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Abstract

For a prime p and a vector ᾱ = (α1, . . . , αk) ∈ Z
k
p let f (ᾱ, p) be the largest

n such that in each set A ⊆ Zp of n elements one can find x which has a unique
representation in the form x = α1a1 + · · · + αkak, ai ∈ A. Hilliker and Straus [2]
bounded f (ᾱ, p) from below by an expression which contained the L1-norm of ᾱ
and asked if there exists a positive constant c (k) so that f (ᾱ, p) > c (k) log p. In
this note we answer their question in the affirmative and show that, for large k, one
can take c(k) = O(1/k log(2k)). We also give a lower bound for the size of a set
A ⊆ Zp such that every element of A+A has at least K representations in the form
a + a′, a, a′ ∈ A.

1 Introduction

Let f(p) denote the largest number n such that in any set A = {a1, . . . , an} contained in
Zp = Z/pZ at least one difference ai −aj is incongruent to all other differences. Straus [4]
estimated f(p) up to a constant factor, showing that

1

2
log2(p − 1) + 1 ≤ f(p) <

(2 + o(1))

log2 3
log2 p

for all primes p. Hilliker and Straus [2] studied the following natural generalization of
the problem. For a given vector ᾱ = (α1, . . . , αk) ∈ Z

k
p consider the set of all linear

combinations S = S(ᾱ, A) = α1A + α2A + · · · + αkA. Let f(ᾱ, p) be the largest n such
that for any set A ⊆ Zp, |A| = n, one can find at least one element which has the unique
representation in S. They proved that

f(ᾱ, p) ≥ log(p − 1)

log(2‖ᾱ‖1)
+ 1,

the electronic journal of combinatorics 14 (2007), #N23 1



where ‖ᾱ‖1 =
∑k

i=1 |αi|. They ask if the L1-norm of a vector ᾱ can be replaced by
a function which depends only on k, i.e., if f(ᾱ, p) > c(k) log p?

In the note we settle the above problem in the affirmative (Theorem 1 Corollary 1
below). We also show that our lower bound for f(ᾱ, p) given in Theorem 1 cannot be
much improved (Theorem 2). In section 3 we find a lower bound on |A ± A| for special
sets A such that every element x ∈ A+A has at least two different representations a+a′,
a, a′ ∈ A. Finally, we give a lower bound for the size of a set A ⊆ Zp such that every
element t ∈ A + A has at least K ≥ 2 representations of the form t = a + a′, a, a′ ∈ A.

Throughout the note ᾱ = (α1, α2, . . . , αk) denotes a vector with nonzero integral
components, and l denote the number of different components of ᾱ. By log x we always
mean log2 x, p is a prime, and A is a set of residues modulo p. We set r ·T = {rt : t ∈ T}
but sometimes we shall omit the dot writing for instance αiA instead αi·A. By S = S(ᾱ, A)
we mean the set

S = S(ᾱ, A) = α1A + α2A + · · · + αkA,

and for a natural k we put
kA = A + A + · · · + A

︸ ︷︷ ︸

k

.

For x ∈ Zp let νᾱ(x) = νᾱ,A(x) be the number of representation of x in Zp in the form
x = α1a1 + · · · + αkak, where a1, . . . , ak ∈ A. For t ∈ R let ‖t‖ denotes the distance from
t to the nearest integer.

Finally, let us mention a simple but important observation that for every x, d1, d2 ∈ Zp,
d1 6= 0,

νᾱ,A(x) = νᾱ,d1A+d2
(d1x + d2

k∑

i=1

αi). (1)

2 A lower bound for f(ᾱ, p)

First we present a simple argument which shows that in the inequality
f(ᾱ, p) ≥ log(p−1)

log(2‖ᾱ‖1)
+ 1, proved by Hilliker and Straus [2], one can replace the factor

(log(‖ᾱ‖1))−1 by a constant depending only on k.

Theorem 1. For every ᾱ = (α1, α2, . . . , αk) we have

f(ᾱ, p) ≥ log p

l log 2k
.

Proof. Let A = {a1, . . . , an} be a set such that for every element x ∈ S we have νᾱ(x) ≥ 2
and |A| = f(ᾱ, p) + 1. Let T = α1A ∪ · · · ∪ αkA ⊆ Zp. Because of (1) we can and shall
assume that a1 = 0.

Dirichlet approximation theorem implies that there exists r, 0 < r < p, such that for
every x ∈ T we have ∥

∥
∥
∥

rx

p

∥
∥
∥
∥
≤ p−

1

|T |−1 .
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Hence, for all α1a1 + · · · + αkak ∈ S we have

∥
∥
∥
∥

r(α1a1 + · · · + αkak)

p

∥
∥
∥
∥
≤

∥
∥
∥
∥

rα1a1

p

∥
∥
∥
∥

+ · · · +

∥
∥
∥
∥

rαkak

p

∥
∥
∥
∥
≤ kp−

1

|T |−1 .

We shall show that

p−
1

|T |−1 ≥ 1

2k
. (2)

Indeed, suppose that the above inequality does not hold and p− 1

|T |−1 < 1
2k

, so that
r ·T ⊆ (− p

2k
, p

2k
). Let xi ∈ αir ·A (i = 1, . . . , k). Observe, that for every x1 + · · ·+xk ∈ r ·S

we have

‖x1 + · · · + xk‖ < ‖x1‖ + · · · + ‖xk‖ <
1

2
.

Hence, if mi (i = 1, . . . , k) is the largest element in αir · A considered as a subset of
(− p

2k
, p

2k
), then, clearly, m1 + m2 + · · ·+ mk has exactly one representation in S, because

the effect modulo is not possible. Therefore

p−
1

|T |−1 ≥ 1

2k
.

Hence

|T | ≥ log p

log 2k
+ 1,

and, since the cardinality of T is at most l(|A| − 1) + 1,

f(ᾱ, p) + 1 = |A| ≥ log p

l log 2k
+ 1,

completing the proof of Theorem 1.

Since l ≤ k as an immediate consequence of Theorem 1 we get the following result.

Corollary 1. For any ᾱ

f(ᾱ, p) ≥ log p

k log 2k
.

From Theorem 1 it follows that, in particular, for ᾱ(k) = (1, 1, . . . , 1) we have

f(ᾱ(k), p) ≥ log p

log 2k
.

Our next result shows that in general this bound cannot be much improved.

Theorem 2. For every ε > 0, k ≥ 2 and every prime p > pε we have

f(ᾱ(k), p) <

(
2 + 3ε

log(2k − 1)

)

log p + 3.
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Proof. Our construction of a set A is a straightforward generalization of the one presented
in [2]. Put

R = {0,±1,±2, . . . ,±zk} ,

where

zk =

⌈
k(2k − 1)m − 1

k − 1

⌉

and 2k
ε

< m < log2k−1

(
ε
k

log2k−1 p
)
. Thus, the set (k−1)R consists of all residues modulo

k(2k − 1)m. We recursively define a descending sequence a1, a2, . . . , al setting

a1 = (p − r)/k, p ≡ r mod k(2k − 1)m, r ∈ (k − 1)R,

ai+1 =

{

ai/(2k − 1) if ai ≡ 0 mod (2k − 1)

(ai − ri)/k if ai 6≡ 0 mod (2k − 1),
(3)

where ri ≡ ai mod k(2k − 1)m. The last element al of this sequence satisfies

al ≥ zk + 1, al+1 ∈ R. (4)

Define
A = R ∪ {±a1, . . . ,±al}.

We need to show that every element x ∈ S has at least two different representations. It
is clear that if z = a1 + · · ·+ ai + · · ·+ aj + · · ·+ ak with ai 6= aj, then z = a1 + · · ·+ aj +
· · · + ai + · · · + ak is another representation of z. It remains to show that each element
ka, where a ∈ A, has at least two representations in S. If a = 0 then it is indeed the case,
since

ka = 0 + · · · + 0 = 1 + (−1) + 0 + · · · + 0.

For 0 < a < zk we have

ka = (a − 1) + (a + 1) + a + · · · + a
︸ ︷︷ ︸

k−2

.

Finally, if a = zk, then by (3) and (4)

zk + 1 ≤ al ≤ (2k − 1)zk.

Hence
(k − 1)zk − 1 ≥ ka − al ≥ −(k − 1)zk.

Observe that ka − al ∈ (k − 1)R. So, there exist b1, . . . , bk−1 ∈ R such that
ka = al + b1 + · · · + bk−1.

Now we show that every element kaj has at least two representations in S. If j ≥ 2, then
by construction of the sequence we have either aj = aj−1/(2k−1), or aj = (aj−1−rj−1)/k.
If aj = aj−1/(2k − 1), then (2k − 1)aj = aj−1 and

kaj = aj−1 − (k − 1)aj = aj−1 + (k − 1)(−aj).
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If aj = (aj−1 − rj−1)/k, then
kaj = aj−1 + (−rj−1)

︸ ︷︷ ︸

∈(k−1)R

.

If j = 1 then ka1 has the following two representations in S:

a1 = (p − r)/k, where r ≡ p (mod k(2k − 1)m) , and r ∈ (k − 1)R,

ka1 = p − r ≡ −r (mod p) .

It means that
ka1 = a1 + · · · + a1

︸ ︷︷ ︸

k

= 0 + (−r)
︸︷︷︸

∈(k−1)R

.

Finally, we estimate the cardinality of A. Note that

|A| = 2l + 2zk + 1 = 2l + 2

⌈
k(2k − 1)m − 1

k − 1

⌉

+ 1 < 2l + 2
k(2k − 1)m

k − 1
+ 3.

Observe that ai+1 < ai for all i and ai+1 = ai/(2k−1) for all except at most one out of every
m+1 consecutive terms aj, aj+1, . . . , aj+m. We have also aj+1 ≤ aj/k if aj+1 = (aj−rj)/k,
where rj ≡ aj (mod k(2k − 1)m), rj ∈ (k − 1)R. Thus

aj+m+1 < k−1aj(2k − 1)−m

and
k(2k − 1)m

k − 1
≤ al < pk

−l−1

m+1 (2k − 1)1− lm

m+1 .

Hence

l <
1

m

(

1 − m2 + (m + 1)
log p

log(2k − 1)

)

< (1 + 1/m)
log p

log(2k − 1)
.

Consequently,

|A| < 2
(
1 + 1/m

) log p

log(2k − 1)
+ 2

k(2k − 1)m

k − 1
+ 3

< 2(1 + ε/(2k))
log p

log(2k − 1)
+ 2ε/(k − 1)

log p

log(2k − 1)
+ 3

=

(

2 +
3k − 1

k(k − 1)
ε

)
log p

log(2k − 1)
+ 3

≤
(
2 + 3ε

) log p

log(2k − 1)
+ 3

for 2k
ε

< m < log2k−1

(
ε
k

log2k−1 p
)

and k ≥ 2.

Next result shows that for each α the order of magnitude of f(ᾱ, p) is at most log2 p.
This improves the upper bound for f(ᾱ, p) in [2].
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Theorem 3. For every ᾱ = (α1, . . . , αk) we have

f(ᾱ, p) ≤ 4 log2 p.

Proof. Observe that if ᾱ = (1, α2) and ᾱ′ = (1, α2, α3, . . . , αk), then f(ᾱ, p) ≥ f(ᾱ′, p).
Let S be a set such that for every element x ∈ S + S we have ν(1,1) ≥ 2 and |S| ≤ 2 log p.
Let a1, a2 ∈ A = S + α2S. Then

a1 + α2a2 = (s1 + α2s2) + α2(s3 + α2s4)

= s1 + α2(s2 + s3) + α2
2s4

= s1 + α2(s
′
2 + s′3) + α2

2s4

= (s1 + α2s
′
2) + α2(s

′
3 + α2s4)

= a′
1 + α2a

′
2

for some a1, a2, a
′
1, a

′
2 ∈ A and s1, s2, s3, s4, s

′
2, s

′
3 ∈ S. Thus

f(ᾱ, p) ≤ |A| ≤ |S|2 ≤ 4 log2 p.

3 The cardinality of sumsets

In this section we estimate the cardinality of A − B, where A is such that every element
of A + A has at least two representations, and B is an arbitrary subset of Zp. The main
result of this section can be stated as follows.

Theorem 4. If A ⊆ Zp and for any element x ∈ A + A we have ν(1,1)(x) ≥ 2, then for
any B ⊆ Zp

|A − B| ≥ |B|
(

log p

log 12
− |B|

)

.

Proof. Our argument is based on the following result of Ruzsa [3].

Lemma 1. Let A, B ⊆ G be finite sets and G be an abelian group. Then there exists
a set X ⊆ G such that B ⊆ X + A − A and |X| ≤ |B−A|

|A|
.

Let X be a set whose existence is guaranteed by Lemma 1, i.e.,

|X| ≤ |A − B|
|B| and A ⊆ X + B − B. (5)

By Dirichlet’s theorem applied to the set X ∪ B there is an integer 0 < r < p such that
for any element z ∈ X ∪ B ∥

∥
∥
∥

rz

p

∥
∥
∥
∥
≤ p−

1

|X|+|B| .
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For every a ∈ A there exist b1, b2 ∈ B and x ∈ X such that a = x + b1 − b2. Hence
∥
∥
∥
∥

ra

p

∥
∥
∥
∥
≤

∥
∥
∥
∥

rx

p

∥
∥
∥
∥

+

∥
∥
∥
∥

rb1

p

∥
∥
∥
∥

+

∥
∥
∥
∥

rb2

p

∥
∥
∥
∥
≤ 3p

− 1

|X|+|B| .

Moreover, arguing as in the proof of Theorem 1 (cf. (2)), we get

3p
− 1

|X|+|B| ≥ 1

4
.

Thus

|X| ≥ log p

log 12
− |B| ,

and, from (5),

|A − B| ≥ |B||X| ≥ |B|
(

log p

log 12
− |B|

)

.

Corollary 2. If A ⊆ Zp and for any element x ∈ A + A we have ν(1,1)(x) ≥ 2, then

|A ± A| ≥
⌊

log p

2 log 12

⌋2

.

Proof. Pick any set B ⊆ ±A with |B| =
⌊

log p

2 log 12

⌋

and apply Theorem 4 for the sets A

and B.

Let fK(p) be the largest n such that for any set A ⊆ Zp with at most fK(p) elements
there exists at least one element in A+A with less then K representations. As a corollary
from Theorem 4 we obtain the following lower bound for fK(p).

Corollary 3. For every K ≥ 2 we have

fK(p) ≥
√

K

⌊
log p

2 log 12

⌋

− 1.

Proof. Let us assume that A ⊆ Zp, for each element x ∈ A+A we have ν(1,1)(x) ≥ K ≥ 2,
and |A| = fK(p) + 1. By Corollary 2 we get

|A + A| >

⌊
log p

2 log 12

⌋2

. (6)

Since
K|A + A| ≤

∑

t∈A+A

ν(1,1)(t) = |A|2 ,

it follows that
|A|2
K

≥ |A + A| . (7)
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From (6) and (7), we get

fK(p) + 1 = |A| ≥
√

K

⌊
log p

2 log 12

⌋

,

and so

fK(p) ≥
√

K

⌊
log p

2 log 12

⌋

− 1 .
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