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Abstract

We consider the problem of permutation reconstruction, which is a variant of
graph reconstruction. Given a permutation p of length n, we delete k of its entries in
each possible way to obtain

(n
k

)
subsequences. We renumber the sequences from 1 to

n−k preserving the relative size of the elements to form (n−k)-minors. These minors
form a multiset Mk(p) with an underlying set M ′

k(p). We study the question of when
we can reconstruct p from its multiset or its set of minors. We prove there exists an Nk

for every k such that any permutation with length at least Nk is reconstructible from
its multiset of (n−k)-minors. We find the bounds Nk > k+log2 k and Nk < k2

4 +2k+4.
For the number N ′

k, giving the minimal length for permutations to be reconstructible
from their sets of (n − k)-minors, we have the bound N ′

k > 2k. We work towards
analogous bounds in the case when we restrict ourselves to layered permutations.

1 Introduction

The problem of graph reconstruction arose from an unsolved conjecture of Ulam [5]. Con-
sider any two unlabeled simple graphs A and B each with n > 3 vertices. Deleting one
vertex from A together with its incident edges in each possible way we obtain the minors
A1, . . . , An. Similarly, obtain minors B1, . . . , Bn of B. Then, Ulam’s conjecture says that
if there exists a bijection α : {1, . . . , n} → {1, . . . , n} such that Ai is isomorphic to Bα(i),
then A is isomorphic to B.

We consider a variation of graph reconstruction introduced by Smith [4]. We apply
the construction from the approach in graph reconstruction to permutations. Consider
a permutation p with n entries. Delete k of the entries in each possible way to obtain(

n
k

)
subsequences of the starting permutation and then renumber them with respect to

order so that they become permutations of the numbers from 1 to n − k. These resulting
subpermutations are called (n− k)-minors and the multiset of these minors is denoted by
Mk(p). We ask when the multiset Mk(p) determines the permutation p. Smith [4] introduced
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the problem of permutation reconstruction and looked at the number Nk, defined to be
the smallest number such that we can reconstruct permutations of length n ≥ Nk from
their multisets of (n − k)-minors. She found the values N1 = 5, N2 = 6 and gave an upper
bound N3 ≤ 13. She also stated a conjecture that Nk = k + 4, but she did not prove the
existence of Nk for every positive integer k.

We consider the problem of how long a permutation p should be so that it can be
reconstructed from its multiset of (n−k)-minors Mk(p), or from the underlying set M ′

k(p),
which in most cases is different from Mk(p).

In Section 2 of the paper we prove that Nk exists for all values of k. In Section 3 we
give an upper bound Nk < k2

4
+ 2k + 4. We also obtain a lower bound Nk > k + log2 k in

Section 4 that disproves Smith’s conjecture [3].
In Section 5 we consider the set M ′

k(p) and the corresponding number N ′
k giving the

minimal length for permutations to be reconstructible from their sets of minors. We prove
that if permutations of length n are reconstructible from the sets of their (n−k)-minors, the
same is true for permutations of greater lengths. We give a lower bound N ′

k > 2k together
with the exact values N ′

1 = 5 and N ′
2 = 7. We use some of the results on permutation

reconstruction from the sets of (n − k)-minors to determine the exact value N3 = 7.
We do not know whether N ′

k < ∞. One approach to prove this is to start considering spe-
cific types of permutations and try to answer the question for them. In Section 6 we study
reconstruction of a certain type of pattern avoiding permutations, layered permutations.
Section 7 states some open questions for further work.

2 Reconstruction from Multisets

In this section we prove the existence of Nk for every positive integer k and give the exact
values for N1 and N2.

Definition 2.1. Let p be a permutation of length n. An (n − k)-minor of p is a length
n−k subsequence of p with entries renumbered 1, 2, . . . , n−k preserving order. Let Mk(p)
denote the multiset of all (n − k)-minors of p.

We obtain an (n − k)-minor of a permutation p of length n by deleting k of its entries
and then renumbering the remaining subsequence in such a way that the entry at position
i will be greater than the entry at position j in the resulting permutation if and only if the
entry at position i was greater than the entry at position j in the starting subsequence.
We use the notation Mk(p) = {qk1

1 , . . . , qkr
r } to denote k1 copies of q1, . . . , kr copies of qr in

the multiset of (n − k)-minors of p.

Example 2.2. Consider the permutation p = 51432. When we delete two entries of p in
each possible way, we get the following subsequences:

{514, 513, 512, 543, 542, 532, 143, 142, 132, 432}.
After renumbering them we end up with the multiset of (3)-minors of p:

M2(51432) = {1323, 3123, 3214}
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Definition 2.3. Let Nk be the smallest integer such that for all permutations p and q
of length n ≥ Nk, Mk(p) = Mk(q) implies p = q. If no such integer exists we will write
Nk = ∞.

If the number Nk exists for some k, then distinct permutations of length n ≥ Nk have
distinct multisets of (n−k)-minors and there exist distinct permutations q and r of length
Nk − 1 such that Mk(q) = Mk(r).

Notation 2.4. Let p be a permutation of length n. For any 1 ≤ i, j ≤ n, we will say i <p j
if i is to the left of j in p and i >p j if i is to the right of j in p.

Notation 2.5. We denote the entry at position i in the permutation p by p(i).

We now proceed with the proof of the main theorem for the section.

Theorem 2.6. For every positive integer k the number Nk exists.

Proof. For all 2 ≤ i ≤ k + 1 consider the inequalities:

n2 − n[2k + 1 + i(k − i + 2)] + (k + 1)[k + (i − 1)(k − i + 2)] > 0 (2.1)

Since the inequalities 2.1 are of the form n2 −O(n), there exists a number N such that the
inequalities are satisfied for all n ≥ N .

Let p be a permutation of length n ≥ N with a multiset of (n − k)-minors Mk(p).
We will give an algorithm for reconstructing p from the multiset Mk(p) by determining

the relative positions of the entries of p.
First we will determine the relative positions of 1, 2, . . . , k + 1 in the permutation p. Let

x1,2 be the number of (n − k)-minors q ∈ Mk(p) such that 1 <q 2 and x2,1 be the number
of (n − k)-minors r ∈ Mk(p) such that 2 <r 1.

We now determine the relative positions of 1 and 2 in p. We have that n satisfies the
inequality obtained from (2.1) for i = 2:

n2 − n(4k + 1) + 2k(k + 1) > 0,

which is equivalent to (
n − 2

k

)
>

1

2

(
n

k

)
.

Mk(p) contains
(

n−2
k

)
(n − k)-minors obtained when neither 1 nor 2 is deleted from p.

Therefore if q is any of these (n− k)-minors, we will have that 1 <q 2 if and only if 1 <p 2.
Since |Mk(p)| =

(
n
k

)
, we will have that in more than half of the (n− k)-minors of p 1 and 2

have the same relative positions as in p. Hence if x1,2 > x2,1 then 1 <p 2, and if x1,2 < x2,1

then 1 >p 2.
Now we will assume that we have determined the relative positions of 1, . . . , i − 1 in

p where 3 ≤ i ≤ k + 1 and we will determine the relative position of i with respect to
1, . . . , i − 1. Let Ri = {q | q ∈ Mk(p) and q is obtained by deleting at most i − 3 entries
from 1, . . . , i in p }. Let y1,2 be the number of (n−k)-minors q ∈ Ri such that 1 <q 2. Note
that y1,2 is determined by the relative positions of 1, 2, . . . , i − 1 in p. Let x = x1,2 − y1,2.
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We consider the sets

A = {q | q ∈ Mk(p) and q is obtained from p by deleting

i − 2 entries from 1, . . . , i − 1 and not deleting i},
B = {q | q ∈ Mk(p) and q is obtained from p by deleting

i − 2 entries from 1, . . . , i − 1 and i},
C = {q | q ∈ Mk(p) and q is obtained from p by deleting all entries 1, . . . , i − 1}.

We have that Mk(p) = Ri ∪ A ∪ B ∪ C. Also |A| = (i − 1)
(

n−i
k−i+2

)
, |B| = (i − 1)

(
n−i

k−i+1

)
and |C| =

(
n−i+1
k−i+1

)
. Let j be the number of entries from {1, 2, · · · , i−1} that appear before

i in p. Then we have that there are j
(

n−i
k−i+2

)
(n − k)-minors q ∈ A such that 1 <q 2.

In the (n − k)-minors from the sets B and C the relative positions of 1 and 2 are not
determined by the relative order of 1, · · · , i − 1, i in p. Nevertheless, we still know that
j
(

n−i
k−i+2

) ≤ x ≤ j
(

n−i
k−i+2

)
+ |B| + |C|, which implies

j

(
n − i

k − i + 2

)
≤ x ≤ j

(
n − i

k − i + 2

)
+ (i − 1)

(
n − i

k − i + 1

)
+

(
n − i + 1

k − i + 1

)
(2.2)

From Equation (2.2), we get

x(
n−i

k−i+2

) − (i − 1)
(

n−i
k−i+1

)
+

(
n−i+1
k−i+1

)
(

n−i
k−i+2

) ≤ j ≤ x(
n−i

k−i+2

) . (2.3)

However, we assumed that n satisfies the inequality

n2 − n[2k + 1 + i(k − i + 2)] + (k + 1)[k + (i − 1)(k − i + 2)] > 0,

which implies

(i − 1)
(

n−i
k−i+1

)
+

(
n−i+1
k−i+1

)
(

n−i
k−i+2

) < 1.

Therefore since j is an integer, it is uniquely determined by (2.3) and we have determined
the position of i relative to 1, . . . , i − 1 in p.

So far we have determined the relative positions of 1, . . . , k+1 in p and we now determine
the relative positions of k + 2, . . . , n. Suppose that we have determined the relative order
of 1, 2, . . . , j − 1 in p for some j ≥ k + 2. We will show how to determine the position of j
relative to 1, 2, . . . , j − 1.

First we will find where j is relative to 1, 2, . . . , k + 1 in p. Consider the relative order
of 1 and j − k in the (n − k)-minors. Let x1,j−k be the number of (n − k)-minors q such
that 1 <q j − k. Let Rj = {q | q is obtained by deleting at most k − 1 entries from
1, 2, . . . , j−1}. Let y1,j−k be the number of (n−k)-minors q ∈ Rj such that 1 <q j−k and
let y = x1,j−k − y1,j−k. Note that y1,j−k is determined by the relative order of 1, . . . , j − 1
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in p. Therefore y is the number of (n − k)-minors q such that 1 <q j − k and the entry j
in p acts as j − k in q.

Now let r be the permutation of 1, 2, . . . , j in which the entries have the same relative
order as the corresponding entries in p. Suppose r(l) = j. Then we have that

y =
l−1∑
m=1

(
j − r(m) − 1

k − r(m) + 1

)

since there are
(

j−r(m)−1
k−r(m)+1

)
(n − k)-minors in which the relative order of 1 and j − k is

determined by the relative order of r(m) and j in p. Since we know the value of y and∑l1−1
m=1

(
j−r(m)−1
k−r(m)+1

)
<

∑l2−1
m=1

(
j−r(m)−1
k−r(m)+1

)
for l1 < l2, we can conclude that l is uniquely deter-

mined by y. Hence we can determine the position of j relative to 1, 2, . . . , k + 1 in p.
Now suppose that we know the position of j relative to 1, 2, . . . , s − 1 where k + 1 <

s < j − 1. We will show how to determine the relative order of j and s. Consider the
relative order of s−k and j−k in the (n−k)-minors of p. Let x(s−k)(j−k) be the number of
(n− k)-minors q such that s− k <q j − k. Let Rs = {q | q is obtained by deleting at most
k − 1 entries from 1, . . . , s− 1}. Let ys−k,j−k be the number of (n− k)-minors q ∈ Rs such
that s−k <q j−k . Note that ys−k,j−k is determined by the relative order of 1, . . . , j−1 as
well as the position of j relative to 1, . . . , s−1. Now the only (n−k)-minors that are not in
Rs are the ones in which the relative order of s− k and j − k is determined by the relative
order of s and j in p. Since we know the exact value of xs−k,j−k−ys−k,j−k, we can determine
the relative order of s and j in p: namely s <p j if and only if xs−k,j−k − ys−k,j−k > 0.

Now we have determined the position of j relative to 1, 2, . . . , j − 1 for all k + 2 ≤
j ≤ n. Therefore we know the relative order of all entries of p, which means that we have
reconstructed p, and the result follows.

Example 2.7. Consider M2(p) = {13245, 142352, 14325, 15324, 234152, 243154, 24351,
253412, 25431, 32415, 42135, 423152, 43215, 53241}. We will reconstruct p from M2(p) fol-
lowing the algorithm in the proof of Theorem 2.6.

1. We determine x1,2 = 5 and x2,1 = 16. Therefore 2 >p 1.

2. Let i3 be the number of entries of {1, 2} that appear before 3 in p. Using Formula
2.3 we have

5(
7−3

2−3+2

) −
(
7−3+1
2−3+1

)
+ (3 − 1)

(
7−3

2−3+1

)
(

7−3
2−3+2

) ≤ i3 ≤ 5(
7−3

2−3+2

) .

Therefore i3 = 1 and 2 <p 3 <p 1.

3. To determine the position of 4 relative to 1, 2, 3 we consider the relative positions of
1 and 2 in the 2-minors of p. We have four 2-minors q obtained when 1 is deleted and
2 and 3 are not deleted that have 1 <q 2. Therefore we have one 2-minor r in which
4 acts as 2 and 1 <r 2, which is the case only when 2 <p 4 <p 3 <p 1.
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4. To determine the position of 5 relative to 1, 2, 3 we consider the relative positions of
1 and 3 in the 2-minors of p. We have six 2-minors q with 1 <q 3. There are three
2-minors in which 1 precedes 3 and their relative order is determined by the relative
order of 1, 2, 3 and 4 in p. Therefore there are three 2-minors with 1 preceding 3 in
which the entry 5 from p acts as 3. This happens if and only if 2 <p 3 <p 5 <p 1. In
the general case in order to determine the relative order of 4 and 5, we will need to
consider the relative positions of 2 and 3 in the 2-minors. But here we already have
4 <p 3 <p 5 and we can conclude that 2 <p 4 <p 3 <p 5 <p 1.

5. Similarly we can determine that 2 <p 6 <4<p 3 <p 5 <p 1 and that 2 <p 6 <4<p

3 <p 5 <p 1 <p 7.

Therefore p = 2643517.

3 Upper Bound on Nk

In this section we find an upper bound for Nk. By Theorem 2.6 Nk ≤ maxi{bbi +1c} where
bi is the greater root of the equation n2−n[2k+1+i(k−i+2)]+(k+1)[k+(i−1)(k−i+2)] = 0
for all 2 ≤ i ≤ k + 1.

Lemma 3.1. Let k be a positive integer. If k = 2m for some positive integer m, then
Nk ≤ bb′m +1c where b′m is the greater root of n2−n(m2 +6m+2)+(2m+1)(m2+3m) = 0.
If k = 2m−1 for some positive integer m, then Nk ≤ bb′′m +1c where b′′m is the greater root
of n2 − n(m2 + 5m − 1) + 2m(m2 + 2m − 2) = 0.

Proof. One can check that maxi{bi} = bm+1 when k = 2m and maxi{bi} = bm when
k = 2m − 1. Thus we obtain the corresponding inequalities.

Theorem 3.2. Nk < k2

4
+ 2k + 4.

Proof. Let xk = k2

4
+2k+3 and fi(x) = x2−x[2k+1+i(k−i+2)]+(k+1)[k+(i−1)(k−i+2)].

To show that xk is larger than the largest root of each fi, we will check that fi(xk) > 0
and xk is larger than the x-value where fi achieves its minimum. By taking the derivative
of fi, we can see the second condition holds because

2k + 1 + i(k − i + 2)

2
≤ 2k + 1 + (k+2)2

4

2
=

k2

8
+

3k

2
+ 1 <

k2

4
+ 2k + 3.

For the first, observe that

fi(xk) =
k2

16
(k − 2i + 2)2 +

k

4
(k − 2i + 1)2 +

1

2
(k − 2i +

3

2
)2 +

k

4
+

23

8
> 0.

Now it follows that Nk < bxk + 1c < k2

4
+ 2k + 4.

Using Lemma 3.1 we can easily compute N1 and N2, simplifying on the argument of
Smith [4].
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Lemma 3.3. N1 = 5.

Proof. From Lemma 3.1 we have that N1 ≤ 5. Since M1(2413) = M1(3142) =
{1321, 2131, 2311, 3121}, we have N1 = 5.

Lemma 3.4. N2 = 6.

Proof. From Lemma 3.1 we have that N2 ≤ 8. With a computer check we verified that
M2(p) uniquely determines p when p is of length 6 and 7 and we also have M2(25134) =
M2(41253) = {1232, 1322, 2132, 2311, 3123}. Therefore N2 = 6.

4 Lower Bound on Nk

Now that we have an upper bound for Nk we proceed with finding a lower bound that
disproves the conjecture of Smith [3] that Nk = k + 4. Since the multiset ∪q∈Mk−1(p)M1(q)
contains n − k + 1 copies of each of the minors in Mk(p), the following lemma is clear.

Lemma 4.1 ([4], Lemma 5.1). Let p and q be permutations of length n such that
Mk−1(p) = Mk−1(q), then Mk(p) = Mk(q)

Notation 4.2. Let p1 and p2 be permutations of length n1 and n2. We define q = p1 ⊕ p2

to be the permutation of length n1 + n2 such that q(i) = p1(i) for 1 ≤ i ≤ n1 and
q(i) = n1 + p2(i − n1) for n1 + 1 ≤ i ≤ n1 + n2.

The next proposition will be useful for determining a lower bound on Nk. It will imply
that if Nk > n, then Nk+m−n > m where m > n.

Proposition 4.3. If there are permutations p1 6= p2 of length n such that Mk(p1) =
Mk(p2), then for any integer m > n there exist permutations q1 6= q2 of length m such that
Mk+m−n(q1) = Mk+m−n(q2).

Proof. The proof of the proposition is an extension of the proof of Proposition 5.3 in [4].
Let p1 6= p2 be permutations of length n such that Mk(p1) = Mk(p2). Let q1 = p1 ⊕

12 . . . (m − n) and q2 = p2 ⊕ 12 . . . (m − n). Therefore q1 6= q2. Let r1 ∈ Mk+m−n(q1) and
r2 ∈ Mk+m−n(q2). Then they must be in the form r1 = p′1r

′
1 and r2 = p′2r

′
2 where

p′1 ∈ Mn1(p1) for some k ≤ n1 ≤ min{n, k + m − n} and r′1 = (n − n1 + 1) . . . (n − k)

p′2 ∈ Mn2(p2) for some k ≤ n2 ≤ min{n, k + m − n} and r′2 = (n − n2 + 1) . . . (n − k).

Since Mk(p1) = Mk(p2), from Lemma 4.1 it follows that Ml(p1) = Ml(p2) for all integers k ≤
l ≤ n. Therefore there exist bijections fl : Ml(p1) → Ml(p2). We define f : Mk+m−n(q1) →
Mk+m−n(q2) as follows: f(p′1r

′
1) = fn1(p

′
1) ⊕ r′1. Since fn1 is a bijection we have that f is a

bijection and it follows that Mk+m−n(q1) = Mk+m−n(q2).

Corollary 4.4. If Nk > n, then Nk+m > n + m.
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In [4] Smith conjectures that Nk = k + 4. A counterexample to this conjecture is
M4(68573142) = M4(75862413) = {24131, 24314, 31421, 32414, 34129, 342113, 41324,
42134, 42318, 431213, 43219}. The following proposition gives a lower bound for Nk.

Theorem 4.5. Nk > k + log2 k.

Proof. Let p1 and p2 be two distinct permutations of length k + m such that Mk(p1) =
Mk(p2). We will show how to construct permutations q1 and q2 of length 2m+2k such that
Mm+2k−1(q1) = Mm+2k−1(q2). Let q1 = p1 ⊕ p2 and q2 = p2 ⊕ p1.

We consider Mm+2k−1(q) as the union of the following three sets:

R1(q) = {r ∈ Mm+2k−1(q) | r is obtained when the first m + k entries are among

the deleted entries}
R2(q) = {r ∈ Mm+2k−1(q) | r is obtained when the last m + k entries are among

the deleted entries}
R3(q) = {r ∈ Mm+2k−1(q) | r /∈ R1(q1), r /∈ R2(q2)}.

We have Mm+2k−1(q) = R1(q)∪R2(q)∪R3(q) and |Mm+2k−1(q)| = |R1(q)|+|R2(q)|+|R3(q)|.
We observe that R1(q1) = R2(q2) and R2(q1) = R1(q2). We will show that R3(q1) =

R3(q2). We have that for each r′ ∈ R3(q1), r
′ = r1⊕r2 where r1 ∈ Mm1(p1) and r2 ∈ Mm2(p2)

and k ≤ m1, m2 < m+k. Since Mk(p1) = Mk(p2) we know from Lemma 4.1 that Ms(p1) =
Ms(p2) when s ≥ k. Therefore there are bijections fi : Mmi

(p1) → Mmi
(p2) and we can

define the bijection f : R3(q1) → R3(q2) as follows: f(r′) = f(r1 ⊕ r2) = f1(r1) ⊕ f2(r2).
Hence R3(q1) = R3(q2) and Mm+2k−1(q1) = Mm+2k−1(q2).

Since N1 = 5 there are two permutations p1 6= p2 of length 4 such that M1(p1) =
M1(p2). Now for every fixed positive integer m, 2m−1 − m has the property that there are
two permutations q1 6= q2 of length 2m−1 such that M2m−1−m(q1) = M2m−1−m(q2). From
Proposition 4.3 it follows that for any k ≥ 2m−1 − m there are two permutations q1 6= q2

of length k + m such that Mk(q1) = Mk(q2). Therefore Nk > k + m for all k > 2m−1 − m.
Let k′ = 2m−1 + c where 0 ≤ c < 2m−1. According to Corollary 4.4 we have

Nk′ ≥ N2m−1−m + m + c > 2m−1 + m + c > k′ + log2 k′.

It follows that Nk > k + log2 k.

5 Reconstruction from Sets

In this section we will focus our attention on the sets of minors of permutations and when
they give enough information for the reconstruction of the starting permutation. We will
show that if permutations of length n are reconstructible from their sets of (n−k)-minors,
then permutations of length m > n are reconstructible from their sets of (m − k)-minors.

Definition 5.1. Let M ′(p) be the set underlying the multiset M(p).
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Definition 5.2. Let N ′
k be the smallest integer such that for all permutations p and q

of length n ≥ Nk, M ′
k(p) = M ′

k(q) implies p = q. If no such integer exists we will write
N ′

k = ∞.

Similarly to Nk, if N ′
k exists for some k, then distinct permutations of length n ≥ N ′

k

have distinct sets of (n−k)-minors and there exist distinct permutations q and r of length
N ′

k − 1 such that M ′
k(q) = M ′

k(r).

Notation 5.3. Let p be a permutation. We denote the inverse permutation of p by inv(p)
and we denote the reverse permutation of p by rev(p).

Lemma 5.4. Let p be a fixed permutation. The following statements are equivalent:

1. M ′
k(p) uniquely determines p,

2. M ′
k(rev(p)) uniquely determines p,

3. M ′
k(inv(p)) uniquely determines p.

Proof. The lemma follows from the facts that

M ′
k(rev(p)) = {rev(q) | q ∈ M ′

k(p)}
M ′

k(inv(p)) = {inv(q) | q ∈ M ′
k(p)}.

Notation 5.5. Let q be a permutation of length n. Then p = q\{i} denotes the permuta-
tion obtained from q by deleting the entry i.

Notation 5.6. Let q be a permutation of length n. Let r ∈ M ′
k(p) be obtained from q

when the entry i was deleted. Then p = r +q {i} denotes the (n − k + 1)-minor of q such
that r = p\{i1} where the entry i from q acts as i1 in p.

Lemma 5.7. Suppose M ′
k(p1) = M ′

k(p2) implies p1 = p2 for all permutations p1, p2 of
length n. Let q1 and q2 be permutations of length n + 1 such that q1\{n + 1} 6= q2\{n + 1}.
Then M ′

k(q1) = M ′
k(q2) implies that q1 = q2.

Proof. Assume that M ′
k(q1) = M ′

k(q2). Let p1 = q1\{n + 1} and p2 = q2\{n + 1}. Since
p1 6= p2, and p1 and p2 are permutations of length n, it follows that M ′

k(p1) 6= M ′
k(p2). So

there is a permutation r such that r ∈ M ′
k(p1) and r /∈ M ′

k(p2). Therefore r ∈ M ′
k+1(q1).

Now consider r′ = r+q1 {n+1}. We have that r′ ∈ M ′
k(q1) and since we have assumed that

M ′
k(q1) = M ′

k(q2), it follows that r′ ∈ M ′
k(q2). If r′ was obtained as an (n + 1− k)-minor of

q2 by deleting the entry n + 1, then r′ ∈ M ′
k−1(p2). Hence r ∈ M ′

k(p2), which contradicts
our assumption. Therefore we assume that r′ was obtained from q2 without deleting the
entry n + 1. Thus the entry n + 1 in q2 will be the entry n + 1− k in r′, which means that
r′\{n + 1 − k} ∈ M ′

k(p2). At the same time r = r′\{n + 1 − k} since the entry n + 1 in
q1 is the entry n + 1 − k in r′. Now we have again that r ∈ M ′

k(p2), which contradicts our
assumption.
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Theorem 5.8. If M ′
k(p1) = M ′

k(p2) implies that p1 = p2 for any two permutations p1 and
p2 of length n > 1, then M ′

k(q1) = M ′
k(q2) implies q1 = q2 for any two permutations q1 and

q2 of length m > n.

Proof. We will show that if M ′
k(p) uniquely determines every permutation p of length n,

then M ′
k(q) uniquely determines every permutation q of length n + 1 .

Assume that for any two permutations p1 6= p2 of length n M ′
k(p1) 6= M ′

k(p2). Suppose
that there exist permutations q1 6= q2 of length n + 1 such that M ′

k(q1) = M ′
k(q2). If

q1\{n+1} 6= q2\{n+1}, then from Lemma 5.7 it follows that q1 = q2. Also if inv(q1)\{n+
1} 6= inv(q2)\{n+1}, then we will have that M ′

k(inv(q1)) = M ′
k(inv(q2)) implies inv(q1) =

inv(q2). From Lemma 5.4 we conclude that M ′
k(q1) = M ′

k(q2) implies that q1 = q2. Similarly
if rev(inv(q1))\{n+1} 6= rev(inv(q2))\{n+1}, then M ′

k(q1) = M ′
k(q2) implies that q1 = q2.

Now assume that q1\{n + 1} = q2\{n + 1}, inv(q1)\{n + 1} = inv(q2)\{n + 1} and
rev(inv(q1))\{n+1} = rev(inv(q2))\{n+1}. Suppose q1 6= q2. From q1\{n+1} = q2\{n+1}
we must have that n+1 is at different positions in q1 and q2. The equality inv(q1)\{n+1} =
inv(q2)\{n+1} means that n+1 is at position n+1 in one of q1 and q2. Then the equality
rev(inv(q1))\{n+1} = rev(inv(q2))\{n+1} means that n+1 is in position 1 in one of q1 and
q2. Suppose q1(1) = n+1 and q2(n+1) = n+1. Since inv(q1)\{n+1} = inv(q2)\{n+1} we
must have that (q2\{n+1})(1) = n. Since rev(inv(q1))\{n+1} = rev(inv(q2))\{n+1}, we
must have that (q1\{n+1})(n) = n. But this is impossible because q1\{n+1} = q2\{n+1}
and n > 1.

It follows that M ′
k(q1) = M ′

k(q2) implies that q1 = q2.

We state the following corollary, which we will apply to the problem of reconstruction
from multisets to find the exact value of N3.

Corollary 5.9. Let q1 and q2 be permutations of length n + 1. If any of the inequali-
ties holds: M ′

k(q1\{n + 1}) 6= M ′
k(q2\{n + 1}), M ′

k(rev(q1)\{n + 1}) 6= M ′
k(rev(q2)\{n +

1}), M ′
k(inv(q1)\{n + 1}) 6= M ′

k(inv(q2)\{n + 1}), or M ′
k(rev(inv(q1))\{n + 1}) 6=

M ′
k(rev(inv(q2))\{n + 1}), then M ′

k(q1) 6= M ′
k(q2) and Mk(q1) 6= Mk(q2).

Proof. This follows from the proof of Theorem 5.8.

In her paper [3] Smith shows that N3 = 7, 10, 11, 12, or 13. Now we find the exact value
of N3.

Proposition 5.10. N3 = 7

Proof. From Lemma 3.1 we have that N3 ≤ 11. Using a computer check one
can see that M3(p) uniquely determines p when p has length 7, 8 and 9. Sup-
pose that there exist two permutations q1 and q2 of length 10 such that M3(q1) =
M3(q2). According to Corollary 5.9 we should have that M ′

3(q1\{10}) = M ′
3(q2\{10}),

M ′
3(rev(q1)\{10}) = M ′

3(rev(q2)\{10}), M ′
3(inv(q1)\{10}) = M ′

3(inv(q2)\{10}) and
M ′

3(rev(inv(q1))\{10}) = M ′
3(rev(inv(q2))\{10}). With a computer search we find

that the only permutations of length 9 that have the same sets of (6)–minors
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are M ′
3(132465798) = M ′

3(132465879) = M ′
3(132546879) = M ′

3(213546879) and
M ′

3(897564231) = M ′
3(978564231) = M ′

3(978645231) = M ′
3(978645312). We observe that

there is no way to choose all qi\{10}, rev(qi)\{10}, inv(qi)\{10}), rev(inv(qi))\{10} for
i = 1, 2 among these permutations. Therefore M3(p) uniquely determines p when p has
length 10. Finally we have M3(623514) = M3(631452) = {1232, 1323, 2132, 2313,
3127, 3214}. It follows that N3 = 7.

The following proposition shows similarities between the sets and multisets of minors.

Proposition 5.11. If there are permutations p1 6= p2 of length n such that M ′
k(p1) =

M ′
k(p2), then for any integer m > n there exist permutations q1 6= q2 of length m such that

M ′
k+m−n(q1) = M ′

k+m−n(q2).

Proof. The proof is analogous to the proof of Proposition 4.3.

Proposition 5.12. N ′
k > 2k.

Proof. When k = 1 the proposition is true. Let k > 1. Consider the permutations p =
12 . . . (k−1)(k+1)k(k+2)(k+3) . . .(2k) and q = 12 . . . (k−1)k(k+2)(k+1)(k+3) . . .(2k).
We observe that M ′

k(p) = M ′
k(q) = {1 . . . k, r1, . . . , rk−1} where ri is obtained from the

permutation 12 . . . k by transposing i and i + 1. Thus N ′
k > 2k for all positive integers

k.

Note: Using a computer check and Theorem 5.8 we find that N ′
1 = 5, which has also been

proved by Ginsburg [1] and Smith [4], N ′
2 = 7, and N ′

3 > 9.

6 Reconstruction of Layered Permutations

In Section 2 we proved that Nk < ∞ for all k, but we still do not have that N ′
k < ∞ for

all k. One approach to proving this will be to divide permutations into classes that are
recognizable from their multisets or sets of minors and prove the existence of N ′

k for those
classes. Layered permutation are one example. The following theorem suggests that we can
analyze such classes on their own.

Theorem 6.1. Let S be a set of permutations of length smaller than c. Let P = {p | p is
of length l ≥ c and ri is not a minor of p for all ri ∈ S}. If M ′

k(p1) 6= M ′
k(p2) for any two

different permutations p1, p2 ∈ P of length n, then M ′
k(q1) 6= M ′

k(q2) for any two different
permutations q1, q2 ∈ P of length m > n.

Proof. The proof is analogous to the proof of Theorem 5.8 taking into account the fact
that if we have a permutation q of length m and q ∈ P , then p ∈ P , inv(p) ∈ P and
rev(p) ∈ P for all p ∈ M1(q).

Definition 6.2. Let p be a permutation of length n. We say that p is a layered permutation
if there exists a division p = q1 · · · qi such that qj is a decreasing sequence of mj consecutive
integers for all 1 ≤ j ≤ i, and every entry in qj1 is smaller than every entry in qj2 when
j1 < j2. We call q1, . . . , qi blocks of the permutation p.
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Note: Consider the type of permutations that can be written in the form p = q1 . . . qi

such that qj is an increasing sequence of mj consecutive integers, and every entry in qj1

is greater than every entry in qj2 when j1 < j2. There is a bijection between the layered
permutations and this class of permutations since the permutations in both of them are
uniquely determined by the sequence m1, m2, . . . , mi. Therefore the following results that
we will prove for layered permutations will hold for both classes of permutations.

Example 6.3. Consider the layered permutation 321765498 and the corresponding permu-
tation 789345612 with increasing subsequences. They have the same determining sequence
3, 4, 2.

Lemma 6.4. Let n − k ≥ 3. A permutation p of length n is layered if and only if Mk(p)
contains only layered permutations.

Proof. Layered permutations are permutations that do not have 231 and 312 as (3)-
minors. If m ≥ k, a permutation does not contain a (k)-minor if and only if none of its
(m)-minors contains that (k)-minor, and the lemma follows.

Definition 6.5. Let L′
k be the smallest integer such that for all layered permutations p

and q of length n ≥ L′
k, M ′

k(p) = M ′
k(q) implies p = q. If no such integer exists we will

write L′
k = ∞.

We are interested in the number L′
k since according to Lemma 6.4 we can determine

whether p is a layered permutation from the set M ′
k(p) when n − k ≥ 3. We also know

L′
k ≤ N ′

k since if distinct permutations of length n have distinct sets of (k)-minors then
distinct layered permutations of length n have distinct sets of (k)-minors.

Proposition 6.6. L′
k > k + log2 k.

Proof. If k = 1 the proposition is true. Now we consider the case when k ≥ 2. Let k = 2m

for some positive integer m. There are 2k+log2 k−1 layered permutations of length k + log2 k
[2]. Also Lemma 6.4 gives us that there are 2log2 k−1 = k

2
possible different (log2 k)-minors

for layered permutations. Therefore the number of different sets that we can form using
these (log2 k)-minors is:

(
k
2

1

)
+

(
k
2

2

)
+ · · · +

( k
2

min{k
2
,
(

k+log2 k
k

)}
)

≤ 2
k
2 .

Since 2
k
2 < 2k+log2 k−1 it follows that there will be two layered permutations of length

k + log2 k that will have the same sets of (log2 k)-minors. Hence L′
k > k + log2 k when

k = 2m.
Now let k = 2m + c where c < 2m. Similarly to the proof of Theorem 4.5 we have

L′
k ≥ L′

2m + c ≥ 2m + m + 1 + c > k + log2 k.

Thus L′
k > k + log2 k for all positive integers k.
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7 Open Questions

This paper develops in three main directions – permutation reconstruction from multisets
and sets of minors as well as permutation reconstruction from sets of minors within certain
classes of permutations. In all three of them there are open questions.

1. Permutation reconstruction from multisets of minors:

Question 7.1. Can the bounds for Nk be improved and is there an exact formula
for Nk?

The next question was posed by Smith [4]

Question 7.2. Does the fact that distinct permutations of length n have distinct
multisets, imply that distinct permutations of length m > n must have distinct
multisets?

If the answer to Question 7.2 is positive, given the exact values of N1, N2 and N3,
this will suggest that probably the lower bound on Nk is tighter and there will be
room for improvement on the upper bound.

2. Permutation reconstruction from sets of minors:

Question 7.3. Does N ′
k exist for all k?

A positive answer to the following question would prove the existence of N ′
k for all k:

Question 7.4. Does there exist a positive integer m such that if M ′
k(p1) = M ′

k(p2)
implies p1 = p2 for any permutations p1 and p2 of length n, then Mk+1(q1) = Mk+1(q2)
implies q1 = q2 for any two permutations q1 and q2 of length n + m?

Also studying whether the difference N ′
k − Nk is bounded, would give insight into

how much information we lose about the starting permutation when we go from the
multiset to the set of its minors.

3. Classes of permutations:

The work in all of the above questions can start by proving results for specific types of
permutations. One example would be permutations that avoid certain minors similar
to the layered permutations avoiding 231 and 312. Such classes of permutations can
be identified from the multiset or the set of minors that we are considering. Therefore
answering the questions about permutation reconstruction from multisets or sets of
minors within a given class, would be a step in the direction of answering the same
questions for all permutation. An example would be:

Question 7.5. Are sufficiently long layered permutations reconstructible from their
sets of minors?
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