A note on neighbour-distinguishing regular graphs total-weighting

Jakub Przybyło
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
przybylo@wms.mat.agh.edu.pl

Submitted: May 22, 2007; Accepted: Sep 4, 2008; Published: Sep 15, 2008
Mathematics Subject Classifications: 05C78

Abstract

We investigate the following modification of a problem posed by Karoński, Luczak and Thomason [J. Combin. Theory, Ser. B 91 (2004) 151-157]. Let us assign positive integers to the edges and vertices of a simple graph G. As a result we obtain a vertex-colouring of G by sums of weights assigned to the vertex and its adjacent edges. Can we obtain a proper colouring using only weights 1 and 2 for an arbitrary G ?

We know that the answer is yes if G is a 3 -colourable, complete or 4-regular graph. Moreover, it is enough to use weights from 1 to 11 , as well as from 1 to $\left\lfloor\frac{\chi(G)}{2}\right\rfloor+1$, for an arbitrary graph G. Here we show that weights from 1 to 7 are enough for all regular graphs.

Keywords: neighbour-distinguishing total-weighting, regular graph

1 Introduction

A k-total-weighting of a simple graph G is an assignment of an integer weight, $w(e), w(v) \in$ $\{1, \ldots, k\}$ to each edge e and each vertex v of G. A k-total-weighting is neighbourdistinguishing (or vertex colouring, see [1, 2]) if for every edge $u v, w(u)+\sum_{e \ni u} w(e) \neq$ $w(v)+\sum_{e \ni v} w(e)$. If such a weighting exists, we say that G permits a neighbourdistinguishing k-total-weighting.

A similar parameter, but in the case of an edge (not total) weighting, was introduced and studied in [3] by Karoński, Łuczak and Thomason. They asked if each simple connected graph that is not simply a single edge permits a neighbour-distinguishing 3 -edgeweighting, and showed that this statement holds for 3-colourable graphs. Then AddarioBerry, Dalal and Reed showed that it is enough to use numbers from 1 to 16 to construct
a neighbour-distinguishing edge-weighting for an arbitrary graph (not containing a single edge as a component), see [2].

In [4] we conjectured that numbers 1 and 2 in turn are enough to distinguish neighbours of each graph by a total-weighting. We verified this conjecture for some classes of graphs and established the following upper bounds.

Theorem 1 ([4]) All complete, 3-colourable and 4-regular graphs permit neighbour-distinguishing 2-total-weightings.

Theorem 2 ([4]) Each simple graph permits a neighbour-distinguishing 11-total-weighting and a neighbour-distinguishing $\left(\left\lfloor\frac{\chi(G)}{2}\right\rfloor+1\right)$-total-weighting.

Note that a graph permits a neighbour-distinguishing 1-total weighting iff every two neighbours have distinct degrees in this graph. Here we deal then with the most difficult, in a way, case and show that the weights $1, \ldots, 7$ are enough for each regular graph, see Theorem 7.

2 Lemmas

To prove our main result we shall need the following lemmas. Then Corollary 6 will provide us with a construction of a neighbour-distinguishing total-weighting of each regular graph by weights from 1 to 8 , which will be then reduced to 7 by Lemma 4.

Given a sequence of numbers $\left(a_{1}, \ldots, a_{k}\right)$, we shall call $\left(b_{1}, \ldots, b_{l}\right)$ a block of this sequence iff there exists $0 \leqslant j \leqslant k-l$ such that $b_{i}=a_{j+i}, i=1, \ldots, l$.

Lemma 3 Assume that $s=\left(a_{1}, \ldots, a_{k}\right)$ is a sequence of nonnegative integers such that $a_{1}+\ldots+a_{k} \leqslant k$. Then there is an element $a_{j}=0$ of that sequence such that $a_{j-1}+a_{j+1} \leqslant 3$ (where $a_{0}, a_{k+1}:=0$), unless s consists exclusively of blocks $(1,0,3,0,1)$ and $(1, \ldots, 1)$.

Proof. Let us call the sequences consisting of blocks $(1,0,3,0,1)$ and $(1, \ldots, 1)$ (which may intersect) forbidden. The lemma is obvious for $k \leqslant 3$. It is also easy to verify it for $k=4$, hence let us argue by induction on k. Take $k \geqslant 5$ and assume the proposition does not hold for some (not forbidden) sequence $s=\left(a_{1}, \ldots, a_{k}\right)$, hence if $a_{i}=0$, then $a_{i-1}+a_{i+1} \geqslant 4$. If there are two consecutive elements a_{r}, a_{r+1} of s that are either both positive or both equal to 0 , then either the sequence $\left(a_{1}, \ldots, a_{r}\right)$ or $\left(a_{r+1}, \ldots, a_{k}\right)$ is not forbidden and complies with the assumptions of the lemma, hence, by induction, there is an element $a_{j}=0$ such that $a_{j-1}+a_{j+1} \leqslant 3$, a contradiction.

Therefore, we may assume every second element of s is positive and every second one equals 0 . Let a_{t} be the second element that is equal to 0 in the sequence s (hence $t=3$ or 4). By the inequality $a_{i-1}+a_{i+1} \geqslant 4$ for the first of such elements, $a_{1}+\ldots+a_{t} \geqslant 4$. Therefore the sequence $\left(a_{t+1}, \ldots, a_{k}\right)$ complies with the assumptions of the lemma (and is not a forbidden one), hence we again obtain a contradiction by induction.

Let a k-vertex-colouring of $G=(V, E)$ be a proper vertex-colouring $c: V \rightarrow C$ (i.e. $c(u) \neq c(v)$ if $u v \in E)$ by the colours from a colour set C with $|C|=k$. Note that we do not require c to be surjective, hence not all the colours have to be used.

Lemma 4 Let G be a k-regular graph which is neither a complete graph nor an odd cycle. There is a k-vertex-colouring with colour classes V_{1}, \ldots, V_{k} such that $d_{V_{i}}(v) \leqslant 3$ for each $v \in V_{i-1}, i=2, \ldots, k$.

Proof. Let $E(U, W)$ denote the set of edges between subsets U, W of the vertex set of G. Let also $e(U, W)=|E(U, W)|$. By Brooks' Theorem, there is a k-vertex-colouring of G. Let us choose such a k-vertex-colouring and such an ordering of its colour classes V_{1}, \ldots, V_{k} that minimizes the sum $\sum_{l=2}^{k} e\left(V_{l-1}, V_{l}\right)$. We argue that it complies with our requirements.

Assume it is not so; hence there is $2 \leqslant i \leqslant k$ and $v \in V_{i-1}$ such that $d_{V_{i}}(v) \geqslant 4$. Denote $a_{l}=d_{V_{l}}(v), l=1, \ldots, k\left(a_{0}, a_{k+1}:=0\right)$. Then $a_{i} \geqslant 4\left(a_{i-1}=0\right)$ and, since G is k-regular, $a_{1}+\ldots+a_{k}=k$. By Lemma 3 , there is $1 \leqslant j \leqslant k$ such that $a_{j}=0$ and $a_{j-1}+a_{j+1} \leqslant 3$, hence $d_{V_{j}}(v)=0$ and we may move v from V_{i-1} to V_{j}, and thus at the same time reduce the minimized sum by at least four and add to it at most three (since v has at most three neighbours in $V_{j-1} \cup V_{j+1}$), a contradiction.

Led $\delta(G)$ denote the minimal degree of a vertex in a graph G. We make use of the following Theorem 5 by Addario-Berry, Dalal and Reed (see [2]) to obtain a similar to their Corollary 6.

Theorem 5 ([2]) Given a graph $G=(V, E)$ and for all $v \in V$, integers a_{v}^{-}, a_{v}^{+}such that $a_{v}^{-} \leqslant\left\lfloor\frac{d(v)}{2}\right\rfloor \leqslant a_{v}^{+}<d(v)$, and

$$
\begin{equation*}
a_{v}^{+} \leqslant \min \left(\frac{d(v)+a_{v}^{-}}{2}+1,2 a_{v}^{-}+3\right), \tag{1}
\end{equation*}
$$

there exists a spanning subgraph H of G such that $d_{H}(v) \in\left\{a_{v}^{-}, a_{v}^{-}+1, a_{v}^{+}, a_{v}^{+}+1\right\}$ for all $v \in V$.

Corollary 6 Given a graph $G=(V, E)$ with $\delta(G)>4$, and for each $v \in V$, integers $a_{v}^{-} \in\left\lfloor\left\lfloor\frac{d(v)}{4}\right\rfloor, 2\left\lfloor\frac{d(v)}{4}\right\rfloor\right\rfloor$ and $a_{v}^{+}:=a_{v}^{-}+\left\lfloor\frac{d(v)}{4}\right\rfloor+1$, there exists a spanning subgraph H of G such that $d_{H}(v) \in\left\{a_{v}^{-}, a_{v}^{-}+1, a_{v}^{+}, a_{v}^{+}+1\right\}$ for all $v \in V$.

Proof. We have $a_{v}^{-} \leqslant 2\left\lfloor\frac{d(v)}{4}\right\rfloor \leqslant\left\lfloor\frac{d(v)}{2}\right\rfloor,\left\lfloor\frac{d(v)}{2}\right\rfloor \leqslant 2\left\lfloor\frac{d(v)}{4}\right\rfloor+1 \leqslant a_{v}^{+}$and $a_{v}^{+} \leqslant 3\left\lfloor\frac{d(v)}{4}\right\rfloor+1<$ $d(v)$, hence, by Theorem 5, it is enough to prove (1) for all $v \in V$. Note then that $a_{v}^{+}=\frac{a_{v}^{-}}{2}+\frac{a_{v}^{-}}{2}+\left\lfloor\frac{d(v)}{4}\right\rfloor+1 \leqslant \frac{a_{v}^{-}}{2}+\left\lfloor\frac{d(v)}{4}\right\rfloor+\left\lfloor\frac{d(v)}{4}\right\rfloor+1 \leqslant \frac{a_{v}^{-}}{2}+\frac{d(v)}{2}+1$ and $a_{v}^{+}=a_{v}^{-}+\left\lfloor\frac{d(v)}{4}\right\rfloor+1 \leqslant$ $a_{v}^{-}+a_{v}^{-}+1$, thus (1) holds.

3 Main Result

For a given total-weighting w of G, let $c_{w}(v):=w(v)+\sum_{e \ni v} w(e)$ (or $c(v)$ for short if the weighting w is obvious), define the resulting colouring for each $v \in V(G)$. We shall call $c(v)$ a colour or a total weight of v. Our aim, in fact, is to find such a weighting that this vertex-colouring is proper.

Theorem 7 Each regular graph admits a neighbour-distinguishing 7-total-weighting.
Proof. Let G be a k-regular graph. By Theorem 1, we may assume that G is not a complete graph and, by Theorem 2 (and Brooks' Theorem), that $k \geqslant 14$. By Lemma 4 there is a k-vertex-colouring with colour classes V_{1}, \ldots, V_{k} such that $d_{V_{4 i}}(v) \leqslant 3$ for each $v \in V_{4(i-1)}, i=2, \ldots,\left\lfloor\frac{k}{4}\right\rfloor$. We shall make use of this fact in the second part of the proof.

Let $s_{i}=k+4\left\lfloor\frac{k}{4}\right\rfloor+4+i$ and $b_{i}=k+8\left\lfloor\frac{k}{4}\right\rfloor+8+i$, and let $L_{i}=\left\{s_{i}, b_{i}\right\}$ be a list of admissible colours (total weights) assigned to the vertex set $V_{i}, i=1, \ldots, k$. In the first part of the proof we construct an 8-total-weighting such that $c_{w}(v) \in L_{i}$ for each $v \in V_{i}, i=1, \ldots, k$. This way, since $s_{1}<\ldots<s_{k}<b_{1}<\ldots<b_{k}$, this weighting will be neighbour-distinguishing. In fact we will use only weights 1 and 5 for the edges. In the second part of the proof we will reduce the weights of some vertices and increase some of the edge weights, so that $w(e) \in\{1,2,5,6\}$ and $1 \leqslant w(v) \leqslant 7$ for all $e \in E$ and $v \in V$, and so that the lists of admissible colours remained the same for all colour classes but those of the form $V_{4 j}, 1 \leqslant j \leqslant\left\lfloor\frac{k}{4}\right\rfloor$. In these classes, we will admit colours in $L_{4 j}^{\prime}=\left\{s_{4 j}-4, s_{4 j}, b_{4 j}-4, b_{4 j}\right\}$ instead of $L_{4 j}, j=1, \ldots\left\lfloor\frac{k}{4}\right\rfloor$. Since $s_{4 j}-4=s_{4(j-1)}$ and $b_{4 j}-4=b_{4(j-1)}$, the total weights of the vertices in $V_{4 j}, j=1, \ldots\left\lfloor\frac{k}{4}\right\rfloor$, will have to be constructed carefully, so that the weighting remains neighbour-distinguishing. Note in particular that $s_{4}-4<s_{1}$ and $s_{k}<b_{4}-4<b_{1}$, hence colouring with L_{4}^{\prime} (instead of L_{4}) does not produce any new conflicts.

Let us then first weight all the edges of G with 1 and set a temporary weight 0 for each vertex of this graph. This way, each vertex gets a temporary colour k. Now for each $v \in V_{4 j+l}$ set $a_{v}^{-}=\left\lfloor\frac{k}{4}\right\rfloor+j$ and $a_{v}^{+}=a_{v}^{-}+\left\lfloor\frac{k}{4}\right\rfloor+1, j=0, \ldots,\left\lfloor\frac{k}{4}\right\rfloor, l=1, \ldots, 4$, (hence $\left.a_{v}^{-} \in\left[\left\lfloor\frac{k}{4}\right\rfloor, 2\left\lfloor\frac{k}{4}\right\rfloor\right\rfloor\right)$. Then by Corollary 6 there exists a spanning subgraph H of G such that $d_{H}(v) \in\left\{a_{v}^{-}, a_{v}^{-}+1, a_{v}^{+}, a_{v}^{+}+1\right\}$ for all $v \in V$. Let us then add 4 to the weight of each edge of this subgraph (hence $w(e) \in\{1,5\}$ for $e \in E$). Now each vertex $v \in V_{4 j+l}$ has a temporary colour in the set $\left\{k+4\left\lfloor\frac{k}{4}\right\rfloor+4 j, k+4\left\lfloor\frac{k}{4}\right\rfloor+4 j+4, k+8\left\lfloor\frac{k}{4}\right\rfloor+4 j+4, k+\right.$ $\left.8\left\lfloor\frac{k}{4}\right\rfloor+4 j+8\right\}=\left\{s_{4 j+l}-4-l, s_{4 j+l}-l, b_{4 j+l}-4-l, s_{4 j+l}-l\right\}$. Therefore by setting either $w(v)=l+4$ or l, we obtain $c(v) \in L_{i}$ and $1 \leqslant w(v) \leqslant 8$ for all $v \in V_{i}, i=1, \ldots, k$. This finishes the first part of the proof.

Note that we may have $w(v)=8$ only for vertices in $V_{4 j}, j=1, \ldots,\left\lfloor\frac{k}{4}\right\rfloor$. We shall reduce these weights in the following manner. Process the vertex sets of the form $V_{4 j}$ one after another in the reversed order, starting from $V_{4\left\lfloor\frac{k}{4}\right\rfloor}$ and ending at V_{4}. For a given $V_{4 j}$, process all its vertices in an arbitrary order. We introduce some changes only if $v \in V_{4 j}$ is weighted with 8 . Namely, if it has any neighbour in $V_{4(j-1)}$, we choose one such neighbour arbitrarily (call it u), and reduce the weights of u and v by 1 (it is each time possible since u has at most 3 neighbours in $V_{4 j}$, and had a weight 4 or 8 after the
first part of the construction), and add 1 to the weight of the edge $u v$ (changing it to 2 or 6), hence the total weights of v and u remain unchanged. On the other hand, if v has no neighbour in $V_{4(j-1)}$ (or $(j=1)$), we reduce the weight of v by 4, hence $c(v) \in L_{4 j}^{\prime}$. Since v has no neighbour in $V_{4(j-1)}$ (for $j>1$) and $s_{4}-4<s_{1}, s_{k}<b_{4}-4<b_{1}$, no conflict will appear. After processing all the vertices as described, we therefore obtain a neighbour-distinguishing 7 -total-weighting.

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex Colouring Edge Partitions, J. Combin. Theory, Ser. B 94 (2) (2005) 237-244.
[2] L. Addario-Berry, K. Dalal, B.A. Reed, Degree constrained subgraphs, Proceedings of GRACO2005, volume 19 of Electron. Notes Discrete Math., Amsterdam (2005), 257-263 (electronic), Elsevier.
[3] M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory, Ser. B 91 (2004) 151-157.
[4] J. Przybyło, M. Woźniak 1,2 Conjecture, II, Preprint MD 026 (2007), http://www.ii.uj.edu.pl/preMD/index.php.

