The spectral radius of subgraphs of regular graphs

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA

Submitted: May 25, 2007; Accepted: Sep 30, 2007; Published: Oct 5, 2007
Mathematics Subject Classification: 05C50

Abstract

Let $\mu(G)$ and $\mu_{\min }(G)$ be the largest and smallest eigenvalues of the adjacency matrix of a graph G. Our main results are: (i) Let G be a regular graph of order n and finite diameter D. If H is a proper subgraph of G, then $$
\mu(G)-\mu(H)>\frac{1}{n D} .
$$ (ii) If G is a regular nonbipartite graph of order n and finite diameter D, then $$
\mu(G)+\mu_{\min }(G)>\frac{1}{n D}
$$

Keywords: smallest eigenvalue, largest eigenvalue, diameter, connected graph, nonbipartite graph

Main results

Our notation follows [1]. Specifically, $\mu(G)$ and $\mu_{\text {min }}(G)$ stand for the largest and smallest eigenvalues of the adjacency matrix of a graph G.

The aim of this note is to improve some recent results on eigenvalues of subgraphs of regular graphs. Cioabă ([2], Corollary 2.2) showed that if G is a regular graph of order n and e is an edge of G such that $G-e$ is a connected graph of diameter D, then

$$
\mu(G)-\mu(G-e)>\frac{1}{n D} .
$$

The approach of [3] helps improve this assertion in a natural way:
Theorem 1 Let G be a regular graph of order n and finite diameter D. If H is a proper subgraph of G, then

$$
\begin{equation*}
\mu(G)-\mu(H)>\frac{1}{n D} \tag{1}
\end{equation*}
$$

Since $\mu(H) \leq \mu\left(H^{\prime}\right)$ whenever $H \subset H^{\prime}$, we may assume that H is a maximal proper subgraph of G, that is to say, $V(H)=V(G)$ and H differs from G in a single edge. Thus, we can deduce Theorem 1 from the following assertion.

Theorem 2 Let G be a regular graph of order n and finite diameter D. If uv is an edge of G, then

$$
\mu(G)-\mu(G-u v)> \begin{cases}1 /(n D), & \text { if } G-u v \text { is connected; } \\ 1 /(n-3)(D-1), & \text { otherwise } .\end{cases}
$$

Furthermore, Theorem 1 implies a result about nonbipartite graphs.
Theorem 3 If G is a regular nonbipartite graph of order n and finite diameter D, then

$$
\mu(G)+\mu_{\min }(G)>\frac{1}{n D} .
$$

Finally, we note the following more general version of the lower bound in Corollary 2.2 in [2].

Lemma 4 Let G be a connected regular graph and e be an edge of G. If H is a component of $G-e$ with $\mu(H)=\mu(G-e)$, then

$$
\mu(G)-\mu(H)>\frac{1}{\operatorname{Diam}(H)|H|}
$$

This lemma follows easily from Theorem 2.1 of [2] and its proof is omitted.

Proofs

Proof of Theorem 2 Write $\operatorname{dist}_{F}(s, t)$ for the length of a shortest path joining two vertices s and t in a graph F. Write d for the degree of G, let $H=G-u v$, and set $\mu=\mu(H)$.

Case (a): H is connected.

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a unit eigenvector to μ and let x_{w} be a maximal entry of \mathbf{x}; we thus have $x_{w}^{2} \geq 1 / n$. We can assume that $w \neq v$ and $w \neq u$. Indeed, if $w=v$, we see that

$$
\mu x_{v}=\sum_{v i \in E(G)} x_{i} \leq(d-1) x_{v}
$$

and so $d-\mu \geq 1$, implying (1). We have

$$
d-\mu=d \sum_{i \in V(G)} x_{i}^{2}-2 \sum_{i j \in E(G)} x_{i} x_{j}=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2}+x_{u}^{2}+x_{v}^{2} .
$$

Assume first that $\operatorname{dist}_{H}(w, u) \leq D-1$. Select a shortest path $u=u_{1}, \ldots, u_{k}=w$ joining u to w in H. We see that

$$
\begin{aligned}
d-\mu & =\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2}+x_{u}^{2}+x_{v}^{2}>\sum_{i=1}^{k-1}\left(x_{u_{i}}-x_{u_{i+1}}\right)^{2}+x_{u}^{2} \\
& \geq \frac{1}{k-1}\left(x_{u_{i}}-x_{u_{i+1}}\right)^{2}+x_{u}^{2}=\frac{1}{k-1}\left(x_{w}-x_{u}\right)^{2}+x_{u}^{2} \geq \frac{1}{k} x_{w}^{2} \geq \frac{1}{n D}
\end{aligned}
$$

completing the proof.
Hereafter, we assume that $\operatorname{dist}_{H}(w, u) \geq D$ and, by symmetry, $\operatorname{dist}_{H}(w, v) \geq D$.
Let $P(u, w)$ and $P(v, w)$ be shortest paths joining u and v to w in G. If $u \in P(v, w)$, then there exists a path of length at most $D-1$, joining w to u in G, and thus in H, a contradiction. Hence, $u \notin P(v, w)$ and, by symmetry, $v \notin P(u, w)$. Therefore, the paths $P(u, w)$ and $P(v, w)$ belong to H, and we have

$$
\operatorname{dist}_{H}(w, u)=\operatorname{dist}_{H}(w, v)=D
$$

Let $Q(u, z)$ and $Q(v, z)$ be the longest subpaths of $P(u, w)$ and $P(v, w)$ having no internal vertices in common. Clearly $Q(u, z)$ and $Q(v, z)$ have the same length. Write $Q(z, w)$ for the subpath of $P(u, w)$ joining z to w and let

$$
Q(u, z)=u_{1}, \ldots, u_{k}, \quad Q(v, z)=v_{1}, \ldots, v_{k}, \quad Q(z, w)=w_{1}, \ldots, w_{l}
$$

where

$$
u_{1}=u, \quad u_{k}=v_{k}=w_{1}=z, \quad w_{l}=w, \quad k+l-2=D
$$

The following argument is borrowed from [2]. Using the AM-QM inequality, we see that

$$
\begin{aligned}
d-\mu & \geq \sum_{i=1}^{k-1}\left(x_{v_{i}}-x_{v_{i+1}}\right)^{2}+x_{v}^{2}+\sum_{i=1}^{k-1}\left(x_{u_{i}}-x_{u_{i+1}}\right)^{2}+x_{u}^{2}+\sum_{i=1}^{l-1}\left(x_{w_{i}}-x_{w_{i+1}}\right)^{2} \\
& \geq \frac{2}{D-l+2} x_{z}^{2}+\frac{1}{l-1}\left(x_{w}-x_{z}\right)^{2} \geq \frac{2}{D+l-1} x_{w}^{2} \geq \frac{1}{D n}
\end{aligned}
$$

completing the proof.

Case (b): H is disconnected.

Since G is connected, H is union of two connected graphs H_{1} and H_{2} such that $u \in H_{1}$, $v \in H_{2}$. Assume $\mu=\mu\left(H_{1}\right)$, set $\left|H_{1}\right|=k$ and let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ be a unit eigenvector to μ. Since $d \geq 2$, we see that $\left|H_{2}\right| \geq 3$, and so, $k \leq n-3$.

Let x_{w} be a maximal entry of \mathbf{x}; we thus have $x_{w}^{2} \geq 1 / k \geq 1 /(n-3)$. Like in the previous case, we see that $w \neq u$. Since $d \geq 2$, there is a vertex $z \in H_{2}$ such that $z \neq v$. Select a shortest path $u=u_{1}, u_{2}, \ldots, u_{l}=w$ joining u to w in H_{1}. Since $\operatorname{dist}_{G}(z, w) \leq \operatorname{diam} G=D$, we see that $l \leq D-1$. As above, we have

$$
\begin{aligned}
d-\mu & =\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2}+x_{u}^{2}+x_{v}^{2}>\sum_{i=1}^{l-1}\left(x_{u_{i}}-x_{u_{i+1}}\right)^{2}+x_{u}^{2} \\
& \geq \frac{1}{l-1}\left(x_{u_{1}}-x_{u_{k}}\right)^{2}+x_{u}^{2}=\frac{1}{l-1}\left(x_{w}-x_{u}\right)^{2}+x_{u}^{2} \geq \frac{1}{l} x_{w}^{2} \geq \frac{1}{(n-3)(D-1)},
\end{aligned}
$$

completing the proof.

Proof of Theorem 3 Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an eigenvector to $\mu_{\min }(G)$ and let $U=$ $\left\{u: x_{u}<0\right\}$. Write H for the bipartite subgraph of G containing all edges with exactly one vertex in U; note that H is a proper subgraph of G and $\mu_{\min }(H)<\mu_{\min }(G)$. Hence,

$$
\mu(G)+\mu_{\min }(G)>\mu(G)+\mu_{\min }(H)=\mu(G)-\mu(H)
$$

and the assertion follows from Theorem 1.

Acknowledgment A remark of Lingsheng Shi initiated the present note and a friendly referee helped complete it.

References

[1] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, SpringerVerlag, New York (1998), xiv+394 pp.
[2] S. M. Cioabă, The spectral radius and the maximum degree of irregular graphs, Electronic J. Combin., 14 (2007), R38.
[3] V. Nikiforov, Revisiting two classical results on graph spectra, Electronic J. Combin., 14 (2007), R14.

