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Abstract

We use methods of combinatorics of polytopes together with geometrical and
computational ones to obtain the complete list of compact hyperbolic Coxeter n-
polytopes with n + 3 facets, 4 < n < 7. Combined with results of Esselmann this
gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3
facets, n > 4. Polytopes in dimensions 2 and 3 were classified by Poincaré and
Andreev.

1 Introduction

A polytope in the hyperbolic space H" is called a Cozeter polytope if its dihedral angles
are all integer submultiples of 7. Any Coxeter polytope P is a fundamental domain of
the discrete group generated by reflections in the facets of P.

There is no complete classification of compact hyperbolic Coxeter polytopes. Vin-
berg [V1] proved there are no such polytopes in H",n > 30. Examples are known only
for n < 8 (see [B1], [B2]).

In dimensions 2 and 3 compact Coxeter polytopes were completely classified by Poinca-
ré [P] and Andreev [A]. Compact polytopes of the simplest combinatorial type, the
simplices, were classified by Lannér [L]. Kaplinskaja [K] (see also [V2]) listed simplicial
prisms, Esselmann [E2] classified the remaining compact n-polytopes with n 4 2 facets.

In the paper [ImH] Im Hof classified polytopes that can be described by Napier cycles.
These polytopes have at most n + 3 facets. Concerning polytopes with n + 3 facets,
Esselmann proved the following theorem ([E1, Th. 5.1]):
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Let P be a compact hyperbolic Coxeter n-polytope bounded by n+3 facets. Thenn < 8;
if n =8, then P is the polytope found by Bugaenko in [B2]. This polytope has the following
Cozeter diagram:

In this paper, we expand the technique derived by Esselmann in [E1] and [E2] to
complete the classification of compact hyperbolic Coxeter n-polytopes with n + 3 facets.
The aim is to prove the following theorem:

Main Theorem. Tables 4.8—4.11 contain all Coxeter diagrams of compact hyperbolic
Coxeter n-polytopes with n + 3 facets for n > 4.

The paper is organized as follows. In Section 2 we recall basic definitions and list
some well-known properties of hyperbolic Coxeter polytopes. We also emphasize the con-
nection between combinatorics (Gale diagram) and metric properties (Coxeter diagram)
of hyperbolic Coxeter polytope. In Section 3 we recall some technical tools from [V1]
and [E1] concerning Coxeter diagrams and Gale diagrams, and introduce notation suit-
able for investigating of large number of diagrams. Section 4 is devoted to the proof of
the main theorem. The most part of the proof is computational: we restrict the number
of Coxeter diagrams in consideration, and use a computer check after that. The bulk is
to find an upper bound for the number of diagrams, and then to reduce the number to
make the computation short enough.

This paper is a completely rewritten part of my Ph.D. thesis (2004) with several errors
corrected. I am grateful to my advisor Prof. E. B. Vinberg for his help. I am also grateful
to Prof. R. Kellerhals who brought the papers of F. Esselmann and L. Schlettwein to my
attention, and to the referee for useful suggestions.

2 Hyperbolic Coxeter polytopes and Gale diagrams

In this section we list essential facts concerning hyperbolic Coxeter polytopes, Gale dia-
grams of simple polytopes, and Coxeter diagrams we use in this paper. Proofs, details
and definitions in general case may be found in [G] and [V2]. In the last part of this
section we present the main tools used for the proof of the main theorem.

We write n-polytope instead of “n-dimensional polytope” for short. By facet we mean
a face of codimension one.

2.1 Gale diagrams

An n-polytope is called simple if any its k-face belongs to exactly n — k facets. Proposi-
tion 2.2 implies that any compact hyperbolic Coxeter polytope is simple. From now on
we consider simple polytopes only.
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Every combinatorial type of simple n-polytope with d facets can be represented by its
Gale diagram G. This consists of d points ay, ..., a4 on the (d — n — 2)-dimensional unit
sphere in R4™™~! centered at the origin.

The combinatorial type of a simple convex polytope can be read off from the Gale
diagram in the following way. Each point a; corresponds to the facet f; of P. For any
subset J of the set of facets of P the intersection of facets {f;|j € J} is a face of P if
and only if the origin is contained in the interior of conv{a,|j ¢ J}.

The points ay, . ..,aq € S“™"72 compose a Gale diagram of some n-dimensional poly-
tope P with d facets if and only if every open half-space H* in R?"~! bounded by a
hyperplane H through the origin contains at least two of the points aq, ..., aq.

We should notice that the definition of Gale diagram introduced above is “dual” to
the standard one (see, for example, [G]): usually Gale diagram is defined in terms of
vertices of polytope instead of facets. Notice also that the definition above concerns
simple polytopes only, and it takes simplices out of consideration: usually one means the
origin of R! with multiplicity n + 1 by the Gale diagram of an n-simplex, however we
exclude the origin since we consider simple polytopes only, and the origin is not contained
in GG for any simple polytope except simplex.

We say that two Gale diagrams G and G’ are isomorphic if the corresponding polytopes
are combinatorially equivalent.

If d = n + 3 then the Gale diagram of P is two-dimensional, i.e. nodes a; of the
diagram lie on the unit circle.

A standard Gale diagram of simple n-polytope with n + 3 facets consists of vertices
v1,...,vx of regular k-gon (k is odd) in R? centered at the origin which are labeled
according to the following rules:

1) Each label is a positive integer, the sum of labels equals n + 3.

2) The vertices that lie in any open half-space bounded by a line through the origin
have labels whose sum is at least two.

Each point v; with label p; corresponds to pu; facets fi1, ..., fi ., of P. For any subset
J of the set of facets of P the intersection of facets {f;,|(j,7) € J} is a face of P if and
only if the origin is contained in the interior of conv{v; | (j,v) ¢ J}.

It is easy to check (see, for example, [G, Sec. 6.3]) that any two-dimensional Gale
diagram is isomorphic to some standard diagram. Two simple n-polytopes with n + 3
facets are combinatorially equivalent if and only if their standard Gale diagrams are
congruent.

2.2 Coxeter diagrams

Any Coxeter polytope P can be represented by its Coxeter diagram.

An abstract Cozeter diagram is a one-dimensional simplicial complex with weighted
edges, where weights are either of the type cos 7- for some integer m > 3 or positive real
numbers no less than one. We can suppress the weights but indicate the same information
by labeling the edges of a Coxeter diagram in the following way:
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o if the weight equals cos Z- then the nodes are joined by either an (m — 2)-fold edge or a
simple edge labeled by m;

e if the weight equals one then the nodes are joined by a bold edge;

e if the weight is greater than one then the nodes are joined by a dotted edge labeled by
its weight.

A subdiagram of Coxeter diagram is a subcomplex with the same as in X. The order
|| is the number of vertices of the diagram 3.

If 3; and ¥, are subdiagrams of a Coxeter diagram ¥, we denote by (31, 3) a sub-
diagram of ¥ spanned by all nodes of ¥; and ¥,. We say that a node of ¥ attaches to a
subdiagram ¥; C X if it is joined with some nodes of 3; by edges of any type.

Let ¥ be a diagram with d nodes uy,...,uy. Define a symmetric d x d matrix Gr(X) in
the following way: g;; = 1; if two nodes u; and u; are adjacent then g;; equals negative
weight of the edge u,u;; if two nodes u; and u; are not adjacent then g;; equals zero.

By signature and determinant of diagram ¥ we mean the signature and the determi-
nant of the matrix Gr(X).

An abstract Coxeter diagram ¥ is called elliptic if the matrix Gr(X) is positive definite.
A Coxeter diagram 3 is called parabolic if the matrix Gr(X) is degenerate, and any
subdiagram of ¥ is elliptic. Connected elliptic and parabolic diagrams were classified by
Coxeter [C]. We represent the list in Table 2.1.

A Coxeter diagram ¥ is called a Lannér diagram if any subdiagram of ¥ is elliptic,
and the diagram X is neither elliptic nor parabolic. Lannér diagrams were classified by
Lannér [L]. We represent the list in Table 2.2. A diagram ¥ is superhyperbolic if its
negative inertia index is greater than 1.

By a simple (resp., multiple) edge of Coxeter diagram we mean an (m — 2)-fold edge
where m is equal to (resp., greater than) 3. The number m — 2 is called the multiplicity
of a multiple edge. Edges of multiplicity greater than 3 we call multi-multiple edges. If
an edge u;u; has multiplicity m — 2 (i.e. the corresponding facets form an angle ™), we
write [u;, u;] = m.

A Cozeter diagram %(P) of Coxeter polytope P is a Coxeter diagram whose matrix
Gr(X) coincides with Gram matrix of outer unit normals to the facets of P (referring to the
standard model of hyperbolic n-space in R™!). In other words, nodes of Coxeter diagram
correspond to facets of P. Two nodes are joined by either an (m — 2)-fold edge or an
m-labeled edge if the corresponding dihedral angle equals . If the corresponding facets
are parallel the nodes are joined by a bold edge, and if they diverge then the nodes are
joined by a dotted edge (which may be labeled by hyperbolic cosine of distance between
the hyperplanes containing these facets).

If ¥(P) is the Coxeter diagram of P then nodes of ¥(P) are in one-to-one correspon-
dence with elements of the set I = {1,...,d}. For any subset J C I denote by ¥X(P); the
subdiagram of ¥ (P) that consists of nodes corresponding to elements of J.
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Table 2.1: Connected elliptic and parabolic Coxeter diagrams are listed in left and right
columns respectively.

":>2" R _

nz2) Cp(n>2) o o ... o9
Diinz4) oo e Dz See e

Ggm) "o Gy o oo

Fy oo o o Eﬁ o e 9o o o

2.3 Hyperbolic Coxeter polytopes

In this section by polytope we mean a (probably non-compact) intersection of closed
half-spaces.

Proposition 2.1 ([V2], Th. 2.1). Let Gr = (g;;) be indecomposable symmetric matriz
of signature (n,1), where g;; =1 and g;; < 0 if i # j. Then there exists a unique (up to
isometry of H™) convex polytope P C H" whose Gram matrix coincides with Gr.

Let Gr be the Gram matrix of the polytope P, and let J C I be a subset of the set of
facets of P. Denote by Gr; the Gram matrix of vectors {e; |i € J}, where e; is outward
unit normal to the facet f; of P (i.e. Gry = Gr(X(P)s)). Denote by |J| the number of
elements of J.
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Table 2.2: Lannér diagrams.

order diagrams
2 oo
5 ] (2<k,l,m< o,
e TS

Proposition 2.2 ([V2], Th. 3.1). Let P C H" be an acute-angled polytope with Gram
matriz Gr, and let J be a subset of the set of facets of P. The set

g=Pn()f

ieJ

is a face of P if and only if the matriz Gry is positive definite. Dimension of q is equal
ton —|J|.

Notice that Prop. 2.2 implies that the combinatorics of P is completely determined
by the Coxeter diagram X (P).

Let A be a symmetric matrix whose non-diagonal elements are non-positive. A is called
indecomposable if it cannot be transformed to a block-diagonal matrix via simultaneous
permutations of columns and rows. We say A to be parabolic if any indecomposable
component of A is positive semidefinite and degenerate. For example, a matrix Gr(X) for
any parabolic diagram Y is parabolic.

Proposition 2.3 ([V2], cor. of Th. 4.1, Prop. 3.2 and Th. 3.2). Let P C H" be a
compact Coxeter polytope, and let Gr be its Gram matrixz. Then for any J C I the matrix
Gry is not parabolic.
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Corollary 2.1 reformulates Prop. 2.3 in terms of Coxeter diagrams.

Corollary 2.1. Let P C H" be a compact Coxeter polytope, and let ¥ be its Cozeter
matriz. Then any non-elliptic subdiagram of ¥ contains a Lannér subdiagram.

Proposition 2.4 ([V2], Prop. 4.2). A polytope P in H" is compact if and only if it is
combinatorially equivalent to some compact convex n-polytope.

The main result of paper [FT] claims that if P is a compact hyperbolic Coxeter n-
polytope having no pair of disjoint facets, then P is either a simplex or one of the seven
polytopes with n + 2 facets described in [E1]. As a corollary, we obtain the following
proposition.

Proposition 2.5. Let P C H" be a compact Cozeter polytope with at least n + 3 facets.
Then P has a pair of disjoint facets.

2.4 Coxeter diagrams, Gale diagrams, and missing faces

Now, for any compact hyperbolic Coxeter polytope we have two diagrams which carry the
complete information about its combinatorics, namely Gale diagram and Coxeter diagram.
The interplay between them is described by the following lemma, which is a reformulation
of results listed in Section 2.3 in terms of Coxeter diagrams and Gale diagrams.

Lemma 2.1. A Cozeter diagram ¥ with nodes {u;|i =1,...,d} is a Cozxeter diagram of
some compact hyperbolic Coxeter n-polytope with d facets if and only if the following two
conditions hold:

1) ¥ is of signature (n,1,d —n — 1);

2) there exists a (d —n — 1)-dimensional Gale diagram with nodes {v; |i = 1,...,d}
and one-to-one map ¥ : {u;|i = 1,...,d} — {v;|i = 1,...,d} such that for any J C
{1,...,d} the subdiagram X; of ¥ is elliptic if and only if the origin is contained in the
interior of conv{y(v;)|i & J}.

Let P be a simple polytope. The facets fi,..., f,, of P compose a missing face of P

if () f; = 0 but any proper subset of {f1,..., f,n} has a non-empty intersection.
i=1

Proposition 2.6 ([FT], Lemma 2). Let P be a simple d-polytope with d+k facets { f;},
let G = {a;} C S¥72 be a Gale diagram of P, and let I C {1,...,d+ k}. Then the set
M; ={f;|i € I} is a missing face of P if and only if the following two conditions hold:

(1) there exists a hyperplane H through the origin separating the set M; = {a;|i € I}
from the remaining points of G;

(2) for any proper subset J C I no hyperplane through the origin separates the set
Mj; ={a;|i € J} from the remaining points of G.
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Remark. Suppose that P is a compact hyperbolic Coxeter polytope. The definition of
missing face (together with Cor. 2.1) implies that for any Lannér subdiagram L C 3(P)
the facets corresponding to L compose a missing face of P, and any missing face of P
corresponds to some Lannér diagram in X(P).

Now consider a compact hyperbolic Coxeter n-polytope P with n + 3 facets with
standard Gale diagram G (which is a k-gon, k is odd) and Coxeter diagram . Denote by
¥, ; a subdiagram of ¥ corresponding to j —¢+1 (mod k) consecutive nodes a;, ..., a; of
G (in the sense of Lemma 2.1). If ¢ = j, denote ¥;; by ;.

The following lemma is an immediate corollary of Prop. 2.6.

k-1 1S a Lannér diagram. All

Lemma 2.2. For anyi € {0,...,k — 1} a diagram Zz‘+1,z‘+7

Lannér diagrams contained in 3 are of this type.

It is easy to see that the collection of missing faces completely determines the combi-
natorics of P. In view of Lemma 2.2 and the remark above, this means that in Lemma 2.1
for given Coxeter diagram we need to check the signature and correspondence of Lannér
diagrams to missing faces of some Gale diagram.

Example. Suppose that there exists a compact hyperbolic Coxeter polytope P with
standard Gale diagram G shown in Fig. 2.1(a). What can we say about Coxeter diagram
Y =X(P)?

(a) (b) "2 “

Figure 2.1: (a) A standard Gale diagram G and (b) a Coxeter diagram of one of polytopes
with Gale diagram G

The sum of labels of nodes of Gale diagram G is equal to 7, so P is a 4-polytope with 7
facets. Thus, X is spanned by nodes ug, .. ., ur7, and its signature equals (4, 1,2). Further,
G is a pentagon. By Lemma 2.2, ¥ contains exactly 5 Lannér diagrams, namely (uq, us),
<UQ, us, U4>, <U3, Uy, U5>, <U5, Ug, U7>, and (uﬁ, Uy, U1>.

Now consider the Coxeter diagram ¥ shown in Fig. 2.1(b). Assigning label 14 v/2 to
the dotted edge of X, we obtain a diagram of signature (4, 1,2) (this may be shown by
direct calculation). Therefore, there exist 7 vectors in H* with Gram matrix Gr(X). Tt
is easy to see that ¥ contains exactly 5 Lannér diagrams described above. Thus, X is a
Coxeter diagram of some compact 4-polytope with Gale diagram G.

Of course, X is just an example of a Coxeter diagram satisfying both conditions of
Lemma 2.1 with respect to given Gale diagram G. In the next two sections we will show
how to list all compact hyperbolic Coxeter polytopes of given combinatorial type.
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3 Technical tools

From now on by polytope we mean a compact hyperbolic Coxeter n-polytope with n + 3
facets, and we deal with standard Gale diagrams only.

3.1 Admissible Gale diagrams

Suppose that there exists a compact hyperbolic Coxeter polytope P with k-angled Gale
diagram G. Since the maximal order of Lannér diagram equals five, Lemma 2.2 implies
that the sum of labels of % consecutive nodes of Gale diagram does not exceed five. On
the other hand, by Lemma 2.5, P has a missing face of order two. This is possible in two
cases only: either GG is a pentagon with two neighboring vertices labeled by 1, or GG is a
triangle one of whose vertices is labeled by 2 (see Prop. 2.6). Table 3.1 contains all Gale
diagrams satisfying one of two conditions above with at least 7 and at most 10 vertices,
i.e. Gale diagrams that may correspond to compact hyperbolic Coxeter n-polytopes with
n + 3 facets for 4 <n < 7.

3.2 Admissible arcs

Let P be an n-polytope with n + 3 facets and let G be its k-angled Gale diagram. By
Lemma 2.2, for any ¢ € {0, ..., k—1} the diagram X k1 is a Lannér diagram. Denote

i1kt
by
Lxla"'>$lJﬂa lgk
2
an arc of length [ of G that consists of [ consecutive nodes with labels x,...,2;. By
writing J = |z1,...,2] 1 we mean that J is the set of facets of P corresponding to
2
these nodes of G. The index %! means that for any 51 consecutive nodes of the arc (i.e.

for any arc I = {xiﬂ, o ,xi+%J ) the subdiagram ¥; of X(P) corresponding to these

k—1
nodes is a Lannér diagram (i.e. [ is a missing face of P).

By Cor. 2.1, any diagram >; C X(P) corresponding to an arc J = |xy,... ,:Blj%
satisfies the following property: any subdiagram of ¥ ; containing no Lannér diagram
is elliptic. Clearly, any subdiagram of 3(P) containing at least one Lannér diagram is
of signature (k, 1) for some k < n. As it is shown in [E1], for some arcs J there exist
a few corresponding diagrams Y; only. In the following lemma, we recall some results
of Esselmann [E1] and prove similar facts concerning some arcs of Gale diagrams listed
in Table 3.1. This will help us to restrict the number of Coxeter diagrams that may
correspond to some of Gale diagrams listed in Table 3.1.

Lemma 3.1. The diagrams presented in the middle column of Table 3.2 are the only
diagrams that may correspond to arcs listed in the left column.

Proof. At first, notice that for any J as above (i.e. J consists of several consecutive nodes
of Gale diagram) the diagram Y ; must be connected. This follows from the fact that any
Lannér diagram is connected, and that ¥ ; is not superhyperbolic.
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Table 3.1: Gale diagrams that may correspond to compact Coxeter polytopes (see Sec-
tion 3.1)

n=4
3 3 1 1
1 1 1 1 2 2
2 2
1 1 2 2 1 1
Gas2 G11311 Gai112 G12121
n=>5
4 2 3 3 4 2
Q 1©1 2©1 1©1 2©2
2 2 3 3 2 1 1 1 1 1 1 1
Gaa2 G323 G21311 Gi2311 G411 G12221
n==06
5 4 4 3 3 1
Q 1©1 2©2 2©1 3©3
2
2 3 2 2 1 1 1 2 1 1 1
Gaso G342 Ga1411 G12321 G22311 G13131
n=="7
5 2 4 2
Q Q 1©1 3©3
4 4
3 2 3 1 1 1
G352 Ga24 G31411 G13231

Now we restrict our considerations to items 8-11 only. For none of these J the diagram
37 contains a Lannér diagram of order 2 or 3. Since X is connected and does not contain
parabolic subdiagrams, this implies that > ; does not contain neither dotted nor multi-
multiple edges. Thus, we are left with finitely many possibilities only, that allows us to
use a computer check: there are several (from 5 to 7) nodes, some of them joined by edges
of multiplicity at most 3. We only need to check all possible diagrams for the number of
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Table 3.2: Possible diagrams Y; for some arcs J. White nodes correspond to endpoints
of arcs having multiplicity one

J all possibilities for 3 reference (if any)

[E1], Lemma 4.7

1%}
2 11,4,1], e I = [E1], Lemma 5.3
CO—e—0—0———
1%}

3 13,2,2], [E1], Lemma 5.7
4 (4,1,3], o [E1], Lemma 5.9
5 13,1,4,1], @ [E1], Folgerung 5.10
6 12,3,2], o~ o o [E1], Lemma 5.12
7 13,2,3], o oo [E1], Lemma 5.12
45
O—e—e——0O
8 |.17 37 1J2 0475= é O\/
Sl
34,5 é
o—eo o 9 O

9 11,3,2],
T
N~

10 12,2,2], .

11 [3,1,3], Iz

Lannér diagrams of all orders and for parabolic subdiagrams. Namely, in items 8, 10 and
11 we look for diagrams of order 5, 6 and 7 containing exactly 2 Lannér subdiagrams of
order 4 (and containing neither other Lannér diagrams nor parabolic subdiagrams), and in
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item 9 we look for diagrams of order 6 containing exactly one Lannér subdiagram of order
4 and exactly one Lannér diagram of order 5. Notice also that we do not need to check
the signature of obtained diagrams: all them are certainly non-elliptic, and since any of
them contains exactly two Lannér diagrams which have at least one node in common, by
excluding this node we obtain an elliptic diagram.

However, the computation described above is really huge. In what follows we describe
case-by-case how to reduce these computations to a few minutes of hand-calculations.

o Item 8 (J = [1,3,1],). We may consider ¥; as a Lannér diagram L of order 4
together with one vertex attached to L to compose a unique additional Lannér diagram
which should be of order 4, too. There are 9 possibilities for L only (Table 2.2).

e Item 9 (J = |1,3,2],). The considerations follow the preceding ones, but we take as
L a Lannér diagram of order 5. Again, there are few possibilities for L only (namely five:
see Table 2.2).

e Item 10 (J = |2,2,2],). Again, ¥, contains a Lannér diagram L of order 4. One
of the two remaining nodes of > ; must be attached to L. Denote this node by v. The
diagram (L,v) C ¥, consists of five nodes and contains a unique Lannér diagram which
is of order 4. All such diagrams are listed in [E1, Lemma 3.8] (see the first two rows of
Tabelle 3, the case INg| =1, |Lr| = 4). We reproduce this list in Table 3.3.

Table 3.3: One of these diagrams should be contained in X, for J = |2,2,2],
One can see that there are six possibilities only. Now to each of them we attach the
remaining node to compose a unique new Lannér diagram which should be of order 4.

o Item 11 (J = [3,1,3],). The considerations are very similar to the preceding case.
Y s contains a Lannér diagram L of order 4. One of the three remaining nodes of ¥ ; must
be attached to L. Denote this node by v. Now, one of the two remaining nodes attaches
to (L,v) C ¥ . Denote it by u. The diagram (L,v,u) C X, consists of six nodes and
contains a unique Lannér diagram which is of order 4. All such diagrams are listed in [E1,
Lemma 3.8] (see Tabelle 3, the first two rows of page 27, the case |Np| = 2, |Lp| = 4).
We reproduce this list in Table 3.4.
There are five possibilities only. As above, we attach to each of them the remaining
node to compose a unique new Lannér diagram which should be of order 4.
]
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Table 3.4: One of these diagrams should be contained in X, for J = |3,1, 3],

[ ] =<
/D SO I D I

3.3 Local determinants

In this section we list some tools derived in [V1] to compute determinants of Coxeter
diagrams. We will use them to show that some (infinite) series of Coxeter diagrams are
superhyperbolic.

Let ¥ be a Coxeter diagram, and let 7" be a subdiagram of ¥ such that det(X\T") # 0.
A local determinant of ¥ on a subdiagram 7" is

det X
det(3,7) = ———.
tET) =
Proposition 3.1 ([V1], Prop. 12). If a Coxeter diagram ¥ consists of two subdiagrams
Y1 and ¥y having a unique vertez v in common, and no vertex of X1\ v attaches to Yo\ v,
then
det(X, v) = det(Xq,v) + det(Xq, v) — 1.

Proposition 3.2 ([V1], Prop. 13). If a Cozeter diagram ¥ is spanned by two disjoint
subdiagrams %1 and Yo joined by a unique edge vivy of weight a, then

det (X, (v1, v9)) = det(X1, v1) det(Bg, v) — a?.

Denote by L, ,, a Lannér diagram of order 3 containing subdiagrams of the dihedral
groups G¥), G and GY. Let v be the vertex of £, 4, that does not belong to G see
Fig. 3.1. Denote by D (p, q,r) the local determinant det(L, 4., v).

It is easy to check (see e.g. [V1]) that

cos?(/p) + cos?(m/q) + 2 cos(m/p) cos(/q) cos(m /)
sin?(7/r)
Notice that |D (p,q,r)| is an increasing function on each of p, ¢, r tending to infinity
while r tends to infinity.

D<p7QJT>:1_

4 Proof of the Main Theorem

The plan of the proof is the following. First, we show that there is only a finite number
of combinatorial types (or Gale diagrams) of polytopes we are interested in, and we list
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Figure 3.1: Diagram L, ,,

these Gale diagrams. This was done in Table 3.1. For any Gale diagram from the list we
should find all Coxeter polytopes of given combinatorial type. For that, we try to find all
Coxeter diagrams with the same structure of Lannér diagrams as the structure of missing
faces of the Gale diagram is, and then check the signature. Our task is to be left with
finite number of possibilities for each of Gale diagrams, and use a computer after that.
Some computations involve a large number of cases, but usually it takes a few minutes of
computer’s thought. In cases when it is possible to hugely reduce the computations by
better estimates we do that, but we follow that by long computations to avoid mistakes.

Lemma 4.1. The following Gale diagrams do not correspond to any hyperbolic Coxeter
polytope: Gaaz, Gaazin, Giziz, Gasz, Gaaa, Gsian -

Proof. The statement follows from Lemma 3.1. Indeed, the diagram (G4 contains an
arc J = |3,4],. The corresponding Coxeter diagram X ; should be of order 7, should
contain exactly two Lannér diagrams of order 3 and 4 which do not intersect, and should
have negative inertia index at most one. Item 1 of Table 3.2 implies that there is no
such Coxeter diagram ;. Thus, G342 is not a Gale diagram of any hyperbolic Coxeter
polytope.

Similarly, Item 1 of Table 3.2 also implies the statement of the lemma for diagrams
G350 and Gyoy. Item 3 implies the statement for Gaggzi1, Item 11 implies the statement for
(13131, and Item 5 implies the statement for the diagram Gsy411.

O

In what follows we check the 14 remaining Gale diagrams case-by-case. We start from

larger dimensions.

4.1 Dimension 7

In dimension 7 we have only one diagram to consider, namely G13931.
Lemma 4.2. There are no compact hyperbolic Coxeter T-polytopes with 10 facets.

Proof. Suppose that there exists a compact hyperbolic Coxeter polytope P with Gale di-
agram Gse3;. This Gale diagram contains an arc J = [3,2,3],. According to Lemma 3.1
(Item 7 of Table 3.2) and Lemma 2.2, the Coxeter diagram > of P consists of a subdiagram
Y7 shown in Fig. 4.1, and two nodes ug, ujy joined by a dotted edge. By Lemma 2.1,
the subdiagrams (ujg, w1, us, us) and (ug, ur, us, ug) are Lannér diagrams, and no other
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Figure 4.1: A unique diagram >; for J = |3,2, 3],

Lannér subdiagram of ¥ contains ug or uig. In particular, ¥ does not contain Lannér
subdiagrams of order 3.

Consider the diagram ' = (¥, ug). It is connected and contains neither Lannér
diagrams of order 2 or 3, nor parabolic diagrams. Therefore, ¥’ does not contain neither
dotted nor multi-multiple edges. Moreover, by the same reason the node ug may attach
to nodes uq, us, uy and ug by simple edges only. It follows that there are finitely many
possibilities for the diagram Y. Further, since the diagram Y’ defines a collection of 9
vectors in 8-dimensional space R7!, the determinant of ¥’ is equal to zero. A few seconds
computer check shows that the only diagrams satisfying conditions listed in this paragraph
are the following ones:

However, the left one contains a Lannér diagram (us, uq, ug, uy, us), and the right one
contains a Lannér diagram (uz, us, ug, us, u4), which is impossible since ug does not belong
to any Lannér diagram of order 5.

O

4.2 Dimension 6

In dimension 6 we are left with three diagrams, namely Gaso, Ga1411, and Giozoq.

Lemma 4.3. There is only one compact hyperbolic Coxeter polytope with Gale diagram
G1aso1. Its Coxeter diagram is the lowest one shown in Table 4.9.

Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram (G9321. This
Gale diagram contains an arc J = |2,3,2],. According to Lemma 3.1 (Item 6 of Table 3.2)
and Lemma 2.2, the Coxeter diagram ¥ of P consists of a subdiagram Y ; shown in Fig. 4.2,
and two nodes ug, ug joined by a dotted edge. By Lemma 2.1, the subdiagrams (ug, u, us)

oe——0 @ @ @ *—0
(5% u9 us U4 us Ue (Vird

Figure 4.2: A unique diagram X for J = |2,3,2],

and (ug, ur, ug) are Lannér diagrams, and no other Lannér subdiagram of ¥ contains usg
or ug. So, we need to check possible multiplicities of edges incident to ug and uyg.
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Consider the diagram ¥/ = (¥, ug). It is connected, contains neither Lannér diagrams
of order 2 nor parabolic diagrams, and contains a unique Lannér diagram of order 3,
namely (ug, u1,us). Therefore, ¥’ does not contain dotted edges, and the only multi-
multiple edge that may appear should join ug and wu;.

On the other hand, the signature of ¥ ; is (6,1). This implies that the corresponding
vectors in R%! form a basis, so the multiplicity of the edge u ug is completely determined
by multiplicities of edges joining ug with the remaining nodes of >J;. Since these edges are
neither dotted nor multi-multiple, we are left with a finite number of possibilities only.
We may reduce further computations observing that ug does not attach to (w4, us, ug, uz)
(since the diagram (us, uy, us, ug, u7) should be elliptic), and that multiplicities of edges
ugty and ugugz are at most two and one respectively.

Therefore, we have the following possibilities: [us,us] = 2, 3,4, and, independently,
[ug, us] = 2,3. For each of these six cases we should attach the node ug to u; satisfying
the condition det ¥’ = 0. An explicit calculation shows that there are two diagrams listed
below.

The left one contains a Lannér diagram (us,us, us, w4, us), which is impossible. At the
same time, the right one contains exactly Lannér diagrams prescribed by Gale diagram.
Similarly, the node ug may be attached to ¥; in a unique way, i.e. by a unique edge
ugug of multiplicity two. Thus, X must look like the diagram shown in Fig. 4.3.
Now we write down the determinant of ¥ as a quadratic polynomial of the weight d
of the dotted edge. An easy computation shows that

5—2 2
qet s = V3 (d—(\/3+2)) .
32
The signature of ¥ for d = /5 + 2 is equal to (6,1,2), so we obtain that this diagram
corresponds to a Coxeter polytope.
]

Figure 4.3: Coxeter diagram of a unique Coxeter polytope with Gale diagram G12301

Lemma 4.4. There are two compact hyperbolic Cozeter polytopes with Gale diagram
Go1411. Their Coxeter diagrams are shown in the upper row of Table 4.9.
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Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram (Gg1411. This
Gale diagram contains an arc J = [1,4,1],. Hence, the Coxeter diagram ¥ of P contains
a diagram X ; which coincides with one of the three diagrams shown in Item 2 of Table 3.2.
Further, 3 contains two Lannér diagrams of order 3, one of which (say, L) intersects X ;.
Denote the common node of that Lannér diagram L and X ; by u;, the 5 remaining nodes
of ¥; by us,...,us (in a way that ug is marked white in Table 3.2, i.e. it belongs to only
one Lannér diagram of order 5), and denote the two remaining nodes of L by u; and us.
Since L is connected, we may assume that u; is joined with u;. Notice that u; is also a
node marked white in Table 3.2, elsewhere it belongs to at least three Lannér diagrams
in X.

Consider the diagram ¥’ = (¥, u7). It is connected, and all Lannér diagrams con-
tained in ¥’ are contained in ¥ ;. In particular, ¥’ does not contain neither dotted nor
multi-multiple edges. Hence, we have only finite number of possibilities for ¥'. More
precisely, to each of the three diagrams > ; shown in Item 2 of Table 3.2 we must attach
a node u; without making new Lannér (or parabolic) diagrams, and all edges must have
multiplicities at most 3. In addition, u; is joined with u;. The last condition is restrictive,
since we know that u; and ug are the nodes of ¥ ; marked white in Table 3.2. A direct
computation (using the technique described in Section 3.2) leads us to the two diagrams
¥} and X (up to permutation of indices 2, 3,4 and 5 which does not play any role) shown
in Fig. 4.4.

us U4 us (5 uy uy us U4 us (%) uy uy
o«—= @ I L o o«—= I @ L o

= X =

Ue Ug

Figure 4.4: Two possibilities for diagram ', see Lemma 4.4

Now consider the diagram X" = (¥ ug) = (3, ur,us) = (X5, L). As above, ug
may attach to X; by edges of multiplicity at most 3, so the only multi-multiple edge
that may appear in X" is uguy. Since both diagrams X} and X have signature (6, 1),
the corresponding vectors in R%! form a basis, so the multiplicity of the edge ugu; is
completely determined by multiplicities of edges joining ug with the remaining nodes of
Y. Thus, there is a finite number of possibilities for ¥”. To reduce the computations
note that ug is not joined with (uo, us, uy, us) (since the diagram (us, us, uy, us, ug) must
be elliptic). Attaching ug to X5, we do not obtain any diagram with zero determinant and
prescribed Lannér diagrams. Attaching ug to X7, we obtain the two diagrams X} and 37
shown in Fig. 4.5.

The remaining node of ¥, namely ug, is joined with ug by a dotted edge. It is also
contained in a Lannér diagram (ur, us, ug) of order 3, but no other Lannér diagram con-
tains ug. Since uy attaches to u;, we see that all edges joining ug with X'\ ug are neither
dotted nor multi-multiple. On the other hand, for both diagrams ¥} and 37, the diagram
¥\ ug has signature (6,1). Hence, the weight of edge ugug is completely determined
by multiplicities of edges joining ug with the remaining nodes of X" \ ug, so we are left
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Ue Ue ug

Figure 4.5: Two possibilities for diagram ", see Lemma 4.4

with finitely many possibilities for X" \ ug. Again, we note that ug is not joined with
(us,us, uy, us). Now we attach ug to u; and to ur by edges of multiplicities from 0 (i.e. no
edge) to 3, and then compute the weight of the edge ugus to obtain det(X\ ug) = 0. This
weight is equal to cos - for integer m only in case of the diagrams shown in Fig. 4.6.

us U4 U3 U2 UL UT ug Us Ug U3 U2 UL UT

Figure 4.6: Coxeter diagrams of Coxeter polytopes with Gale diagram Ga1411

The last step is to find the weight of the dotted edge ugug to satisfy the signature
condition, i.e. the signature should equal (6,1,2). We write the determinant of ¥ as a
quadratic polynomial of the weight d of the dotted edge, and compute the root. An easy
computation shows that for both diagrams the signature of ¥ for d = 1+T\/5 is equal to
(6,1,2), so we obtain that these two diagrams correspond to Coxeter polytopes. One can
note that the right polytope can be obtained by gluing two copies of the left one along
the facet corresponding to the node usg.

U

Lemma 4.5. There are no compact hyperbolic Coxeter polytopes with Gale diagram Gass.

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
Gasz. The Coxeter diagram ¥ of P contains a Lannér diagram L; = (uq, ... us) of order 5,
and two diagrams of order 2, denote them Ly = (ug, us) and Ls = (u7,ug). The diagram
(L, Ly) is connected, otherwise it is superhyperbolic. Thus, we may assume that wug
attaches to L;. Similarly, we may assume that u; attaches to L;.

Therefore, the diagram %' = (Lq, ug, u7) consists of a Lannér diagram L; of order 5
and two additional nodes which attach to L;, and these nodes are not contained in any
Lannér diagram. According to [E1, Lemma 3.8] (see Tabelle 3, page 27, the case |[Nx| = 2,
|Lr| = 5), ¥ must coincide with the diagram (up to permutation of indices of nodes of
L,) shown in Fig. 4.7.

Consider the diagram 3{ = (X', ug) = ¥\ ug. The node ug is joined with ug by a dotted
edge. The diagram > \ ug contains a unique Lannér diagram, L;. If ug attaches to L,
7\ ug should coincide with ¥’. Thus, ug does not attach to (ui, ..., us), and [ug, us| = 2
or 3. It is also easy to see that |ug,u7] < 4. Since the signature of 3’ is (6, 1), the weight

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R69 18



U U2 us Ug  Us Ug
o«— L @ I L J
U7

Figure 4.7: The diagram Y, see Lemma 4.5

of the edge ugug is completely determined by multiplicities of edges joining ug with the
remaining nodes of 3. Hence, we have a finite number of possibilities for ¥}. To reduce
the computations observe that either [us,us] or [u7, us] must equal 2. We are left with
only 4 cases: the pair ([us, ug|, [ur, us]) coincides with one of (2,2),(2,3),(2,4) or (3,2).
For each of them we compute the weight of ugug by solving the equation det ¥/ = 0. Each
of these equations has one positive and one negative solution, but the positive solution
in case of ([us, us), [ur,us]) = (2,4) is less than one, so it cannot be a weight of a dotted
edge. Therefore, we have three cases ([us, us, [ur, us]) = (2,2),(2,3) or (3,2), for which

V2V 4+vV5  —3v54+7+44/10—4/5

the weight of ugug is equal to ~——7=—, VA TEN-

By symmetry, we obtain the same cases for the diagram X5 = (¥, ug) = ¥ \ ug, and
the same values of the weight of the edge ugu; when ([us, ug), [ug, uo)) = (2,2), (2, 3) and
(3,2) respectively. Now, we have only 9 cases to attach nodes ug and ug to ' (in fact,
there are only six up to symmetry). For each of these cases we compute the weight of
the edge ugug by solving the equation det> = 0. None of these solutions is equal to
cos - for integer m, which contradicts the fact that the diagram (us,ug) is elliptic. This
contradiction proves the lemma.

and # respectively.

O

4.3 Dimension 5

In dimension 5 we must consider six Gale diagrams, namely Gaso, G303, Go1311, G12311,
G111, and Giagor.

Lemma 4.6. There is only one compact hyperbolic Coxeter polytope with Gale diagram
Gi9901. Its Coxeter diagram is the left one shown in the first row of Table 4.10.

Proof. The proof is similar to the proof of Lemma 4.3. We assume that there exists a
hyperbolic Coxeter polytope P with Gale diagram G1299;. This Gale diagram contains
an arc J = [2,2,2],. According to Lemma 3.1 (Item 10 of Table 3.2) and Lemma 2.2,
the Coxeter diagram > of P consists of the subdiagram > ; shown in Fig. 4.8, and two

uj ug u3 Uy Us Ue
6o 0 —9 06—

Figure 4.8: A unique diagram X; for J = |2,2,2],

nodes ur, ug joined by a dotted edge. By Lemma 2.1, the subdiagrams (uz, uq, us) and
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(us, ug, ug) are Lannér diagrams, and no other Lannér subdiagram of ¥ contains uz or us.
So, we need to check possible multiplicities of edges incident to u; and us.

Again, we consider the diagram ¥’ = (¥, u7). It is connected, does not contain dotted
edges, and its determinant is equal to zero. Furthermore, observe that u; does not attach
to (ug, us, uy, us) (since the diagram (uz, ug, us, uy, us) should be elliptic), and u; does not
attach to ug (since the diagram (ur, uy, us, ug) should be elliptic). Therefore, w7 is joined
with u; only. Solving the equation det >’ = 0, we find that [ur, u;] = 4.

By symmetry, we obtain that ug is not joined with (uy, ug, ug, ug, us), and |us, ug] = 4.
Thus, we have the Coxeter diagram ¥ shown in Fig. 4.9. Assigning the weight d =

u3 Ug

Figure 4.9: Coxeter diagram of a unique Coxeter polytope with Gale diagram G12001

V2(\/5 + 1) /4 to the dotted edge, we see that the signature of ¥ is equal to (5, 1,2), so
we obtain that this diagram corresponds to a Coxeter polytope.
U

Before considering the diagram (G11411, we make a small geometric excursus, the first
one in this purely geometric paper.

The combinatorial type of polytope defined by Gale diagram (G11411 is twice truncated
5-simplex, i.e. a b-simplex in which two vertices are truncated by hyperplanes very close
to the vertices. If we have such a polytope P with acute angles, it is easy to see that we
are always able to truncate the polytope again by two hyperplanes in the following way:
we obtain a combinatorially equivalent polytope P’; the two truncating hyperplanes do
not intersect initial truncating hyperplanes and intersect exactly the same facets of P the
initial ones do; the two truncating hyperplanes are orthogonal to all facets of P they do
intersect.

The difference between polytopes P and P’ consists of two small polytopes, each of
them is combinatorially equivalent to a product of 4-simplex and segment, i.e. each of
these polytopes is a simplicial prism. Of course, it is a Coxeter prism, and one of the bases
is orthogonal to all facets of the prism it does intersect. All such prisms were classified
by Kaplinskaja in [K]. Simplices truncated several times with orthogonality condition
described above were classified by Schlettwein in [S]. Twice truncated simplices from the
second list are the right ones in rows 1, 3, and 5 of Table 4.10.

Therefore, to classify all Coxeter polytopes with Gale diagram G147 we only need
to do the following. We take a twice truncated simplex from the second list, it has two
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“right” facets, i.e. facets which make only right angles with other facets. Then we find
all the prisms that have “right” base congruent to one of “right” facets of the truncated
simplex, and glue these prisms to the truncated simplex by “right” facets in all possible
ways.

The result is presented in Table 4.10. All polytopes except the left one from the
first row have Gale diagram Gi1417. The polytopes from the fifth row are obtained by
gluing one prism to the right polytope from this row, the polytopes from the third and
fourth rows are obtained by gluing prisms to the right polytope from the third row, and
the polytopes from the first and second rows are obtained by gluing prisms to the right
polytope from the first row. The number of glued prisms is equal to the number of edges
inside the maximal cycle of Coxeter diagram. Hence, we come to the following lemma:

Lemma 4.7. There are 15 compact hyperbolic Coxeter 5-polytopes with 8 facets with Gale
diagram Gqig11. Their Cozeter diagrams are shown in Table 4.10.

Proof. In fact, the lemma has been proved above. Here we show how to verify the previous
considerations without any geometry and without referring to classifications from [K]
and [S]. Since the procedure is very similar to the proof of Lemma 4.6, we provide only
a plan of necessary computations without details.

Let P be a compact hyperbolic Coxeter polytope P with Gale diagram G1141;. This
Gale diagram contains an arc J = |1,4,1],, so the Coxeter diagram ¥ of P consists of
one of the diagrams ¥ ; presented in Item 2 of Table 3.2 and two nodes u; and ug joined
by a dotted edge.

Choose one of three diagrams Y. ;. Consider the diagram ' = (X, u7). It is connected,
contains a unique dotted edge, no multi-multiple edges, and its determinant is equal to
zero. So, we are able to find the weight of the dotted edge joining u; with ¥; depending
on multiplicities of the remaining edges incident to u;. The weight of this edge should
be greater than one. Of course, we must restrict ourselves to the cases when non-dotted
edges incident to u; do not make any new Lannér diagram together with ¥ ;. The number
of such cases is really small.

Further, we do the same for the diagram X" = (¥, ug), and we find all possible such
diagrams together with the weight of the dotted edge joining ug with ¥ ;. Then we are
left to determine the weight of the dotted edge urug for any pair of diagrams ¥’ and ¥".
It occurs that this weight is always greater than one.

Doing the procedure described above for all the three possible diagrams ¥ ;, we obtain
the complete list of compact hyperbolic Coxeter 5-polytopes with 8 facets with Gale dia-
gram (11411. The computations completely confirm the result of considerations previous

to the lemma.
]

In the remaining part of this section we show that Gale diagrams Goyo, G323, Go1311,
and (19311 do not give rise to any Coxeter polytope.

Lemma 4.8. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G1as11-
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Proof. Suppose that there exists a compact hyperbolic Coxeter polytope P with Gale di-
agram Gog11. This Gale diagram contains an arc J = [2,3,1],. According to Lemma 3.1
(Item 9 of Table 3.2) and Lemma 2.2, the Coxeter diagram ¥ of P consists of one of the
nine subdiagrams > ; shown in Table 4.1, and two nodes w7, ug joined by a dotted edge.

Table 4.1: All possible diagrams 3; for J = |2,3,1],

Uz U5 U4 U Ug Upgs U2 U5 Uy U Ug U2 U5 U4 U3
® @ ?ﬁ o UI I:'
Ul Ug
Uy U5 U4 us  Ug Uy, U2 Us U4 us U1 Uz Uz Uq
® I o— o ) o ® o I:' Q—O—I:m
Ul Ug Ue us

By Lemma 2.1, the subdiagrams (ur,u,us) and (ug, ug) are Lannér diagrams, and no
other Lannér subdiagram of ¥ contains u; or us.

Consider the diagram ¥’ = (3, u7). It is connected, does not contain dotted edges,
and its determinant is equal to zero. Observe that the diagram (us,us, uy, us) is of the
type Hy. Since the diagram (ur, us, us, ug, us) is elliptic, this implies that u; is not joined
with (ug, us, uyg, us). Furthermore, notice that the diagram (us, u4, ug) is of the type Hj.
Since the diagram (ur,us, u4, ug) is elliptic, we obtain that [ur,ug] = 2 or 3. Thus, for
each of 9 diagrams Y; we have 2 possibilities of attaching u; to ¥; \ uy. Solving the
equation det >’ = 0, we compute the weight of the edge u7u;. In all 18 cases the result is

not of the form cos ™ for positive integer m, which proves the lemma.
]

Lemma 4.9. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G311

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G'21311- This Gale diagram contains an arc J = |1, 3, 1],. Therefore, the Coxeter diagram
> of P contains one of the five subdiagrams > ;, shown in Item 8 of Table 3.2.

On the other hand, ¥ contains a Lannér diagram L of order 3 intersecting ¥ ;. Denote
by wu the intersection node of L and X ;, and denote by ug and u; the remaining nodes of
L. Since L is connected, we may assume that ug attaches to u;. Denote by uy the node
of ¥ ; different from u; and contained in only one Lannér diagram of order 4, and denote
by uz, ug, us the nodes of ¥; contained in two Lannér diagrams of order 4.

Consider the diagram 3y = (X, ug) \ uo. It is connected, has order 5, and contains a
unique Lannér diagram which is of order 4. All such diagrams are listed in [E1, Lemma
3.8] (see the first two rows of Tabelle 3, the case INp| =1, |Lr| = 4). We have reproduced
this list in Table 3.3.
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Consider the diagram ¥; = (X, ug) = (X7, X0). Comparing the lists of possibilities
for ¥; and X, it is easy to see that ¥; coincides with one of the four diagrams listed
in Table 4.2 (up to permutation of indices 3,4 and 5). Now consider the diagram ¥’ =

Table 4.2: All possibilities for diagram >, see Lemma 4.9

u24 5 Uus U4 us ul Ug u9 Uus U4 Ul Uug

o —0 60 0o ©° OIQ—M—O—O
Ug Uy Us Uy us u9 u

3
o— @& — 9o —9o °

(X5,L) = (31,ur). It is connected, does not contain dotted edges, its determinant is
equal to zero, and the only multi-multiple edge may join u; and ug. To reduce further
computations notice, that the diagram (ur,us, u4,us) is elliptic, so u; does not attach
to (us,u4), and may attach to us by simple edge only. Moreover, since the diagrams
(ur, us, ug, us) and (ur, uy, uyg, us) are elliptic, ur is not joined with us. Furthermore, since
the diagrams (ur, uy, ug, us) and (uy, uy, us, uy) are elliptic, [ur, u;] = 2 or 3. Considering
elliptic diagrams (uz, ug, uy, us) and (uy, ug, us, uy), we obtain that [urz, us] is also at most
3. Then for all 4 diagrams >; and all admissible multiplicities of edges u;u; and wu7us
we compute the weight of the edge urug. We obtain exactly two diagrams Y’ where
this weight is equal to cos - for some positive integer m, these diagrams are shown in
Fig. 4.10. We are left to attach the node ug to ¥/. Consider the diagram X" = ¥\ us.

Uz U5 Ug UL Uﬁlo U7 U Us U4 UL Ug
MU:& Mus uy

Figure 4.10: All possibilities for diagram ', see Lemma 4.9

As usual, it is connected, does not contain dotted edges, its determinant is equal to zero,
and the only multi-multiple edge that may appear is ugu;. Furthermore, the diagram
(us, ug, uq, ug) is of the type Hy, and the diagram (us, ug, uy, u1,ug) is elliptic. Thus, ug
does not attach to (ug, ug, uq,ug). The diagram (us, uy, us) is of the type Hjs, and since
the diagram (us, us, u4, us) should be elliptic, this implies that [us, us] = 2 or 3. Now for
both diagrams ¥’ \ us C ¥” we compute the weight of the edge ugus. In all four cases this
weight is not equal to cos 7~ for any positive integer m, that finishes the proof.

O

Lemma 4.10. There are no compact hyperbolic Cozeter polytope with Gale diagram G33.

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
(G303. The Coxeter diagram ¥ of P consists of two Lannér diagrams L; and Lo of order
3, and one Lannér diagram L3 of order 2. Any two of these Lannér diagrams are joined
in 3, and any subdiagram of ¥ not containing one of these three diagrams is elliptic.
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Consider the diagram 35 = (L;, Lo). Due to [E2, p. 239, Step 4], we have three cases:

(1) Ly and Ly are joined by two simple edges having a common vertex, say in Lo;
(2) Ly and Ly are joined by a unique double edge;
(3) Ly and Ly are joined by a unique simple edge.

We fix the following notation: Ly = (uq, ug, us), Le = (uy, us, ug), Ly = (ur,us), the only
node of Ly joined with L is u4; uy is joined with ug and, in case (1), with u;. We may
assume also that u; attaches to Ly, uy is joined to us in Lo, and us is joined to ug in L.
Case (1). Since the diagrams (ug, uy, ug) and (us, us, uyg) are elliptic, [ug, u] and [ug, ug]
do not exceed 5. On the other hand, (uy,us,us) = Ly is a Lannér diagram, so we may
assume that [us, u1] = 5, and [ug, us) = 4 or 5. Now attach u; to L. If u7 is joined with
uy or ug, then the diagram (us, uq,uy) is not elliptic, and if u; is joined with ugz, then the
diagram (us, u3, u4) is not elliptic, which contradicts Lemma 2.1.

Case (2). It is clear that [ug, us] = [u4, us] = 3, and u; cannot be attached to us. Thus,
uz is joined with uy or uy, which implies that [ug, u;] < 5. Therefore, [u1, u3] = 3. So, the
diagrams (uq, us, uq, us) and (ug, us, uy, us) are of the type Fj. Therefore, if u; attaches
uy, then the diagram (ur, uq, us, u4, us) is not elliptic, and if u7 is joined with ug, then the
diagram (uz, ug, ug, uy, us) is not elliptic.

Case (3). The signature of X9 is either (5,1) or (4,1,1). Thus, det¥;5 < 0. By
Prop. 3.2, det(Ly, u3) det(La, ug) < . We may assume that | det(Lq, us)| < | det(Lo, us)|,
in particular, | det(Ly, u3)| < 1. By [E2, Table 2], there are only 6 possibilities for (L, us),
we list them in Table 4.3.

Table 4.3: All possibilities for diagram (L, us), see Case (3) of Lemma 4.10
us U (%) u9 u9 U9
uz  Uq Uz Uq uz Uy uz  Ugq Uz Uq uz  uq
e e Se—e e e .o .—e 7] e—e
Ul U1 Uq U1 ul U1

8 _ _2

For any of these six diagrams |det(L;, u3)| > %. Thus, | det(Ls, uy)| < i\/g_l 7
Notice that since the diagrams (us, uy, us) and (us, uy, ug) are elliptic, [u4, us] and [uy, ug)
do not exceed 5. Now, since the local determinant is an increasing function of multiplicities
of the edges, it is not difficult to list all Lannér diagrams Ls = (uy4, us, ug), such that
(g, us), [ug, ug] <5, and | det(Lq, ug)| < ﬁ This list contains 17 diagrams only.

Then, from 6-17 = 102 pairs (L, L») we list all pairs with det(Ly, us) det(Lo, us) < 1.
Each of these pairs corresponds to a diagram Yi5. After that, we attach to all diagrams
Y12 a node wy in the following way: w7 is joined with L; (and may be joined with Lo,
too), and it does not produce any new Lannér or parabolic diagram. It occurs that none
of obtained diagrams (32, u7) has zero determinant.

O

Lemma 4.11. There are no compact hyperbolic Cozeter polytopes with Gale diagram

G242 .
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Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
Glag0. The Coxeter diagram X of P consists of one Lannér diagram L, of order 4, and two
Lannér diagrams Ly and L3 of order 2. Any two of these Lannér diagrams are joined in
Y, and any subdiagram of ¥ not containing one of these three diagrams is elliptic.

We fix the following notation: L; = (uq,us, us, us), Lo = (us,ur), Lz = (ug,ug), us
and ug attach to L.

Consider the diagram ¢ = (Li, us, ug). It is connected, has order 6, and contains a
unique Lannér diagram which is of order 4. All such diagrams are listed in [E1, Lemma
3.8] (see Tabelle 3, the first two rows of page 27, the case |[Ng| =2, |[Lr| = 4). We have
reproduced this list in Table 3.4. The list contains five diagrams, but we are interested
in four of them: in the fifth one only one of two additional nodes attaches to the Lannér
diagram. We list these four possibilities for ¥g in Table 4.4.

Table 4.4: All possibilities for diagram X, see Lemma 4.11
Ug  Us Uy U4 us UL Ug Uus
o o e—9 o o
Ug UL Uz U3 Uy Us up U2
us Ue (%) us U (%) us ue
Now consider the diagram >’ = (3, u7). It contains a unique dotted edge usuz. Since
the diagram (ur, uy, uo, us, ug) is elliptic and the diagram (uy, us, us, ug) is of the type Hy
or By, u7 is not joined with (uy, us, us), and it may attach to ug if [uy, us] = 4 only. It is
easy to see that [u7,us] = 2 or 3 in all four cases. We obtain 9 possibilities for attaching
ur to g \ us. For each of them we compute the weight of the edge usuy.
By symmetry, we may list all 9 possibilities for the diagram X" = (¥, ug). Now we
are left to compute the weight of the edge urug in 3. Diagrams X with [uy, us] = 5
produce three possible diagrams ¥ each, and the diagram ¥y with [uy, us] = 4 produces

six possible diagrams ¥ (we respect symmetry). In all these 15 cases the weight of the
edge u7ug is not of the form cos - for positive integer m.

O

4.4 Dimension 4

In dimension 4 we must consider four Gale diagrams, namely Gazs, G11311, Go1112, and
G'12121- Three of them, i.e. Gaga, G11311, and Gia121, give rise to Coxeter polytopes.

Lemma 4.12. There are exactly three compact hyperbolic Coxeter polytopes with Gale
diagram Gage. Their Cozeter diagrams are shown in the third row of the second part of
Table 4.11.

Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram Gazs. The
Coxeter diagram ¥ of P consists of one Lannér diagram L; of order 3, and two Lannér
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diagrams Lo and L3 of order 2. Any two of these Lannér diagrams are joined in ¥, and
any subdiagram of ¥ containing none of these three diagrams is elliptic.

On the first sight, the considerations may repeat ones from the proof of Lemma 4.11.
However, there is a small difference: the number of Lannér diagrams of order 3 is infinite.
Thus, at first we must bound the multiplicities of the edges of the Lannér diagram of
order 3.

We fix the following notation: Ly = (uy,ug, us), Lo = (us,ug), Ly = (uy, ur), ug and
us attach to L. We may also assume that uy attaches to us.

Since the diagrams (u, us, us) and (us, us,us) should be elliptic, the edges uzu; and
uguy are not multi-multiple. We consider two cases: wu; or uy is either joined with
(uy, us, ug, uz) or not.

Case 1: u; and uy are not joined with (uy,us, ug, u7). In particular, this is true if the
edge ujus is multi-multiple. Then wus attaches to uz. Since the diagrams (uy, us, w4, us)
and (us, us, ug, us) are elliptic, [us, u;] and [us, us] do not exceed 3, [ug, ug] = [us, us] = 3,
and [ug, us] = 2. We may assume that [ug, u;] = 3, and [ug, us] = 2 or 3.

Consider the diagram 3’ = (Ly, Lo, us) = ¥\ u7. We know that ug is joined with us
by a dotted edge, and ug does not attach to u; and us. Furthermore, since the diagram
(uq, us, ug, ug) is elliptic, [ug, ug] < 3 and [ug, uy) < 4. By the same reason, either [ug, us]
or [ug, u4] is equal to 2. Thus, we have four possibilities to attach ug to us and ug.

Denote by d the weight of the dotted edge usug, and compute the local determinant
det ((us, uy, us, ug), ug) for all four diagrams (us, uy, us, ug) as a function of d.

Case 1.1:  [ug, ug) # 2. In this case det ((us, uq, us, ug), uz) equals either % (when
[ug, ug) = 3) or % (when [ug, us) = 4). Both expressions decrease in the ray

[1,00), so the maximal values are 11/4 and (5 + 21/2)/4 respectively. Now recall that
det X' = 0, so by Prop. 3.1 we have det(Ly,u3) = 1 — det ({us, ug, us, ug), us). Therefore,
| det(L, u3)| is bounded from above by 7/4 or (1 + 2v/2)/4 if [ug, us] = 3 or [ug, uy = 4
respectively. Since | det(Ly, us)| is an increasing function on [uy, us], an easy check shows
that [ug, us] is bounded by 10 or 8 respectively. So, in both cases we have finitely many
possibilities for L.

Further considerations follow ones from Lemma 4.11. We list all possible ¥’ together
with the weight of the dotted edge wusug (which may be computed from the equation
det ¥’ = 0), then we list all possible diagrams X" = (Lq, L3, us) = 3\ ug in a similar way.
After that for all pairs (X', ¥") (with the same L;) we compute the weight of the edge
uguy. It occurs that in all cases the weight is not of the form cos ™ for positive integer m.

Case 1.2: [ug,uy) = 2. In this case det ((us, uq, us, ug), ug) equals either % (when
[ug, us) = 2) or 4?(’31) (when [ug, u3] = 3). These tend to co when d tends to 1, so we do

not obtain any bound for [u, us).

Let mig = [Ul,UQ], Moz = [Ug, U3], and let msze — [Ug, u6]. Notice that Mo3, M3 = 2 or
3. Define also ¢15 = cos(m/mys). We compute the weight of the edge usug as a function
d(mia, mag, m3g) of myz, maeg and mgg. Solving the equation det X' = 0, we see that
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[2¢2, — 1 | 2c
d(miz,2,2) = 20527_2; d(miz,3,2) = 3012%12
12

2

1s ci2+1
_ d(my2,3,3) = ~21
32, — 2 (m2:3:8) = 307

d(mlg, 2, 3) =

Consider the diagram ¥. According to Case 1.1, we may assume that [us,u;] = 2. Since

Ly and L3 are joined in X, [ug, u7] # 2. On the other hand, the diagram (us, ug, u7) is

elliptic. Thus, either [ug,ug] or [ug,us] equals 2. By symmetry, we may assume that
[ug, uz] = 2. We also know how the weight of the edge usu; depends on myy and mogs.

Now we are able to compute the weight w(ma, mas, msg) of the dotted edge usu; as

a function of myo, mog and mgzg. For that we simply solve the equation det ¥ = 0. Notice

that since L is a Lannér diagram, mo > 7 when moz = 2, and mys > 4 when mo3 = 3.

We obtain: . )
o w(mig,2,2) = 32_76122 is a decreasing function of mis as mip > 7, and w(7,2,2) < 1/2;
Cl2 —

2(1 - 0%2) V 2ciy
(3cty —2)3/2
1/2, and w(my2,2,3) # cos(m/m) when myy =7 or §;
_ 1 —cp2

3612 -1

2(1 — c12)V2¢12 .

3 )72 is a decreasing function of miy as mis > 4, w(5,3,3) <
Ci2 —
1/2, and w(4, 3, 3) # cos(m/m).

This finishes considerations of Case 1.

e w(miz,2,3) = is a decreasing function of mqs as mys > 7, w(9,2,3) <

o w(ma,3,2) is a decreasing function of mis as miy > 4, and w(4,2,2) < 1/2;

o w(mis,3,3) =

Case 2: either u; or uy is joined with (uy,us, ug, u7). In particular, this implies that
Ly contains no multi-multiple edges, so we deal with a finite number of possibilities for
Ly only. This list contains 11 Lannér diagrams of order 3. Using that list, it is not too
difficult to list all the diagrams Yy = (L1, u4,us). This list contains 19 diagrams, we
present them in Table 4.5. Now we follow the proof of Lemma 4.11. Choose one of 19

Table 4.5: All possibilities for diagram >, see Case 2 of Lemma 4.12
(G Uy

5
us (25 us (5] us

Uy us 2,3 Uy us Uy

diagrams Y, and consider the diagram ¥/ = (¥, ug). It contains a unique dotted edge
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usug, and that is the only Lannér diagram in ¥’ containing ug. We have a finite number
of possibilities to attach ug to 3¢ \ us. For each of them we compute the weight of the
edge usug.

Similarly, we list all possibilities for the diagram X" = (3,5, u7). Now we are left to
compute the weight of the edge ugu; in X. A computation shows that the weight is of
the form cos 7> only for the diagrams listed in Table 4.6. To verify that these diagrams

Table 4.6: Coxeter diagrams of Coxeter polytopes with Gale diagram Gaso

correspond to polytopes, we need to assign weights to the dotted edges. We assign a

weight \/5@ to all edges usug, and weights 15(1?\/5), 5+130\/5 and 3+4‘/5 to the edge uqur

on the left, middle and right diagrams respectively. A direct calculation shows that the
diagrams have signature (4, 1, 2).

O

Lemma 4.13. There are 29 compact hyperbolic Coxeter polytopes with Gale diagram
Ghiz11- Their Coxeter diagrams are shown in the first part of Table 4.11 and in the first
three rows of the second part of the same table.

Proof. The proof is identical to one which concerns the diagram G11411 (see Lemma 4.7).
The combinatorial type of polytope defined by Gale diagram G317 is twice truncated
4-simplex. Any such Coxeter polytope may be obtained by gluing one or two prisms to
a twice truncated 4-simplex with orthogonality conditions described before Lemma 4.7.
Such simplices were classified by Schlettwein in [S], they appear as right ones in rows 1, 2,
and 4 of the first part of Table 4.11, and in rows 1 and 2 of the second part. The prisms
were classified by Kaplinskaja in [K].

For each twice truncated simplex from the list of Schlettwein we find all the prisms
that have “right” base congruent to one of “right” facets of the truncated simplex, and
glue these prisms to the truncated simplex. The result is presented in Table 4.11.

The verification of the result above by computations is completely identical to the
proof of Lemma 4.7. We only need to replace an arc J = |1,4, 1], from G;1411 by an arc
J =|1,3,1],, and refer to Item 8 of Table 3.2 instead of Item 2.

U

Lemma 4.14. There are no compact hyperbolic Cozeter polytopes with Gale diagram
Gorra-
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Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
Go1112. The Coxeter diagram X of P consists of one Lannér diagram L; = (uy, ug, usz, uy)
of order 4, two Lannér diagrams Ly = (ug,uy,us) and Lz = (us, uy, us) of order 3, and
two Lannér diagrams (ug, u7) and (ur, us) of order 2.

Consider the diagram >’ = (Lq, Ly, L3) = ¥ \ uy. It is connected, has order 6, and
contains no dotted edges. We may also assume that us attaches to uy. Clearly, any multi-
multiple edge that may appear in ¥’ belongs to L, or Lz and does not belong to L;. We
consider two cases: either ¥’ contains multi-multiple edges or not.

Suppose that ¥’ contains no multi-multiple edges. Then we have 9 possibilities for
Lo, and 9 possibilities for Ls. For each of 81 pairs (or 45 in view of symmetry) we join
nodes of Ly with nodes of Lj in all possible ways (9 edges, 4 possibilities for each of
them, from empty to triple one). We are looking for diagrams satisfying the following
conditions: the determinant should vanish, there are no parabolic subdiagrams, and the
diagram contains a unique new Lannér diagram, which has order 4. A computer check
(which takes about 10 hours of computer thought) shows that only 39 obtained diagrams
have zero determinant, and only 11 of them contain Lannér diagrams of order 4. However,
each of them contains some new Lannér diagram of order 3. Therefore, none of them may
be considered as >'.

Now suppose that ¥ contains at least one multi-multiple edge. We may assume that
ugqus is multi-multiple. In this case uy must be a leaf of L1, i.e. it should have valency one
in L;. Indeed, if uy4 is joined with two vertices v, w € Lq, then both diagrams (us, u4, v)
and (us,uy,w) are not elliptic, which is impossible. Thus, L; is not a cycle, so we have
4 possibilities for L; only (see Table 2.2). In Table 4.7 we list all possible diagrams L
together with all possible numerations of nodes. A numeration should satisfy the following
properties: uy is a leaf, and ug is a unique neighbor of uy. We consider numerations up
to interchange of u; and us.

Table 4.7: Numberings of vertices of Lannér diagrams of order 4 without cycles

Ui Uug us Uy uy U2 us U4 Uy U2 us Uy
@ *«—0 @ e—o 6 —0° @ ® ——@&—°
(1) (2a) (2b)
Ui (%) us Uy Ul us u2 U4 us u2
*e—° *—0
(3) (4a) Uy (4b) U1

Consider 6 diagrams case-by-case. For all of them we claim that us and us do not
attach to Lo = (uq,us, ug): this is because the edge ujus is multi-multiple.

Diagram (1). Since the diagram (us, us, us, us) is elliptic, us is not joined with uz. Fur-
thermore, since the diagram (ug, ug, us, u4) is elliptic, ug is not joined with (ug, uz). There-
fore, [ug, us] = 2, so [ug, u1] > 7. Applying Prop. 3.2, we see that det(Ls, us) det(Ls, ug) =
cos?(m/5). An easy calculation shows that the inequality [ug,u;] > 7 implies that
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[ug, us) < 10. By symmetry, [ug, u;] < 10, too. We are left with a finite (and very
small) number of possibilities for ¥/. For none of them det ¥’ = 0.

Diagrams (2a), (2b) and (3). Since the diagram (uy, us, us, us) is elliptic, [us, us] < 3.
Since the diagram (ug, ug, us, us) is elliptic, ug is not joined with wugz, and [ug, us] < 3,
so [ug,u1] > 3. Applying Prop. 3.2, we have det(Ls, us) det(Ls,us3) = 1/4. By assump-
tion, [ug,us] > 6, which implies the inequality | det(Ls, us)| > |D(2,4,6)] = 1. Thus,
| det(Lo, us)| < 1/4. But since [uj,us] > 4 and [ug, ug] > 3, either |det(Lq,us)| >
|D(2,4,5)| = 1/+/5 > 1/4 or |det(Ly,uz)| > |D (3,4,3)| = v/2/3 > 1/4, so we come to a

contradiction.

Diagram (4a). Since the diagram (ug, u, us) is elliptic, [ug, u1] < 3. On the other hand,
Ly = (uy,us,ug) is a Lannér diagram, so [ug, us] > 7. This implies that (ug, us, us) is a
Lannér diagram, which is impossible.

Diagram (4b). Since the diagram (ug, us, us, u4) is elliptic, [ug, us] < 3. Hence, [ug, u1] >
7, and (ug,u,u3) is a Lannér diagram. This contradiction completes the proof of the
lemma.

O

Lemma 4.15. There are exactly eight compact hyperbolic Coxeter 4-polytopes with 7 facets
with Gale diagram Gi9121. Their Coxeter diagrams are shown in the bottom of the second
part of Table 4.11.

Proof. Let P be a hyperbolic Coxeter polytope with Gale diagram (G12121. The Coxeter
diagram ¥ of P contains two Lannér diagrams L; = (uq,ug,u3) and Ly = (us, uy, us)
of order 3, a dotted edge uguy, and other two Lannér diagrams L3 = (uq,us,us) and
Ly = (uz,uy,us) of order 3. Any subdiagram of ¥ containing none of these five diagrams
is elliptic. Since L3 and L4 are connected, we may assume that ug attaches to us, and wuy;
attaches to us.

Consider the diagram ' = (L3, Ly, Ls) = ¥ \ u7. Clearly, the only multi-multiple
edges that may appear in X/ are ujus, ugusg, ugti, and uyus.

At first, suppose that the edge ugus is multi-multiple. Then (ug, ug) is not joined with
(us, w4, us) = Lo. In particular, [ug, us] = 2, so [uy,us] # 2. Thus, [ug, u;] is also equal
to 2. Furthermore, since diagrams (us, ug, ug) and (uy, us, us) are elliptic, [ug, ua], [us, us)
and [u1, us] < 5. Therefore, since (uy, ug, us) = Ly is a Lannér diagram, [uy, us] > 4. Now
suppose that [uy, uy] # 2. Then [ug, ug] = 2, 80 [uy, us] > 4, and the diagram (us, uy, uy, us)
is not elliptic, which is impossible. The contradiction shows that [uq,us] = 2. Similarly,
[uy, us) = 2. Consequently, the diagram 3 looks like the diagram shown in Fig. 4.11, where
mas = [ug, us]. Now we may apply Prop. 3.2: det(Ls, u;) det(Ly, uz) = cos*(m/my3), where
mis = [ug,us]. Notice that since [uy,us] > 4 and [ug, ug] > 6, we have |det(Ls,uy)| >
1D (2,4,6)] = 1.

If mi3 = 4 or 5, we obtain that [us, u4], [ug, us] < 3, which implies [u4,us] = 7 in
view of |det(Ly, uz)| < cos?(m/my3z). Thus, |det(Ly,uz)| > |D(2,3,7)]. This implies
that | det(Ls,u1)| < cos?(w/5)/|D(2,3,7)|. An easy calculation shows that in this case
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Figure 4.11: A diagram >, see Lemma 4.15

[ug, ug] < 7, [ug,us] < 6. Then we check the finite (small) number of possibilities for ¥’
and see that none of them has determinant equal to zero.

If mi3 = 3, then [ug,u1] < 7. Therefore, |det(Ls,ui)| > [D(2,6,7)]. Hence,
| det(Ly, u3)| < cos?(n/3)/|D(2,6,7)|, but such Ly does not exist.

The contradiction shows that the edge ugus is not multi-multiple. Similarly, the edges
uglty, urus, and uruy of 3 are not multi-multiple either. Thus, the only edges that may
be multi-multiple in ¥ are uqus and uqus.

Consider again the diagram ¥’ and suppose that the diagram (u4, us) is not joined
with (u1,us,us). In particular, this holds if at least one of the edges ujus and wjus is
multi-multiple. We may apply Prop. 3.1:

det(<L3, L1>,U3) + det(LQ,u;),) =1.

By definition,
det((Lg, L1>, U3) = det(Lg, L1>/ det(Lg)

We use a very rough bound: |det({Ls, L1)| < 16 since it is a determinant of a 4 x 4 matrix
with entries between —1 and 1, and |det(L3)| > |3/4 — cos®*(7/7)| = | det(La37)], since
det(Ly37) is maximal among all determinants of Lannér diagrams of order 3. This bound
implies

16

det(La, us)| < 1+ | det((Ls, L <1 261.
[ det(Ly, ug)l < 1+ det({Ls, L), o)l < 1+ g7 oy < 26

Now an easy computation shows that [ug,us] < 101. Considering a diagram " =
(L1, Ly, Ly) = ¥\ ug in a similar way, we obtain that [uy,us] < 101, too, and we are
left with a finite number of possibilities for ¥’ (and for ¥”). We list all diagrams Ly (less
that 1000 possibilities) and all possible diagrams (L3, L) (less that 10000 possibilities),
and find all pairs such that det((Ls, L1), u3) + det(Ls,u3) = 1, there are about 50 such
pairs. Therefore, we obtain a complete list of possibilities for ¥’ (and for ¥"). Then we
look for unordered pairs (3, ¥”), such that the diagrams coincide on their intersection,
i.e. a subdiagram (L, Ly) C ¥’ coincides with a subdiagram (L, Ly) C ¥”. There are
only 8 such pairs, all them give rise to Coxeter diagrams of Coxeter polytopes. The dia-
grams are shown in the bottom of the second part of Table 4.11. The weight of the dotted
edge is equal to v/2cos(n/8) for the two last diagrams, is equal to (/5 + 1)/2 for the
three diagrams in the second row from the bottom, and is equal to 1 + /2 for the three
diagrams in the third row from the bottom.
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Now suppose that the diagram (uy4, us) is joined with (us, us, ug). This implies that ¥
does not contain multi-multiple edges, so we have a finite number of possibilities for the
diagrams ¥’ and ¥”. A computation shows that we do not obtain any polytope in this
way.

U

The result of the considerations above is presented below. Recall that there are no
7-dimensional polytopes with 10 facets.

Table 4.8: 8-dimensional polytope with 11 facets

Table 4.9: 6-dimensional polytopes with 9 facets
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Table 4.10: 5-dimensional polytopes with 8 facets
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Table 4.11: 4-dimensional polytopes with 7 facets
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Table 4.11: Cont.
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