On some Ramsey and Turán-type numbers for paths and cycles

Tomasz Dzido

Institute of Mathematics, University of Gdańsk Wita Stwosza 57, 80-952 Gdańsk, Poland tdz@math.univ.gda.pl

Marek Kubale

Algorithms and System Modelling Department, Gdańsk University of Technology G. Narutowicza 11/12, 80–952 Gdańsk, Poland kubale@eti.pg.gda.pl

Konrad Piwakowski

Algorithms and System Modelling Department, Gdańsk University of Technology G. Narutowicza 11/12, 80–952 Gdańsk, Poland coni@eti.pg.gda.pl

Submitted: Nov 15, 2005; Accepted: Jul 3, 2006; Published: Jul 11, 2006 Mathematics Subject Classifications: 05C55, 05C15, 05C38

Abstract

For given graphs $G_1, G_2, ..., G_k$, where $k \ge 2$, the multicolor Ramsey number $R(G_1, G_2, ..., G_k)$ is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of G_i colored with i, for some $1 \le i \le k$. Let P_k (resp. C_k) be the path (resp. cycle) on k vertices. In the paper we show that $R(P_3, C_k, C_k) = R(C_k, C_k) = 2k - 1$ for odd k. In addition, we provide the exact values for Ramsey numbers $R(P_4, P_4, C_k) = k + 2$ and $R(P_3, P_5, C_k) = k + 1$.

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor multiple edges. Let G be such a graph. The vertex set of G is denoted by V(G), the edge set of G by E(G), and the number of edges in G by e(G). C_m denotes the cycle of length m and P_m – the path on m vertices. For given graphs $G_1, G_2, ..., G_k, k \ge 2$, the multicolor Ramsey number $R(G_1, G_2, ..., G_k)$ is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with k colors, then it always contains a monochromatic copy of G_i colored with i, for some $1 \le i \le k$. We only consider 3-color Ramsey numbers $R(G_1, G_2, G_3)$ (in other words we color the edges of K_n with colors red, blue and green). The Turán number T(n, G) is the maximum number of edges in any *n*-vertex graph which does not contain a subgraph isomorphic to G. By T'(n, G) we denote the maximum number of edges in any *n*-vertex non-bipartite graph which does not contain a subgraph isomorphic to G. A non-bipartite graph on *n* vertices is said to be extremal with respect to G if it does not contain a subgraph isomorphic to G and has exactly T'(n, G) edges. By $T^*(n, G)$ we denote the maximum number of edges in any *n*-vertex bipartite graph which does not contain a subgraph isomorphic to G. For any $v \in V(G)$, by r(v), b(v) and g(v) we denote the number of red, blue and green edges incident to v, respectively. The degree of vertex v will be denoted by d(v)and the minimum degree of a vertex of G by $\delta(G)$. The open neighbourhood of vertex vis $N(v) = \{u \in V(G) | \{u, v\} \in E(G)\}$. $G_1 \cup G_2$ denotes the graph which consists of two disconnected subgraphs G_1 and G_2 . kG stands for the graph consisting of k disconnected subgraphs G. We will use $G_1 + G_2$ to denote the join of G_1 and G_2 , defined as $G_1 \cup G_2$ together with all edges between G_1 and G_2 .

The remainder of this paper is organized as follows. Section 2 contains some facts on the numbers T'(n, G), where G is a cycle. We first establish the exact value of $T'(n, C_k)$, where $k \leq n \leq 2k - 2$. Next, we continue in this fashion to obtain an upper bound for $T'(2k-1, C_k)$. Section 3 contains our main result that $R(P_3, C_k, C_k) = R(C_k, C_k) = 2k-1$, where C_k is the odd cycle on k vertices. The last Section 4 presents two new formulas for the following Ramsey numbers: $R(P_4, P_4, C_k) = k + 2$ and $R(P_3, P_5, C_k) = k + 1$.

2 Values of $T'(n, C_k)$

First, we present some facts which are often used in the paper.

Definition 1 The circumference c(G) of a graph G is the length of its longest cycle.

Definition 2 The girth of a graph G is the length of its shortest cycle.

Definition 3 A graph is called weakly pancyclic if it contains cycles of every length between the girth and the circumference.

Theorem 4 (Brandt, [3]) A non-bipartite graph G of order n and more than $\frac{(n-1)^2}{4} + 1$ edges contains all cycles of length between 3 and the length of the longest cycle (thus such a graph is weakly pancyclic of girth 3).

Theorem 5 (Brandt, [4]) Every non-bipartite graph G of order n with minimum degree $\delta(G) \ge (n+2)/3$ is weakly pancyclic of girth 3 or 4.

The following notation and terminology comes from [6].

For positive integers a and b define r(a, b) as

$$r(a,b) = a - b \left\lfloor \frac{a}{b} \right\rfloor = a \mod b.$$

For integers $n \ge k \ge 3$, define w(n, k) as

$$w(n,k) = \frac{1}{2}(n-1)k - \frac{1}{2}r(k-r-1),$$

where r = r(n - 1, k - 1).

Woodall's theorem [12] can then be written as follows.

Theorem 6 ([6]) Let G be a graph on n vertices and m edges with $m \ge n$ and c(G) = k. Then

$$m \le w(n,k)$$

and this result is the best possible.

First, we state the following lemma.

Lemma 7 If $n \ge 2k-3$ and $k \ge 1$, then $T^*(kK_2, n) = (k-1)n - (k-1)^2$.

Proof. The proof is by induction on k. It is clear that $T^*(K_2, n) = 0$ for any integer n. It is easy to see that $K_{1,r}$ for $r \ge 1$ and K_3 are the only connected graphs which do not contain $K_2 \cup K_2$. Thus we obtain $T^*(2K_2, n) = n - 1$ for all n, since K_3 is not bipartite.

Let G be any nonempty bipartite graph of order n, which does not contain kK_2 . Choose any edge vw. Define H to be the subgraph induced by $V(G) - \{v, w\}$. Obviously H cannot contain $(k-1)K_2$, so by the induction hypothesis $e(H) \leq (k-2)(n-2)-(k-2)^2$. Since G is bipartite, so the number of edges with at least one vertex in $\{v, w\}$ is not greater than n-1. Thus we obtain $e(G) \leq (k-2)(n-2)-(k-2)^2+(n-1)=(k-1)n-(k-1)^2$, which implies $T^*(kK_2, n) \leq (k-1)n-(k-1)^2$. The graph $K_{k-1,n-k+1}$ implies that $T^*(kK_2, n) \geq (k-1)n-(k-1)^2 = (k-1)(n-k+1)$.

Lemma 8 Let G be a bipartite graph of order 2k - 2 with $k^2 - 3k + 4$ edges, where k is odd and $k \ge 9$. Then any two vertices, which belong to different sides of the bipartition, are joined by a path of length k - 2.

Proof. Let $\{X, Y\}$ be the bipartition of G and choose any two vertices $x \in X$, $y \in Y$. Graph G can be seen as a complete bipartite graph without at most k-3 edges. Define $X' = (X \setminus \{x\}) \cap N(y)$ and $Y' = (Y \setminus \{y\}) \cap N(x)$. The number of edges in G guarantees that $|X'| \ge 1$, $|Y'| \ge 1$ and $|X'| + |Y'| \ge 2k - 4 - (k - 3) = k - 1$. Thus the complete bipartite graph with bipartition $\{X', Y'\}$ contains at least k-2 edges, so at least one of them, say vw, where $v \in X'$ and $w \in Y'$ must belong to G as well. In this way we obtain path xwvy, which is a path of length 3 joining x and y. Now we will show that any path of length at least 3 but shorter than k-2 which joins x and y can be extended by two additional vertices to a longer path joining x and y, which by induction completes the proof.

Assume that x and y are joined by a path P of length k - p, where $4 \le p \le k - 3$. Define $G' = G[V(G) \setminus V(P)]$. We have $e(G') = e(G) - e(P) - |\{vw \in E(G) : v \in P, w \in E(G) : v \in P, w \in E(G) \}$ $\begin{array}{l} G'\}| \geq k^2 - 3k + 4 - (k - p + 1)^2/4 - (k - p + 1)(k + p - 3)/2. \quad \text{From Lemma 7 we} \\ \text{have } T^*((p/2 + 1)K_2, k + p - 3) = (p^2 + 2kp - 6p)/4. \quad \text{One can easily verify that this} \\ \text{implies } e(G') \geq T^*((p/2 + 1)K_2, k + p - 3) \text{ and thus } G' \text{ contains } p/2 + 1 \text{ independent} \\ \text{edges. Assume that there is no path of order } k - p + 2 \text{ joining } x \text{ and } y \text{ in graph } G. \\ \text{In this case any edge from } G' \text{ can be connected to at most } (k - p + 1)/2 \text{ vertices from } P \text{ or} \\ \text{in other words cannot be connected to at least } (k - p + 1)/2 \text{ vertices from } P. \\ \text{So we have } e(G) \leq e(K_{k-1,k-1}) - |\{vw \notin E(G) : v \in P, w \in G'\}| \leq (k-1)^2 - (p/2+1)(k-p+1)/2 = k^2 - (10+p)k/4 + (p^2+p+2)/4 < k^2 - 3k + 4 = e(G), \text{ a contradiction. Hence there must} \\ \text{be a path of order } k - p + 2 \text{ joining } x \text{ and } y \text{ in graph } G. \end{array}$

Theorem 9 For odd integers $k \ge 5$

$$T'(n, C_k) = w(n, k-1),$$

where $k \leq n \leq 2k - 2$.

Proof. The last part of the thesis of Theorem 6 implies that $T'(n, C_k) \ge w(n, k-1)$. Let us suppose that there exists a non-bipartite C_k -free graph G' on n vertices which has more than w(n, k-1) edges. Observe that w(n, k) is not a decreasing function of k and of n, i.e. $w(n, k_1) \ge w(n, k_2)$ if $k_1 > k_2$ and $w(n_1, k) \ge w(n_2, k)$ if $n_1 > n_2$. Then, graph G' must contain a cycle of length greater than k. Now, we prove that $w(n, k-1) + 1 > \frac{(n-1)^2}{4} + 1$. The maximal possible value of n is 2k - 2. Then, the left-hand side is equal to $k^2 - 3k + 4$ and the right-hand side is equal to $k^2 - 3k + \frac{13}{4}$, so by Brandt's theorem graph G' contains C_k . For the case n = 2k - 3 we obtain that r(n-1, k-2) = 0 and $w(n, k-1) + 1 > \frac{(n-1)^2}{4} + 1$, and G' also contains a cycle of length k. For the case $n \le 2k - 4$ we have that r(n-1, k-2) = n - (k-1). Then, $w(n, k-1) + 1 = \frac{1}{2}n^2 + k^2 - kn - 3k + \frac{3}{2}n + 3$ and the inequality $w(n, k-1) + 1 > \frac{(n-1)^2}{4} + 1$ implies the following inequality: $\frac{n^2}{4} + n(2-k) + k^2 + \frac{7}{4} > 3k$. The minimal value of the left-hand side holds for n = 2k - 4 and it is equal to 4k - 2.25, so for $k \ge 3$ graph G'contains a cycle of length k.

Theorem 10 For odd integers $k \ge 9$

$$T'(2k-1, C_k) \le \frac{(2k-2)^2}{4} - 1 = (k-1)^2 - 1$$

Proof. Let G be a non-bipartite graph of order 2k - 1. By Theorem 4 and by property $w(2k - 1, k - 1) = k^2 - 3k + 5 < \frac{(2k-2)^2}{4} + 2$ we obtain that if G has at least $\frac{(2k-2)^2}{4} + 2$ edges, then it contains C_k .

Assume that G has $\frac{(2k-2)^2}{4} + 1 = k^2 - 2k + 2$ edges. Suppose that there is a vertex $v \in V(G)$ such that $d(v) \leq k - 2$. If G - v is a non-bipartite subgraph, we immediately

obtain a contradiction with $T'(2k-2, C_k) = k^2 - 3k + 3$, so G - v must be bipartite. It is clear that vertex v must be joined to at least one vertex in each side of the bipartition of G - v. Applying Lemma 8 we find a cycle C_k in graph G, so we have that $\delta(G) = k - 1$. In this case, the number of edges of graph G is at least $\frac{(2k-1)(k-1)}{2} = k^2 - \frac{3}{2}k + \frac{1}{2} > k^2 - 2k + 2$, a contradiction. These observations lead us to the conclusion that a non-bipartite graph G on 2k - 1 vertices and $\frac{(2k-2)^2}{4} + 1$ edges must contain a cycle C_k .

Consider the last case when G has $(k-1)^2$ edges. Since $w(2k-1, k-1) < (k-1)^2$ for k > 4 and w(k, n) is a non-decreasing function of k and n, graph G must contain a cycle of length at least k. It follows that $\delta(G) \ge k-2$. We obtain this property using the same arguments as those in the previous case. Since $k-2 \ge (2k+1)/3$ for $k \ge 7$, then by Theorem 5 graph G is weakly pancyclic of girth 3 or 4, so it contains a cycle of length k.

Finally, for the sake of completeness we recall a few Turán numbers for short paths. In 1975 Faudree and Schelp proved

Theorem 11 ([9]) If G is a graph with |V(G)| = kt + r, $0 \le r < k$, containing no path on k + 1 vertices, then $|E(G)| \le t {k \choose 2} + {r \choose 2}$ with equality if and only if G is either $(tK_k) \cup K_r$ or $((t - l - 1)K_k) \cup (K_{(k-1)/2} + \overline{K}_{(k+1)/2+ik+r})$ for some $l, 0 \le l < t$, when k is odd, t > 0, and $r = (k \pm 1)/2$.

It is easy to check that we obtain the following

Corollary 12 For all integers $n \ge 3$

$$T(n, P_3) = \left\lfloor \frac{n}{2} \right\rfloor$$

$$T(n, P_4) = \begin{cases} n & \text{if } n \equiv 0 \mod 3\\ n-1 & \text{otherwise.} \end{cases}$$
$$T(n, P_5) = \begin{cases} \frac{3n}{2} & \text{if } n \equiv 0 \mod 4\\ \frac{3n}{2} - 2 & \text{if } n \equiv 2 \mod 4\\ \frac{3n}{2} - \frac{3}{2} & \text{otherwise} \end{cases}$$

3 Ramsey numbers for odd cycles

In 1973 Bondy and Erdős proved that

Theorem 13 ([2]) For odd integers $k \ge 5$

$$R(C_k, C_k) = 2k - 1$$

In 1983 Burr and Erdős gave the following Ramsey number.

Theorem 14 ([5])

 $R(P_3, C_3, C_3) = 11$

In 2005 the first author determined two further numbers of this type.

Theorem 15 ([8])

$$R(P_3, C_5, C_5) = 9$$

 $R(P_3, C_7, C_7) = 13$

Now, we prove our the main result of the paper.

Theorem 16 For odd integers $k \ge 9$

$$R(P_3, C_k, C_k) = R(C_k, C_k) = 2k - 1$$

Proof. Let the complete graph G on 2k - 2 vertices be colored with two colors, say blue and green, as follows: the vertex set V(G) of G is the disjoint union of subsets G_1 and G_2 , each of order k - 1 and completely colored blue. All edges between G_1 and G_2 are colored green. This coloring contains neither monochromatic (blue or green) cycle C_k nor a monochromatic (red) path of length 2. We conclude that $R(P_3, C_k, C_k) \ge 2k - 1$.

Assume that the complete graph K_{2k-1} is 3-colored with colors red, blue and green. By Corollary 12, in order to avoid a red P_3 , there must be at most k-1 red edges. Suppose that K_{2k-1} contains at most k-1 red edges and contains neither a blue nor a green C_k . Since the number of blue and green edges is greater or equal to $\binom{2k-1}{2} - (k-1) = 2(k-1)^2$, at least one of the blue or green color classes (say blue) contains at least $(k-1)^2$ edges. If the blue color class is bipartite, then one of the partition sets has at least k vertices. Since $R(P_3, C_k) = k$ for $k \ge 5$ [11], the graph induced by this partition has to contain a red P_3 or a green C_k , so blue edges enforce a non-bipartite subgraph of order 2k-1 with at least $(k-1)^2$ edges which by Theorem 10 contains a blue C_k .

4 The Ramsey numbers $R(P_l, P_m, C_k)$

This section makes some observations on 3-color Ramsey numbers for two short paths and one cycle of arbitrary length.

In [1] we find two values of Ramsey numbers: $R(P_4, P_4, C_3) = 9$ and $R(P_4, P_4, C_4) = 7$. By using simple combinatorial properties (without the aid of computer calculations) we proved: $R(P_4, P_4, C_5) = 9$ and $R(P_4, P_4, C_6) = 8$ (see [7] for details).

Theorem 17

$$R(P_4, P_4, C_7) = 9.$$

Proof. The proof of $R(P_4, P_4, C_7) \ge 9$ is very simple, so it is left to the reader. Let the vertices of K_9 be labeled $1, 2, \ldots, 9$. Since $R(P_4, P_4, C_6) = 8$, we can assume 1, 2, 3, 4, 5, 6 to be the vertices of green C_6 . If the subgraph induced by green edges of K_9 is bipartite, then since $R(P_4, P_4) = 5$, we immediately obtain a red or a blue P_4 . Since $T(9, P_4) = 9$, the number of green edges is at least $18 > \frac{(9-1)^2}{4} + 1$, so the non-bipartite subgraph induced by green edges of K_9 is weakly pancyclic. Since $R(P_4, P_4, C_3) = 9$, this subgraph contains green cycles of every length between 3 and the green circumference. Avoiding a green cycle C_7 we know that the number of green edges from vertices 7, 8, 9 to the green cycle is at most 3. We have to consider the two following cases.

- 1. There is a vertex $v \in \{7, 8, 9\}$ which has three green edges to the vertices of green cycle C_6 . We can assume that the edges $\{1, 7\}, \{3, 7\}, \{5, 7\}$ are green. In this case the edges $\{2, 4\}, \{4, 6\}, \{2, 6\}$ are red or blue. Without loss of generality we can assume that $\{2, 4\}$ and $\{4, 6\}$ are red. This enforces $\{2, 7\}, \{6, 7\}$ to be blue and $\{2, 8\}, \{6, 8\}$ to be green, and we obtain a green cycle of length 8 and then a green C_7 .
- 2. There is a vertex $v \in \{7, 8, 9\}$ which has two green edges to the vertices of green cycle C_6 . We have to consider two subcases.
 - (i) The edges {1,7}, {3,7} are green and {2,7}, {4,7}, {5,7}, {6,7} are red or blue. This enforces {2,6} and {2,4} to be red or blue. We obtain two situations. In the first, if edge {2,6} is red and {2,4} blue, then we can assume that edge {2,7} is blue, then {5,7} is red and we obtain a red or a blue P₄ with edge {6,7}. In the second, if edges {2,6} and {2,4} are red, then {4,7}, {6,7} are blue and {4,8}, {6,8}, {4,9}, {6,9} are green. Edge {2,6} cannot be green. If edge {5,8} is red, then we obtain a blue P₄: 2 − 5 − 7 − 6 and if {5,8} is blue, then we have a red P₄: 6 − 2 − 5 − 7.
 - (ii) The edges $\{1,7\}$, $\{4,7\}$ are green and $\{2,7\}$, $\{3,7\}$, $\{5,7\}$, $\{6,7\}$ are red or blue. Then vertex 8 and vertex 9 have green edges to at most one vertex from $\{2,3,5,6\}$, otherwise we have either the situation considered in (i) or a green cycle of length 8. By simple considering red and blue edges from $\{7,8,9\}$ to $\{2,3,5,6\}$, we obtain a red or a blue P_4 .

We obtain that there are at least 15 non-green edges from $\{7, 8, 9\}$ to the vertices of the green C_6 . We can assume that there are at least 8 blue edges among them and we immediately have a blue P_4 .

Theorem 18 For all integers $k \ge 6$

$$R(P_4, P_4, C_k) = k + 2.$$

Proof. The critical coloring which gives us the lower bound k + 2 is easy to obtain, so we only give a proof for the upper bound. This proof can be easily deduced from Turán numbers and the theorems given above. By Theorem 9 and Corollary 12 we obtain that $T'(k + 2, C_k) = \frac{1}{2}k^2 - \frac{3}{2}k + 7$ for $k \ge 5$ and $T(k + 2, P_4) \le k + 2$. It is easy to check that $T'(k + 2, C_k)$ is greater than the maximal number of edges in a bipartite graph on k + 2 vertices, thus $T(k + 2, C_k) = T'(k + 2, C_k)$. Suppose that we have a 3-coloring of the complete graph K_{k+2} . This graph has $\frac{1}{2}k^2 + \frac{3}{2}k + 1$ edges. Note that $T(k+2, C_k) + 2T(k+2, P_4) \le \frac{1}{2}k^2 + \frac{1}{2}k + 11 < \frac{1}{2}k^2 + \frac{3}{2}k + 1$ for all k > 10. If $k \in \{8, 9, 10\}$, we obtain that $T(k + 2, C_k) + 2T(k + 2, P_4) \le {\binom{k+2}{2}}$ with equality for k = 8 and k = 10, so $R(P_4, P_4, C_9) = 11$. By Theorem 11 we know the properties of the extremal graphs with respect to P_4 and by Theorem 9 and [6] we can describe the extremal graphs with respect to C_k , so it is easy to check that the theorem holds for the remaining cases when $k \in \{8, 10\}$.

The following lemma will be useful in further considerations.

Lemma 19 Suppose that graph G has k+1 vertices and it contains a cycle C_k and suppose that we have a vertex $v \notin V(C_k)$, which is joined by r edges to C_k , where $2 \leq r \leq k$. Then one of the following two possibilities holds:

(i) G contains a cycle C_{k+1} .

(ii) $G' = G[V(C_k)]$ contains at most $\frac{k(k-1)}{2} - \frac{r(r-1)}{2}$ edges.

Proof. Let $C = x_1 x_2 x_3 \dots x_k$ be a cycle C_k and $v \notin V(C)$ be a vertex, which is joined by d(v) = r edges to C, where $2 \leq r \leq k$. First, if $r \geq \lceil \frac{k}{2} \rceil$, then we immediately have a cycle C_{k+1} and (i) follows. Assume that $2 \leq r \leq \lceil \frac{k}{2} - 1 \rceil$. Let the vertices of C, which are joined by an edge to vertex v, be labeled $p_{i_1}, p_{i_2}, \dots, p_{i_r}$. If any two of them are adjacent, then we obtain the cycle C_{k+1} and (i) follows. Otherwise, consider the following vertices: $p_{i_1+1}, p_{i_2+1}, \dots, p_{i_r+1}$. In order to avoid a cycle C_{k+1} , these vertices must be mutually nonadjacent and G' contains at most $\frac{k(k-1)}{2} - \frac{r(r-1)}{2}$ edges.

Theorem 20 For all integers $k \ge 8$

$$R(P_3, P_5, C_k) = k + 1.$$

Proof. A critical coloring which gives us the lower bound k + 1 is very simple, so all we need is the upper bound. It is easy to see that simply using Turán numbers does not give us the proof. Indeed, the sum $T(k+1, P_3) + T(k+1, P_5) + T(k+1, C_n)$ is far greater than the maximal number of edges in the complete graph on k + 1 vertices. Suppose that we have a 3-coloring of K_{k+1} with colors red, blue and green which neither contains a red P_3 , nor a blue P_5 , nor a green C_k . K_{k+1} has to contain a green cycle C_{k-1} . Indeed, suppose

that this is not the case. Since $T(k + 1, P_3) + T(k + 1, P_5) + T(k + 1, C_{k-1}) < \binom{k+1}{2}$ for k > 11, we obtain either a red P_3 or a blue P_5 . For the case of $k \in \{8, 9, 10, 11\}$ we use the properties of the extremal graphs with respect to P_3 and P_5 and we also obtain either a red P_3 or a blue P_5 . Let the vertices of K_{k+1} be labeled v_0, v_1, \dots, v_k . We can assume the first k - 1 vertices to be the vertices of green C_{k-1} . It is easy to see that $b(v_{k-1})$ and $b(v_k)$ are greater or equal to $k - \lfloor (k-1)/2 \rfloor - 1$. Note that in order to avoid a blue P_5 we obtain that the vertices v_{k-1} and v_k have no common vertex which belongs to $V(C_{k-1})$ and which is joined by a blue edge to them. If the vertex v_{k-1} or v_k is joined by at least 4 green edges to the vertices of C_{k-1} , then by Lemma 19 and $R(P_3, P_5) = 5$ we have a blue P_5 . If v_{k-1} and v_k are joined by at most 3 green edges to the vertices of C_{k-1} , then by Lemma 19 and $R(P_3, P_4) = 4$ we obtain a blue P_4 . If $k \ge 9$ then we also have a blue P_5 . In the case k = 8 by simple considering possible colorings of the edges of v_{k-1} and v_k we obtain either a red P_3 , or a blue P_5 , or else a green C_k .

References

- Arste J., Klamroth K., Mengersen I.: Three color Ramsey numbers for small graphs, Util. Math. 49 (1996) 85–96.
- [2] Bondy J.A., Erdős P.: Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B 14 (1973) 46–54.
- [3] Brandt S.: A sufficient condition for all short cycles, Disc. Appl. Math. 79 (1997) 63-66
- [4] Brandt S.: Sufficient conditions for graphs to contain all subgraphs of a given type, *Ph.D. Thesis*, Freie Universität Berlin, 1994.
- [5] Burr A., Erdős P.: Generalizations of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983) 39–51.
- [6] Caccetta L., Vijayan K.: Maximal cycles in graphs, Disc. Math. 98 (1991) 1–7.
- [7] Dzido T.: Computer experience from calculating some 3-color Ramsey numbers, Technical Report of Gdańsk University of Technology, ETI Faculty 18/03 (2003).
- [8] Dzido T.: Multicolor Ramsey numbers for paths and cycles, *Discuss. Math. Graph Theory* 25 (2005) 57–65.
- [9] Faudree R.J., Schelp R.H.: Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150–160.
- [10] Greenwood R.E., Gleason A.M.: Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
- [11] Radziszowski S.P.: Small Ramsey numbers, *Electronic Journal of Combinatorics*, Dynamic Survey 1, revision #10, July 2004, http://www.combinatorics.org.
- [12] Woodall D.R.: Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77–80.