A note on a problem of Hilliker and Straus

Mirosława Jańczak

Faculty of Mathematics and CS Adam Mickiewicz University ul. Umultowska 87, 61-614 Poznań, Poland mjanczak@amu.edu.pl

Submitted: May 20, 2006; Accepted: Oct 23, 2007; Published: Oct 30, 2007 Mathematics Subject Classifications: 06124, 06124

Abstract

For a prime p and a vector $\bar{\alpha} = (\alpha_1, \ldots, \alpha_k) \in \mathbb{Z}_p^k$ let $f(\bar{\alpha}, p)$ be the largest n such that in each set $A \subseteq \mathbb{Z}_p$ of n elements one can find x which has a unique representation in the form $x = \alpha_1 a_1 + \cdots + \alpha_k a_k$, $a_i \in A$. Hilliker and Straus [2] bounded $f(\bar{\alpha}, p)$ from below by an expression which contained the L_1 -norm of $\bar{\alpha}$ and asked if there exists a positive constant c(k) so that $f(\bar{\alpha}, p) > c(k) \log p$. In this note we answer their question in the affirmative and show that, for large k, one can take $c(k) = O(1/k \log(2k))$. We also give a lower bound for the size of a set $A \subseteq \mathbb{Z}_p$ such that every element of A + A has at least K representations in the form $a + a', a, a' \in A$.

1 Introduction

Let f(p) denote the largest number n such that in any set $A = \{a_1, \ldots, a_n\}$ contained in $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ at least one difference $a_i - a_j$ is incongruent to all other differences. Straus [4] estimated f(p) up to a constant factor, showing that

$$\frac{1}{2}\log_2(p-1) + 1 \le f(p) < \frac{(2+o(1))}{\log_2 3}\log_2 p$$

for all primes p. Hilliker and Straus [2] studied the following natural generalization of the problem. For a given vector $\bar{\alpha} = (\alpha_1, \ldots, \alpha_k) \in \mathbb{Z}_p^k$ consider the set of all linear combinations $S = S(\bar{\alpha}, A) = \alpha_1 A + \alpha_2 A + \cdots + \alpha_k A$. Let $f(\bar{\alpha}, p)$ be the largest n such that for any set $A \subseteq \mathbb{Z}_p$, |A| = n, one can find at least one element which has the unique representation in S. They proved that

$$f(\bar{\alpha}, p) \ge \frac{\log(p-1)}{\log(2\|\bar{\alpha}\|_1)} + 1,$$

where $\|\bar{\alpha}\|_1 = \sum_{i=1}^k |\alpha_i|$. They ask if the L_1 -norm of a vector $\bar{\alpha}$ can be replaced by a function which depends only on k, i.e., if $f(\bar{\alpha}, p) > c(k) \log p$?

In the note we settle the above problem in the affirmative (Theorem 1 Corollary 1 below). We also show that our lower bound for $f(\bar{\alpha}, p)$ given in Theorem 1 cannot be much improved (Theorem 2). In section 3 we find a lower bound on $|A \pm A|$ for special sets A such that every element $x \in A + A$ has at least two different representations a + a', $a, a' \in A$. Finally, we give a lower bound for the size of a set $A \subseteq \mathbb{Z}_p$ such that every element $t \in A + A$ has at least $K \ge 2$ representations of the form t = a + a', $a, a' \in A$.

Throughout the note $\bar{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_k)$ denotes a vector with nonzero integral components, and l denote the number of different components of $\bar{\alpha}$. By $\log x$ we always mean $\log_2 x$, p is a prime, and A is a set of residues modulo p. We set $r \cdot T = \{rt : t \in T\}$ but sometimes we shall omit the dot writing for instance $\alpha_i A$ instead $\alpha_i \cdot A$. By $S = S(\bar{\alpha}, A)$ we mean the set

$$S = S(\bar{\alpha}, A) = \alpha_1 A + \alpha_2 A + \dots + \alpha_k A,$$

and for a natural k we put

$$kA = \underbrace{A + A + \dots + A}_{k}.$$

For $x \in \mathbb{Z}_p$ let $\nu_{\bar{\alpha}}(x) = \nu_{\bar{\alpha},A}(x)$ be the number of representation of x in \mathbb{Z}_p in the form $x = \alpha_1 a_1 + \cdots + \alpha_k a_k$, where $a_1, \ldots, a_k \in A$. For $t \in \mathbb{R}$ let ||t|| denotes the distance from t to the nearest integer.

Finally, let us mention a simple but important observation that for every $x, d_1, d_2 \in \mathbb{Z}_p$, $d_1 \neq 0$,

$$\nu_{\bar{\alpha},A}(x) = \nu_{\bar{\alpha},d_1A+d_2}(d_1x + d_2\sum_{i=1}^k \alpha_i).$$
 (1)

2 A lower bound for $f(\bar{\alpha}, p)$

First we present a simple argument which shows that in the inequality $f(\bar{\alpha}, p) \geq \frac{\log(p-1)}{\log(2\|\bar{\alpha}\|_1)} + 1$, proved by Hilliker and Straus [2], one can replace the factor $(\log(\|\bar{\alpha}\|_1))^{-1}$ by a constant depending only on k.

Theorem 1. For every $\bar{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_k)$ we have

$$f(\bar{\alpha}, p) \ge \frac{\log p}{l \log 2k}.$$

Proof. Let $A = \{a_1, \ldots, a_n\}$ be a set such that for every element $x \in S$ we have $\nu_{\bar{\alpha}}(x) \ge 2$ and $|A| = f(\bar{\alpha}, p) + 1$. Let $T = \alpha_1 A \cup \cdots \cup \alpha_k A \subseteq \mathbb{Z}_p$. Because of (1) we can and shall assume that $a_1 = 0$.

Dirichlet approximation theorem implies that there exists r, 0 < r < p, such that for every $x \in T$ we have

$$\left\|\frac{rx}{p}\right\| \le p^{-\frac{1}{|T|-1}}.$$

Hence, for all $\alpha_1 a_1 + \cdots + \alpha_k a_k \in S$ we have

$$\left\|\frac{r(\alpha_1 a_1 + \dots + \alpha_k a_k)}{p}\right\| \le \left\|\frac{r\alpha_1 a_1}{p}\right\| + \dots + \left\|\frac{r\alpha_k a_k}{p}\right\| \le kp^{-\frac{1}{|T|-1}}.$$

We shall show that

$$p^{-\frac{1}{|T|-1}} \ge \frac{1}{2k}.$$
 (2)

Indeed, suppose that the above inequality does not hold and $p^{-\frac{1}{|T|-1}} < \frac{1}{2k}$, so that $r \cdot T \subseteq (-\frac{p}{2k}, \frac{p}{2k})$. Let $x_i \in \alpha_i r \cdot A$ (i = 1, ..., k). Observe, that for every $x_1 + \cdots + x_k \in r \cdot S$ we have

$$||x_1 + \dots + x_k|| < ||x_1|| + \dots + ||x_k|| < \frac{1}{2}.$$

Hence, if m_i (i = 1, ..., k) is the largest element in $\alpha_i r \cdot A$ considered as a subset of $(-\frac{p}{2k}, \frac{p}{2k})$, then, clearly, $m_1 + m_2 + \cdots + m_k$ has exactly one representation in S, because the effect modulo is not possible. Therefore

$$p^{-\frac{1}{|T|-1}} \ge \frac{1}{2k}.$$

Hence

$$|T| \ge \frac{\log p}{\log 2k} + 1,$$

and, since the cardinality of T is at most l(|A| - 1) + 1,

$$f(\bar{\alpha}, p) + 1 = |A| \ge \frac{\log p}{l \log 2k} + 1,$$

completing the proof of Theorem 1.

Since $l \leq k$ as an immediate consequence of Theorem 1 we get the following result.

Corollary 1. For any $\bar{\alpha}$

$$f(\bar{\alpha}, p) \ge \frac{\log p}{k \log 2k}. \quad \Box$$

From Theorem 1 it follows that, in particular, for $\bar{\alpha}^{(k)} = (1, 1, \dots, 1)$ we have

$$f(\bar{\alpha}^{(k)}, p) \ge \frac{\log p}{\log 2k}.$$

Our next result shows that in general this bound cannot be much improved.

Theorem 2. For every $\varepsilon > 0$, $k \ge 2$ and every prime $p > p_{\varepsilon}$ we have

$$f(\bar{\alpha}^{(k)}, p) < \left(\frac{2+3\varepsilon}{\log(2k-1)}\right)\log p + 3.$$

Proof. Our construction of a set A is a straightforward generalization of the one presented in [2]. Put

$$R = \{0, \pm 1, \pm 2, \dots, \pm z_k\},\$$

where

$$z_k = \left\lceil \frac{k(2k-1)^m - 1}{k-1} \right\rceil$$

and $\frac{2k}{\varepsilon} < m < \log_{2k-1} \left(\frac{\varepsilon}{k} \log_{2k-1} p\right)$. Thus, the set (k-1)R consists of all residues modulo $k(2k-1)^m$. We recursively define a descending sequence a_1, a_2, \ldots, a_l setting

$$a_{1} = (p-r)/k, \ p \equiv r \mod k(2k-1)^{m}, \ r \in (k-1)R,$$
$$a_{i+1} = \begin{cases} a_{i}/(2k-1) & \text{if } a_{i} \equiv 0 \mod (2k-1) \\ (a_{i}-r_{i})/k & \text{if } a_{i} \not\equiv 0 \mod (2k-1), \end{cases}$$
(3)

where $r_i \equiv a_i \mod k(2k-1)^m$. The last element a_l of this sequence satisfies

$$a_l \ge z_k + 1, \ a_{l+1} \in R.$$
 (4)

Define

$$A = R \cup \{\pm a_1, \dots, \pm a_l\}.$$

We need to show that every element $x \in S$ has at least two different representations. It is clear that if $z = a_1 + \cdots + a_i + \cdots + a_j + \cdots + a_k$ with $a_i \neq a_j$, then $z = a_1 + \cdots + a_j + \cdots + a_i + \cdots + a_k$ is another representation of z. It remains to show that each element ka, where $a \in A$, has at least two representations in S. If a = 0 then it is indeed the case, since

$$ka = 0 + \dots + 0 = 1 + (-1) + 0 + \dots + 0.$$

For $0 < a < z_k$ we have

$$ka = (a - 1) + (a + 1) + \underbrace{a + \dots + a}_{k-2}.$$

Finally, if $a = z_k$, then by (3) and (4)

$$z_k + 1 \le a_l \le (2k - 1)z_k.$$

Hence

$$(k-1)z_k - 1 \ge ka - a_l \ge -(k-1)z_k$$

Observe that $ka - a_l \in (k - 1)R$. So, there exist $b_1, \ldots, b_{k-1} \in R$ such that $ka = a_l + b_1 + \cdots + b_{k-1}$.

Now we show that every element ka_j has at least two representations in S. If $j \ge 2$, then by construction of the sequence we have either $a_j = a_{j-1}/(2k-1)$, or $a_j = (a_{j-1}-r_{j-1})/k$. If $a_j = a_{j-1}/(2k-1)$, then $(2k-1)a_j = a_{j-1}$ and

$$ka_j = a_{j-1} - (k-1)a_j = a_{j-1} + (k-1)(-a_j).$$

The electronic journal of combinatorics $14~(2007),\,\#\mathrm{N23}$

If $a_j = (a_{j-1} - r_{j-1})/k$, then

$$ka_j = a_{j-1} + \underbrace{(-r_{j-1})}_{\in (k-1)R}.$$

If j = 1 then ka_1 has the following two representations in S:

$$a_1 = (p-r)/k$$
, where $r \equiv p \pmod{k(2k-1)^m}$, and $r \in (k-1)R$

$$ka_1 = p - r \equiv -r \pmod{p}$$
.

It means that

$$ka_1 = \underbrace{a_1 + \dots + a_1}_k = 0 + \underbrace{(-r)}_{\in (k-1)R}$$

Finally, we estimate the cardinality of A. Note that

$$|A| = 2l + 2z_k + 1 = 2l + 2\left\lceil \frac{k(2k-1)^m - 1}{k-1} \right\rceil + 1 < 2l + 2\frac{k(2k-1)^m}{k-1} + 3.$$

Observe that $a_{i+1} < a_i$ for all i and $a_{i+1} = a_i/(2k-1)$ for all except at most one out of every m+1 consecutive terms $a_j, a_{j+1}, \ldots, a_{j+m}$. We have also $a_{j+1} \le a_j/k$ if $a_{j+1} = (a_j - r_j)/k$, where $r_j \equiv a_j \pmod{k(2k-1)^m}, r_j \in (k-1)R$. Thus

$$a_{j+m+1} < k^{-1}a_j(2k-1)^{-m}$$

and

$$\frac{k(2k-1)^m}{k-1} \le a_l < pk^{\frac{-l-1}{m+1}}(2k-1)^{1-\frac{lm}{m+1}}.$$

Hence

$$l < \frac{1}{m} \left(1 - m^2 + (m+1) \frac{\log p}{\log(2k-1)} \right) < (1 + 1/m) \frac{\log p}{\log(2k-1)}.$$

Consequently,

$$\begin{split} |A| &< 2\left(1 + 1/m\right) \frac{\log p}{\log(2k - 1)} + 2\frac{k(2k - 1)^m}{k - 1} + 3 \\ &< 2(1 + \varepsilon/(2k)) \frac{\log p}{\log(2k - 1)} + 2\varepsilon/(k - 1) \frac{\log p}{\log(2k - 1)} + 3 \\ &= \left(2 + \frac{3k - 1}{k(k - 1)}\varepsilon\right) \frac{\log p}{\log(2k - 1)} + 3 \\ &\leq \left(2 + 3\varepsilon\right) \frac{\log p}{\log(2k - 1)} + 3 \end{split}$$

for $\frac{2k}{\varepsilon} < m < \log_{2k-1}\left(\frac{\varepsilon}{k}\log_{2k-1}p\right)$ and $k \ge 2$.

Next result shows that for each α the order of magnitude of $f(\bar{\alpha}, p)$ is at most $\log^2 p$. This improves the upper bound for $f(\bar{\alpha}, p)$ in [2].

Theorem 3. For every $\bar{\alpha} = (\alpha_1, \ldots, \alpha_k)$ we have

 $f(\bar{\alpha}, p) \le 4\log^2 p.$

Proof. Observe that if $\bar{\alpha} = (1, \alpha_2)$ and $\bar{\alpha}' = (1, \alpha_2, \alpha_3, \dots, \alpha_k)$, then $f(\bar{\alpha}, p) \ge f(\bar{\alpha}', p)$. Let S be a set such that for every element $x \in S + S$ we have $\nu_{(1,1)} \ge 2$ and $|S| \le 2 \log p$. Let $a_1, a_2 \in A = S + \alpha_2 S$. Then

$$a_1 + \alpha_2 a_2 = (s_1 + \alpha_2 s_2) + \alpha_2 (s_3 + \alpha_2 s_4)$$

= $s_1 + \alpha_2 (s_2 + s_3) + \alpha_2^2 s_4$
= $s_1 + \alpha_2 (s'_2 + s'_3) + \alpha_2^2 s_4$
= $(s_1 + \alpha_2 s'_2) + \alpha_2 (s'_3 + \alpha_2 s_4)$
= $a'_1 + \alpha_2 a'_2$

for some $a_1, a_2, a'_1, a'_2 \in A$ and $s_1, s_2, s_3, s_4, s'_2, s'_3 \in S$. Thus

$$f(\bar{\alpha}, p) \le |A| \le |S|^2 \le 4\log^2 p$$

3 The cardinality of sumsets

In this section we estimate the cardinality of A - B, where A is such that every element of A + A has at least two representations, and B is an arbitrary subset of \mathbb{Z}_p . The main result of this section can be stated as follows.

Theorem 4. If $A \subseteq \mathbb{Z}_p$ and for any element $x \in A + A$ we have $\nu_{(1,1)}(x) \ge 2$, then for any $B \subseteq \mathbb{Z}_p$

$$|A - B| \ge |B| \left(\frac{\log p}{\log 12} - |B|\right).$$

Proof. Our argument is based on the following result of Ruzsa [3].

Lemma 1. Let $A, B \subseteq G$ be finite sets and G be an abelian group. Then there exists a set $X \subseteq G$ such that $B \subseteq X + A - A$ and $|X| \leq \frac{|B-A|}{|A|}$.

Let X be a set whose existence is guaranteed by Lemma 1, i.e.,

$$|X| \le \frac{|A-B|}{|B|} \quad \text{and} \quad A \subseteq X + B - B.$$
(5)

By Dirichlet's theorem applied to the set $X \cup B$ there is an integer 0 < r < p such that for any element $z \in X \cup B$

$$\left\|\frac{rz}{p}\right\| \le p^{-\frac{1}{|X|+|B|}}.$$

For every $a \in A$ there exist $b_1, b_2 \in B$ and $x \in X$ such that $a = x + b_1 - b_2$. Hence

$$\left\|\frac{ra}{p}\right\| \le \left\|\frac{rx}{p}\right\| + \left\|\frac{rb_1}{p}\right\| + \left\|\frac{rb_2}{p}\right\| \le 3p^{-\frac{1}{|X|+|B|}}.$$

Moreover, arguing as in the proof of Theorem 1 (cf. (2)), we get

$$3p^{-\frac{1}{|X|+|B|}} \ge \frac{1}{4}.$$

Thus

$$|X| \ge \frac{\log p}{\log 12} - |B|,$$

and, from (5),

$$|A - B| \ge |B||X| \ge |B| \left(\frac{\log p}{\log 12} - |B|\right).$$

Corollary 2. If $A \subseteq \mathbb{Z}_p$ and for any element $x \in A + A$ we have $\nu_{(1,1)}(x) \ge 2$, then

$$|A \pm A| \ge \left\lfloor \frac{\log p}{2\log 12} \right\rfloor^2$$
.

Proof. Pick any set $B \subseteq \pm A$ with $|B| = \left\lfloor \frac{\log p}{2 \log 12} \right\rfloor$ and apply Theorem 4 for the sets A and B.

Let $f_K(p)$ be the largest n such that for any set $A \subseteq \mathbb{Z}_p$ with at most $f_K(p)$ elements there exists at least one element in A + A with less then K representations. As a corollary from Theorem 4 we obtain the following lower bound for $f_K(p)$.

Corollary 3. For every $K \ge 2$ we have

$$f_K(p) \ge \sqrt{K} \left\lfloor \frac{\log p}{2\log 12} \right\rfloor - 1.$$

Proof. Let us assume that $A \subseteq \mathbb{Z}_p$, for each element $x \in A + A$ we have $\nu_{(1,1)}(x) \ge K \ge 2$, and $|A| = f_K(p) + 1$. By Corollary 2 we get

$$|A+A| > \left\lfloor \frac{\log p}{2\log 12} \right\rfloor^2.$$
(6)

Since

$$K|A + A| \le \sum_{t \in A+A} \nu_{(1,1)}(t) = |A|^2,$$

it follows that

$$\frac{|A|^2}{K} \ge |A+A| \,. \tag{7}$$

The electronic journal of combinatorics $14~(2007),\,\#\mathrm{N23}$

From (6) and (7), we get

$$f_K(p) + 1 = |A| \ge \sqrt{K} \left\lfloor \frac{\log p}{2\log 12} \right\rfloor,$$

and so

$$f_K(p) \ge \sqrt{K} \left\lfloor \frac{\log p}{2\log 12} \right\rfloor - 1.$$

References

- J. BROWKIN, B. DIVIŠ, A. SCHINZEL, Addition of sequences in general fields, Monatshefte f
 ür Mathematik 82 (1976), 261–268.
- [2] D. L. HILLIKER, E. G. STRAUS, Uniqueness of linear combinations (mod p), Journal of Number Theory 24 (1986), 1–6.
- [3] I. Z. RUZSA, An analog of Frieman's theorem in groups, Asterisque 258 (1999), 323–326.
- [4] E. G. STRAUS, *Differences of residues* (mod *p*), Journal of Number Theory 8 (1976), 40–42.