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Abstract

Let G = (V,E) be a simple, undirected graph. Given an integer r ≥ 1, we say
that G is r-twin-free (or r-identifiable) if the balls B(v, r) for v ∈ V are all different,
where B(v, r) denotes the set of all vertices which can be linked to v by a path
with at most r edges. These graphs are precisely the ones which admit r-identifying
codes. We show that if a graph G is r-twin-free, then it contains a path on 2r + 1
vertices as an induced sugbraph, i.e. a chordless path.
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1 Notation and definitions

Let G = (V, E) be a simple, undirected graph. We will denote an edge {x, y} ∈ E simply
by xy. A path in G is a sequence P = v0v1 · · · vk of vertices such that for all 0 ≤ i ≤ k− 1
we have vivi+1 ∈ E; if v0 = x and vk = y, we say that P is a path between x and y.

The length of a path P = v0v1 · · ·vk is the number of edges between consecutive
vertices, i.e. k. If x, y ∈ V , we define the distance d(x, y) to be the minimum length of a
path between x and y. Then a shortest path between x and y is a path between x and y

of length precisely d(x, y). If r ≥ 0, B(x, r) will denote the ball of centre x and radius r,
which is the set of all vertices v of G such that d(x, v) ≤ r.

If P = v0 · · · vk is a path in G, a chord in P is any edge vivj ∈ E with |i − j| 6= 1. A
path is chordless if it has no chord; in this case there is an edge between two vertices of the
path vi and vj if and only if i and j are consecutive, i.e. |i − j| = 1. It is straightforward
to see that any shortest path is chordless.

If x ∈ V , we define the eccentricity of x by

ecc(x) = max
v∈V

d(x, v).
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The diameter of G is the maximum eccentricity of a vertex in G, whereas the radius rad(G)
of G is the minimum eccentricity of a vertex in G. A vertex x such that ecc(x) = rad(G)
is a centre of G. So G has radius t ≥ 1 and x is a centre of G if and only if B(x, t) = V

whereas B(v, t − 1) 6= V for all v ∈ V .
If W ⊂ V , the sugbraph of G induced by W is the graph whose set of vertices is W

and whose edges are all the edges xy ∈ E such that x and y are in W . We denote this
graph by G[W ]; if W = V \ {v}, we simply write G[V − v]. An induced path in G is a
subset P of V such that G[P ] is a path; equivalently, the vertices in P define a chordless
path in G. All these terminology and notation being standard, we refer to [3] for further
explanation.

Two distinct vertices x and y are called r-twins if B(x, r) = B(y, r). If there are no
r-twins in G, we say that G is r-twin-free.

2 Motivations and main results

The notion of identifying code in a graph was introduced by Karpovsky, Chakrabarty and
Levitin in [5]. For r ≥ 1, an r-identifying code in G = (V, E) is a subset C of V such that
the sets

IC(v) = B(v, r) ∩ C for v ∈ V

are all distinct and non-empty. The original motivation for identifying codes was the fault
diagnosis in multiprocessor systems; we refer to [1], [5] or [7] for further explanation and
applications. The interested reader can also find a nearly exhaustive bibliography in [6].

Given a graph G = (V, E), it is easily seen that there exists an r-identifying code in
G if and only if V itself is an r-identifying code, which precisely means that G is r-twin-
free. Different structural properties which are worth investigating arise when considering
a connected r-twin-free graph with r ≥ 1. For instance, it has been proved in [2] that
an r-twin-free graph always contains a path, not necessarily induced, on 2r + 1 vertices.
In the same article, the authors conjectured that we can always find such a path as an
induced subgraph of G. We prove this conjecture as a corollary from Theorem 1.

Let us denote by p(G) the maximum number of vertices of an induced path in G.
We prove the following theorem and corollary, which we formulate for connected graphs
without loss of generality.

Theorem 1. Let G = (V, E) be a connected graph with at least two vertices, and with a
centre c ∈ V such that no neighbour of c is a centre. Then

p(G) ≥ 2 rad(G) + 1.

This implies:

Corollary 2. Let G be a connected graph with at least two vertices, and r ≥ 1. If G is
r-twin-free then

p(G) ≥ 2r + 1.
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3 Proof of the theorem

A different proof for Corollary 2 can be found in [1]. The one we present here is much
shorter and is based on the article by Erdős, Saks and Sós [4] where the following theorem
can be found. The authors give credit to Fan Chung for the proof.

Theorem 3. (Chung) For every connected graph G = (V, E) we have

p(G) ≥ 2 rad(G) − 1.

We require the following lemma, inspired by [4], in order to prove Theorem 1.

Lemma 4. Let t ≥ 2 and G = (V, E) be a graph such that there are in G two vertices v0

and vt with d(v0, vt) = t, a shortest path v0v1v2 · · ·vt between v0 and vt, and a vertex w

such that d(v0, w) ≤ t− 1 and d(v2, w) ≥ t (see fig. 1). Then there exists an induced path
on 2t − 1 vertices in G.

� � � � �

�

v0 v1 v2 vt

w

d(v0,w)≤t−1 d(v2 ,w)≥t

Figure 1: The path v0 · · · vt and w in Lemma 4.

Proof. In the case t = 2, the shortest path v0v1v2 itself is an induced path on 2t − 1 = 3
vertices; so we suppose now that t ≥ 3. First observe that since d(v2, w) ≥ t we have
w 6= vi for all i ∈ {0, 1, · · · , t}. Consider a shortest path P between v0 and w, and let
u ∈ P , distinct from v0. Let i ≥ 2; we show that d(u, vi) ≥ 2. First we have

d(v0, vi) = i ≤ d(v0, u) + d(u, vi)

and second
t ≤ d(v2, w) ≤ d(v2, vi) + d(vi, u) + d(u, w)

with d(v2, vi) = i − 2 because i ≥ 2. Summing these two inequalities we get

t + i ≤ d(v0, u) + d(u, w) + 2d(vi, u) + i − 2

and since
d(v0, u) + d(u, w) = d(v0, w)

we deduce
t + 2 ≤ d(v0, w) + 2d(u, vi).
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But we have d(v0, w) ≤ t − 1 and so

d(u, vi) ≥
3

2
.

Let us note that since d(v2, w) ≥ t, we have d(v0, w) ≥ t − 2 and so P consists of v0

and at least t− 2 ≥ 1 other vertices, i.e. at least t− 1 vertices. We proved that u satisfies
d(u, vi) ≥ 2 for i ≥ 2, so u is distinct from all the vi’s and furthermore can be adjacent
only to v1 or v0 (see fig. 2).

� � � � �

�

v0 v1 v2 vt

w

�u

P

Figure 2: The vertex u can only be adjacent to v1 or v0 in Lemma 4.

Now consider two cases:

• if no vertex u ∈ P \{v0} is adjacent to v1, then P extended by v1 · · · vt is an induced
path of G on at least (t − 1) + t = 2t − 1 vertices;

• if there is a vertex u ∈ P \ {v0} adjacent to v1, then

t ≤ d(v2, w) ≤ d(v2, v1) + d(v1, u) + d(u, w)

and so d(u, w) ≥ t−2. Since we have d(v0, u)+d(u, w) = d(v0, w) ≤ t−1, it follows
that we must have d(v0, u) = 1 and d(u, w) = t − 2. The path w · · ·uv1 · · ·vt is then
an induced path of G on 2t − 1 vertices.

�

For sake of completeness, we rephrase the end of the proof of Theorem 3 in [4]. Consider
a connected graph G of radius t ≥ 1; if t = 1, then the result is trivial. Suppose now
that t ≥ 2; we show that the vertices v0, v1, · · · vt and w as in Lemma 4 exist. To see this,
consider the collection of connected induced subgraphs H of G whose radius is at least t,
and choose one with the smallest possible number of vertices. Let VH be the vertex-set of
H.

There exists in H a vertex vt which is not a cutvertex; by minimality of H, the con-
nected induced subgraph H[VH −vt] of H must have radius at most t−1. If we consider a
centre v0 of H[VH −vt], we must have d(v0, w) ≤ t−1 for all the vertices w 6= vt in H; but
since H has radius at least t we also have d(v0, vt) = t. Let v0v1v2 · · · vt be a shortest path
between v0 and vt. Since H has radius t, there exists a vertex w such that d(v2, w) ≥ t,
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and we have d(v0, w) ≤ t− 1 because w cannot be vt. So we can choose this w and apply
Lemma 4.

Proof of Theorem 1. Let G = (V, E) be a graph of radius t ≥ 1 with a centre c ∈ V such
that no neighbour of c is a centre. We will apply Lemma 4 with t + 1 instead of t; to do
this, we have to find vertices v0, v1, · · · vt+1 and w; so let us denote the center c by v1. We
define N(v1) to be the set of neighbours of v1. We can choose a vertex v0 in N(v1) such
that B(v0, t) is not strictly contained in another B(x, t) for x ∈ N(v1): take for instance
v0 ∈ N(v1) such that B(v0, t) is of maximal cardinality. Since v0 is not a centre, there
exists a vertex vt+1 ∈ V such that d(v0, vt+1) = t + 1. Then we must have d(v1, vt+1) ≥ t,
and so d(v1, vt+1) = t because v1 is a centre. Consider a shortest path v1v2 · · · vt+1 between
v1 and vt+1; then v0v1v2 · · · vt+1 is a shortest path between v0 and vt+1. Now, if we show
that there exists a vertex w such that d(v2, w) ≥ t + 1 and d(v0, w) ≤ t, we can apply
Lemma 4. So, assume that such a vertex w does not exist: this means that all the vertices
w with d(v0, w) ≤ t must satisfy d(v2, w) ≤ t, and so B(v0, t) ⊂ B(v2, t). By maximality
of B(v0, t), we must then have B(v0, t) = B(v2, t); but this is impossible, since we have
vt+1 ∈ B(v2, t) \ B(v0, t). This contradiction shows that we can apply Lemma 4, and so
there exists in G an induced path on 2(t + 1) − 1 = 2t + 1 vertices; thus we have

p(G) ≥ 2rad(G) + 1.

�

Proof of Corollary 2. Let G be a graph, x a center of G and y a neighbour of x. Then by
definition B(x, rad(G)) = V , and for all z ∈ V we have

d(y, z) ≤ d(z, x) + d(x, y) ≤ rad(G) + 1.

So
B(x, r) = B(y, r) = V

for all r ≥ rad(G)+1. Suppose now that G is r-twin-free; then we must have rad(G) ≥ r.
Now, either rad(G) ≥ r + 1 and we can apply Theorem 3, or rad(G) = r. But in the

latter case, centers are r-twins so there can only be one in G; in particular we can apply
Theorem 1 and so

p(G) ≥ 2rad(G) + 1 = 2r + 1.

�

4 Conclusion and perspectives

For n ≥ 1, we denote by Pn the path on n vertices, i.e. the graph consisting of n vertices
v0, v1, · · · , vn−1 and the n − 1 edges vivi+1 for 0 ≤ i ≤ n − 1. As the path P2r+1 on 2r + 1
vertices is itself r-twin-free, the previous results show that P2r+1 is the only minimal
r-twin-free graph for the induced subgraph relationship. Indeed, we have:
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An r-twin-free graph contains a path P2r+1 as an induced sugbraph, and P2r+1 is r-
twin-free.

One could wonder how these results could be extended to different cases. For instance,
we have:

An r-twin-free and 2-connected graph G contains a cycle with at least 2r + 2 vertices
as a subgraph; and the cycle Ck on k vertices is r-twin-free if and only if k ≥ 2r + 2 (and
is, of course, 2-connected).

Let us recall that a graph G is 2-connected if and only if for every pair (x, y) of distinct
vertices, there exist at least two paths P1 and P2 between x and y in G, such that there
are no common vertices to P1 and P2 except x and y (see [3], pp. 55-57 for more details).
Since an r-twin-free graph has a diameter at least r + 1, the result above easily follows.
This shows that the cycles Ck with k ≥ 2r + 2 are the minimal graphs for the subgraph
relationship in the class of 2-connected, r-twin-free graphs. But in this case, the result
cannot be extended to the induced subgraph relationship. Indeed, for r ≥ 1 consider the
Cartesian product of a path P2r+1 with K2 (see fig. 3). One can check that this graph is
2-connected, r-twin-free and does not contain a cycle with more than 2r + 2 vertices as
an induced subgraph. For r = 1, see the counterexample on fig. 4

a1 a2 a3 a2r+1

b1 b2 b3 b2r+1

� � � � �

�����

Figure 3: A 2-connected, r-twin-free graph which does not contain a cycle Ck with k ≥ 2r + 2 as an
induced subgraph (r ≥ 2).

Figure 4: A 2-connected, 1-twin-free graph which does not contain a cycle Ck with k ≥ 4 as an induced
subgraph.

As a conclusion, we leave open the same problem in the class of k-connected graphs
with k ≥ 3:

What are the minimal elements of the class of 3-connected, r-twin-free graphs, for the
subgraph relationship, or the induced subgraph relationship?

A first step would be to determine the smallest cardinality for a k-connected r-twin-free
graph.
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