Induced paths in twin-free graphs

David Auger
Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France
auger@enst.fr

Submitted: Feb 19, 2008; Accepted: May 27, 2008; Published: Jun 6, 2008
Mathematics Subject Classification: 05C12

Abstract

Let $G=(V, E)$ be a simple, undirected graph. Given an integer $r \geq 1$, we say that G is r-twin-free (or r-identifiable) if the balls $B(v, r)$ for $v \in V$ are all different, where $B(v, r)$ denotes the set of all vertices which can be linked to v by a path with at most r edges. These graphs are precisely the ones which admit r-identifying codes. We show that if a graph G is r-twin-free, then it contains a path on $2 r+1$ vertices as an induced sugbraph, i.e. a chordless path.

keywords: graph theory; identifying codes; twin-free graphs; induced path; radius

1 Notation and definitions

Let $G=(V, E)$ be a simple, undirected graph. We will denote an edge $\{x, y\} \in E$ simply by $x y$. A path in G is a sequence $P=v_{0} v_{1} \cdots v_{k}$ of vertices such that for all $0 \leq i \leq k-1$ we have $v_{i} v_{i+1} \in E$; if $v_{0}=x$ and $v_{k}=y$, we say that P is a path between x and y.

The length of a path $P=v_{0} v_{1} \cdots v_{k}$ is the number of edges between consecutive vertices, i.e. k. If $x, y \in V$, we define the distance $d(x, y)$ to be the minimum length of a path between x and y. Then a shortest path between x and y is a path between x and y of length precisely $d(x, y)$. If $r \geq 0, B(x, r)$ will denote the ball of centre x and radius r, which is the set of all vertices v of G such that $d(x, v) \leq r$.

If $P=v_{0} \cdots v_{k}$ is a path in G, a chord in P is any edge $v_{i} v_{j} \in E$ with $|i-j| \neq 1$. A path is chordless if it has no chord; in this case there is an edge between two vertices of the path v_{i} and v_{j} if and only if i and j are consecutive, i.e. $|i-j|=1$. It is straightforward to see that any shortest path is chordless.

If $x \in V$, we define the eccentricity of x by

$$
\operatorname{ecc}(x)=\max _{v \in V} d(x, v)
$$

The diameter of G is the maximum eccentricity of a vertex in G, whereas the radius $\operatorname{rad}(G)$ of G is the minimum eccentricity of a vertex in G. A vertex x such that ecc $(x)=\operatorname{rad}(G)$ is a centre of G. So G has radius $t \geq 1$ and x is a centre of G if and only if $B(x, t)=V$ whereas $B(v, t-1) \neq V$ for all $v \in V$.

If $W \subset V$, the sugbraph of G induced by W is the graph whose set of vertices is W and whose edges are all the edges $x y \in E$ such that x and y are in W. We denote this graph by $G[W]$; if $W=V \backslash\{v\}$, we simply write $G[V-v]$. An induced path in G is a subset P of V such that $G[P]$ is a path; equivalently, the vertices in P define a chordless path in G. All these terminology and notation being standard, we refer to [3] for further explanation.

Two distinct vertices x and y are called r-twins if $B(x, r)=B(y, r)$. If there are no r-twins in G, we say that G is r-twin-free.

2 Motivations and main results

The notion of identifying code in a graph was introduced by Karpovsky, Chakrabarty and Levitin in [5]. For $r \geq 1$, an r-identifying code in $G=(V, E)$ is a subset \mathcal{C} of V such that the sets

$$
I_{\mathcal{C}}(v)=B(v, r) \cap \mathcal{C} \text { for } v \in V
$$

are all distinct and non-empty. The original motivation for identifying codes was the fault diagnosis in multiprocessor systems; we refer to [1], [5] or [7] for further explanation and applications. The interested reader can also find a nearly exhaustive bibliography in [6].

Given a graph $G=(V, E)$, it is easily seen that there exists an r-identifying code in G if and only if V itself is an r-identifying code, which precisely means that G is r-twinfree. Different structural properties which are worth investigating arise when considering a connected r-twin-free graph with $r \geq 1$. For instance, it has been proved in [2] that an r-twin-free graph always contains a path, not necessarily induced, on $2 r+1$ vertices. In the same article, the authors conjectured that we can always find such a path as an induced subgraph of G. We prove this conjecture as a corollary from Theorem 1.

Let us denote by $p(G)$ the maximum number of vertices of an induced path in G. We prove the following theorem and corollary, which we formulate for connected graphs without loss of generality.

Theorem 1. Let $G=(V, E)$ be a connected graph with at least two vertices, and with a centre $c \in V$ such that no neighbour of c is a centre. Then

$$
p(G) \geq 2 \operatorname{rad}(G)+1
$$

This implies:
Corollary 2. Let G be a connected graph with at least two vertices, and $r \geq 1$. If G is r-twin-free then

$$
p(G) \geq 2 r+1
$$

3 Proof of the theorem

A different proof for Corollary 2 can be found in [1]. The one we present here is much shorter and is based on the article by Erdős, Saks and Sós [4] where the following theorem can be found. The authors give credit to Fan Chung for the proof.

Theorem 3. (Chung) For every connected graph $G=(V, E)$ we have

$$
p(G) \geq 2 \operatorname{rad}(G)-1
$$

We require the following lemma, inspired by [4], in order to prove Theorem 1.
Lemma 4. Let $t \geq 2$ and $G=(V, E)$ be a graph such that there are in G two vertices v_{0} and v_{t} with $d\left(v_{0}, v_{t}\right)=t$, a shortest path $v_{0} v_{1} v_{2} \cdots v_{t}$ between v_{0} and v_{t}, and a vertex w such that $d\left(v_{0}, w\right) \leq t-1$ and $d\left(v_{2}, w\right) \geq t$ (see fig. 1). Then there exists an induced path on $2 t-1$ vertices in G.

Figure 1: The path $v_{0} \cdots v_{t}$ and w in Lemma 4.
Proof. In the case $t=2$, the shortest path $v_{0} v_{1} v_{2}$ itself is an induced path on $2 t-1=3$ vertices; so we suppose now that $t \geq 3$. First observe that since $d\left(v_{2}, w\right) \geq t$ we have $w \neq v_{i}$ for all $i \in\{0,1, \cdots, t\}$. Consider a shortest path P between v_{0} and w, and let $u \in P$, distinct from v_{0}. Let $i \geq 2$; we show that $d\left(u, v_{i}\right) \geq 2$. First we have

$$
d\left(v_{0}, v_{i}\right)=i \leq d\left(v_{0}, u\right)+d\left(u, v_{i}\right)
$$

and second

$$
t \leq d\left(v_{2}, w\right) \leq d\left(v_{2}, v_{i}\right)+d\left(v_{i}, u\right)+d(u, w)
$$

with $d\left(v_{2}, v_{i}\right)=i-2$ because $i \geq 2$. Summing these two inequalities we get

$$
t+i \leq d\left(v_{0}, u\right)+d(u, w)+2 d\left(v_{i}, u\right)+i-2
$$

and since

$$
d\left(v_{0}, u\right)+d(u, w)=d\left(v_{0}, w\right)
$$

we deduce

$$
t+2 \leq d\left(v_{0}, w\right)+2 d\left(u, v_{i}\right)
$$

But we have $d\left(v_{0}, w\right) \leq t-1$ and so

$$
d\left(u, v_{i}\right) \geq \frac{3}{2}
$$

Let us note that since $d\left(v_{2}, w\right) \geq t$, we have $d\left(v_{0}, w\right) \geq t-2$ and so P consists of v_{0} and at least $t-2 \geq 1$ other vertices, i.e. at least $t-1$ vertices. We proved that u satisfies $d\left(u, v_{i}\right) \geq 2$ for $i \geq 2$, so u is distinct from all the v_{i} 's and furthermore can be adjacent only to v_{1} or v_{0} (see fig. 2).

Figure 2: The vertex u can only be adjacent to v_{1} or v_{0} in Lemma 4.
Now consider two cases:

- if no vertex $u \in P \backslash\left\{v_{0}\right\}$ is adjacent to v_{1}, then P extended by $v_{1} \cdots v_{t}$ is an induced path of G on at least $(t-1)+t=2 t-1$ vertices;
- if there is a vertex $u \in P \backslash\left\{v_{0}\right\}$ adjacent to v_{1}, then

$$
t \leq d\left(v_{2}, w\right) \leq d\left(v_{2}, v_{1}\right)+d\left(v_{1}, u\right)+d(u, w)
$$

and so $d(u, w) \geq t-2$. Since we have $d\left(v_{0}, u\right)+d(u, w)=d\left(v_{0}, w\right) \leq t-1$, it follows that we must have $d\left(v_{0}, u\right)=1$ and $d(u, w)=t-2$. The path $w \cdots u v_{1} \cdots v_{t}$ is then an induced path of G on $2 t-1$ vertices.

For sake of completeness, we rephrase the end of the proof of Theorem 3 in [4]. Consider a connected graph G of radius $t \geq 1$; if $t=1$, then the result is trivial. Suppose now that $t \geq 2$; we show that the vertices $v_{0}, v_{1}, \cdots v_{t}$ and w as in Lemma 4 exist. To see this, consider the collection of connected induced subgraphs H of G whose radius is at least t, and choose one with the smallest possible number of vertices. Let V_{H} be the vertex-set of H.

There exists in H a vertex v_{t} which is not a cutvertex; by minimality of H, the connected induced subgraph $H\left[V_{H}-v_{t}\right]$ of H must have radius at most $t-1$. If we consider a centre v_{0} of $H\left[V_{H}-v_{t}\right]$, we must have $d\left(v_{0}, w\right) \leq t-1$ for all the vertices $w \neq v_{t}$ in H; but since H has radius at least t we also have $d\left(v_{0}, v_{t}\right)=t$. Let $v_{0} v_{1} v_{2} \cdots v_{t}$ be a shortest path between v_{0} and v_{t}. Since H has radius t, there exists a vertex w such that $d\left(v_{2}, w\right) \geq t$,
and we have $d\left(v_{0}, w\right) \leq t-1$ because w cannot be v_{t}. So we can choose this w and apply Lemma 4.

Proof of Theorem 1. Let $G=(V, E)$ be a graph of radius $t \geq 1$ with a centre $c \in V$ such that no neighbour of c is a centre. We will apply Lemma 4 with $t+1$ instead of t; to do this, we have to find vertices $v_{0}, v_{1}, \cdots v_{t+1}$ and w; so let us denote the center c by v_{1}. We define $N\left(v_{1}\right)$ to be the set of neighbours of v_{1}. We can choose a vertex v_{0} in $N\left(v_{1}\right)$ such that $B\left(v_{0}, t\right)$ is not strictly contained in another $B(x, t)$ for $x \in N\left(v_{1}\right)$: take for instance $v_{0} \in N\left(v_{1}\right)$ such that $B\left(v_{0}, t\right)$ is of maximal cardinality. Since v_{0} is not a centre, there exists a vertex $v_{t+1} \in V$ such that $d\left(v_{0}, v_{t+1}\right)=t+1$. Then we must have $d\left(v_{1}, v_{t+1}\right) \geq t$, and so $d\left(v_{1}, v_{t+1}\right)=t$ because v_{1} is a centre. Consider a shortest path $v_{1} v_{2} \cdots v_{t+1}$ between v_{1} and v_{t+1}; then $v_{0} v_{1} v_{2} \cdots v_{t+1}$ is a shortest path between v_{0} and v_{t+1}. Now, if we show that there exists a vertex w such that $d\left(v_{2}, w\right) \geq t+1$ and $d\left(v_{0}, w\right) \leq t$, we can apply Lemma 4. So, assume that such a vertex w does not exist: this means that all the vertices w with $d\left(v_{0}, w\right) \leq t$ must satisfy $d\left(v_{2}, w\right) \leq t$, and so $B\left(v_{0}, t\right) \subset B\left(v_{2}, t\right)$. By maximality of $B\left(v_{0}, t\right)$, we must then have $B\left(v_{0}, t\right)=B\left(v_{2}, t\right)$; but this is impossible, since we have $v_{t+1} \in B\left(v_{2}, t\right) \backslash B\left(v_{0}, t\right)$. This contradiction shows that we can apply Lemma 4 , and so there exists in G an induced path on $2(t+1)-1=2 t+1$ vertices; thus we have

$$
p(G) \geq 2 \operatorname{rad}(G)+1
$$

Proof of Corollary 2. Let G be a graph, x a center of G and y a neighbour of x. Then by definition $B(x, \operatorname{rad}(G))=V$, and for all $z \in V$ we have

$$
d(y, z) \leq d(z, x)+d(x, y) \leq \operatorname{rad}(G)+1
$$

So

$$
B(x, r)=B(y, r)=V
$$

for all $r \geq \operatorname{rad}(G)+1$. Suppose now that G is r-twin-free; then we must have $\operatorname{rad}(G) \geq r$.
Now, either $\operatorname{rad}(G) \geq r+1$ and we can apply Theorem 3 , or $\operatorname{rad}(G)=r$. But in the latter case, centers are r-twins so there can only be one in G; in particular we can apply Theorem 1 and so

$$
p(G) \geq 2 \operatorname{rad}(G)+1=2 r+1
$$

4 Conclusion and perspectives

For $n \geq 1$, we denote by P_{n} the path on n vertices, i.e. the graph consisting of n vertices $v_{0}, v_{1}, \cdots, v_{n-1}$ and the $n-1$ edges $v_{i} v_{i+1}$ for $0 \leq i \leq n-1$. As the path $P_{2 r+1}$ on $2 r+1$ vertices is itself r-twin-free, the previous results show that $P_{2 r+1}$ is the only minimal r-twin-free graph for the induced subgraph relationship. Indeed, we have:

An r-twin-free graph contains a path $P_{2 r+1}$ as an induced sugbraph, and $P_{2 r+1}$ is r -twin-free.

One could wonder how these results could be extended to different cases. For instance, we have:

An r-twin-free and 2-connected graph G contains a cycle with at least $2 r+2$ vertices as a subgraph; and the cycle C_{k} on k vertices is r-twin-free if and only if $k \geq 2 r+2$ (and is, of course, 2-connected).

Let us recall that a graph G is 2-connected if and only if for every pair (x, y) of distinct vertices, there exist at least two paths P_{1} and P_{2} between x and y in G, such that there are no common vertices to P_{1} and P_{2} except x and y (see [3], pp. 55-57 for more details). Since an r-twin-free graph has a diameter at least $r+1$, the result above easily follows. This shows that the cycles C_{k} with $k \geq 2 r+2$ are the minimal graphs for the subgraph relationship in the class of 2 -connected, r-twin-free graphs. But in this case, the result cannot be extended to the induced subgraph relationship. Indeed, for $r \geq 1$ consider the Cartesian product of a path $P_{2 r+1}$ with K_{2} (see fig. 3). One can check that this graph is 2 -connected, r-twin-free and does not contain a cycle with more than $2 r+2$ vertices as an induced subgraph. For $r=1$, see the counterexample on fig. 4

Figure 3: A 2-connected, r-twin-free graph which does not contain a cycle C_{k} with $k \geq 2 r+2$ as an induced subgraph $(r \geq 2)$.

Figure 4: A 2-connected, 1-twin-free graph which does not contain a cycle C_{k} with $k \geq 4$ as an induced subgraph.

As a conclusion, we leave open the same problem in the class of k-connected graphs with $k \geq 3$:
What are the minimal elements of the class of 3-connected, r-twin-free graphs, for the subgraph relationship, or the induced subgraph relationship?

A first step would be to determine the smallest cardinality for a k-connected r-twin-free graph.

References

[1] D. Auger, Problèmes d'identification métrique dans les graphes, ENST Technical Report, ISSN 0751-1345 ENST D013, 2007.
[2] I. Charon, I. Honkala, O. Hudry, A. Lobstein, Structural Properties of Twin-Free Graphs, Electronic Journal of Combinatorics, Vol. 14(1), R16, 2007.
[3] R. Diestel, Graph Theory, Springer-Verlag, third edition, 2005.
[4] P. Erdős, M. Saks, V. T. Sós, Maximum Induced Trees in Graphs, Journal of Combinatorial Theory, Series B, vol. 41, pp. 61-79, 1986.
[5] M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Transactions on Information Theory, vol 44, pp. 599-611, 1998.
[6] A. Lobstein, Bibliography on identifying and locating-dominating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
[7] J. Moncel, Codes identifiants dans les graphes, Thèse de Doctorat, Université Joseph Fourier - Grenoble I, France, 2005.

