Relaxations of Ore's condition on cycles

Ahmed Ainouche
CEREGMIA-GRIMAAG
UAG-Campus de Schoelcher
B.P. 7209
97275 Schoelcher Cedex
Martinique (FRANCE)
a.ainouche@martinique.univ-ag.fr

Submitted: Jun 14, 2004; Accepted: Jun 14, 2006; Published: Jul 28, 2006

Abstract

A simple, undirected 2 -connected graph G of order n belongs to class $\mathcal{O}(n, \varphi)$, $\varphi \geq 0$, if $\sigma_{2}=n-\varphi$. It is well known (Ore's theorem) that G is hamiltonian if $\varphi=0$, in which case the 2-connectedness hypothesis is implied. In this paper we provide a method for studying this class of graphs. As an application we give a full characterization of graphs G in $\mathcal{O}(n, \varphi), \varphi \leq 3$, in terms of their dual hamiltonian closure.

Keywords: Hamiltonian Cycle, Dual Closure.

1 Introduction

We consider throughout only simple 2-connected graphs $G=(V, E)$. We let $\alpha(G), \nu(G)$, $\omega(G)$ denote respectively the independence number, the matching number and the number of components of the graph G. A graph G is 1-tough if $|S| \geq \omega(G-S)$ is true for any subset $S \subset V$ with $\omega(G-S)>1$. For $k \leq \alpha(G)$ we set $\sigma_{k}=\min \left\{\sum_{x \in S} d(x) \mid S\right.$ is a stable set $\}$. We use the term stable to mean independent set. A graph G of order n belongs to class $\mathcal{O}(n, \varphi), \varphi \geq 0$ if $\sigma_{2}=n-\varphi$. It is well known ([13]) that G is hamiltonian if $G \in \mathcal{O}(n, 0)$, in which case the 2-connectedness hypothesis is implied. Jung ([8]) proved that a 1-tough graph $G \in \mathcal{O}(n \geq 11,4)$ is hamiltonian. Indeed this is a strong assumption which is not easy to verify since recognizing tough graphs is NP-Hard ([10]). Ignoring the hypothesis of 1-toughness but conserving the constraint on n, that is $n \geq 3 \varphi-1$, we obtained in ([4]) a characterization of graphs in $\mathcal{O}(n, \varphi \leq 4)$. Without any constraint on n, a characterization of graphs in $\mathcal{O}(n, \varphi \leq 2)$ is given in ([2] and [9]). The same characterization was given by Schiermeyer ([12]) in terms of the dual-closure of G.

In this paper we go a step further than Shiermeyer by giving a complete map of graphs in $\mathcal{O}(n, \varphi \leq 3)$ with respect to the hamiltonian property. The dual closure ($[1,2,5]$) of those graphs is completely determined. This is indeed useful since then finding a cycle in G of maximum length becomes a polynomial problem.

2 Preliminary results

A vertex of degree $n-1$ is a dominating vertex and Ω will denote the set of dominating vertices. The circumference $c(G)$ of G is the length of its longest cycle. For $u \in V(G)$, let $N_{H}(u)$ denote the set and $d_{H}(u)$ the number of neighbors of u in H, a subgraph of G. If $H=G$ we will write simply $N(u)$ for $N_{G}(u)$ and $d(u)$ for $d_{G}(u)$ respectively. For convenience, we extend this notation as follows. Given a subset $S \subset V$, we define the degree of a vertex x with respect to S as $d_{S}(x)$ to be the number of vertices of S adjacent to x. For $X \subset V$, put $N(X)=\cup_{u \in X} N(u)$. If $X, Y \subset V$, let $E(X, Y)$ denote the set of edges joining vertices of X to vertices of Y. As we need very often to refer to a presence or not of an edge, we write $x y$ to mean that $x y \in E$ and $\overline{x y}$ to mean $x y \notin E$ For each pair (a, b) of nonadjacent vertices we associate

$$
\begin{gathered}
G_{a b}:=G-N(a) \cup N(b), \gamma_{a b}:=|N(a) \cup N(b)|, \lambda_{a b}:=|N(a) \cap N(b)| \\
T_{a b}:=V \backslash(N[a] \cup N[b]), t_{a b}:=\left|T_{a b}\right|, \bar{\alpha}_{a b}:=2+t_{a b}=\left|V\left(G_{a b}\right)\right| \\
\delta_{a b}:=\min \left\{d(x) \mid x \in T_{a b}\right\} \text { if } T_{a b} \neq \varnothing \text { and } \delta_{a b}:=\delta(G) \text { otherwise } \\
\alpha_{a b}=\alpha\left(G_{a b}\right), \nu_{a b}=\nu\left(G_{a b}\right), \omega\left(T_{a b}\right)=\omega\left(G\left[T_{a b}\right]\right) .
\end{gathered}
$$

In this paper there is a specially chosen pair (a, b) of vertices. To remain simple, we omit the reference to a, b for all parameters defined above. Moreover we understand T as the set, the graph induced by its vertices and its edge set. Our proofs are all based on the concept of the hamiltonian closure ([11], [1], [2]). The two conditions of closure developed in [1], [2] are both generalizations of Bondy-Chvàtal's closure. To state the condition under which our closure is based we define a binary variable $\varepsilon_{a b}$ associated with (a, b).

Definition 2.1 Let $\varepsilon_{a b} \in\{0,1\}$ be a binary variable, associated with a pair (a, b) of nonadjacent vertices. We set $\varepsilon_{a b}=0$ if and only if

1. $\varnothing \neq T$ and all vertices of T have the same degree $1+t$. Moreover $\lambda_{a b} \leq 1$ if $N(T) \backslash T \subseteq N(a) \triangle N(b),($ where \triangle denotes the symmetric difference $)$.
2. one of the following two local configurations holds
(a) T is a clique (possibly with one element), $\lambda_{a b} \leq 2$ and there exist $u, v \notin T$ such that $T \subset N(u) \cap N(v)$.
(b) T is an independent set (with at least two elements), $\lambda_{a b} \leq 1+t$ and either $N(T) \subseteq D$ or there exists a vertex $u \in N(a) \triangle N(b)$ such that $\left|N_{T}(u)\right| \geq$ $|T|-\max \left(\lambda_{a b}-1,0\right)$. Moreover T is a clique in G^{2}, the square of G.

Lemma 2.2 (the main closure condition) Let G be a 2 -connected graph and let (a, b) be a pair of nonadjacent vertices satisfying the condition

$$
\begin{equation*}
\bar{\alpha}_{a b} \leq \max \left\{\lambda_{a b}+\nu_{a b}, \delta_{a b}+\varepsilon_{a b}\right\} \tag{ncc}
\end{equation*}
$$

Then $c(G)=p$ if and only if $c(G+a b)=p, p \leq n$.
The first condition is a relaxation of the condition $\alpha_{a b} \leq \max \left\{\lambda_{a b}, 2\right\}$ given in [1]. Since by definition $\bar{\alpha}_{a b}$ is the order of $G_{a b}$, it follows that $\alpha_{a b} \leq \bar{\alpha}_{a b}$. As $\alpha_{a b}$ is not easy to compute we developed many upper bounds of $\alpha_{a b}$, computable in polynomial time ([1], [6]). One of these upper bounds is precisely $\nu_{a b}$. It is known that for any graph H, $\alpha(H)+\nu(H) \leq n(H)$. We note that $\nu_{a b}=\nu\left(G_{a b}\right)=\nu(T)$ since a, b are isolated vertices in $G_{a b}$, we see that $\bar{\alpha}_{a b}-\nu_{a b} \leq \alpha_{a b}$ and hence $\alpha_{a b} \leq \max \left\{\lambda_{a b}, 2\right\}$ implies $\bar{\alpha}_{a b} \leq \lambda_{a b}+\nu_{a b}$. We note that $\bar{\alpha}_{a b} \leq \lambda_{a b}+\nu_{a b}$ is stronger than Bondy-Chvàtal's hamiltonian closure condition ([11]) since $d(a)+d(b) \geq n \Leftrightarrow \bar{\alpha}_{a b} \leq \lambda_{a b}$. The second part of the condition (ncc) is a relaxation of a strongest one given in [1], improved in ([5]). The condition $\bar{\alpha}_{a b} \leq \delta_{a b}+\varepsilon_{a b}$, especially with the addition of the term $\varepsilon_{a b}$ will prove to be a most useful tool in obtaining the main properties of the dual closure of any graph $G \in \mathcal{O}(n, 3)$. The condition $\bar{\alpha}_{a b} \leq$ $\lambda_{a b}+\nu_{a b}$ is only used in very particular cases. Note that $\bar{\alpha}_{a b} \leq \delta_{a b}+\varepsilon_{a b} \Leftrightarrow \gamma_{a b}+\delta_{a b}+\varepsilon_{a b} \geq n$ and $\bar{\alpha}_{a b} \leq \lambda_{a b}+\nu_{a b} \Leftrightarrow d(a)+d(b)+\nu_{a b} \geq n$.

The 0-dual neighborhood closure $n c_{0}^{*}(G)$ (the 0 -dual closure for short) is the graph obtained from G by successively joining (a, b) satisfying the condition ($n c c$) until no such pair remains. Throughout we denote $n c_{0}^{*}(G)$ by H. All closures based on the above conditions are well defined. Moreover, it is shown in ([6], [5]) that it takes a polynomial time to construct H and to exhibit a longest cycle in G whenever a longest cycle is known in H.

As a direct consequence of Lemma 2.2 we have.
Corollary 2.3 Let G be a 2-connected graph. Then G is hamiltonian if and only if H is hamiltonian.

3 Results

To state our results, we define first three nonhamiltonian graphs $\left(H_{7}^{1}\right.$ to $\left.H_{7}^{3}\right)$ on the set $\{a, b, d, u, v, x, y\}$ of 7 vertices. For all the three graphs, d is dominating and $a u, b v, u x$ are edges. We refer to H as H_{7}^{1} if $v x, x y$ and $u v$. We refer to H as H_{7}^{2} by removing $u v$ from H_{7}^{1}. In H_{7}^{3}, uv and $v y$ are edges. These three graphs are all in $\mathcal{O}(7,3)$ and only H_{7}^{1} is 1 -tough. Next we define a family $\mathcal{K}_{n}^{\varphi}$ of nonhamiltonian graphs. A graph G of order n is in $\mathcal{K}_{n}^{\varphi}$ for $\varphi \geq 1$ if its dual closure H satisfies the condition $|\Omega|+1 \leq \omega(H-\Omega) \leq|\Omega|+\varphi$ and each component of $H-\Omega$ is any graph on maximum φ vertices.

Theorem 3.1 Let $G \in \mathcal{O}(n, \varphi), 0 \leq \varphi \leq 3$, and let $H:=n c_{0}^{*}(G)$. Then (i) G is hamiltonian if and only if either $H=C_{7}$, in which case $\varphi=3$ or $H=K_{n}$ and (ii) G is nonhamiltonian if and only if either $\varphi=3, n=7$ and $H=H_{7}^{i}, i=1,2,3$ or $H \in \mathcal{K}_{n}^{\varphi}$.

Proof. Follows directely from Lemmas 5.1 to 5.5 in section 5.
Corollary 3.2 Let $G \in \mathcal{O}(n, \varphi), 0 \leq \varphi \leq 3$. If $n \geq 3 \varphi-1$ then G is hamiltonian if and only if $H=K_{n}$ and nonhamiltonian if and only if $H \in \mathcal{K}_{n}^{\varphi}$.

Corollary 3.3 Let $G \in \mathcal{O}(n, \varphi), 0 \leq \varphi \leq 3$. Then $H \in\left\{K_{n}, C_{7}, H_{7}^{1}\right\}$ if G is 1-tough.
Corollary 3.4 Let $G \in \mathcal{O}(n, \varphi), 0 \leq \varphi \leq 3$. If G is not hamiltonian then $c(G)=c(H) \geq$ $n-\varphi$. Moreover $c(G)=c(H)=n-1$ if $n \geq 3(\varphi+1)$.

4 General Lemmas

In this section we assume $G \in \mathcal{O}(n, \varphi), \varphi \geq 0$ and all neighborhood sets and degrees are understood under H, unless otherwise stated. With each pair (a, b) we adopt the following decomposition of V by setting $A:=N(a) \backslash N(b), A^{+}:=A \cup\{a\}, B:=N(b) \backslash N(a), B^{+}:=$ $B \cup\{b\}, D:=N(a) \cap N(b), T:=T_{a b}$ where $t=|T|$. Also we set $T_{i}:=\left\{x \in T \mid d_{T}(x)=i\right\}$, $i \geq 0$. We point out that $T \neq \varnothing$ by (ncc) whenever $H \neq K_{n}$ since H is 2-connected. For an ordered pair (x, y) of nonadjacent vertices we set $N(x, y):=N(x) \backslash N(y)$ and $n(x, y):=|N(x, y)|$. With this notation, we have $A=N(a, b)$ and $B=N(b, a)$. We shall say that $H \neq K_{n}$ is (a, b)-well-shaped if $E(A \cup B, T) \cup E(A, B)=\varnothing$ and $\Omega=D$.

Throughout, a, b are chosen as follows:
(i) $\overline{a b}$ and $d(a)+d(b)=\sigma_{2}=n-\varphi$,
(ii) subject to (i), $\lambda_{a b}$ is minimum.
(iii) subject to (i) and (ii) and if possible H is (a, b)-well-shaped.

Moreover we always assume $d(a) \leq d(b) \leq d(x)$ for any $x \in T$. This choice implies immediately.

Lemma 4.1 If $H \neq K_{n}$ and $\varphi \geq 1$ then
(L1) $2+t=\lambda_{a b}+\varphi$.
(L2) $\forall p, q \in V, \overline{p q} \Rightarrow \max \{n(p, q), n(q, p)\}+\varepsilon_{p q}<\varphi$.
(L3) $|A| \leq|B|<\varphi-\varepsilon_{a b}$.
(L4) $T=\cup_{j=0}^{\varphi-1} T_{j}$. Furthermore either $T_{\varphi-1}=\varnothing$ or $E(A \cup B, T) \cup E(A, B)=\varnothing$.
(L5) if $u \in A$ then $d_{A \cup T}(u)+\varepsilon_{b u} \leq \varphi-2+d(a)-\delta_{b u}$. Similarly if $v \in B$ then $d_{B \cup T}(v)+$ $\varepsilon_{a v} \leq \varphi-2+d(b)-\delta_{a v}$.
(L6) if $A \cup B=\varnothing$ then $\overline{x y}=\varnothing \Rightarrow d_{T}(x)+d_{T}(y)+\nu_{x y}<\varphi$ for all $x, y \in T$

Proof. (L1). By choice of a, b we have $d(a)+d(b)=n-\varphi$. This is equivalent to $2+t=\lambda_{a b}+\varphi$.
(L2) If $\overline{p q}$ then $\gamma_{p q}+\delta_{p q}+\varepsilon_{p q}<n$. Let us choose $r \in T_{p q}$ such that $d(r)=\delta_{p q}$. This vertex exists since $T_{p q} \neq \varnothing$ by ($n c c$). Since clearly $\gamma_{p q}=d(q)+n(p, q)$, we have $n(p, q)+d(q)+d(r)+\varepsilon_{p q}<n$. By hypothesis $d(q)+d(r) \geq n-\varphi$ since $\overline{q r}$. It follows that (L2) holds. In particular if $\overline{p q}$ and $n(p, q)=\varphi-1$ then $\varepsilon_{p q}=0$.
(L3) This is a consequence of ($L 2$) since $B=N(b, a)$.
(L4) Clearly $T=\cup_{j=0}^{t-1} T_{j}$. If $T_{j} \neq \varnothing$ for $j \geq \varphi$ then $n(x, a)=\left|N_{T}(x)\right| \geq \varphi$, a contradiction to (L2). Suppose next $v y$ for some $(v, y) \in B \times T$ and choose $z \in T_{\varphi-1}$. Clearly $z \neq y$ for otherwise $n(y, a) \geq \varphi$, a contradiction to (L2). By $(L 2), \varepsilon_{a z}=0$ and hence $T_{a z}$ must be a clique since $b v \in T_{a z}$. But then by since $v y$. Thus $E(B, T)=\varnothing$. Similarly $E(A, T)=\varnothing$. Next suppose $v u$ for some $(v, u) \in B \times A$. Again $T_{a z}$ is a clique and $v u \Rightarrow b u$. Therefore $E(A, B)=\varnothing$.
(L5) Because $\overline{u b}, u \in A$ and by ($n c c$) we have $\bar{\alpha}_{u b}>\delta_{u b}+\varepsilon_{u b}$. Obviously $\bar{\alpha}_{u b}=$ $1+|A|-d_{A}(u)+t-d_{T}(u)=1+d(a)-\lambda_{a b}-d_{A}(u)+t-d_{T}(u)$. By (L1) we get $\bar{\alpha}_{u b}=1+d(a)+\varphi-2-\left(d_{A}(u)+d_{T}(u)\right)$. On the other hand $\delta_{u b} \geq d(b) \geq d(a)$.From these inequalities we obtain $d_{A}(u)+d_{T}(u)+\varepsilon_{u b} \leq \varphi-2$. Similarly $d_{A}(u)+d_{T}(u)+\varepsilon_{u b} \leq$ $\varphi-2$.
(L6) We observe that $d(x)+d(y)=2 \lambda_{a b}+d_{T}(x)+d_{T}(y)$. Then $2 \lambda_{a b}+d_{T}(x)+d_{T}(y)+$ $\nu_{a b}<n$ by $(n c c)$. On the other hand $n=d(a)+d(b)+\varphi=2 \lambda_{a b}+\varphi$. Statement (L6) follows easily.

5 Application to graphs in $O(n, \varphi), \varphi \leq 3$

Throughout, we assume $H:=n c_{0}^{*}(G) \neq K_{n}$.
Lemma 5.1 If $G \in \mathcal{O}(n, 1)$ then $H \in \mathcal{K}_{n}^{1}$.
Proof. By hypothesis, $d(a)+d(b) \geq n-1$ or equivalently $\bar{\alpha}_{a b} \leq \lambda_{a b}+1$. By (ncc) $\bar{\alpha}_{a b}>\max \left\{\lambda_{a b}+\nu_{a b}, \delta_{a b}+\varepsilon_{a b}\right\}$ since $\overline{a b}$. It follows that $\nu_{a b}=\varepsilon_{a b}=0$. Moreover T is independent and $d(x)=\delta_{a b}=\lambda_{a b}=d(a)=d(b)$ holds for any $x \in T$. This means in particular that $A \cup B=\varnothing$. and $N_{D}(v)=D$ is true for each vertex $v \in V \backslash D$. Furthermore D must be a clique for if $\overline{e f}$ for some $(e, f) \in D^{2}$ then $\bar{\alpha}_{e f} \leq|D|=\lambda_{a b} \leq \lambda_{e f}=|V \backslash D|$, a contradiction to ($n c c$). Therefore $\Omega=D$ and $\omega(H-\Omega)=|V \backslash D|$. Clearly $|D|=\frac{n-1}{2}$ and $|V \backslash D|=\frac{n+1}{2}$ since $d(a)+d(b)=n-1=2 \lambda_{a b}$. It follows that $\omega(H-\Omega)=\frac{n+1}{2}$ and $H \in \mathcal{K}_{n}^{1}$.

Lemma 5.2 If $G \in \mathcal{O}(n, 2)$ then $H \in \mathcal{K}_{n}^{2}$.
Proof. Now $\nu_{a b} \leq 1$. As a first step, we prove that $N_{D}(v)=D$ is true for each vertex $v \in V \backslash D$. Choose $(x, e) \in T \times D$. If $\overline{e x}$ then $n(e, x) \geq|\{a, b\}|=2$, a contradiction to (L2). Moreover $E(A \cup B, T)=\varnothing$ for if there exists an edge $u x$ with $(u, x) \in A \times T$ then
$n(u, b) \geq 2$, a contradiction to (L2). Similarly $E(A, B)=\varnothing$ for if there exists $u v$ for some $(u, v) \in A \times B$ then $n(u, x) \geq 2$. It follows that $N_{D}(u)=D$ is also true for each vertex $u \in A \cup B$ since by the choice of $a, b, d(u) \geq d(a)$ if $u \in A$ and $d(u) \geq d(b)$ if $u \in B$. As for the proof of the above Lemma we get $\Omega=D$. If $\nu_{a b}=0$ then clearly $H=(m+2) K_{1}+K_{m}$ with $m=\lambda_{a b}$. If $\nu_{a b}=1$ and $t=2$ then $\left(K_{r} \cup K_{s} \cup K_{2}\right)+K_{2}, 1 \leq r \leq s \leq 2$. If $\nu_{a b}=1$ and $t>2$ then $\left((m+1) K_{1} \cup K_{2}\right)+K_{m}$ with $m \geq 3$. In all cases, one can easily check that ch that $H \in \mathcal{K}_{n}^{2}$.

Lemma 5.3 If $G \in \mathcal{O}(n, 3)$ and $\lambda_{a b}=0$ then $H=C_{7}$.
Proof. By (L1) we obtain $t=1$. Assuming $T=\{x\}$, we get $d(x)=2$ by (ncc). It follows that $d(a)=d(b)=2$ by the choice of a, b. As $d(a)+d(b)=4=n-3$, we have $n=7$. Set $N(a)=\left\{a_{1}, a_{2}\right\}$ and $N(b)=\left\{b_{1}, b_{2}\right\}$. If $N(x)=B$ then $T_{a b_{2}}=\left\{b_{1}\right\}$ and hence $d\left(b_{1}\right)=2$ by (ncc). But now $H-b_{2}$ is disconnected. With this contradiction, we deduce that $N(x) \neq B$. Similarly $N(x) \neq A$. Assume then $x a_{1}$ and $x b_{1}$. Now $T_{a b_{1}}=\left\{b_{2}\right\}$ and hence $d\left(b_{2}\right)=2$ by $(n c c)$. Similarly $d\left(a_{2}\right)=2$. As H is 2 -connected, we must have $N_{B}\left(a_{2}\right) \neq \varnothing$ and $N_{A}\left(b_{2}\right) \neq \varnothing$. Suppose first $a_{2} b_{1}$ and $a_{1} b_{2}$. This would contradict (ncc) since $T_{a_{1} b_{1}}=\varnothing$. It remains to admit that $a_{2} b_{2}$, in which case $H=C_{7}$, as claimed.

Lemma 5.4 If $G \in \mathcal{O}(n, 3)$ and $\lambda_{a b}=1$ then $H=H_{7}^{i}, i=1,2,3$.
Proof. By (L1), $t=2$ and we may assume $T:=\{x, y\}, d(y) \leq d(x)$ and $D:=\{d\}$. Moreover $T \subseteq T_{0} \cup T_{1}$.

Claim 1. $\varepsilon_{a b}=1$
By contradiction, suppose $\varepsilon_{a b}=0$. Then $d(x)=d(y)=3, T$ is either a clique or a stable and $d(a) \leq d(b) \leq 3$. If $x y$ then by Definition 2.1(2.a), there exist $r, s \in N(a) \cup N(b)$ and $N(r) \cap N(s) \supset\{x, y\}$. Assuming $r \neq d$ then $r \in A \cup B$. It follows that $d_{T}(r)=2$, a contradiction to (L5). Suppose next $\overline{x y}$. In one hand we obviously have $\left|N_{A \cup B}(x)\right| \geq 2$, $\left|N_{A \cup B}(y)\right| \geq 2$ and $\left|N_{A \cup B}(x) \cap N_{A \cup B}(y)\right| \leq 1$ by $(L 5)$. As $|A \cup B| \leq 2$, we deduce that $\left|N_{A \cup B}(x)\right|=\left|N_{A \cup B}(y)\right|=2,|A|=|B|=2$ and $N(d) \supset\{x, y\}$. Set $A=\left\{u, u^{\prime}\right\}$ and $B=\left\{v, v^{\prime}\right\}$. Only two configurations are possible : $N_{A \cup B}(x)=\{u, v\}, N_{A \cup B}(y)=\left\{u^{\prime}, v^{\prime}\right\}$ or $N_{B}(x)=B, N_{A}(y)=A$. For the first case $T_{a v}=\left\{y, v^{\prime}\right\}$ and $\varepsilon_{a v}=0$ by (L2) since $n(v, a)=2=\varphi-1$. Since $T_{a v}$ is a clique and $\left|N\left(T_{a v}\right) \backslash T_{a v}\right| \geq 3$, we get a contradiction to the definition of $\varepsilon_{a v}$. For the second case we may assume $u v$ since H is 2 -connected. We note that $u^{\prime} v$ for otherwise $n\left(v, u^{\prime}\right)=3$ since $\overline{u^{\prime} u}$ by $(L 5)$. Now $T_{a v^{\prime}}=\{y, v\}$ and $d(v) \geq 4$. By $(n c c)$, av and we get the required contradiction for the proof of Claim 1. As a consequence of this claim, we must have $d(y)=2$. This in turn implies $A=\{u\}$ and $B=\{v\}$.

Claim 2. $H=H_{7}^{i}, i=1,2,3$
By the choice of $a, b, d(y)=d(a)=d(b)=2 \Rightarrow N(y) \cap\{u, d\} \neq \varnothing$ and $N(y) \cap\{v, d\} \neq$ \varnothing. We claim that $y d$ for otherwise $N(y)=\{u, v\}$ and $N(x)=\{d\}$ since $N(x) \cap N(y) \cap$ $\{u, v\}=\varnothing$ by $(L 5)$. This is obviously a contradiction. Next we show that $d x$. If $d(x)=2$,
this is true by symmetry with y. Otherwise $N(x)=\{y, u, v\}$ and hence $d x$ since $T_{d x}=\varnothing$. Moreover $u d$ and $v d$, that is $d \in \Omega$. To see this, suppose $\overline{u d}$ for instance. Then $T_{u d}=\{v\}$ and hence $d(v)=2$. But now we have $\lambda_{a v}=0$ and choosing (a, v) instead of (a, b) we get a contradiction. Let us consider two cases.

Case 1: xy.
Set $F:=\{u x, u x, v x\}$. Since $H-d$ must be connected, H must contain at least two edges of F. If H contains all edges of F then $H=H_{7}^{1}$. This graph is 1-tough (in fact it is the smallest 1-tough, non-hamiltonian graph). If H contains 2 edges of F then $H=H_{7}^{2}$ (we have three isomorphic graphs).

Case 2: $\overline{x y}$.
Since $H-d$ must be connected, we must have $u v$. Since $N(x) \cap N(y)\{u, v\}=\varnothing$, we may assume $u x$ and $v y$. We have now the third nonhamiltonian graph $H=H_{7}^{3}$ and the proof is complete

Lemma 5.5 If $G \in \mathcal{O}(n, 3)$ and $\lambda_{a b} \geq 2$ then $H \in \mathcal{K}_{n}^{3}$.
Proof. By (L2), $t \geq 3$ and we recall that $\nu_{a b} \leq 2$. The proof is split into three claims.
Claim 1: $E(A \cup B, T) \cup E(A, B)=\varnothing$.
By contradiction suppose first $A \cup B \neq \varnothing$ and $E(A \cup B, T) \neq \varnothing$. If $\varepsilon_{a b}=0$ then by Definition $2.1(2 . \mathrm{b}), d_{T}(v) \geq t-\lambda_{a b}+1$. By $(L 1), d_{T}(v) \geq \varphi-1 \geq 2$, a contradiction to $(L 5)$. With this contradiction, we assume $\varepsilon_{a b}=1$, in which case $B=\{v\}$ and $A \subseteq\{u\}$ by (L3). Without loss of generality, assume $v x$ for some $(v, x) \in B \times T$. Consider now $T_{a v}=A^{+} \cup\left(T_{a b} \backslash\{x\}\right)$. As $n(v, a)=2$, we deduce that $\varepsilon_{a v}=0$ by ($L 2$) and consequently $T_{a v}$ is either a clique or a stable. Clearly $T_{a v}$ cannot be a clique and hence it is a stable and in particular $A=\varnothing$. Moreover $d(a)=d(w)$ for any vertex of $T_{a b} \backslash\{x\}$, a contradiction to the choice of a, b since now $\delta_{a b}=d(a)<d(b)$. We have just proved that $E(A \cup B, T)=\varnothing$. Next suppose $u v,(u, v) \in A \times B$. By $(L 4), T=T_{0} \cup T_{1}$. Furthermore $T_{0}=\varnothing$ for if $x \in T_{0}$ then $N(x) \subseteq D$ and hence $d(x)<d(b)$. Therefore $T=p K_{2}$ with $p \geq 2$ since $t=\lambda_{a b}+\varphi-2 \geq 3$. As $N(u, x)=\{a, v\}$ we have $\varepsilon_{u x}=0$ for any $x \in T$. This is a contradiction since $T_{u x}$ is neither a clique nor a stable since it contains at least one edge and the single vertex b.

Claim 2: H is (a, b)-well-shaped.
By Claim 1, it suffices to prove that $\Omega=D$. We first note, by ($n c c$), that $\Omega=D$ if $N_{V \backslash D}(e)=V \backslash D$ holds for any $e \in D$. Choose $(e, x) \in D \times T$ such that $\overline{e x}$. If $A \cup B \neq \varnothing$ then $B=\{v\}$ and $N_{D}(v)=D$ since $d(v) \geq d(b)$ by the choice of a, b. Therefore $N(e, x) \supseteq$ $\{a, b, v\}$, a contradiction to (L2). For the remaining we assume $A \cup B=\varnothing$. Clearly $T_{0}=\varnothing$ since obviously $x \notin T_{0}$ for if there exists $y \in T_{0}$ then necessarily $\overline{x y}$ and $N_{D}(y)=D$ and hence $n(e, y) \geq 3$, a contradiction to (L2). Therefore $T=T_{1} \cup T_{2}$. Suppose first $x \in T_{2}$. As $n(x, a)=2$ then $\varepsilon_{a x}=0$ and hence $d(z)=d(b)$ for any vertex $z \in T_{a x} \cap T$. By the choice of (a, b) we must have $\lambda_{a z}=\lambda_{a b}$. So if $z \in T_{a x} \cap T$ then $z \in T_{0}$. Since $T_{0}=\varnothing$ we conclude that $T_{a x}=\{b\}$. It follows that $d(b)=2$ and $t=\varphi=3$ by $(L 1)$. Therefore $N[x]=T$ and
$T_{e x} \subseteq\{f\}$, where $D=\{e, f\}$. By (ncc), we have $d(f)=2$. This is a contradiction since $H-e$ cannot be disconnected. Finally suppose $T=T_{1}$. Now $d(x)=d(b)$ since $\overline{e x}$, while $\lambda_{a x}<\lambda_{a b}$, a contradiction. The proof of Claim 2 is now complete.

Claim 3: $H \in \mathcal{K}_{n}^{3}$.
We set $m=\lambda_{a b}$ and we recall that $\Omega=D, E(A \cup B, T)=E(A, B)=\varnothing$. By (L4), $T \subseteq T_{0} \cup T_{1} \cup T_{2}$.

Case 1: $A \cup B \neq \varnothing$ and $T_{2} \neq \varnothing$.
In this case we necessarily have $T=T_{1} \cup T_{2}$. Choose a vertex $z \in T_{2}$. By ($L 2$), applied to (a, z) and (b, z) we get $\varepsilon_{a z}=\varepsilon_{b z}=0$. It follows that, for instance $T_{a z} \supset B^{+}$must be either a clique or a stable.

If $T_{a z}$ is a clique then necessarily $T_{a z}=B^{+}$and hence $t=3$ and $\lambda_{a b}=2$ by (L1). It is not diffficult to check that $H=\left(K_{r} \cup K_{s} \cup M_{3}\right)+K_{2}, 1 \leq r \leq s \leq 3$ where $r=\left|A^{+}\right|$, $s=\left|B^{+}\right|$and $M_{3} \in\left\{P_{3}, K_{3}\right\}$. If $s=3$ then $M_{3}=K_{3}$ by the choice of a, b. For this sub-case we have $H \in \mathcal{K}_{n}^{3}$, as claimed.

Case 2: $A \cup B \neq \varnothing$ and $T_{2}=\varnothing$.
In this case we necessarily have $T=T_{1}$. Set $T=p K_{2}$. Thus $\nu_{a b}=p$ and by ($n c c$), $2 t=s<3$ for otherwise $a b$. It follows that $t=4$ since t is even and greater than 3 . Therefore $H=\left(K_{r} \cup K_{s} \cup 2 K_{2}\right)+K_{3}, 1 \leq r \leq s \leq 2$, ie $H \in \mathcal{K}_{n}^{3}$.

Case 3: $A \cup B=\varnothing$.
By (L6) we have $\overline{x y}=\varnothing \Rightarrow d_{T}(x)+d_{T}(y)+\nu_{x y} \leq 2(*)$. By $(L 4), T=T_{2} \cup T_{1} \cup T_{0}$. Suppose first $T_{2} \neq \varnothing$ and let $z \in T_{2}$. By $(*)$, we necessarily have $T=N[z] \cup T_{0}$, that is $T=M_{3} \cup(m-2) K_{1}$ where $M_{3} \in\left\{P_{3}, K_{3}\right\}$ (recall that $t=\lambda_{a b}+1=m+1$). Thus $H=\left(m K_{1} \cup M_{3}\right)+K_{m}, m \geq 3$, that is $H \in \mathcal{K}_{n}^{3}$.

Next suppose $T_{2}=\varnothing$ but $T_{1} \neq \varnothing$. Set $T=p K_{2} \cup q K_{1}$. Clearly $p \leq 2$ by ($*$). If $p=2$ and $T_{0}=\varnothing$ then $H=\left(K_{r} \cup K_{s} \cup 2 K_{2}\right)+K_{3}, r=s=1$. If $p=2$ and $T_{0} \neq \varnothing$ then $H=\left((m-1) K_{1} \cup 2 K_{2}\right)+K_{m}, m \geq 4$. If $p=1$ and $T_{0}=\varnothing$ then we have $\varphi=2$.Finally, if $p=1$ and $T_{0} \neq \varnothing$ then $H=\left((m+2) K_{1} \cup K_{2}\right)+K_{m}, m \geq 3$.

Finally, suppose $T=T_{0}$. In this case $H=(2+t) K_{1}+K_{m}, m=\lambda_{a b} \geq 2$. By (L1), $2+t=m+3$. Therefore $H=(m+3) K_{1}+K_{m}$. In all cases $H \in \mathcal{K}_{n}^{3}$.

References

[1] A. Ainouche, N. Christofides: Strong sufficient conditions for the existence of hamiltonian circuits in undirected graphs, J. Comb. Theory (Series B) 31 (1981) 339-343.
[2] Ainouche, A. and Christofides, N.: Conditions for the existence of Hamiltonian Circuits based on vertex degrees. J. London Mathematical Society (2) 32 (1985) 385391.
[3] A. Ainouche, N. Christofides: Semi-independence number of a graph and the existence of hamiltonian circuits Discrete Applied Mathematics 17 (1987) 213-221.
[4] A. Ainouche: Extension of Ore's Theorem, Maghreb Math. Rev., Vol 2, Ń 2, 1992, 1-29.
[5] A. Ainouche: Extensions of a closure condition: the β-closure. Working paper, CEREGMIA, 2001.
[6] A. Ainouche: Extensions of a closure condition: the α-closure. Working paper, CEREGMIA-GRIMAAG, 2002.
[7] A. Ainouche and I. Schiermeyer: 0-dual closure for several classes of graphs. Graphs and Combinatorics 19, $N^{\circ} 3$ (2003), 297-307.
[8] H. A. Jung: On maximal circuits in finite graphs, Annals of Discrete Math. 3 (1978) 129-144.
[9] E. Schmeichel and D. Hayes: Some extensions of Ore's theorem, in Y. Alavi, et al., ed., Graph Theory and applications to Computer Science (Wiley, New York, 1985), 687-695.
[10] D. Bauer, S.L. Hakimi, E. Schmeichel: Recognizing tough graphs is NP-HARD. Discrete Applied Mathematics 28 (1990) 191-195.
[11] J.A. Bondy and V. Chvàtal: A method in graph theory, Discrete Math. 15 (1976) 111-135.
[12] I. Schiermeyer: Computation of the 0-dual closure for hamiltonian graphs.Discrete Math. 111 (1993), 455-464.
[13] O. Ore: Note on Hamiltonian circuits. Am. Math. Monthly 67, (1960) 55.

