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Abstract

For given graphs G1, G2, ..., Gk, where k ≥ 2, the multicolor Ramsey number
R(G1, G2, ..., Gk) is the smallest integer n such that if we arbitrarily color the edges
of the complete graph on n vertices with k colors, there is always a monochromatic
copy of Gi colored with i, for some 1 ≤ i ≤ k. Let Pk (resp. Ck) be the path
(resp. cycle) on k vertices. In the paper we show that R(P3, Ck, Ck) = R(Ck, Ck) =
2k − 1 for odd k. In addition, we provide the exact values for Ramsey numbers
R(P4, P4, Ck) = k + 2 and R(P3, P5, Ck) = k + 1.

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor
multiple edges. Let G be such a graph. The vertex set of G is denoted by V (G), the
edge set of G by E(G), and the number of edges in G by e(G). Cm denotes the cycle
of length m and Pm – the path on m vertices. For given graphs G1, G2, ..., Gk, k ≥ 2,
the multicolor Ramsey number R(G1, G2, ..., Gk) is the smallest integer n such that if we
arbitrarily color the edges of the complete graph of order n with k colors, then it always
contains a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We only
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consider 3-color Ramsey numbers R(G1, G2, G3) (in other words we color the edges of Kn

with colors red, blue and green). The Turán number T (n, G) is the maximum number
of edges in any n-vertex graph which does not contain a subgraph isomorphic to G. By
T ′(n, G) we denote the maximum number of edges in any n-vertex non-bipartite graph
which does not contain a subgraph isomorphic to G. A non-bipartite graph on n vertices
is said to be extremal with respect to G if it does not contain a subgraph isomorphic
to G and has exactly T ′(n, G) edges. By T ∗(n, G) we denote the maximum number of
edges in any n-vertex bipartite graph which does not contain a subgraph isomorphic to
G. For any v ∈ V (G), by r(v), b(v) and g(v) we denote the number of red, blue and
green edges incident to v, respectively. The degree of vertex v will be denoted by d(v)
and the minimum degree of a vertex of G by δ(G). The open neighbourhood of vertex v
is N(v) = {u ∈ V (G)|{u, v} ∈ E(G)}. G1 ∪ G2 denotes the graph which consists of two
disconnected subgraphs G1 and G2. kG stands for the graph consisting of k disconnected
subgraphs G. We will use G1 + G2 to denote the join of G1 and G2, defined as G1 ∪ G2

together with all edges between G1 and G2.
The remainder of this paper is organized as follows. Section 2 contains some facts on

the numbers T ′(n, G), where G is a cycle. We first establish the exact value of T ′(n, Ck),
where k ≤ n ≤ 2k − 2. Next, we continue in this fashion to obtain an upper bound for
T ′(2k−1, Ck). Section 3 contains our main result that R(P3, Ck, Ck) = R(Ck, Ck) = 2k−1,
where Ck is the odd cycle on k vertices. The last Section 4 presents two new formulas for
the following Ramsey numbers: R(P4, P4, Ck) = k + 2 and R(P3, P5, Ck) = k + 1.

2 Values of T ′(n, Ck)

First, we present some facts which are often used in the paper.

Definition 1 The circumference c(G) of a graph G is the length of its longest cycle.

Definition 2 The girth of a graph G is the length of its shortest cycle.

Definition 3 A graph is called weakly pancyclic if it contains cycles of every length
between the girth and the circumference.

Theorem 4 (Brandt, [3]) A non-bipartite graph G of order n and more than (n−1)2

4
+1

edges contains all cycles of length between 3 and the length of the longest cycle (thus such
a graph is weakly pancyclic of girth 3).

Theorem 5 (Brandt, [4]) Every non-bipartite graph G of order n with minimum degree
δ(G) ≥ (n + 2)/3 is weakly pancyclic of girth 3 or 4.

The following notation and terminology comes from [6].

For positive integers a and b define r(a, b) as

r(a, b) = a − b
⌊a

b

⌋
= a mod b.
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For integers n ≥ k ≥ 3, define w(n, k) as

w(n, k) =
1

2
(n − 1)k − 1

2
r(k − r − 1),

where r = r(n − 1, k − 1).
Woodall’s theorem [12] can then be written as follows.

Theorem 6 ([6]) Let G be a graph on n vertices and m edges with m ≥ n and c(G) = k.
Then

m ≤ w(n, k)

and this result is the best possible.

First, we state the following lemma.

Lemma 7 If n ≥ 2k − 3 and k ≥ 1, then T ∗(kK2, n) = (k − 1)n − (k − 1)2.

Proof. The proof is by induction on k. It is clear that T ∗(K2, n) = 0 for any integer n.
It is easy to see that K1,r for r ≥ 1 and K3 are the only connected graphs which do not
contain K2 ∪ K2. Thus we obtain T ∗(2K2, n) = n − 1 for all n, since K3 is not bipartite.

Let G be any nonempty bipartite graph of order n, which does not contain kK2.
Choose any edge vw. Define H to be the subgraph induced by V (G)−{v, w}. Obviously
H cannot contain (k−1)K2, so by the induction hypothesis e(H) ≤ (k−2)(n−2)−(k−2)2.
Since G is bipartite, so the number of edges with at least one vertex in {v, w} is not greater
than n−1. Thus we obtain e(G) ≤ (k−2)(n−2)−(k−2)2 +(n−1) = (k−1)n−(k−1)2,
which implies T ∗(kK2, n) ≤ (k − 1)n − (k − 1)2. The graph Kk−1,n−k+1 implies that
T ∗(kK2, n) ≥ (k − 1)n − (k − 1)2 = (k − 1)(n − k + 1). �

Lemma 8 Let G be a bipartite graph of order 2k − 2 with k2 − 3k + 4 edges, where k is
odd and k ≥ 9. Then any two vertices, which belong to different sides of the bipartition,
are joined by a path of length k − 2.

Proof. Let {X, Y } be the bipartition of G and choose any two vertices x ∈ X, y ∈ Y .
Graph G can be seen as a complete bipartite graph without at most k − 3 edges. Define
X ′ = (X \ {x})∩N(y) and Y ′ = (Y \ {y})∩N(x). The number of edges in G guarantees
that |X ′| ≥ 1, |Y ′| ≥ 1 and |X ′| + |Y ′| ≥ 2k − 4 − (k − 3) = k − 1. Thus the complete
bipartite graph with bipartition {X ′, Y ′} contains at least k − 2 edges, so at least one of
them, say vw, where v ∈ X ′ and w ∈ Y ′ must belong to G as well. In this way we obtain
path xwvy, which is a path of length 3 joining x and y. Now we will show that any path
of length at least 3 but shorter than k − 2 which joins x and y can be extended by two
additional vertices to a longer path joining x and y, which by induction completes the
proof.

Assume that x and y are joined by a path P of length k − p, where 4 ≤ p ≤ k − 3.
Define G′ = G[V (G) \ V (P )]. We have e(G′) = e(G) − e(P ) − |{vw ∈ E(G) : v ∈ P, w ∈
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G′}| ≥ k2 − 3k + 4 − (k − p + 1)2/4 − (k − p + 1)(k + p − 3)/2. From Lemma 7 we
have T ∗((p/2 + 1)K2, k + p − 3) = (p2 + 2kp − 6p)/4. One can easily verify that this
implies e(G′) ≥ T ∗((p/2 + 1)K2, k + p − 3) and thus G′ contains p/2 + 1 independent
edges. Assume that there is no path of order k − p + 2 joining x and y in graph G. In
this case any edge from G′ can be connected to at most (k − p + 1)/2 vertices from P or
in other words cannot be connected to at least (k − p + 1)/2 vertices from P . So we have
e(G) ≤ e(Kk−1,k−1)−|{vw 6∈ E(G) : v ∈ P, w ∈ G′}| ≤ (k−1)2 − (p/2+1)(k−p+1)/2 =
k2 − (10+ p)k/4+ (p2 + p+2)/4 < k2 −3k +4 = e(G), a contradiction. Hence there must
be a path of order k − p + 2 joining x and y in graph G. �

Theorem 9 For odd integers k ≥ 5

T ′(n, Ck) = w(n, k − 1),

where k ≤ n ≤ 2k − 2.

Proof. The last part of the thesis of Theorem 6 implies that T ′(n, Ck) ≥ w(n, k − 1).
Let us suppose that there exists a non-bipartite Ck-free graph G′ on n vertices which
has more than w(n, k − 1) edges. Observe that w(n, k) is not a decreasing function of
k and of n, i.e. w(n, k1) ≥ w(n, k2) if k1 > k2 and w(n1, k) ≥ w(n2, k) if n1 > n2.
Then, graph G′ must contain a cycle of length greater than k. Now, we prove that

w(n, k − 1) + 1 > (n−1)2

4
+ 1. The maximal possible value of n is 2k − 2. Then, the

left-hand side is equal to k2 − 3k + 4 and the right-hand side is equal to k2 − 3k + 13
4
,

so by Brandt’s theorem graph G′ contains Ck. For the case n = 2k − 3 we obtain that

r(n − 1, k − 2) = 0 and w(n, k − 1) + 1 > (n−1)2

4
+ 1, and G′ also contains a cycle of

length k. For the case n ≤ 2k − 4 we have that r(n − 1, k − 2) = n − (k − 1). Then,

w(n, k−1)+1 = 1
2
n2 +k2−kn−3k+ 3

2
n+3 and the inequality w(n, k−1)+1 > (n−1)2

4
+1

implies the following inequality: n2

4
+ n(2 − k) + k2 + 7

4
> 3k. The minimal value of the

left-hand side holds for n = 2k − 4 and it is equal to 4k − 2.25, so for k ≥ 3 graph G′

contains a cycle of length k. �

Theorem 10 For odd integers k ≥ 9

T ′(2k − 1, Ck) ≤ (2k − 2)2

4
− 1 = (k − 1)2 − 1.

Proof. Let G be a non-bipartite graph of order 2k − 1. By Theorem 4 and by property

w(2k − 1, k − 1) = k2 − 3k + 5 < (2k−2)2

4
+ 2 we obtain that if G has at least (2k−2)2

4
+ 2

edges, then it contains Ck.

Assume that G has (2k−2)2

4
+ 1 = k2 − 2k + 2 edges. Suppose that there is a vertex

v ∈ V (G) such that d(v) ≤ k − 2. If G − v is a non-bipartite subgraph, we immediately
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obtain a contradiction with T ′(2k− 2, Ck) = k2 − 3k +3, so G− v must be bipartite. It is
clear that vertex v must be joined to at least one vertex in each side of the bipartition of
G−v. Applying Lemma 8 we find a cycle Ck in graph G, so we have that δ(G) = k−1. In

this case, the number of edges of graph G is at least (2k−1)(k−1)
2

= k2− 3
2
k+ 1

2
> k2−2k+2,

a contradiction. These observations lead us to the conclusion that a non-bipartite graph

G on 2k − 1 vertices and (2k−2)2

4
+ 1 edges must contain a cycle Ck.

Consider the last case when G has (k − 1)2 edges. Since w(2k − 1, k − 1) < (k − 1)2

for k > 4 and w(k, n) is a non-decreasing function of k and n, graph G must contain a
cycle of length at least k. It follows that δ(G) ≥ k−2. We obtain this property using the
same arguments as those in the previous case. Since k − 2 ≥ (2k + 1)/3 for k ≥ 7, then
by Theorem 5 graph G is weakly pancyclic of girth 3 or 4, so it contains a cycle of length
k. �

Finally, for the sake of completeness we recall a few Turán numbers for short paths.
In 1975 Faudree and Schelp proved

Theorem 11 ([9]) If G is a graph with |V (G)| = kt + r, 0 ≤ r < k, containing no
path on k + 1 vertices, then |E(G)| ≤ t

(
k
2

)
+

(
r
2

)
with equality if and only if G is either

(tKk) ∪ Kr or ((t − l − 1)Kk) ∪ (K(k−1)/2 + K(k+1)/2+ik+r) for some l, 0 ≤ l < t, when k
is odd, t > 0, and r = (k ± 1)/2.

It is easy to check that we obtain the following

Corollary 12 For all integers n ≥ 3

T (n, P3) =
⌊n

2

⌋

T (n, P4) =

{
n if n ≡ 0 mod 3

n−1 otherwise.

T (n, P5) =




3n
2

if n ≡ 0 mod 4
3n
2
− 2 if n ≡ 2 mod 4

3n
2
− 3

2
otherwise

3 Ramsey numbers for odd cycles

In 1973 Bondy and Erdős proved that

Theorem 13 ([2]) For odd integers k ≥ 5

R(Ck, Ck) = 2k − 1
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In 1983 Burr and Erdős gave the following Ramsey number.

Theorem 14 ([5])
R(P3, C3, C3) = 11

In 2005 the first author determined two further numbers of this type.

Theorem 15 ([8])
R(P3, C5, C5) = 9

R(P3, C7, C7) = 13

Now, we prove our the main result of the paper.

Theorem 16 For odd integers k ≥ 9

R(P3, Ck, Ck) = R(Ck, Ck) = 2k − 1

Proof. Let the complete graph G on 2k − 2 vertices be colored with two colors, say blue
and green, as follows: the vertex set V (G) of G is the disjoint union of subsets G1 and
G2, each of order k − 1 and completely colored blue. All edges between G1 and G2 are
colored green. This coloring contains neither monochromatic (blue or green) cycle Ck nor
a monochromatic (red) path of length 2. We conclude that R(P3, Ck, Ck) ≥ 2k − 1.

Assume that the complete graph K2k−1 is 3-colored with colors red, blue and green. By
Corollary 12, in order to avoid a red P3, there must be at most k − 1 red edges. Suppose
that K2k−1 contains at most k − 1 red edges and contains neither a blue nor a green Ck.
Since the number of blue and green edges is greater or equal to

(
2k−1

2

)−(k−1) = 2(k−1)2,
at least one of the blue or green color classes (say blue) contains at least (k − 1)2 edges.
If the blue color class is bipartite, then one of the partition sets has at least k vertices.
Since R(P3, Ck) = k for k ≥ 5 [11], the graph induced by this partition has to contain a
red P3 or a green Ck, so blue edges enforce a non-bipartite subgraph of order 2k − 1 with
at least (k − 1)2 edges which by Theorem 10 contains a blue Ck. �

4 The Ramsey numbers R(Pl, Pm, Ck)

This section makes some observations on 3-color Ramsey numbers for two short paths
and one cycle of arbitrary length.

In [1] we find two values of Ramsey numbers: R(P4, P4, C3) = 9 and R(P4, P4, C4) = 7.
By using simple combinatorial properties (without the aid of computer calculations) we
proved: R(P4, P4, C5) = 9 and R(P4, P4, C6) = 8 (see [7] for details).

Theorem 17
R(P4, P4, C7) = 9.
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Proof. The proof of R(P4, P4, C7) ≥ 9 is very simple, so it is left to the reader. Let the
vertices of K9 be labeled 1, 2, . . . , 9. Since R(P4, P4, C6) = 8, we can assume 1, 2, 3, 4, 5, 6
to be the vertices of green C6. If the subgraph induced by green edges of K9 is bipartite,
then since R(P4, P4) = 5, we immediately obtain a red or a blue P4. Since T (9, P4) = 9,

the number of green edges is at least 18 > (9−1)2

4
+ 1, so the non-bipartite subgraph

induced by green edges of K9 is weakly pancyclic. Since R(P4, P4, C3) = 9, this subgraph
contains green cycles of every length between 3 and the green circumference. Avoiding a
green cycle C7 we know that the number of green edges from vertices 7, 8, 9 to the green
cycle is at most 3. We have to consider the two following cases.

1. There is a vertex v ∈ {7, 8, 9} which has three green edges to the vertices of green
cycle C6. We can assume that the edges {1, 7}, {3, 7}, {5, 7} are green. In this case
the edges {2, 4}, {4, 6}, {2, 6} are red or blue. Without loss of generality we can
assume that {2, 4} and {4, 6} are red. This enforces {2, 7}, {6, 7} to be blue and
{2, 8}, {6, 8} to be green, and we obtain a green cycle of length 8 and then a green
C7.

2. There is a vertex v ∈ {7, 8, 9} which has two green edges to the vertices of green
cycle C6. We have to consider two subcases.

(i) The edges {1, 7}, {3, 7} are green and {2, 7}, {4, 7}, {5, 7}, {6, 7} are red or
blue. This enforces {2, 6} and {2, 4} to be red or blue. We obtain two situations.
In the first, if edge {2, 6} is red and {2, 4} blue, then we can assume that edge
{2, 7} is blue, then {5, 7} is red and we obtain a red or a blue P4 with edge
{6, 7}. In the second, if edges {2, 6} and {2, 4} are red, then {4, 7}, {6, 7} are
blue and {4, 8}, {6, 8}, {4, 9}, {6, 9} are green. Edge {2, 6} cannot be green.
If edge {5, 8} is red, then we obtain a blue P4: 2 − 5 − 7 − 6 and if {5, 8} is
blue, then we have a red P4: 6 − 2 − 5 − 7.

(ii) The edges {1, 7}, {4, 7} are green and {2, 7}, {3, 7}, {5, 7}, {6, 7} are red or
blue. Then vertex 8 and vertex 9 have green edges to at most one vertex from
{2, 3, 5, 6}, otherwise we have either the situation considered in (i) or a green
cycle of length 8. By simple considering red and blue edges from {7, 8, 9} to
{2, 3, 5, 6}, we obtain a red or a blue P4.

We obtain that there are at least 15 non-green edges from {7, 8, 9} to the vertices of
the green C6. We can assume that there are at least 8 blue edges among them and we
immediately have a blue P4. �

Theorem 18 For all integers k ≥ 6

R(P4, P4, Ck) = k + 2.
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Proof. The critical coloring which gives us the lower bound k + 2 is easy to obtain,
so we only give a proof for the upper bound. This proof can be easily deduced from
Turán numbers and the theorems given above. By Theorem 9 and Corollary 12 we obtain
that T ′(k + 2, Ck) = 1

2
k2 − 3

2
k + 7 for k ≥ 5 and T (k + 2, P4) ≤ k + 2. It is easy

to check that T ′(k + 2, Ck) is greater than the maximal number of edges in a bipartite
graph on k + 2 vertices, thus T (k + 2, Ck) = T ′(k + 2, Ck). Suppose that we have a
3-coloring of the complete graph Kk+2. This graph has 1

2
k2 + 3

2
k + 1 edges. Note that

T (k+2, Ck)+2T (k+2, P4) ≤ 1
2
k2+ 1

2
k+11 < 1

2
k2 + 3

2
k+1 for all k > 10. If k ∈ {8, 9, 10},

we obtain that T (k + 2, Ck) + 2T (k + 2, P4) ≤
(

k+2
2

)
with equality for k = 8 and k = 10,

so R(P4, P4, C9) = 11. By Theorem 11 we know the properties of the extremal graphs
with respect to P4 and by Theorem 9 and [6] we can describe the extremal graphs with
respect to Ck, so it is easy to check that the theorem holds for the remaining cases when
k ∈ {8, 10}. �

The following lemma will be useful in further considerations.

Lemma 19 Suppose that graph G has k+1 vertices and it contains a cycle Ck and suppose
that we have a vertex v /∈ V (Ck), which is joined by r edges to Ck, where 2 ≤ r ≤ k.
Then one of the following two possibilities holds:

(i) G contains a cycle Ck+1.

(ii) G′ = G[V (Ck)] contains at most k(k−1)
2

− r(r−1)
2

edges.

Proof. Let C = x1x2x3...xk be a cycle Ck and v /∈ V (C) be a vertex, which is joined by
d(v) = r edges to C, where 2 ≤ r ≤ k. First, if r ≥ dk

2
e, then we immediately have a

cycle Ck+1 and (i) follows. Assume that 2 ≤ r ≤ dk
2
−1e. Let the vertices of C, which are

joined by an edge to vertex v, be labeled pi1 , pi2, ..., pir . If any two of them are adjacent,
then we obtain the cycle Ck+1 and (i) follows. Otherwise, consider the following vertices:
pi1+1, pi2+1, ..., pir+1. In order to avoid a cycle Ck+1, these vertices must be mutually

nonadjacent and G′ contains at most k(k−1)
2

− r(r−1)
2

edges. �

Theorem 20 For all integers k ≥ 8

R(P3, P5, Ck) = k + 1.

Proof. A critical coloring which gives us the lower bound k + 1 is very simple, so all we
need is the upper bound. It is easy to see that simply using Turán numbers does not give
us the proof. Indeed, the sum T (k+1, P3)+T (k+1, P5)+T (k+1, Cn) is far greater than
the maximal number of edges in the complete graph on k + 1 vertices. Suppose that we
have a 3-coloring of Kk+1 with colors red, blue and green which neither contains a red P3,
nor a blue P5, nor a green Ck. Kk+1 has to contain a green cycle Ck−1. Indeed, suppose
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that this is not the case. Since T (k + 1, P3) + T (k + 1, P5) + T (k + 1, Ck−1) <
(

k+1
2

)
for

k > 11, we obtain either a red P3 or a blue P5. For the case of k ∈ {8, 9, 10, 11} we use
the properties of the extremal graphs with respect to P3 and P5 and we also obtain either
a red P3 or a blue P5. Let the vertices of Kk+1 be labeled v0, v1, ..., vk. We can assume
the first k − 1 vertices to be the vertices of green Ck−1. It is easy to see that b(vk−1) and
b(vk) are greater or equal to k−b(k− 1)/2c− 1. Note that in order to avoid a blue P5 we
obtain that the vertices vk−1 and vk have no common vertex which belongs to V (Ck−1)
and which is joined by a blue edge to them. If the vertex vk−1 or vk is joined by at least
4 green edges to the vertices of Ck−1, then by Lemma 19 and R(P3, P5) = 5 we have a
blue P5. If vk−1 and vk are joined by at most 3 green edges to the vertices of Ck−1, then
by Lemma 19 and R(P3, P4) = 4 we obtain a blue P4. If k ≥ 9 then we also have a blue
P5. In the case k = 8 by simple considering possible colorings of the edges of vk−1 and vk

we obtain either a red P3, or a blue P5, or else a green Ck. �
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