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Abstract
Simple families of increasing trees can be constructed from simply generated

tree families, if one considers for every tree of size n all its increasing labellings, i. e.
labellings of the nodes by distinct integers of the set {1, . . . , n} in such a way that
each sequence of labels along any branch starting at the root is increasing. Three
such tree families are of particular interest: recursive trees, plane-oriented recursive
trees and binary increasing trees. We study the quantity number of descendants
of node j in a random tree of size n and give closed formulæ for the probability
distribution and all factorial moments for those subclass of tree families, which can
be constructed via an insertion process. Furthermore limiting distribution results
of this parameter are given.

1 Introduction

Increasing trees are labelled trees where the nodes of a tree of size n are labelled by
distinct integers of the set {1, . . . , n} in such a way that each sequence of labels along

∗This work was supported by the Austrian Science Foundation FWF, grant S9608-N13.
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any branch starting at the root is increasing. As the underlying tree model we use the
so called simply generated trees (see [7]) but, additionally, the trees are equipped with
increasing labellings. Thus we are considering simple families of increasing trees, which
are introduced in [1].

Several important tree families, in particular recursive trees, plane-oriented recursive
trees (also called heap ordered trees or non-uniform recursive trees) and binary increasing
trees (also called tournament trees) are special instances of simple families of increasing
trees. A survey of applications and results on recursive trees and plane-oriented recursive
trees is given by Mahmoud and Smythe in [6]. These models are used, e. g., to describe
the spread of epidemics, for pyramid schemes, and quite recently as a simplified growth
model of the world wide web.

In the present paper we are studying for simple families of increasing trees the random
variable Dn,j, which counts the number of descendants of a specific node j (with 1 ≤ j ≤
n), i e. the size of the subtree rooted at j (where size is measured as usual by the number
of nodes), in a random size-n tree. Thus the node j is counted as a descendant of itself.
We always use as the model of randomness the random tree model, i. e. since all simple
families of increasing trees can be considered as weighted trees, we assume that every
tree of size n is chosen with probability proportional to its weight. This parameter has
been treated in [10] for plane-oriented recursive trees and binary increasing trees. For
both tree families explicit formulæ for the probabilities P{Dn,j = m} are given, which are
obtained by a recursive approach where the sums appearing are brought into closed form
via Zeilberger’s algorithm. Alternatively a bijective proof of the result for plane-oriented
recursive trees is given. Moreover, closed formulæ for the expectation E(Dn,j) and the
variance V(Dn,j) are obtained. For recursive trees this parameter has been studied in
[2, 5], where also an explicit formula for the probability P{Dn,j = m} is given, obtained
from a description via Pólya-Eggenberger urn models. From this explicit formula limiting
distribution results are also derived. It has been shown in [5] that, for n → ∞ and j
fixed, the normalized quantity Dn,j/n is asymptotically Beta-distributed and in [2] it has
been proven that, for n → ∞ and j → ∞ such that j ∼ ρn with 0 < ρ < 1, the random
variable Dn,j is asymptotically geometrically distributed.

In applications the subclass of simple families of increasing trees, which can be con-
structed via an insertion process or a probabilistic growth rule, is of particular interest.
Such tree families T have the property that for every tree T ′ of size n with vertices
v1, . . . , vn there exist probabilities pT ′(v1), . . . , pT ′(vn), such that when starting with a
random tree T ′ of size n, choosing a vertex vi in T ′ according to the probabilities pT ′(vi)
and attaching node n + 1 to it, we obtain a random increasing tree T of the family T
of size n + 1. It is well known that the tree families mentioned above, i. e. recursive
trees, plane-oriented recursive trees and binary increasing trees, can be constructed via
an insertion process. In [9] a full characterization of those simple families of increasing
trees, which can be constructed by an insertion process, is given. This subclass of in-
creasing tree families has been denoted there by very simple families of increasing trees
and its characterization via the so called degree-weight generating function is repeated as
Lemma 1.
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In this work we use a unified recursive approach, which leads for all simple families
of increasing trees (not only those, which can be described via an insertion process) to a
closed formula for suitable trivariate generating functions of the probabilities P{Dn,j =
m}, which is given in Proposition 1. In the succeeding computations we restrict ourselves
to very simple increasing tree families, where we can obtain for all these tree families closed
formulæ for the probabilities P{Dn,j = m} and the s-th factorial moments E

(
(Dn,j)

s
)

=∑
m≥0 ms

P{Dn,j = m}. These explicit results are given in Theorem 1. Furthermore they
allow a full characterization of the limiting distribution of Dn,j, for n → ∞, depending
on the growth of j, which is given as Theorem 2. Thus the exact and asymptotic formulæ
presented here extend the known results on this subject. We want to mention further
that from the closed formula given in Proposition 1 one might derive limiting distribution
results for more general families of increasing trees.

Throughout this paper we use the abbreviations xl := x(x − 1) · · · (x − l + 1) and

xl := x(x + 1) · · · (x + l − 1) for the falling and rising factorials, respectively. Moreover,
we use the abbreviations Dx for the differential operator with respect to x, and Ex for
the evaluation operator at x = 1. Further we denote with

{
n
k

}
the Stirling numbers of

the second kind, with X
(d)
= Y the equality in distribution of the random variables X and

Y , and with Xn
(d)−→ X the weak convergence, i. e. the convergence in distribution, of the

sequence of random variables Xn to a random variable X.

2 Preliminaries

Formally, a class T of a simple family of increasing trees can be defined in the following
way. A sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 is used to define the
weight w(T ) of any ordered tree T by w(T ) =

∏
v ϕd(v), where v ranges over all vertices

of T and d(v) is the out-degree of v (we always assume that there exists a k ≥ 2 with
ϕk > 0). Furthermore, L(T ) denotes the set of different increasing labellings of the tree
T with distinct integers {1, 2, . . . , |T |}, where |T | denotes the size of the tree T , and
L(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the family T consists of all trees T together with

their weights w(T ) and the set of increasing labellings L(T ).

For a given degree-weight sequence (ϕk)k≥0 with a degree-weight generating function
ϕ(t) :=

∑
k≥0 ϕkt

k, we define now the total weights by Tn :=
∑

|T |=n w(T ) · L(T ). It

follows then that the exponential generating function T (z) :=
∑

n≥1 Tn
zn

n!
satisfies the

autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (1)

Often it is advantageous to describe a simple family of increasing trees T by the formal
recursive equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (2)
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where ©1 denotes the node labelled by 1, × the cartesian product, ∗ the partition product
for labelled objects, and ϕ(T ) the substituted structure (see e. g., [11]).

By specializing the degree-weight generating function ϕ(t) in (1) we get the basic
enumerative results for the three most interesting increasing tree families:
• Recursive trees are the family of non-plane increasing trees such that all node degrees
are allowed. The degree-weight generating function is ϕ(t) = exp(t). Solving (1) gives

T (z) = log
( 1

1 − z

)
, and Tn = (n − 1)!, for n ≥ 1.

• Plane-oriented recursive trees are the family of plane increasing trees such that all node
degrees are allowed. The degree-weight generating function is ϕ(t) = 1

1−t
. Equation (1)

leads here to

T (z) = 1−
√

1 − 2z, and Tn = (n−1)!
2n−1

(
2n−2
n−1

)
= 1·3·5 · · ·(2n−3) = (2n−3)!!, for n ≥ 1.

• Binary increasing trees have the degree-weight generating function ϕ(t) = (1+t)2. Thus
it follows

T (z) =
z

1 − z
, and Tn = n!, for n ≥ 1.

In the following we describe the characterization of very simple increasing tree families
via the degree-weight generating function ϕ(t) as obtained in [9].

Lemma 1 ([9]) A simple family of increasing trees T can be constructed via an insertion
process and is thus a very simple family of increasing trees iff the degree-weight generating
function ϕ(t) =

∑
k≥0 ϕkt

k is given by one of the following three formulæ, with constants
c1, c2 ∈ R.

Case A : ϕ(t) = ϕ0e
c1t
ϕ0 , for ϕ0 > 0, c1 > 0, (⇒ c2 = 0),

Case B : ϕ(t) = ϕ0

(
1 +

c2t

ϕ0

)d

, for ϕ0 > 0, c2 > 0, d :=
c1

c2
+ 1 ∈ {2, 3, 4, . . .},

Case C : ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)
− c1

c2
−1

, for ϕ0 > 0, 0 < −c2 < c1.

The constants c1, c2 appearing in Lemma 1 are coming from an equivalent characteri-
zation of very simple increasing tree families obtained in [3]: The total weights Tn of trees
of size n of T satisfy for all n ∈ N the equation

Tn+1

Tn
= c1n + c2. (3)

Solving either the differential equation (1) or using (3) one obtains the following ex-
plicit formulæ for the exponential generating function T (z):

T (z) =




ϕ0

c1
log

(
1

1−c1z

)
, Case A,

ϕ0

c2

(
1

(1−(d−1)c2z)
1

d−1
− 1

)
, Case B,

ϕ0

c2

(
1

(1−c1z)
c2
c1

− 1
)
, Case C.

(4)
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Furthermore the coefficients Tn are given by the following formula, which holds for all
three cases of very simple increasing tree families (setting c2 = 0 in Case A and d = c1

c2
+1

in Case B):

Tn = ϕ0c
n−1
1 (n − 1)!

(
n − 1 + c2

c1

n − 1

)
. (5)

Finally we want to remark that recursive trees are “Case A,” for ϕ0 = 1, c1 = 1,
binary increasing trees are “Case B,” for ϕ0 = 1, c1 = 1, c2 = 1 (⇒ d = 2), plane-oriented
recursive trees are “Case C,” for ϕ0 = 1, c1 = 2, c2 = −1.

3 Results for very simple families of increasing trees

Theorem 1 The probabilities P{Dn,j = m}, which give the probability that the node with
label j in a randomly chosen size-n tree of a very simple family of increasing trees as given
by Lemma 1, has exactly m descendants, are, for m ≥ 1 given by the following formula:

P{Dn,j = m} =

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)(
n−m−1

j−2

)
(

n−1
j−1

)(n−1+
c2
c1

n−1

) . (6)

The s-th factorial moments E
(
(Dn,j)

s
)

=
∑

m≥0 ms
P{Dn,j = m} are for s ≥ 1 given

by the following formula:

E
(
(Dn,j)

s
)

= s!




(
n−j

s

)(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

) +

(
n−j
s−1

)(s−1+
c2
c1

s−1

)
(j−1+

c2
c1

+s−1

s−1

)

 . (7)

In particular we obtain the following results for the expectation E(Dn,j) and the vari-
ance V(Dn,j):

E(Dn,j) =
(c1 + c2)n − c2(j − 1)

c1j + c2

, (8)

V(Dn,j) =
c1(c1 + c2)(c1n + c2)(j − 1)(n − j)

(c1j + c2)2(c1j + c1 + c2)
. (9)

Theorem 2 The limiting distribution behaviour of the random variable Dn,j, which
counts the number of descendants of the node with label j in a randomly chosen size-n
tree of a very simple family of increasing trees as given by Lemma 1, is, for n → ∞ and
depending on the growth of j, characterized as follows.

• The region for j fixed. The normalized random variable
Dn,j

n
is asymptotically Beta-

distributed,
Dn,j

n

(d)−→ β( c2
c1

+ 1, j − 1), i. e.
Dn,j

n

(d)−→ X, where the s-th moments of
X are for s ≥ 0 given by

E(Xs) =

(
c2
c1

+ 1
)s

(
c2
c1

+ j
)s .
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• The region for small j: j → ∞ such that j = o(n). The normalized random

variable j
n
Dn,j is asymptotically Gamma-distributed, j

n
Dn,j

(d)−→ γ( c2
c1

+ 1, 1), i. e.

j
n
Dn,j

(d)−→ X, where the s-th moments of X are for s ≥ 0 given by

E(Xs) =
(c2

c1
+ 1

)s
.

• The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1. The shifted

random variable Dn,j−1 is asymptotically negative binomial-distributed, Dn,j−1
(d)−→

NegBin( c2
c1

+ 1, ρ), i. e. Dn,j − 1
(d)−→ X, where the probability mass function of X is

given by

P{X = m} =

(
m + c2

c1

m

)
ρ

c2
c1

+1
(1 − ρ)m, for m ≥ 0.

• The region for large j: j → ∞ such that l := n − j = o(n). The random variable
Dn,j converges to a random variable, which has all its mass concentrated at 1, i. e.

Dn,j
(d)−→ X, with

P{X = 1} = 1.

In Section 4 we treat a recurrence for the probabilities P{Dn,j = m} via generating
functions. This leads for all simple families of increasing trees to a closed formula for this
generating function, which is given in Proposition 1. In Section 5 we prove the explicit
results for very simple families of increasing trees which are given by Theorem 1, and the
corresponding limiting distribution results of Theorem 2 are shown in Section 6.

4 A recurrence for the probabilities

We consider in this section the random variable Dn,j, which counts the number of de-
scendants of node j in a random increasing tree of size n, for general simple families of
increasing trees with degree-weight generating function ϕ(t). In the following we give a
recurrence for the probabilities P{Dn,j = m}, which is obtained from the formal recursive
description (2).

For increasing trees of size n with root-degree r and subtrees with sizes k1, . . . , kr,
enumerated from left to right, where the node labelled by j lies in the leftmost subtree
and is the i-th smallest node in this subtree, we can reduce the computation of the
probabilities P{Dn,j = m} to the probabilities P{Dk1,i = m}. We get as factor the total
weight of the r subtrees and the root node ϕrTk1 · · ·Tkr , divided by the total weight Tn

of trees of size n and multiplied by the number of order preserving relabellings of the r
subtrees, which are given here by

(
j − 2

i − 1

)(
n − j

k1 − i

)(
n − 1 − k1

k2, k3, . . . , kr

)
:
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the i− 1 labels smaller that j are chosen from 2, 3, . . . , j − 1, the k1 − i labels larger than
j are chosen from j + 1, . . . , n, and the remaining n− 1− k1 labels are distributed to the
second, third, . . . , r-th subtree. Again due to symmetry arguments we obtain a factor r,
if the node j is the i-th smallest node in the second, third, . . . , r-th subtree. Summing
up over all choices for the rank i of label j in its subtree, the subtree sizes k1, . . . , kr, and
the degree r of the root node gives the following recurrence (10).

P{Dn,j = m} =
∑
r≥1

rϕr

∑
k1 + · · · + kr = n − 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

Tn
×

×
min{k1,j−1}∑

i=1

P{Dk1,i = m}
(

j − 2

i − 1

)(
n − j

k1 − i

)(
n − 1 − k1

k2, k3, . . . , kr

)
, (10)

for n ≥ j ≥ 2. For j = 1 we obtain P{Dn,1 = m} = δm,n.

To treat this recurrence (10) we set n := k + j with k ≥ 0 and define the trivariate
generating function

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Dk+j,j = m}Tk+j
zj−1

(j − 1)!

uk

k!
vm. (11)

Multiplying (10) with Tk+j
zj−2

(j−2)!
uk

k!
vm and summing up over k ≥ 0, j ≥ 2 and m ≥ 0

gives then ∂
∂z

N(z, u, v) and ϕ′(T (z +u)
)
N(z, u, v) for the left and right hand side of (10),

respectively. Since these are essentially straightforward, but lengthy computations, they
are omitted here; similar considerations are done in [9], where the recurrences appearing
there are treated analogously. In any case we obtain the following differential equation

∂

∂z
N(z, u, v) = ϕ′(T (z + u)

)
N(z, u, v), (12)

together with the initial condition

N(0, u, v) =
∑
k≥0

∑
m≥0

P{Dk+1,1 = m}Tk+1
uk

k!
vm =

∑
k≥0

Tk+1
ukvk+1

k!
= vT ′(uv)

= vϕ
(
T (uv)

)
.

(13)

The general solution of equation (12) is given by

N(z, u, v) = C(u, v) exp
(∫ z

0

ϕ′(T (t + u)
)
dt

)
, (14)

with some function C(u, v). Adapting to the initial condition (13) gives the required
solution

N(z, u, v) = vϕ
(
T (uv)

)
exp

(∫ z

0

ϕ′(T (t + u)
)
dt

)
. (15)
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Due to the equation T ′(z) = ϕ(T (z)) we further get the simplifications

∫ z

0

ϕ′(T (t + u)
)
dt =

∫ z

0

ϕ′(T (t + u)
)
T ′(t + u)

ϕ
(
T (t + u)

) dt =

∫ T (z+u)

T (u)

(
log ϕ(w)

)′
dw

= log
(ϕ

(
T (z + u)

)
ϕ
(
T (u)

) )
,

which leads from (15) to the following result.

Proposition 1 The function N(z, u, v) as defined in equation (11), which is the trivariate
generating function of the probabilities P{Dn,j = m}, which give the probability that the
node with label j in a randomly chosen size-n tree of a simple family of increasing trees
with degree-weight generating function ϕ(t) has exactly m descendants, is given by the
following formula:

N(z, u, v) =
vϕ

(
T (uv)

)
ϕ
(
T (z + u)

)
ϕ
(
T (u)

) . (16)

5 Computing the probabilities and moments

5.1 An exact formula for the probabilities

From Proposition 1 we can easily compute explicit formulæ for the probabilities P{Dn,j =
m} for very simple increasing tree families, i. e. increasing tree families, which can be
constructed via an insertion process. We will figure out only the Case C and omit the
analogous computations for Case A and Case B.

Using Lemma 1 and equation (4) we get

ϕ
(
T (z)

)
=

ϕ0

(1 − c1z)
c2
c1

+1
,

and thus from equation (16):

N(z, u, v) =
vϕ0(1 − c1u)

c2
c1

+1

(1 − c1uv)
c2
c1

+1
(1 − c1(z + u))

c2
c1

+1
=

vϕ0

(1 − c1uv)
c2
c1

+1(
1 − c1z

1−c1u

) c2
c1

+1
. (17)

Extracting coefficients from (17) gives then by using (11) and (5):

P{Dk+j,j = m} =
(j − 1)!k!

Tk+j
[zj−1ukvm]N(z, u, v)

=
(j − 1)!k!ϕ0

(k + j − 1)!ϕ0c
k+j−1
1

(k+j−1+
c2
c1

k+j−1

) [zj−1ukvm−1]
1

(1 − c1uv)
c2
c1

+1(
1 − c1z

1−c1u

) c2
c1

+1
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=

(j−1+
c2
c1

j−1

)
ck
1

(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

) [ukvm−1]
1

(1 − c1uv)
c2
c1

+1
(1 − c1u)j−1

=

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)
ck−m+1
1

(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

) [uk]
um−1

(1 − c1u)j−1

=

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)(
k−m+j−1

j−2

)
(

k+j−1
j−1

)(k+j−1+
c2
c1

k+j−1

) . (18)

It turns out that this formula (18) is indeed valid for all three cases of very simple families
of increasing trees. Thus we obtain the first part of Theorem 1 after the substitution
n := k + j.

5.2 An exact formula for the factorial moments

To obtain the s-th factorial moments of Dn,j we use again Proposition 1, but differentiate
equation (16) s times w. r. t. v and evaluate it at v = 1. For Case C this gives

EvD
s
vN(z, u, v) =

ϕ0c
s
1u

s
(

c2
c1

+ 1)s

(1 − c1u)
c2
c1

+s+1(
1 − c1z

1−c1u

) c2
c1

+1
+

sϕ0c
s−1
1 us−1

(
c2
c1

+ 1)s−1

(1 − c1u)
c2
c1

+s(
1 − c1z

1−c1u

) c2
c1

+1
. (19)

Extracting coefficients of (19) leads then by using (5) to

E
(
(Dk+j,j)

s
)

=
∑
m≥0

ms
P{Dk+j,j = m} =

(j − 1)!k!

Tk+j
[zj−1uk]EvD

s
vN(z, u, v)

=
1

ϕ0c
k+j−1
1

(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

)
[
ϕ0c

s+j−1
1

(c2

c1
+ 1

)s
(

j − 1 + c2
c1

j − 1

)
[uk]

us

(1 − c1u)
c2
c1

+s+j

+ sϕ0c
s+j−2
1

(c2

c1
+ 1

)s−1
(

j − 1 + c2
c1

j − 1

)
[uk]

us−1

(1 − c1u)
c2
c1

+s+j−1

]

=

(j−1+
c2
c1

j−1

)
(

k+j−1
j−1

)(k+j−1+
c2
c1

k+j−1

)
[(c2

c1
+ 1

)s
(

k + j + c2
c1
− 1

k − s

)
+ s

(c2

c1
+ 1

)s−1
(

k + j + c2
c1
− 1

k − s + 1

)]

=
s!

(j−1+
c2
c1

j−1

)
(

k+j−1
j−1

)(k+j−1+
c2
c1

k+j−1

)
[(

s + c2
c1

s

)(
k + j − 1 + c2

c1

k − s

)
+

(
s − 1 + c2

c1

s − 1

)(
k + j − 1 + c2

c1

k − s + 1

)]
,

which can be slightly simplified and we get

E
(
(Dk+j,j)

s
)

= s!




(
k
s

)(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

) +

(
k

s−1

)(s−1+
c2
c1

s−1

)
(j−1+

c2
c1

+s−1

s−1

)

 . (20)
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Since formula (20) is valid also for Case A and Case B, the second part of Theorem 1
follows after substituting n := k + j.

6 Limiting distribution results

6.1 The case j fixed

We will show via the method of moments that Dn,j/n
(d)−→ β( c2

c1
+ 1, j − 1), where β(a, b)

denotes the Beta-distribution with parameters a and b. If X is a Beta-distributed random

variable, X
(d)
= β(a, b), then the s-th moment of X is given by

E(Xs) =
s−1∏
k=0

a + k

a + b + k
=

as

(a + b)s
. (21)

Using Stirling’s formula for the Gamma function

Γ(z) =
(z

e

)z
√

2π√
z

(
1 +

1

12z
+

1

288z2
+ O(

1

z3
)
)
, (22)

we obtain for j and s fixed: (
n − j

s

)
=

ns

s!

(
1 + O(n−1)

)
.

Thus we get from equation (7) the following asymptotic expansion of the s-th factorial
moment of Dn,j:

E
(
(Dn,j)

s
)

=

(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

)ns
(
1 + O(n−1)

)
.

The ordinary moments of Dn,j can be expressed by the factorial moments of Dn,j,
where the Stirling numbers of the second kind

{
n
k

}
are appearing. We obtain then

E
(
(Dn,j)

s
)

= E
(
(Dn,j)

s
)

+
s−1∑
k=1

{
s

k

}
E
(
(Dn,j)

k
)

=

(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

)ns
(
1 + O(n−1)

)
+ O(ns−1) =

(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

)ns
(
1 + O(n−1)

)
.

(23)

Thus, for n → ∞ and j fixed, the s-th moments of the normalized random variable
Dn,j/n converge for all integers s ≥ 1 to the s-th moments of a Beta-distributed random
variable:

E

((Dn,j

n

)s
)
→

(
s+

c2
c1

s

)
(

j−1+
c2
c1

+s
s

) =

(
c2
c1

+ 1
)s

(
c2
c1

+ j
)s , (24)

which shows together with the Theorem of Fréchet and Shohat (see e. g. [4]) the first
part of Theorem 2.
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6.2 The case j → ∞ such that j = o(n)

For this region of j we consider the normalized random variable jDn,j/n and will show via

the method of moments that jDn,j/n
(d)−→ γ( c2

c1
+1, 1), where γ(a, λ) denotes the Gamma-

distribution with shape parameter a and scale parameter λ. If X is a Gamma-distributed

random variable, X
(d)
= γ(a, λ), then the s-th moment of X is given by

E(Xs) =
1

λs

s−1∏
k=0

(a + k) =
as

λs
. (25)

Again by using Stirling’s formula (22) for the Gamma function we obtain for s fixed:

(
n − j

s

)
=

ns

s!

(
1 + O

( j

n

))
, and

(
j − 1 + c2

c1
+ s

s

)
=

js

s!

(
1 + O

(1

j

))
,

and thus from equation (7) the following expansion of the s-th factorial moments of Dn,j:

E
(
(Dn,j)

s
)

= s!

(
s + c2

c1

s

)(n

j

)s
(
1 + O

(1

j

)
+ O

( j

n

))
. (26)

Again, by expressing the ordinary moments of Dn,j by its factorial moments, we obtain

E
(
(Dn,j)

s
)

= s!

(
s + c2

c1

s

)(n

j

)s
(
1 + O

(1

j

)
+ O

( j

n

))
. (27)

Thus, for n → ∞ and j → ∞ such that j = o(n), the s-th moments of the normalized
random variable jDn,j/n converge for all integers s ≥ 1 to the s-th moments of a Gamma-
distributed random variable:

E

(( j

n
Dn,j

)s
)
→ s!

(
s + c2

c1

s

)
=

(c2

c1
+ 1

)s
. (28)

This proves the second part of Theorem 2.

6.3 The case j → ∞ such that j ∼ ρn

For the central region of j we compute an asymptotic equivalent of the probabilities
P{Dn,j = m} under the assumption that j ∼ ρn with 0 < ρ < 1 and show by convergence

of the probability mass function that Dn,j − 1
(d)−→ NegBin( c2

c1
+ 1, ρ), where NegBin(r, p)

denotes the negative binomial distribution with parameters r and p. If X is a nega-

tive binomial-distributed random variable, X
(d)
= NegBin(r, p), then the probability mass

function of X is given by

P{X = m} =

(
m + r − 1

m

)
pr(1 − p)m, for m ≥ 0. (29)

the electronic journal of combinatorics 13 (2006), #R8 11



We start with the following form of P{Dn,j = m} equivalent to (6):

P{Dn,j = m} =
(j − 1)

(j−1+
c2
c1

j−1

)(
n−j
m−1

)(m−1+
c2
c1

m−1

)
m

(n−1+
c2
c1

n−1

)(
n−1
m

) , (30)

and apply Stirling’s formula (22). This leads to

P{Dn,j = m} =

(
m − 1 + c2

c1

m − 1

)( j

n

) c2
c1

+1(
1− j

n

)m−1
(
1+O

(1

n

)
+O

(1

j

)
+O

( 1

n − j

))
. (31)

Thus, for n → ∞ and j → ∞ such that j ∼ ρn with 0 < ρ < 1, the probabilities
P{Dn,j − 1 = m} = P{Dn,j = m + 1} of the shifted random variable Dn,j − 1 converge for
all m ≥ 0 to the probabilities of a negative binomial-distribution:

P{Dn,j − 1 = m} →
(

m + c2
c1

m

)
ρ

c2
c1

+1
(1 − ρ)m. (32)

Thus the third part of Theorem 2 follows.

6.4 The case l := n − j = o(n)

Substituting l := n − j, the probabilities P{Dn,j = m} given by (30) can be written as
follows:

P{Dn,j = m} =

(n−l−1+
c2
c1

n−l−1

)
(n−1+

c2
c1

n−1

)
(

l+1
m

)
(

n−1
m

) n − l − 1

l + 1

(
m − 1 + c2

c1

m − 1

)
. (33)

In the sequel we want to obtain a suitable bound for the probabilities P{Dn,j = m}, which
holds uniformly for all m ≥ 2. Since we are only interested in the case l := n − j = o(n)
we make in the following computations the assumptions l ≤ n

3
and n ≥ 3.

First we consider for 2 ≤ m ≤ l + 1:

(
l+1
m

)
(

n−1
m

) =
(l + 1)l

(n − 1)(n − 2)

m−2∏
k=1

l − k

n − 2 − k
. (34)

Using the assumptions l ≤ n
3

and n ≥ 3 we further get the bounds

(l + 1)l

(n − 1)(n − 2)
≤ 9 l2

n2
, and

l − k

n − 2 − k
≤ l

n
, for 1 ≤ k ≤ l. (35)

Combining (34) and (35) leads to the estimate

(
l+1
m

)
(

n−1
m

) ≤ 9
( l

n

)m
, (36)

which holds for all m ≥ 2, since
(

l+1
m

)
= 0 for m > l + 1.
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For the following estimates we use the bound | c2
c1
| ≤ 1, which follows from the charac-

terization of very simple families of increasing trees as given by Lemma 1. Together with
l ≤ n

3
we get

(n−l−1+
c2
c1

n−l−1

)
(n−1+

c2
c1

n−1

) =
(n − 1)(n − 2) · · · (n − l)

(n − 1 + c2
c1

)(n − 2 + c2
c1

) · · · (n − l + c2
c1

)
≤ (n − 1)(n − 2) · · · (n − l)

(n − 2)(n − 3) · · · (n − l − 1)

=
n − 1

n − l − 1
≤ 2. (37)

Analogously we compute:

(
m − 1 + c2

c1

m − 1

)
=

(
m − 1 +

c2

c1

)(m − 2 + c2
c1

)(m − 3 + c2
c1

) · · · (1 + c2
c1

)

(m − 1)(m − 2) · · ·2 ≤ m − 1 +
c2

c1
≤ m.

(38)
Together with the trivial bound

n − l − 1

l + 1
≤ n

l
,

we finally get from (33) by using (36), (37) and (38) the following estimate, which holds
uniformly for all m ≥ 2:

P{Dn,j = m} ≤ 18m
( l

n

)m−1
. (39)

Equation (39) leads then (for l ≤ n
3
) to the bound

∑
m≥2

P{Dn,j = m} ≤ 18
∑
m≥2

m
( l

n

)m−1
=

18l

n

2 − l
n

(1 − l
n
)2

≤
36 l

n

(1 − l
n
)2

≤ 81 l

n
. (40)

Thus, for n → ∞ and j → ∞ such that l := n − j = o(n), we have

∑
m≥2

P{Dn,j = m} → 0, which implies P{Dn,j = 1} → 1.

Thus also the last part of Theorem 2 is shown.
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