_{2}$ denotes the graph which consists of two disconnected subgraphs G_{1} and $G_{2} . k G$ stands for the graph consisting of k disconnected subgraphs G. We will use $G_{1}+G_{2}$ to denote the join of G_{1} and G_{2}, defined as $G_{1} \cup G_{2}$ together with all edges between G_{1} and G_{2}.

The remainder of this paper is organized as follows. Section 2 contains some facts on the numbers $T^{\prime}(n, G)$, where G is a cycle. We first establish the exact value of $T^{\prime}\left(n, C_{k}\right)$, where $k \leq n \leq 2 k-2$. Next, we continue in this fashion to obtain an upper bound for $T^{\prime}\left(2 k-1, C_{k}\right)$. Section 3 contains our main result that $R\left(P_{3}, C_{k}, C_{k}\right)=R\left(C_{k}, C_{k}\right)=2 k-1$, where C_{k} is the odd cycle on k vertices. The last Section 4 presents two new formulas for the following Ramsey numbers: $R\left(P_{4}, P_{4}, C_{k}\right)=k+2$ and $R\left(P_{3}, P_{5}, C_{k}\right)=k+1$.

2 Values of $T^{\prime}\left(n, C_{k}\right)$

First, we present some facts which are often used in the paper.
Definition 1 The circumference $c(G)$ of a graph G is the length of its longest cycle.
Definition 2 The girth of a graph G is the length of its shortest cycle.
Definition 3 A graph is called weakly pancyclic if it contains cycles of every length between the girth and the circumference.

Theorem 4 (Brandt, [3]) A non-bipartite graph G of order n and more than $\frac{(n-1)^{2}}{4}+1$ edges contains all cycles of length between 3 and the length of the longest cycle (thus such a graph is weakly pancyclic of girth 3).

Theorem 5 (Brandt, [4]) Every non-bipartite graph G of order n with minimum degree $\delta(G) \geq(n+2) / 3$ is weakly pancyclic of girth 3 or 4 .

The following notation and terminology comes from [6].

For positive integers a and b define $r(a, b)$ as

$$
r(a, b)=a-b\left\lfloor\frac{a}{b}\right\rfloor=a \bmod b
$$

For integers $n \geq k \geq 3$, define $w(n, k)$ as

$$
w(n, k)=\frac{1}{2}(n-1) k-\frac{1}{2} r(k-r-1),
$$

where $r=r(n-1, k-1)$.
Woodall's theorem [12] can then be written as follows.
Theorem 6 ([6]) Let G be a graph on n vertices and m edges with $m \geq n$ and $c(G)=k$. Then

$$
m \leq w(n, k)
$$

and this result is the best possible.
First, we state the following lemma.
Lemma 7 If $n \geq 2 k-3$ and $k \geq 1$, then $T^{*}\left(k K_{2}, n\right)=(k-1) n-(k-1)^{2}$.
Proof. The proof is by induction on k. It is clear that $T^{*}\left(K_{2}, n\right)=0$ for any integer n. It is easy to see that $K_{1, r}$ for $r \geq 1$ and K_{3} are the only connected graphs which do not contain $K_{2} \cup K_{2}$. Thus we obtain $T^{*}\left(2 K_{2}, n\right)=n-1$ for all n, since K_{3} is not bipartite.

Let G be any nonempty bipartite graph of order n, which does not contain $k K_{2}$. Choose any edge $v w$. Define H to be the subgraph induced by $V(G)-\{v, w\}$. Obviously H cannot contain $(k-1) K_{2}$, so by the induction hypothesis $e(H) \leq(k-2)(n-2)-(k-2)^{2}$. Since G is bipartite, so the number of edges with at least one vertex in $\{v, w\}$ is not greater than $n-1$. Thus we obtain $e(G) \leq(k-2)(n-2)-(k-2)^{2}+(n-1)=(k-1) n-(k-1)^{2}$, which implies $T^{*}\left(k K_{2}, n\right) \leq(k-1) n-(k-1)^{2}$. The graph $K_{k-1, n-k+1}$ implies that $T^{*}\left(k K_{2}, n\right) \geq(k-1) n-(k-1)^{2}=(k-1)(n-k+1)$.

Lemma 8 Let G be a bipartite graph of order $2 k-2$ with $k^{2}-3 k+4$ edges, where k is odd and $k \geq 9$. Then any two vertices, which belong to different sides of the bipartition, are joined by a path of length $k-2$.

Proof. Let $\{X, Y\}$ be the bipartition of G and choose any two vertices $x \in X, y \in Y$. Graph G can be seen as a complete bipartite graph without at most $k-3$ edges. Define $X^{\prime}=(X \backslash\{x\}) \cap N(y)$ and $Y^{\prime}=(Y \backslash\{y\}) \cap N(x)$. The number of edges in G guarantees that $\left|X^{\prime}\right| \geq 1,\left|Y^{\prime}\right| \geq 1$ and $\left|X^{\prime}\right|+\left|Y^{\prime}\right| \geq 2 k-4-(k-3)=k-1$. Thus the complete bipartite graph with bipartition $\left\{X^{\prime}, Y^{\prime}\right\}$ contains at least $k-2$ edges, so at least one of them, say $v w$, where $v \in X^{\prime}$ and $w \in Y^{\prime}$ must belong to G as well. In this way we obtain path $x w v y$, which is a path of length 3 joining x and y. Now we will show that any path of length at least 3 but shorter than $k-2$ which joins x and y can be extended by two additional vertices to a longer path joining x and y, which by induction completes the proof.

Assume that x and y are joined by a path P of length $k-p$, where $4 \leq p \leq k-3$. Define $G^{\prime}=G[V(G) \backslash V(P)]$. We have $e\left(G^{\prime}\right)=e(G)-e(P)-\mid\{v w \in E(G): v \in P, w \in$
$\left.G^{\prime}\right\} \mid \geq k^{2}-3 k+4-(k-p+1)^{2} / 4-(k-p+1)(k+p-3) / 2$. From Lemma 7 we have $T^{*}\left((p / 2+1) K_{2}, k+p-3\right)=\left(p^{2}+2 k p-6 p\right) / 4$. One can easily verify that this implies $e\left(G^{\prime}\right) \geq T^{*}\left((p / 2+1) K_{2}, k+p-3\right)$ and thus G^{\prime} contains $p / 2+1$ independent edges. Assume that there is no path of order $k-p+2$ joining x and y in graph G. In this case any edge from G^{\prime} can be connected to at most $(k-p+1) / 2$ vertices from P or in other words cannot be connected to at least $(k-p+1) / 2$ vertices from P. So we have $e(G) \leq e\left(K_{k-1, k-1}\right)-\left|\left\{v w \notin E(G): v \in P, w \in G^{\prime}\right\}\right| \leq(k-1)^{2}-(p / 2+1)(k-p+1) / 2=$ $k^{2}-(10+p) k / 4+\left(p^{2}+p+2\right) / 4<k^{2}-3 k+4=e(G)$, a contradiction. Hence there must be a path of order $k-p+2$ joining x and y in graph G.

Theorem 9 For odd integers $k \geq 5$

$$
T^{\prime}\left(n, C_{k}\right)=w(n, k-1)
$$

where $k \leq n \leq 2 k-2$.
Proof. The last part of the thesis of Theorem 6 implies that $T^{\prime}\left(n, C_{k}\right) \geq w(n, k-1)$. Let us suppose that there exists a non-bipartite C_{k}-free graph G^{\prime} on n vertices which has more than $w(n, k-1)$ edges. Observe that $w(n, k)$ is not a decreasing function of k and of n, i.e. $w\left(n, k_{1}\right) \geq w\left(n, k_{2}\right)$ if $k_{1}>k_{2}$ and $w\left(n_{1}, k\right) \geq w\left(n_{2}, k\right)$ if $n_{1}>n_{2}$. Then, graph G^{\prime} must contain a cycle of length greater than k. Now, we prove that $w(n, k-1)+1>\frac{(n-1)^{2}}{4}+1$. The maximal possible value of n is $2 k-2$. Then, the left-hand side is equal to $k^{2}-3 k+4$ and the right-hand side is equal to $k^{2}-3 k+\frac{13}{4}$, so by Brandt's theorem graph G^{\prime} contains C_{k}. For the case $n=2 k-3$ we obtain that $r(n-1, k-2)=0$ and $w(n, k-1)+1>\frac{(n-1)^{2}}{4}+1$, and G^{\prime} also contains a cycle of length k. For the case $n \leq 2 k-4$ we have that $r(n-1, k-2)=n-(k-1)$. Then, $w(n, k-1)+1=\frac{1}{2} n^{2}+k^{2}-k n-3 k+\frac{3}{2} n+3$ and the inequality $w(n, k-1)+1>\frac{(n-1)^{2}}{4}+1$ implies the following inequality: $\frac{n^{2}}{4}+n(2-k)+k^{2}+\frac{7}{4}>3 k$. The minimal value of the left-hand side holds for $n=2 k-4$ and it is equal to $4 k-2.25$, so for $k \geq 3$ graph G^{\prime} contains a cycle of length k.

Theorem 10 For odd integers $k \geq 9$

$$
T^{\prime}\left(2 k-1, C_{k}\right) \leq \frac{(2 k-2)^{2}}{4}-1=(k-1)^{2}-1
$$

Proof. Let G be a non-bipartite graph of order $2 k-1$. By Theorem 4 and by property $w(2 k-1, k-1)=k^{2}-3 k+5<\frac{(2 k-2)^{2}}{4}+2$ we obtain that if G has at least $\frac{(2 k-2)^{2}}{4}+2$ edges, then it contains C_{k}.

Assume that G has $\frac{(2 k-2)^{2}}{4}+1=k^{2}-2 k+2$ edges. Suppose that there is a vertex $v \in V(G)$ such that $d(v) \leq k-2$. If $G-v$ is a non-bipartite subgraph, we immediately
obtain a contradiction with $T^{\prime}\left(2 k-2, C_{k}\right)=k^{2}-3 k+3$, so $G-v$ must be bipartite. It is clear that vertex v must be joined to at least one vertex in each side of the bipartition of $G-v$. Applying Lemma 8 we find a cycle C_{k} in graph G, so we have that $\delta(G)=k-1$. In this case, the number of edges of graph G is at least $\frac{(2 k-1)(k-1)}{2}=k^{2}-\frac{3}{2} k+\frac{1}{2}>k^{2}-2 k+2$, a contradiction. These observations lead us to the conclusion that a non-bipartite graph G on $2 k-1$ vertices and $\frac{(2 k-2)^{2}}{4}+1$ edges must contain a cycle C_{k}.

Consider the last case when G has $(k-1)^{2}$ edges. Since $w(2 k-1, k-1)<(k-1)^{2}$ for $k>4$ and $w(k, n)$ is a non-decreasing function of k and n, graph G must contain a cycle of length at least k. It follows that $\delta(G) \geq k-2$. We obtain this property using the same arguments as those in the previous case. Since $k-2 \geq(2 k+1) / 3$ for $k \geq 7$, then by Theorem 5 graph G is weakly pancyclic of girth 3 or 4 , so it contains a cycle of length k.

Finally, for the sake of completeness we recall a few Turán numbers for short paths. In 1975 Faudree and Schelp proved

Theorem 11 ([9]) If G is a graph with $|V(G)|=k t+r, 0 \leq r<k$, containing no path on $k+1$ vertices, then $|E(G)| \leq t\binom{k}{2}+\binom{r}{2}$ with equality if and only if G is either $\left(t K_{k}\right) \cup K_{r}$ or $\left((t-l-1) K_{k}\right) \cup\left(K_{(k-1) / 2}+\bar{K}_{(k+1) / 2+i k+r}\right)$ for some $l, 0 \leq l<t$, when k is odd, $t>0$, and $r=(k \pm 1) / 2$.

It is easy to check that we obtain the following
Corollary 12 For all integers $n \geq 3$

$$
\begin{gathered}
T\left(n, P_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor \\
T\left(n, P_{4}\right)= \begin{cases}n & \text { if } n \equiv 0 \quad \bmod 3 \\
n-1 & \text { otherwise. }\end{cases} \\
T\left(n, P_{5}\right)= \begin{cases}\frac{3 n}{2} & \text { if } n \equiv 0 \\
\frac{3 n}{2}-2 & \text { if } n \equiv 2 \\
\bmod 4 \\
\frac{3 n}{2}-\frac{3}{2} & \text { otherwise } 4\end{cases}
\end{gathered}
$$

3 Ramsey numbers for odd cycles

In 1973 Bondy and Erdős proved that
Theorem 13 ([2]) For odd integers $k \geq 5$

$$
R\left(C_{k}, C_{k}\right)=2 k-1
$$

In 1983 Burr and Erdős gave the following Ramsey number.
Theorem 14 ([5])

$$
R\left(P_{3}, C_{3}, C_{3}\right)=11
$$

In 2005 the first author determined two further numbers of this type.
Theorem 15 ([8])

$$
\begin{gathered}
R\left(P_{3}, C_{5}, C_{5}\right)=9 \\
R\left(P_{3}, C_{7}, C_{7}\right)=13
\end{gathered}
$$

Now, we prove our the main result of the paper.
Theorem 16 For odd integers $k \geq 9$

$$
R\left(P_{3}, C_{k}, C_{k}\right)=R\left(C_{k}, C_{k}\right)=2 k-1
$$

Proof. Let the complete graph G on $2 k-2$ vertices be colored with two colors, say blue and green, as follows: the vertex set $V(G)$ of G is the disjoint union of subsets G_{1} and G_{2}, each of order $k-1$ and completely colored blue. All edges between G_{1} and G_{2} are colored green. This coloring contains neither monochromatic (blue or green) cycle C_{k} nor a monochromatic (red) path of length 2 . We conclude that $R\left(P_{3}, C_{k}, C_{k}\right) \geq 2 k-1$.

Assume that the complete graph $K_{2 k-1}$ is 3-colored with colors red, blue and green. By Corollary 12, in order to avoid a red P_{3}, there must be at most $k-1$ red edges. Suppose that $K_{2 k-1}$ contains at most $k-1$ red edges and contains neither a blue nor a green C_{k}. Since the number of blue and green edges is greater or equal to $\binom{2 k-1}{2}-(k-1)=2(k-1)^{2}$, at least one of the blue or green color classes (say blue) contains at least $(k-1)^{2}$ edges. If the blue color class is bipartite, then one of the partition sets has at least k vertices. Since $R\left(P_{3}, C_{k}\right)=k$ for $k \geq 5$ [11], the graph induced by this partition has to contain a red P_{3} or a green C_{k}, so blue edges enforce a non-bipartite subgraph of order $2 k-1$ with at least $(k-1)^{2}$ edges which by Theorem 10 contains a blue C_{k}.

4 The Ramsey numbers $R\left(P_{l}, P_{m}, C_{k}\right)$

This section makes some observations on 3-color Ramsey numbers for two short paths and one cycle of arbitrary length.

In [1] we find two values of Ramsey numbers: $R\left(P_{4}, P_{4}, C_{3}\right)=9$ and $R\left(P_{4}, P_{4}, C_{4}\right)=7$. By using simple combinatorial properties (without the aid of computer calculations) we proved: $R\left(P_{4}, P_{4}, C_{5}\right)=9$ and $R\left(P_{4}, P_{4}, C_{6}\right)=8$ (see [7] for details).

Theorem 17

$$
R\left(P_{4}, P_{4}, C_{7}\right)=9
$$

Proof. The proof of $R\left(P_{4}, P_{4}, C_{7}\right) \geq 9$ is very simple, so it is left to the reader. Let the vertices of K_{9} be labeled $1,2, \ldots, 9$. Since $R\left(P_{4}, P_{4}, C_{6}\right)=8$, we can assume $1,2,3,4,5,6$ to be the vertices of green C_{6}. If the subgraph induced by green edges of K_{9} is bipartite, then since $R\left(P_{4}, P_{4}\right)=5$, we immediately obtain a red or a blue P_{4}. Since $T\left(9, P_{4}\right)=9$, the number of green edges is at least $18>\frac{(9-1)^{2}}{4}+1$, so the non-bipartite subgraph induced by green edges of K_{9} is weakly pancyclic. Since $R\left(P_{4}, P_{4}, C_{3}\right)=9$, this subgraph contains green cycles of every length between 3 and the green circumference. Avoiding a green cycle C_{7} we know that the number of green edges from vertices $7,8,9$ to the green cycle is at most 3 . We have to consider the two following cases.

1. There is a vertex $v \in\{7,8,9\}$ which has three green edges to the vertices of green cycle C_{6}. We can assume that the edges $\{1,7\},\{3,7\},\{5,7\}$ are green. In this case the edges $\{2,4\},\{4,6\},\{2,6\}$ are red or blue. Without loss of generality we can assume that $\{2,4\}$ and $\{4,6\}$ are red. This enforces $\{2,7\},\{6,7\}$ to be blue and $\{2,8\},\{6,8\}$ to be green, and we obtain a green cycle of length 8 and then a green C_{7}.
2. There is a vertex $v \in\{7,8,9\}$ which has two green edges to the vertices of green cycle C_{6}. We have to consider two subcases.
(i) The edges $\{1,7\},\{3,7\}$ are green and $\{2,7\},\{4,7\},\{5,7\},\{6,7\}$ are red or blue. This enforces $\{2,6\}$ and $\{2,4\}$ to be red or blue. We obtain two situations. In the first, if edge $\{2,6\}$ is red and $\{2,4\}$ blue, then we can assume that edge $\{2,7\}$ is blue, then $\{5,7\}$ is red and we obtain a red or a blue P_{4} with edge $\{6,7\}$. In the second, if edges $\{2,6\}$ and $\{2,4\}$ are red, then $\{4,7\},\{6,7\}$ are blue and $\{4,8\},\{6,8\},\{4,9\},\{6,9\}$ are green. Edge $\{2,6\}$ cannot be green. If edge $\{5,8\}$ is red, then we obtain a blue $P_{4}: 2-5-7-6$ and if $\{5,8\}$ is blue, then we have a red $P_{4}: 6-2-5-7$.
(ii) The edges $\{1,7\},\{4,7\}$ are green and $\{2,7\},\{3,7\},\{5,7\},\{6,7\}$ are red or blue. Then vertex 8 and vertex 9 have green edges to at most one vertex from $\{2,3,5,6\}$, otherwise we have either the situation considered in (i) or a green cycle of length 8 . By simple considering red and blue edges from $\{7,8,9\}$ to $\{2,3,5,6\}$, we obtain a red or a blue P_{4}.

We obtain that there are at least 15 non-green edges from $\{7,8,9\}$ to the vertices of the green C_{6}. We can assume that there are at least 8 blue edges among them and we immediately have a blue P_{4}.

Theorem 18 For all integers $k \geq 6$

$$
R\left(P_{4}, P_{4}, C_{k}\right)=k+2
$$

Proof. The critical coloring which gives us the lower bound $k+2$ is easy to obtain, so we only give a proof for the upper bound. This proof can be easily deduced from Turán numbers and the theorems given above. By Theorem 9 and Corollary 12 we obtain that $T^{\prime}\left(k+2, C_{k}\right)=\frac{1}{2} k^{2}-\frac{3}{2} k+7$ for $k \geq 5$ and $T\left(k+2, P_{4}\right) \leq k+2$. It is easy to check that $T^{\prime}\left(k+2, C_{k}\right)$ is greater than the maximal number of edges in a bipartite graph on $k+2$ vertices, thus $T\left(k+2, C_{k}\right)=T^{\prime}\left(k+2, C_{k}\right)$. Suppose that we have a 3 -coloring of the complete graph K_{k+2}. This graph has $\frac{1}{2} k^{2}+\frac{3}{2} k+1$ edges. Note that $T\left(k+2, C_{k}\right)+2 T\left(k+2, P_{4}\right) \leq \frac{1}{2} k^{2}+\frac{1}{2} k+11<\frac{1}{2} k^{2}+\frac{3}{2} k+1$ for all $k>10$. If $k \in\{8,9,10\}$, we obtain that $T\left(k+2, C_{k}\right)+2 T\left(k+2, P_{4}\right) \leq\binom{ k+2}{2}$ with equality for $k=8$ and $k=10$, so $R\left(P_{4}, P_{4}, C_{9}\right)=11$. By Theorem 11 we know the properties of the extremal graphs with respect to P_{4} and by Theorem 9 and [6] we can describe the extremal graphs with respect to C_{k}, so it is easy to check that the theorem holds for the remaining cases when $k \in\{8,10\}$.

The following lemma will be useful in further considerations.
Lemma 19 Suppose that graph G has $k+1$ vertices and it contains a cycle C_{k} and suppose that we have a vertex $v \notin V\left(C_{k}\right)$, which is joined by r edges to C_{k}, where $2 \leq r \leq k$. Then one of the following two possibilities holds:
(i) G contains a cycle C_{k+1}.
(ii) $G^{\prime}=G\left[V\left(C_{k}\right)\right]$ contains at most $\frac{k(k-1)}{2}-\frac{r(r-1)}{2}$ edges.

Proof. Let $C=x_{1} x_{2} x_{3} \ldots x_{k}$ be a cycle C_{k} and $v \notin V(C)$ be a vertex, which is joined by $d(v)=r$ edges to C, where $2 \leq r \leq k$. First, if $r \geq\left\lceil\frac{k}{2}\right\rceil$, then we immediately have a cycle C_{k+1} and (i) follows. Assume that $2 \leq r \leq\left\lceil\frac{k}{2}-1\right\rceil$. Let the vertices of C, which are joined by an edge to vertex v, be labeled $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{r}}$. If any two of them are adjacent, then we obtain the cycle C_{k+1} and (i) follows. Otherwise, consider the following vertices: $p_{i_{1}+1}, p_{i_{2}+1}, \ldots, p_{i_{r}+1}$. In order to avoid a cycle C_{k+1}, these vertices must be mutually nonadjacent and G^{\prime} contains at most $\frac{k(k-1)}{2}-\frac{r(r-1)}{2}$ edges.

Theorem 20 For all integers $k \geq 8$

$$
R\left(P_{3}, P_{5}, C_{k}\right)=k+1
$$

Proof. A critical coloring which gives us the lower bound $k+1$ is very simple, so all we need is the upper bound. It is easy to see that simply using Turán numbers does not give us the proof. Indeed, the sum $T\left(k+1, P_{3}\right)+T\left(k+1, P_{5}\right)+T\left(k+1, C_{n}\right)$ is far greater than the maximal number of edges in the complete graph on $k+1$ vertices. Suppose that we have a 3-coloring of K_{k+1} with colors red, blue and green which neither contains a red P_{3}, nor a blue P_{5}, nor a green C_{k}. K_{k+1} has to contain a green cycle C_{k-1}. Indeed, suppose
that this is not the case. Since $T\left(k+1, P_{3}\right)+T\left(k+1, P_{5}\right)+T\left(k+1, C_{k-1}\right)<\binom{k+1}{2}$ for $k>11$, we obtain either a red P_{3} or a blue P_{5}. For the case of $k \in\{8,9,10,11\}$ we use the properties of the extremal graphs with respect to P_{3} and P_{5} and we also obtain either a red P_{3} or a blue P_{5}. Let the vertices of K_{k+1} be labeled $v_{0}, v_{1}, \ldots, v_{k}$. We can assume the first $k-1$ vertices to be the vertices of green C_{k-1}. It is easy to see that $b\left(v_{k-1}\right)$ and $b\left(v_{k}\right)$ are greater or equal to $k-\lfloor(k-1) / 2\rfloor-1$. Note that in order to avoid a blue P_{5} we obtain that the vertices v_{k-1} and v_{k} have no common vertex which belongs to $V\left(C_{k-1}\right)$ and which is joined by a blue edge to them. If the vertex v_{k-1} or v_{k} is joined by at least 4 green edges to the vertices of C_{k-1}, then by Lemma 19 and $R\left(P_{3}, P_{5}\right)=5$ we have a blue P_{5}. If v_{k-1} and v_{k} are joined by at most 3 green edges to the vertices of C_{k-1}, then by Lemma 19 and $R\left(P_{3}, P_{4}\right)=4$ we obtain a blue P_{4}. If $k \geq 9$ then we also have a blue P_{5}. In the case $k=8$ by simple considering possible colorings of the edges of v_{k-1} and v_{k} we obtain either a red P_{3}, or a blue P_{5}, or else a green C_{k}.

References

[1] Arste J., Klamroth K., Mengersen I.: Three color Ramsey numbers for small graphs, Util. Math. 49 (1996) 85-96.
[2] Bondy J.A., Erdős P.: Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B 14 (1973) 46-54.
[3] Brandt S.: A sufficient condition for all short cycles, Disc. Appl. Math. 79 (1997) 63-66
[4] Brandt S.: Sufficient conditions for graphs to contain all subgraphs of a given type, Ph.D. Thesis, Freie Universität Berlin, 1994.
[5] Burr A., Erdős P.: Generalizations of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983) 39-51.
[6] Caccetta L., Vijayan K.: Maximal cycles in graphs, Disc. Math. 98 (1991) 1-7.
[7] Dzido T.: Computer experience from calculating some 3-color Ramsey numbers, Technical Report of Gdañsk University of Technology, ETI Faculty 18/03 (2003).
[8] Dzido T.: Multicolor Ramsey numbers for paths and cycles, Discuss. Math. Graph Theory 25 (2005) 57-65.
[9] Faudree R.J., Schelp R.H.: Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160.
[10] Greenwood R.E., Gleason A.M.: Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
[11] Radziszowski S.P.: Small Ramsey numbers, Electronic Journal of Combinatorics, Dynamic Survey 1, revision \#10, July 2004, http://www.combinatorics.org.
[12] Woodall D.R.: Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80.

