New infinite families of 3-designs from algebraic curves of higher genus over finite fields

Byeong-Kweon Oh *
Department of Applied Mathematics
Sejong University, Seoul, 143-747, Korea
bkoh@sejong.ac.kr

Hoseog $\mathrm{Yu}{ }^{\dagger}$
Department of Applied Mathematics
Sejong University, Seoul, 143-747, Korea
hsyu@sejong.ac.kr

Submitted: Mar 7, 2007; Accepted: Oct 26, 2007; Published: Nov 5, 2007
Mathematics Subject Classification: 05B05

Abstract

In this paper, we give a simple method for computing the stabilizer subgroup of $D(f)=\left\{\alpha \in \mathbb{F}_{q} \mid\right.$ there is a $\beta \in \mathbb{F}_{q}^{\times}$such that $\left.\beta^{n}=f(\alpha)\right\}$ in $P S L_{2}\left(\mathbb{F}_{q}\right)$, where q is a large odd prime power, n is a positive integer dividing $q-1$ greater than 1 , and $f(x) \in \mathbb{F}_{q}[x]$. As an application, we construct new infinite families of 3-designs.

1 Introduction

A $t-(v, k, \lambda)$ design is a pair (X, \mathfrak{B}) where X is a v-element set of points and \mathfrak{B} is a collection of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks. For general facts and recent results on t-designs, see [1]. There are several ways to construct family of 3 -designs, one of them is to use codewords of some particular codes over \mathbb{Z}_{4}. For example, see [5], [6], [10] and [11]. For the list of known families of 3 -designs, see [8].

Let \mathbb{F}_{q} be a finite field with odd characteristic and $\Omega=\mathbb{F}_{q} \cup\{\infty\}$, where ∞ is a symbol. Let $G=P G L_{2}\left(\mathbb{F}_{q}\right)$ be a group of linear fractional transformations. Then, it is well known that the action $P G L_{2}\left(\mathbb{F}_{q}\right) \times \Omega \longrightarrow \Omega$ is triply transitive. Therefore, for any subset $X \subset \Omega$, we have a $3-\left(q+1,|X|,\binom{|X|}{3} \times 6 /\left|G_{X}\right|\right)$ design, where G_{X} is the setwise stabilizer of X in G (see [1, Proposition 4.6 in p.175]). In general, it is very difficult to calculate the order of the stabilizer G_{X}. Recently, Cameron, Omidi and Tayfeh-Rezaie computed all possible

[^0]λ such that there exists a $3-(q+1, k, \lambda)$ design admitting $P G L_{2}\left(\mathbb{F}_{q}\right)$ or $P S L_{2}\left(\mathbb{F}_{q}\right)$ as an automorphism group, for given k satisfying $k \not \equiv 0,1(\bmod p)$ (see [2] and [3]).

Letting X be $D_{f}^{+}=\left\{a \in \mathbb{F}_{q} \mid f(a) \in\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}$ for $f \in \mathbb{F}_{q}[x]$, one can derive the order of D_{f}^{+}from the number of solutions of $y^{2}=f(x)$. In particular, when $y^{2}=f(x)$ is in a certain class of elliptic curves, there is an explicit formula for the order of D_{f}^{+}. In [9], we chose a subset D_{f}^{+}for a certain polynomial f and explicitly computed $\left|G_{D_{f}^{+}}\right|$, so that we obtained new families of 3-designs. Our method was motivated by a recent work of Iwasaki [7]. Iwasaki computed the orders of \bar{V} and $G_{\bar{V}}$, where \bar{V} is in our notation $D_{f}^{-}=\Omega-\left(D_{f}^{+} \cup D_{f}^{0}\right)$ with $f(x)=x(x-1)(x+1)$.

In this paper, we generalize our method. Instead of using elliptic curves defined over a finite field \mathbb{F}_{q} with $q=p^{r}$ elements for some odd prime p, we use more general algebraic curves such as $y^{n}=f(x)$ for some positive integer n. As a consequence, we obtain new infinite families of 3 -designs. In particular, we get infinite family of 3 -designs whose block size is congruent to 1 modulo p.

2 Zero sets of algebraic curves

Let p be an odd prime number. For a prime power $q=p^{r}$ for some positive integer r, let \mathbb{F}_{q} be a finite field with q elements and $\overline{\mathbb{F}}_{q}$ be its algebraic closure. For $f\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], f$ is called absolutely irreducible if f is irreducible over $\overline{\mathbb{F}}_{q}\left[x_{1}, \ldots, x_{n}\right]$. We define

$$
Z(f)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\}
$$

We denote by $d(f)$ the degree of $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$.
Lemma 2.1. Let $f(x, y) \in \mathbb{F}_{q}[x, y]$ be a nonconstant absolutely irreducible polynomial of degree d. Then

$$
q+1-(d-1)(d-2) \sqrt{q}-d \leq|Z(f(x, y))| \leq q+1+(d-1)(d-2) \sqrt{q}
$$

Proof. See Theorem 5.4.1 in [4].
Lemma 2.2. Let n be a positive integer dividing $q-1$ greater than 1. A polynomial $y^{n}-f(x) \in \mathbb{F}_{q}[x, y]$ is not absolutely irreducible if and only if there is a polynomial $h(x) \in \overline{\mathbb{F}}_{q}[x]$ such that $f(x)=h(x)^{e}$ with a positive divisor e of n greater than 1.

Proof. Here we only prove that if $y^{n}-f(x) \in \mathbb{F}_{q}[x, y]$ is not absolutely irreducible then there is $h(x) \in \overline{\mathbb{F}}_{q}[x]$ such that $f(x)=h(x)^{e}$ with a positive divisor e of n greater than 1 . The converse is obvious.

Assume that $y^{n}-f(x) \in \mathbb{F}_{q}[x, y]$ is not absolutely irreducible. Since the integer n divides $q-1$, there is a primitive n-th root of unity in \mathbb{F}_{q}^{\times}. Let \mathcal{F} be a quotient field of $\overline{\mathbb{F}}_{q}[x]$. Let δ be a root of $g(y)$ in the algebraic closure of \mathcal{F}, where $g(y)$ is an irreducible factor of $y^{n}-f(x)$ over $\mathcal{F}[y]$. Thus δ is also a root of $y^{n}-f(x)$ and it is clear that $\mathcal{F}(\delta) / \mathcal{F}$ is a cyclic extension of degree d, where $d=[\mathcal{F}(\delta): \mathcal{F}]$. This is easily seen by observing
that any element of the Galois group acts as $\sigma(\delta)=\delta \zeta_{\sigma}$ for some n-th root ζ_{σ} of unity. In fact, one can easily check that the map $\sigma \mapsto \zeta_{\sigma}$ is a group homomorphism and is in fact, injective.

If $\sigma \in \operatorname{Gal}(\mathcal{F}(\delta) / \mathcal{F})$ is a generator of the Galois group, then

$$
\sigma\left(\delta^{d}\right)=\sigma(\delta)^{d}=\delta^{d} \zeta_{\sigma}^{d}=\delta^{d}
$$

so that $\delta^{d} \in \mathcal{F}$. Let $\delta^{d}=h(x)$. Since $d \mid n$ and $d<n$, raising both sides to the power n / d, we get $\delta^{n}=h(x)^{n / d}$. But since δ is a root of $y^{n}-f(x)$, we have $\delta^{n}=f(x)$, and that completes the proof.

Let n be any positive integer dividing $q-1$ greater than 1 . We fix a generator ω of \mathbb{F}_{q}^{\times}. Note that $\left\langle\omega^{n}\right\rangle=\left(\mathbb{F}_{q}^{\times}\right)^{n}$. Let $f(x)$ be a polynomial in $\mathbb{F}_{q}[x]$. For any integer k, we define

$$
D(f)_{k}=\left\{x \in \mathbb{F}_{q} \mid \omega^{k} f(x) \in\left(\mathbb{F}_{q}^{\times}\right)^{n}\right\} .
$$

In particular, we define $D(f)=D(f)_{0}$. Note that $D(f)_{i}=D(f)_{j}$ if and only if $i \equiv j$ $(\bmod n)$. Furthermore

$$
\mathbb{F}_{q}=Z(f) \cup\left(\cup_{k=0}^{n-1} D(f)_{k}\right)
$$

$Z(f) \cap D(f)_{i}=\emptyset$, and $D(f)_{i} \cap D(f)_{j}=\emptyset$ for $i \not \equiv j(\bmod n)$.
Theorem 2.3. Let n be a positive integer dividing $q-1$ greater than 1. For $f(x), g(x) \in$ $\mathbb{F}_{q}[x]$, we assume that $D(f)=D(g)$ and $y^{n}-f(x) \in \mathbb{F}_{q}[x, y]$ is absolutely irreducible. Then there is a constant $\tau=\tau(f, g, n)$ satisfying the following property: If $q \geq \tau$, then there are an integer $k(1 \leq k \leq n-1)$ and $h(x) \in \overline{\mathbb{F}}_{q}[x]$ such that $f(x)^{k} g(x)=h(x)^{e}$ with a positive divisor e of n greater than 1 .

Proof. By Lemma 2.2, it suffices to show that there is an integer k such that $y^{n}-f(x)^{k} g(x)$ is not absolutely irreducible.

Suppose that $y^{n}-f(x)^{i} g(x)$ is absolutely irreducible for any integer $i=1,2, \ldots, n-1$. In general, for any $f, g \in \mathbb{F}_{q}[x]$, writing $f^{i} g(x)=f(x)^{i} g(x)$,

$$
\begin{equation*}
D\left(f^{i} g\right)=(D(f) \cap D(g)) \cup\left(\cup_{j=1}^{n-1} D(f)_{j} \cap D(g)_{-i j}\right) \tag{1}
\end{equation*}
$$

Since $D(f)=D(g)$, the first term $D(f) \cap D(g)$ simply becomes $D(f)$. Because for any $h(x) \in \mathbb{F}_{q}[x]$

$$
Z\left(y^{n}-h(x)\right)=\left\{(a, b) \in \mathbb{F}_{q}^{2} \mid b \neq 0, b^{n}=h(a)\right\} \cup Z(h) \times\{0\}
$$

we get

$$
\left|Z\left(y^{n}-h(x)\right)\right|=|D(h)| n+|Z(h)| .
$$

Especially, when $h(x)=\omega^{j} f(x)$, from Lemma 2.1 we have

$$
\begin{equation*}
\left|D(f)_{j}\right| n+|Z(f)|=\left|Z\left(y^{n}-\omega^{j} f(x)\right)\right| \geq q+1-(d-1)(d-2) \sqrt{q}-d \tag{2}
\end{equation*}
$$

where $d=\max (d(f), n)$, the degree of $y^{n}-\omega^{j} f(x)$. When $h(x)=f^{k} g(x)=f(x)^{k} g(x)$, Lemma 2.1 implies that

$$
\begin{equation*}
\left|D\left(f^{k} g\right)\right| n+\left|Z\left(f^{k} g\right)\right|=\left|Z\left(y^{n}-f^{k} g(x)\right)\right| \leq q+1+\left(d_{k}-1\right)\left(d_{k}-2\right) \sqrt{q}, \tag{3}
\end{equation*}
$$

where $d_{k}=\max (k d(f)+d(g), n)$, the degree of $y^{n}-f(x)^{k} g(x)$.
Note that

$$
\begin{aligned}
\cup_{i=1}^{n-1}\left(\cup_{j=1}^{n-1} D(f)_{j} \cap D(g)_{-i j}\right) & =\cup_{j=1}^{n-1}\left(D(f)_{j} \cap\left(\cup_{i=1}^{n-1} D(g)_{-i j}\right)\right) \\
& \supseteq \cup_{(j, n)=1}\left(D(f)_{j} \cap\left(\cup_{i=1}^{n-1} D(g)_{-i j}\right)\right) \\
& =\left(\cup_{(j, n)=1} D(f)_{j}\right) \cap\left(\cup_{i=1}^{n-1} D(g)_{i}\right) \\
& =\left(\cup_{(j, n)=1} D(f)_{j}\right) \cap\left(\mathbb{F}_{q}-(Z(g) \cup D(g))\right) .
\end{aligned}
$$

Because $D(f)=D(g)$ and $D(f) \cap\left(\cup_{(j, n)=1} D(f)_{j}\right)=\emptyset$, from the above computation we get

$$
\begin{aligned}
\cup_{i=1}^{n-1}\left(\cup_{j=1}^{n-1} D(f)_{j} \cap D(g)_{-i j}\right) & =\left(\cup_{(j, n)=1} D(f)_{j}\right) \cap\left(\mathbb{F}_{q}-(Z(g) \cup D(f))\right) \\
& =\cup_{(j, n)=1} D(f)_{j}-Z(g) .
\end{aligned}
$$

Thus there is an integer $k(1 \leq k \leq n-1)$ such that

$$
\begin{equation*}
\left|\cup_{j=1}^{n-1} D(f)_{j} \cap D(g)_{-k j}\right| \geq \frac{1}{n-1}\left(\sum_{(j, n)=1}\left|D(f)_{j}\right|-|Z(g)|\right) . \tag{4}
\end{equation*}
$$

Hence from the equations (1), (2) and (4)

$$
\begin{align*}
\left|D\left(f^{k} g\right)\right| & =|D(f)|+\left|\cup_{j=1}^{n-1} D(f)_{j} \cap D(g)_{-k j}\right| \\
& \geq|D(f)|+\frac{1}{n-1}\left(\sum_{(j, n)=1}\left|D(f)_{j}\right|-|Z(g)|\right) \tag{5}\\
& \geq\left(1+\frac{\phi(n)}{n-1}\right) \frac{1}{n}(q+1-(d-1)(d-2) \sqrt{q}-d-|Z(f)|)-\frac{1}{n-1}|Z(g)|,
\end{align*}
$$

where ϕ is the Euler-phi function.
Therefore by combining equations (3) and (5), we obtain the following inequality

$$
\frac{\phi(n)}{n-1} q-A_{1} \sqrt{q}-A_{2} \leq 0
$$

where $A_{1}=A_{1}(f, g, n)=\left(1+\frac{\phi(n)}{n-1}\right)(d-1)(d-2)+\left(d_{k}-1\right)\left(d_{k}-2\right)$ and $A_{2}=A_{2}(f, g, n)=$ $\left(1+\frac{\phi(n)}{n-1}\right)(d+|Z(f)|-1)+\frac{n}{n-1}|Z(g)|+1-|Z(f g)|$. Since $A_{i}(f, g, n)$'s are independent of q, this inequality is impossible for sufficiently large q.

Remark 2.4. One may easily show that the constant τ in Theorem 2.3 can be given by $\left(1+\frac{2(n-1)}{\phi(n)}\right)^{2}((n-1) d(f)+d(g))^{4}$.

3 New infinite families of 3-designs

From now on, we assume that $-1 \notin\left(\mathbb{F}_{q}^{\times}\right)^{2}$ and $q \neq 3$. Note that $q \equiv 3(\bmod 4)$. Let X be a subset of $\Omega=\mathbb{F}_{q} \cup\{\infty\}$ and $G=P S L_{2}\left(\mathbb{F}_{q}\right)$ be the projective special linear group over \mathbb{F}_{q}. Denote by G_{X} the setwise stabilizer of X in G. Define $\mathfrak{B}=\{\rho(X) \mid \rho \in G\}$. Then, it is well known that (Ω, \mathfrak{B}) is a $3-\left(q+1,|X|,\binom{|X|}{3} \times 3 /\left|G_{X}\right|\right)$ design (see, for example, Chapter 3 of [1]). Therefore if we could compute the order of the stabilizer G_{X}, then we obtain a 3-design. Denote by $\widetilde{\mathbb{F}}_{q}[x]$ the set of all nonconstant polynomials in $\mathbb{F}_{q}[x]$ that have no multiple roots in $\overline{\mathbb{F}}_{q}$.

Let n be a positive integer dividing $q-1$ greater than 1 . Throughout this section we always assume that $f(x) \in \widetilde{\mathbb{F}}_{q}[x]$ and $(d(f), n)=1$. For some specific polynomials f, we compute $|X|$ and G_{X} for $X=D(f)$.

Define

$$
\epsilon(f)=n \cdot\left\lceil\frac{d(f)}{n}\right\rceil
$$

where $\lceil\cdot\rceil$ is the ceiling function. For each $\rho \in P S L_{2}\left(\mathbb{F}_{q}\right)$, we always fix one matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathbb{F}_{q}\right)$ such that $\rho(x)=\frac{a x+b}{c x+d}$. By using this form, we define

$$
f_{\rho}(x)=f(\rho(x))(c x+d)^{\epsilon(f)}
$$

For $f(x) \in \widetilde{\mathbb{F}}_{q}[x]$, we write $f(x)=\alpha \prod_{i=1}^{d(f)}\left(x-\alpha_{i}\right)$ with $\alpha, \alpha_{i} \in \overline{\mathbb{F}}_{q}$ for the factorization of $f(x)$ in $\overline{\mathbb{F}}_{q}[x]$. Then for $\rho(x)=\frac{a x+b}{c x+d}$,

$$
\begin{equation*}
f_{\rho}(x)=\alpha(c x+d)^{\epsilon(f)-d(f)} \prod_{i=1}^{d(f)}\left(\left(a-\alpha_{i} c\right) x+b-\alpha_{i} d\right) . \tag{6}
\end{equation*}
$$

Note that $(c x+d) \prod_{i=1}^{d(f)}\left(\left(a-\alpha_{i} c\right) x+b-\alpha_{i} d\right) \in \widetilde{\mathbb{F}}_{q}[x]$. Thus if $c=0$, then $d\left(f_{\rho}\right)=d(f)$. If $a=\alpha_{i} c$ for some i, then $d\left(f_{\rho}\right)=\epsilon(f)-1$. In summary,

$$
d\left(f_{\rho}\right)= \begin{cases}d(f) & \text { if } \rho(\infty)=\infty \\ \epsilon(f)-1 & \text { if } f(\rho(\infty))=0 \\ \epsilon(f) & \text { otherwise }\end{cases}
$$

Lemma 3.1. Assume that $\rho(x)=\frac{a x+b}{c x+d} \in P S L_{2}\left(\mathbb{F}_{q}\right)$ is a stabilizer of $D(f)$, that is, $\rho(D(f))=D(f)$. Then $D(f)=D\left(f_{\rho}\right)$.

Proof. Assume that $\alpha \in D(f)$, i.e., $f(\alpha) \in\left(\mathbb{F}_{q}^{\times}\right)^{n}$. Since $\rho(\alpha) \in D(f), c \alpha+d \neq 0$. From this and $\epsilon(f) \equiv 0(\bmod n)$,

$$
f_{\rho}(\alpha)=f(\rho(\alpha))(c \alpha+d)^{\epsilon(f)} \in\left(\mathbb{F}_{q}^{\times}\right)^{n} .
$$

This implies that $\alpha \in D\left(f_{\rho}\right)$. The proof of the converse is similar to this.

Corollary 3.2. Assume that $\rho(x)=\frac{a x+b}{c x+d} \in P S L_{2}\left(\mathbb{F}_{q}\right)$ is a stabilizer of $D(f)$, where $f(x) \in \widetilde{\mathbb{F}}_{q}[x]$ with $d(f) \geq 2$. Suppose that $(d(f)+1, n)=1$. If $q \geq \tau\left(f, f_{\rho}, n\right)$, then $\rho(\infty)=\infty$ and

$$
f_{\rho}(x)=\gamma f(x),
$$

for some $\gamma \in\left(\mathbb{F}_{q}^{\times}\right)^{n}$.
Proof. Note that $D(f)=D\left(f_{\rho}\right)$ by Lemma 3.1. Hence, by Theorem 2.3, there is an integer $k(1 \leq k \leq n-1)$ and an integer e dividing n greater than 1 such that

$$
f(x)^{k} f_{\rho}(x)=h(x)^{e},
$$

for some $h(x) \in \overline{\mathbb{F}}_{q}[x]$. Since $d(f) \geq 2$, it is obvious from the comment right after the equation (6) that $f_{\rho}(x)$ has at least one root with multiplicity 1 in $\overline{\mathbb{F}}_{q}$. Hence we have $k \equiv-1(\bmod e)$. Therefore $-d(f)+d\left(f_{\rho}\right) \equiv 0(\bmod e)$.

From the assumption of this section $(d(f), n)=1$, we get $\rho(\infty)=\infty$ or $f(\rho(\infty))=0$. In the latter case, $d\left(f_{\rho}\right)=\epsilon(f)-1 \equiv-1(\bmod n)$. Hence $d(f)+1 \equiv 0(\bmod e)$, which contradicts the assumption. Thus $\rho(\infty)=\infty$ and $d(f)=d\left(f_{\rho}\right)$. Because $f(x)^{k+1} f_{\rho}(x)=$ $h(x)^{e} f(x)$ and because $k+1$ is divisible by $e, f(x)$ divides $f_{\rho}(x)$. The corollary follows.

Example 3.3. Let n be an odd integer dividing $q-1$ greater than 1 and $f(x)=x$. Then $D(f)=\left(\mathbb{F}_{q}^{\times}\right)^{n}$ and hence $|D(f)|=\frac{q-1}{n}$. By Theorem 2.3 and Lemma 3.1, one can easily show that

$$
G_{D(f)}=\left\{\rho \in P S L_{2}\left(\mathbb{F}_{q}\right) \mid \rho(x)=a x \text { or } \rho(x)=\frac{b}{x}, \quad a,-b \in\left(\mathbb{F}_{q}^{\times}\right)^{2 n}\right\}
$$

for $q \geq\left(1+\frac{2(n-1)}{\phi(n)}\right)^{2}(2 n-1)^{4}$. Hence we have $3-\left(q+1, \frac{q-1}{n}, \frac{(q-1-n)(q-1-2 n)}{2 n^{2}}\right)$ designs. Note that for any odd integer n, there are infinitely many prime powers q satisfying $q \geq\left(1+\frac{2(n-1)}{\phi(n)}\right)^{2}(2 n-1)^{4}$ and $q \equiv 3(\bmod 4)$.

Remark 3.4. In the above, for example, assume that $n=43$ and $q=11^{7 t}$ for any odd integer t greater than 1. In this case, we obtain $3-\left(11^{7 t}+1, \frac{11^{7 t}-1}{43}, \frac{\left(11^{7 t}-44\right)\left(11^{7 t}-87\right)}{3698}\right)$ design. Since $\frac{11^{7 t}-1}{43} \equiv 1(\bmod 11)$, this design is not considered in [3].
Example 3.5. Let m and n be odd integers which satisfying that $n|m| q-1$ and $q \geq\left(1+\frac{2(n-1)}{\phi(n)}\right)^{2}(m n+2 n-1)^{4}$. We consider the following algebraic curve

$$
y^{n}=f(x)=x\left(x^{m}-s\right)
$$

for $s \in \mathbb{F}_{q}^{\times}$. Recall that ω is a generator of \mathbb{F}_{q}^{\times}. Define a map $\tau_{i j}: D(f)_{i} \rightarrow D(f)_{j}$ by $\tau_{i j}(\alpha)=\omega^{i-j} \alpha$. One may easily show that this map is bijective for any i, j such that $1 \leq i, j \leq n$. Hence $|D(f)|=\frac{q-|Z(f)|}{n}$. Furthermore, by Corollary 3.2, the stabilizer ρ of $D(f)$ is of the form $\rho(x)=a^{2} x+a b$ for some $a \in \mathbb{F}_{q}^{\times}$and $b \in \mathbb{F}_{q}$, and there is a $\gamma \in\left(\mathbb{F}_{q}^{\times}\right)^{n}$ such that

$$
\begin{equation*}
\gamma x\left(x^{m}-s\right)=\gamma f(x)=f_{\rho}(x)=\left(a^{2} x+a b\right)\left(\left(a^{2} x+a b\right)^{m}-s\right) a^{-2 m} . \tag{7}
\end{equation*}
$$

Since $f(0)=0$, we have $b=0$ or $(a b)^{m}=s$. For the latter case, $x+\frac{b}{a}$ divides $x^{m}-s$ and one may easily show that $a^{2 m}=-1$, which implies that $4\left|\operatorname{ord}_{q}(a)\right| q-1$. This contradicts $q \equiv 3(\bmod 4)$, which is the assumption of this section. Therefore $b=0$ and the equation (7) becomes

$$
\gamma x\left(x^{m}-s\right)=f_{\rho}(x)=a^{2} x\left(x^{m}-\frac{s}{a^{2 m}}\right) .
$$

Hence $a^{2 m}=1$ and $a^{2}=\gamma \in\left(\mathbb{F}_{q}^{\times}\right)^{n}$. Thus $a^{2} \in\left(\mathbb{F}_{q}^{\times}\right)^{[n,(q-1) / m]}$, where $[n,(q-1) / m]$ is the least common multiple of n and $\frac{q-1}{m}$. Now one can easily show that $\left|G_{D(f)}\right|=$ $\frac{q-1}{[n,(q-1) / m]}=\frac{m}{n}(n,(q-1) / m)$, where $(n,(q-1) / m)$ is the greatest common divisor of n and $\frac{q-1}{m}$. Consequently, $(\Omega, D(f))$ forms the following 3-design:

$$
3- \begin{cases}\left(q+1, \frac{q-1-m}{n}, \frac{(q-1-m)(q-1-m-n)(q-1-m-2 n)}{2 n^{2} m(n,(q)(q-1) / m)}\right) & \text { if } s \in\left(\mathbb{F}_{q}^{\times}\right)^{m} \\ \left(q+1, \frac{q-1}{n}, \frac{(q-1)(q-1-n)(q-1-2 n)}{2 n^{2} m(n,(q-1) / m)}\right) & \text { if } s \notin\left(\mathbb{F}_{q}^{\times}\right)^{m}\end{cases}
$$

References

[1] T. Beth, D. Jungnickel and H. Lenz, Design theory, Vol 1, second ed., Encycl. Math. Appl., vol 69, Cambridge University Press, Cambridge, 1999.
[2] P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie, 3-Designs from $\operatorname{PSL}(2, q)$, Discrete Math. 306 (2006), 3063-3073.
[3] P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie, 3-Designs from $\operatorname{PGL}(2, q)$, Electron. J. Comb. 13 (2006), \#R50.
[4] M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, 2005.
[5] T. Helleseth, P. V. Kumar, K. Yang, An infinite family of 3-designs from Preparata codes over Z_{4}, Des. Codes Cryptogr. 15 (1998), no. 2, 175-181.
[6] T. Helleseth, C. Rong, K. Yang, New infinite families of 3-designs from Preparata codes over Z_{4}, Discrete Math. 195 (1999), no. 1-3, 139-156.
[7] S. Iwasaki, Translations of the squares in a finite field and an infinite family of 3designs, European J. Combin. 24 (2003), no. 3, 253-266.
[8] D. L. Kreher, t-designs $t \geq 3$, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz Editors) CRC Press, Boca Raton (1996), 47-66.
[9] Byeong-Kweon Oh, Jangheon Oh and Hoseog Yu, New infinite families of 3-designs from algebraic curves over \mathbb{F}_{q}, European J. Combin. 28 (2007), no. 4, 1262-1269.
[10] K. Ranto, Infinite families of 3-designs from Z_{4}-Goethals codes with block size 8 , SIAM J. Discrete Math. 15 (2002), no. 3, 289-304.
[11] K. Yang, T. Helleseth, Two new infinite families of 3-designs from Kerdock codes over Z_{4}, Des. Codes Cryptogr. 15 (1998), no. 2, 201-214.

[^0]: *This author's work was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C00004).
 ${ }^{\dagger}$ Correspondence author

