Rainbow H-factors of complete s-uniform r-partite hypergraphs *

Ailian Chen
School of Mathematical Sciences
Xiamen University, Xiamen, Fujian361005, P. R. China
elian1425@sina.com
Fuji Zhang
School of Mathematical Sciences
Xiamen University, Xiamen, Fujian361005, P. R. China
fjzhang@xmu.edu.cn
Hao Li
Laboratoire de Recherche en Informatique
UMR 8623, C. N. R. S. -Université de Paris-sud, 91405-Orsay Cedex, France li@lri.fr

Submitted: Jan 19, 2008; Accepted: Jul 2, 2008; Published: Jul 14, 2008
Mathematics Subject Classifications: 05C35, 05C70, 05C15

Abstract

We say a s-uniform r-partite hypergraph is complete, if it has a vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ of r classes and its hyperedge set consists of all the s-subsets of its vertex set which have at most one vertex in each vertex class. We denote the complete s-uniform r-partite hypergraph with k vertices in each vertex class by $\mathcal{T}_{s, r}(k)$. In this paper we prove that if h, r and s are positive integers with $2 \leq$ $s \leq r \leq h$ then there exists a constant $k=k(h, r, s)$ so that if H is an s-uniform hypergraph with h vertices and chromatic number $\chi(H)=r$ then any proper edge coloring of $\mathcal{T}_{s, r}(k)$ has a rainbow H-factor.

Keywords: H-factors, Rainbow, uniform hypergraphs.

1 Introduction

A hypergraph is a pair (V, E) where V is a set of elements, called vertices, and E is a set of non-empty subsets of V called hyperedges or edges. A hypergraph H is called

[^0]s-uniform or an s-hypergraph if every edge has cardinality s. A graph is just a 2-uniform hypergraph. We say a hypergraph is r-partite if it has a vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ of r classes such that each hyperedge has at most one vertex in each vertex class, and a s-uniform r-partite hypergraph is complete, if it has a vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ of r classes and its hyperedge set consists of all the s-subsets of its vertex set which have at most one vertex in each vertex class. We denote the complete s-uniform r-partite hypergraph with k vertices in each vertex class by $\mathcal{T}_{s, r}(k)$.

If H is a hypergraph with h vertices and G is hypergraph with $h n$ vertices, we say that G has an H-factor if it contains n vertex disjoint copies of H. For example, a K_{2}-factor of a graph is simply a perfect matching. We say an edge coloring of a hypergraph is proper if any two edges sharing a vertex receive distinct colors. We say a subhypergraph of an edge-colored hypergraph is rainbow if all of its edges have distinct colors, and a rainbow H-factor is an H-factor whose components are rainbow H-subhypergraphs.

Many graph theoretic parameters have corresponding rainbow variants. Erdős and Rado[4] were among the first to consider the problems of this type. For graphs, Jamison, Jiang and Ling[3], and Chen, Schelp and Wei $[2]$ considered Ramsey type variants where an arbitrary number of colors can be used; Alon et. al.[1] studied the function $f(H)$ which is the minimum integer n such that any proper edge coloring of K_{n} has a rainbow copy of H; and Keevash et. al.[5] considered the rainbow Turán number $e x^{*}(n ; H)$ which is the largest integer m such that there exists a properly edge-colored graph with n vertices and m edges but containing no rainbow copy of H. Recently, Yuster[6] proved that for every fixed graph H with h vertices and chromatic number $\chi(H)$, there exists a constant $K=K(H)$ such that every proper edge coloring of a graph with $h n$ vertices and with minimum degree at least $h n(1-1 / \chi(H))+K$ has a rainbow H-factor.

For hypergraphs, El-Zanati et al[7] discussed the existence of a rainbow 1-factor in 1factorizations of r-uniform hypergraph; in[8], Bollobás et al considered the edge colorings with local restriction of the complete r-uniform hypergraphs. In this paper, we discuss the rainbow H-factor in hypergraphs and extend the main result in [6] to uniform hypergraphs. The main idea of our proof also comes from [6], although the details are more complex. The main result in this paper is:

Theorem 1 If h, r and s are positive integers with $2 \leq s \leq r \leq h$ then there exists a constant $k=k(h, r, s)$ so that if H is an s-uniform hypergraph with h vertices and chromatic number $\chi(H)=r$ then any proper edge coloring of $\mathcal{T}_{s, r}(k)$ has a rainbow H factor.

2 Proof of Theorem 1

Let H be a s-uniform hypergraph with h vertices and $\chi(H)=r$. It is not difficult to check that $\mathcal{T}_{s, r}(h)$ has an H-factor for $\mathcal{T}_{s, r}(h)$ and H have the same chromatic number. So it suffices to show that there exists $k=k(h, r, s)$ such that any proper edge-colored $\mathcal{T}_{s, r}(k)$ has a rainbow $\mathcal{T}_{s, r}(h)$-factor. We shall prove a slightly stronger statement. For $0<p \leq h$, Let $\mathcal{I}_{s, r}(h, p)$ be the complete s-uniform r-partite hypergraph with h vertices in each
vertex class, except the last vertex class which has only p vertices. Define $\mathcal{T}_{s, r}(h ; 0)=$ $\mathcal{T}_{s, r-1}(h ; h)$. We prove that there exists $k=k(h, r, s, p)$ such that any proper edge-colored $\mathcal{T}_{s, r}(k h ; k p)$ has a rainbow $\mathcal{T}_{s, r}(h ; p)$ - factor.

Let h be fixed, we prove the result by induction on r, and for each r, by induction on $p \geq 1$. The base case $r=s$ and $p=1$ is trivial since every subhypergraph of a proper edge-colored hypergraph $\mathcal{T}_{s, s}(h ; 1)$ is rainbow. Given $r \geq s$, assuming the result holds for r and $p-1 \geq 1$, we prove it for r and p (if $p=1$ then $p-1=0$ so we use the induction on $\left.\mathcal{T}_{s, r-1}(h ; h)\right)$. Let $k=k(h, r, s, p-1)$ and let t be sufficiently large (t will be chosen later). Consider a proper edge-coloring of $\mathcal{T}=\mathcal{T}_{s, r}(k t h ; k t p)$. We let $c\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ denote the color of the edge $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$. Denote the first $r-1$ vertex classes of \mathcal{T} by V_{1}, \ldots, V_{r-1} and the last vertex class by U_{r}. Let V_{r} be an arbitrary subset of size $k(p-1) t$ and $W=U_{r} \backslash V_{r}$ the remaining set with $|W|=k t$. For $i=1, \ldots, r$, we randomly partition V_{i} into t subsets $V_{i}(1), \ldots, V_{i}(t)$, each of the same size. Each of the r random partitions is performed independently, and each partition is equally likely. Let $S(j)$ be the subhypergraph of \mathcal{T} induced by $V_{1}(j) \cup V_{2}(j) \cup \cdots \cup V_{r}(j)$, for $j=1, \ldots, t$. Notice that $S(j)$ is a properly edge-colored $\mathcal{T}_{s, r}(k h ; k(p-1))$ and hence, by the induction hypothesis $S(j)$ has a rainbow $\mathcal{T}_{s, r}(h ; p-1)$-factor. Let $B=(X \cup W ; F)$ be a bipartite graph where $X=\{S(j): j=1, \ldots, t\}$ and there exists an edge $(S(j), w) \in F$ if for all $1 \leq i_{1}<i_{2}<\cdots<i_{s-1} \leq r$ and for all $x_{i_{k}} \in V_{i_{k}}(j)(k=1,2, \ldots, s-1)$, the color $c\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s-1}}, w\right)$ does not appear at all in $S(j)$.

If we can show that, with positive probability, B has a 1-to- k assignment in which each $S(j) \in X$ is assigned to precisely k elements of W and each $w \in W$ is assigned to a unique $S(j)$ then we can show that \mathcal{T} has a rainbow $\mathcal{T}_{s, r}(h ; p)$-factor. Indeed, consider $S(j)$ and the unique set X_{j} of k elements of W that are matched to $S(j)$. Since $S(j)$ has a rainbow $\mathcal{T}_{s, r}(h ; p-1)$-factor, we can arbitrarily assign a unique element of X_{j} to each element of this factor and obtain a $\mathcal{T}_{s, r}(h ; p)$ which is also rainbow because all the edges of this $\mathcal{T}_{s, r}(h ; p)$ incident with the assigned vertex have colors that do not appear at all in other edges of this $\mathcal{T}_{s, r}(h ; p)$. Now we use the 1-to- k extension of Hall's Theorem to prove that B has the required 1-to- k assignment. Namely, we will show that, with positive probability, $|N(Y)| \geq k|Y|$ for each $Y \subseteq X$. (Hall's Theorem is simply the case $k=1$.) To guarantee this condition, it suffices to prove that, with positive probability, each vertex of X has degree greater than $(k-1 / 2) t$ in B and each vertex of W has degree greater than $t / 2$ in B. Because, if $|Y| \leq t / 2$, then $|N(Y)| \geq\left(k-\frac{1}{2}\right) t \geq k|Y|$; if $|Y|>t / 2$, then that each vertex of W has degree greater than $t / 2$ in B implies that $N(Y)=W$, so $|N(Y)| \geq k|Y|$.

We first prove that each vertex of X has degree greater than $(k-1 / 2) t$ in B. Consider $S(j) \in X$. Let $C(j)$ be the set of all colors appearing in $S(j)$. As $S(j)$ is a $\mathcal{T}_{s, r}(k h ; k(p-1))$ we have that $|C(j)|<\left|E\left(\mathcal{T}_{s, r}(k h, k h)\right)\right|=\binom{r}{s}(k h)^{s}$. For each vertex x of $S(j)$, let $W_{x} \subset W$ be the set of vertices $w \in W$ such that there exists an edge in \mathcal{T} incident to both x and w with color in $C(j)$. Obviously, $\left|W_{x}\right| \leq(s-1)|C(j)|$ since \mathcal{T} is s-uniform and no color appears more than once in edges incident with x for the coloring is proper. Let $W(j)$ be the union of all W_{x} taken over all vertices of $S(j)$. Then, $|W(j)|<(k h r)(s-1)\binom{r}{s}(k h)^{s} \leq$ $\frac{1}{s}(k h r)^{s+1}$. Because each $v \in W \backslash W(j)$ is a neighbor of $S(j)$ in B, thus, if we take
$t \geq(k h r)^{s+1}$, we have that each $S(j)$ has more than $(k-1 / 2) t$ neighbors in B.
Now we prove the second part: each vertex of W has degree greater than $t / 2$ in B. Fix some $w \in W$ and let $d_{B}(w)$ denote the degree of w in B. As $d_{B}(w)$ is a random variable, and since $|W|=k t$, it suffices to prove that $\operatorname{Pr}\left\{d_{B}(w) \leq t / 2\right\}<1 / k t$ which implies that $\operatorname{Pr}\left\{\exists w: d_{B}(w) \leq t / 2\right\}<1$. To simplify notation we let l_{i} be the size of the i 'th vertex class of each $S(j)$. Thus $l_{i}=k h$ for $i=1, \ldots, r-1$ and $l_{r}=k(p-1)$. Recall that the i 'th vertex class of $S(j)$ is formed by taking the j 'th block of a random partition of V_{i} into t blocks of equal size l_{i}. Alternatively, one can view the i 'th vertex class of $S(j)$ as the elements $l_{i}(j-1)+1, \ldots, l_{i} j$ of a random permutation of V_{i} for $i=1, \ldots, r$. Therefore, Let π_{i} be a random permutation of V_{i}. Thus, for $i=1, \ldots, r, \pi_{i}(l) \in V_{i}$ for $l=1, \ldots, l_{i} t$. We define the a^{\prime} th vertex of i^{\prime} th vertex class of $S(j)$ to be $\pi_{i}\left(l_{i}(j-1)+a\right)$ for $i=1, \ldots, r$ and $a=1, \ldots, l_{i}$.

We define the following events. For $2 s-1$ vertex classes $V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}$ with $1 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{s} \leq r$ and $1 \leq \beta_{1}<\beta_{2}<\cdots<\beta_{s-1} \leq r-1$ for a block $S(j)$ where $1 \leq j \leq t$, and positive indices $a_{\alpha_{i}} \leq l_{\alpha_{i}}, b_{\beta_{i}} \leq l_{\beta_{i}}$, let $x_{j, \alpha_{i}}$ be the $a_{\alpha_{i}}$ 'th vertex of vertex class $V_{\alpha_{i}}$ in $S(j)(1 \leq i \leq s)$, let $y_{j, \beta_{k}}$ be the $b_{\beta_{k}}$ 'th vertex of vertex class $V_{\beta_{k}}$ in $S(j)$ $(1 \leq k \leq s-1)$. Denote by $A\left(V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)$ the event that $c\left(x_{j, \alpha_{i}}, \ldots, x_{j, \alpha_{s}}\right)=c\left(y_{j, \beta_{1}}, \ldots, y_{j, \beta_{s-1}}, w\right)$. We now prove the following claim.

Claim 1 If $d_{B}(w) \leq t / 2$ then there exist $V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots$, $b_{\beta_{s-1}}$ and there exists $J \subset\{1,2, \ldots, t\}$ with $|J|>t /(k h r)^{2 s-1}$ such that for each $j \in J$ the event $A\left(V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)$ holds.
Proof of Claim 1. If $d_{B}(w) \leq t / 2$ then there exists $J^{\prime} \subset\{1,2, \ldots, t\}$ with $\left|J^{\prime}\right|>t / 2$ such that for each $j \in J^{\prime}$ some event $A(\ldots, j, \ldots)$ holds. There are $\binom{r}{s}$ choices for $V_{\alpha_{1}}, \ldots, V_{\alpha_{s}},\binom{r-1}{s-1}$ choices for $V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}$, and at most $k h$ choices for each of $a_{\alpha_{i}}, b_{\beta_{i}}$. Hence there exist $V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}$ and some $J \subset J^{\prime}$ with

$$
|J| \geq \frac{\left|J^{\prime}\right|}{\binom{r}{s}\binom{r-1}{s-1}(k h)^{2 s-1}}>\frac{t}{(k h r)^{2 s-1}}
$$

such that for each $j \in J$ the event

$$
A\left(V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)
$$

holds. So we complete the proof of Claim 1.
For each subset $J \subset\{1,2, \ldots, t\}$ of cardinality $|J|=\left\lceil t /(k h r)^{2 s-1}\right\rceil$, let

$$
\begin{aligned}
& A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right) \\
& \quad=\cap_{j \in J} A\left(V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, j, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)
\end{aligned}
$$

Claim 2 If the probability of each of the events

$$
A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)
$$

is smaller than $k^{-2 s} h^{-2 s+1} r^{-2 s+1} 2^{-t} t^{-1}$ for each subset $J \subset\{1,2, \ldots, t\}$ of cardinality $|J|=\left\lceil t /(k h r)^{2 s-1}\right\rceil$, then $\operatorname{Pr}\left\{d_{B}(v) \leq t / 2\right\}<1 / k t$.

Proof of Claim 2. From Claim 1 and the fact that there are less than 2^{t} possible choices for J and less than $(k h r)^{2 s-1}$ possible choices for $V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}$, $b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}$ where $a_{\alpha_{i}} \leq l_{\alpha_{i}}(1 \leq i \leq s)$ and $b_{\beta_{i}} \leq l_{\beta_{i}}(1 \leq i \leq s-1)$, we have

$$
\begin{aligned}
\operatorname{Pr}\left\{d_{B}(v) \leq t / 2\right\} & \leq \sum_{J} \operatorname{Pr}\left\{A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)\right\} \\
& <2^{t}(k h r)^{2 s-1} k^{-2 s} h^{-2 s+1} r^{-2 s+1} 2^{-t} t^{-1}=1 / k t
\end{aligned}
$$

where the sum is taken over all the events

$$
A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)
$$

with $J \subset\{1,2, \ldots, t\}$ of cardinality $\left\lceil t /(k h r)^{2 s-1}\right\rceil$.
By Claim 2, in order to complete the proof of Theorem 1 it suffices to prove the following claim.

Claim 3 Let $1 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{s} \leq r, 1 \leq \beta_{1}<\beta_{2}<\cdots<\beta_{s-1} \leq r-1$, $a_{\alpha_{i}} \leq l_{\alpha_{i}}(1 \leq i \leq s)$ and $b_{\beta_{i}} \leq l_{\beta_{i}}(1 \leq i \leq s-1)$. If $J \subset\{1,2, \ldots, t\}$ of cardinality $|J|=\left\lceil t /(k h r)^{2 s-1}\right\rceil$, then

$$
\operatorname{Pr}\left\{A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)\right\}<\frac{1}{k^{2 s} h^{2 s-1} r^{2 s-1} 2^{t} t}
$$

Proof of Claim 3. For convenience, let

$$
A=A\left(J, V_{\alpha_{1}}, \ldots, V_{\alpha_{s}}, V_{\beta_{1}}, \ldots, V_{\beta_{s-1}}, a_{\alpha_{1}}, \ldots, a_{\alpha_{s}}, b_{\beta_{1}}, \ldots, b_{\beta_{s-1}}\right)
$$

and $\Delta=\left\lceil t /(k h r)^{2 s-1}\right\rceil$. We may assume, without loss of generality, that $J=\{1, \ldots, \Delta\}$. For $j \in J$, let $x_{j, \alpha_{i}}$ be the $a_{\alpha_{i}}{ }^{\text {'th }}$ vertex of vertex class $V_{\alpha_{i}}$ in $S(j)$, let $y_{j, \alpha_{i}}$ be the $b_{\beta_{i}}$ 'th vertex of vertex class $V_{\beta_{i}}$ in $S(j)$. Suppose that we are given the identity of the $(2 s-1)(j-1)+s-1$ vertices

$$
x_{1, \alpha_{1}}, \ldots, x_{1, \alpha_{s}}, y_{1, \alpha_{1}}, \ldots, y_{1, \beta_{s-1}}, \ldots, x_{j-1, \alpha_{1}}, \ldots, x_{j-1, \alpha_{s}}, y_{j-1, \alpha_{1}}, \ldots, y_{j-1, \beta_{s-1}}
$$

and $y_{j, \alpha_{1}}, \ldots, y_{j, \beta_{s-1}}$ (we assume here that all vertices are distinct otherwise $\operatorname{Pr}\{A\}=0$ for our edge coloring is proper). If we can show that given this information, the probability that $c\left(x_{j, \alpha_{1}}, \ldots, x_{j, \alpha_{s}}\right)=c\left(y_{j, \alpha_{1}}, \ldots, y_{j, \beta_{s-1}}, w\right)$ is less than q where q only depends on t, h, r, s, p, then, by the product formula of conditional probabilities we have $\operatorname{Pr}\{A\}<$ q^{Δ}. Thus, assume that we are given the identity of the $(2 s-1)(j-1)+s-1$ vertices

$$
x_{1, \alpha_{1}}, \ldots, x_{1, \alpha_{s}}, y_{1, \alpha_{1}}, \ldots, y_{1, \beta_{s-1}}, \ldots, x_{j-1, \alpha_{1}}, \ldots, x_{j-1, \alpha_{s}}, y_{j-1, \alpha_{1}}, \ldots, y_{j-1, \beta_{s-1}}
$$

and $y_{j, \alpha_{1}}, \ldots, y_{j, \beta_{s-1}}$. In particular, we know the color $c\left(y_{j, \alpha_{1}}, \ldots, y_{j, \beta_{s-1}}, v\right)=c$. Now we evaluate the probability that $c\left(x_{j, \alpha_{1}}, \ldots, x_{j, \alpha_{s}}\right)=c$. For $1 \leq i \leq s$, let

$$
\begin{gathered}
V_{j, \alpha_{i}}^{\prime}=V_{\alpha_{i}} \backslash\left\{x_{1, \alpha_{1}}, \ldots, x_{1, \alpha_{s}}, y_{1, \alpha_{1}}, \ldots, y_{1, \beta_{s-1}}, \ldots, x_{j-1, \alpha_{1}}, \ldots, x_{j-1, \alpha_{s}},\right. \\
\left.y_{j-1, \alpha_{1}}, \ldots, y_{j-1, \beta_{s-1}}, y_{j, \alpha_{1}}, \ldots, y_{j, \beta_{s-1}}\right\} .
\end{gathered}
$$

Each vertex of $V_{j, \alpha_{i}}^{\prime}$ has an equal chance of being $x_{j, \alpha_{i}}$. Thus, each edge of $V_{j, \alpha_{1}}^{\prime} \times V_{j, \alpha_{1}}^{\prime} \times \cdots \times$ $V_{j, \alpha_{s}}^{\prime}$ has an equal chance of being the edge $\left\{x_{j, \alpha_{1}}, \ldots, x_{j, \alpha_{s}}\right\}$. Obviously, $\left|V_{j, \alpha_{i}}^{\prime}\right| \geq t k h-2 \Delta$. Since our coloring is proper, the color c appears at most $t k h$ times in $V_{j, \alpha_{1}}^{\prime} \times V_{j, \alpha_{1}}^{\prime} \times \cdots \times V_{j, \alpha_{s}}^{\prime}$. Hence,

$$
\begin{gathered}
\operatorname{Pr}\left\{c\left(x_{j, \alpha_{1}}, \ldots, x_{j, \alpha_{s}}\right)=c\right\} \leq \frac{t k h}{\left|V_{j, \alpha_{1}}^{\prime}\right|\left|V_{j, \alpha_{2}}^{\prime}\right| \cdots\left|V_{j, \alpha_{s}}^{\prime}\right|} \\
\quad \leq \frac{t k h}{(t k h-2 \Delta)^{s}}<\frac{t k h}{(t k h-t k h / 2)^{2}}=\frac{t k h}{(t k h / 2)^{s}} .
\end{gathered}
$$

It is not difficult to check that

$$
\left(\frac{t k h}{(t k h / 2)^{s}}\right)^{\frac{t}{(k h r)^{2 s-1}}}<\frac{1}{k^{2 s} h^{2 s-1} r^{2 s-1} 2^{t} t}
$$

holds for sufficiently large t, an integer-valued function on k, h, r, s, by taking log both sides. It implies that for sufficiently large t, an integer-valued function on k, h, r, s, we have

$$
\operatorname{Pr}\{A\}<\left(\frac{t k h}{(t k h / 2)^{s}}\right)^{\Delta} \leq\left(\frac{t k h}{(t k h / 2)^{s}}\right)^{\frac{t}{(k h r)^{2 s-1}}}<\frac{1}{k^{2 s} h^{2 s-1} r^{2 s-1} 2^{t} t}
$$

This completes the proof of Claim 3.
So we have completed the induction step and the proof of Theorem 1.

References

[1] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints, Random Structures Algorithms 23 (2003), 409-433.
[2] G. Chen, R. Schelp and B. Wei, Monochromatic-rainbow Ramsey numbers, presented at 14th Cumberland Conference, Memphis, May 2001.
[3] R. E. Jamison , T. Jiang and A. C. H. Ling, Constrained Ramsey numbers of graphs, J. Graph Theory 42 (2002), 1-16.
[4] Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249255.
[5] P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte, Rainbow Turán Problems, Combin., Probab. Comput. 16 (2007), 109-126.
[6] R. Yuster, Rainbow H-factors, Electron. J. Combin. 13 (2006), R13.
[7] S. I. El-Zanati, M. J. Plantholt, P. A. Sissokho and L. E. Spence, On the existence of a rainbow 1-factor in 1-factorizations of $K_{r n}^{(r)}$, J. Combin. Des. 15 (2007), 487-490.
[8] B. Bollobás, Y. Kohayakawa, V. Rödl, M. Schacht and A. Taraz, Essentially infinite colourings of hypergraph, Proc. London Math. Soc. 95 (2007), 709-734.

[^0]: *The work was partially supported by NSFC grant (10671162) and NNSF of china (60373012).

