On domination in 2-connected cubic graphs

B. Y. Stodolsky*
Submitted: Mar 26, 2007; Accepted: Oct 15, 2008; Published: Oct 20, 2008
Mathematics Subject Classification: 05C69, 05C40

Abstract

In 1996, Reed proved that the domination number, $\gamma(G)$, of every n-vertex graph G with minimum degree at least 3 is at most $3 n / 8$ and conjectured that $\gamma(H) \leq$ $\lceil n / 3\rceil$ for every connected 3 -regular (cubic) n-vertex graph H. In [1] this conjecture was disproved by presenting a connected cubic graph G on 60 vertices with $\gamma(G)=$ 21 and a sequence $\left\{G_{k}\right\}_{k=1}^{\infty}$ of connected cubic graphs with $\lim _{k \rightarrow \infty} \frac{\gamma\left(G_{k}\right)}{\left|V\left(G_{k}\right)\right|} \geq \frac{1}{3}+\frac{1}{69}$. All the counter-examples, however, had cut-edges. On the other hand, in [2] it was proved that $\gamma(G) \leq 4 n / 11$ for every connected cubic n-vertex graph G with at least 10 vertices. In this note we construct a sequence of graphs $\left\{G_{k}\right\}_{k=1}^{\infty}$ of 2-connected cubic graphs with $\lim _{k \rightarrow \infty} \frac{\gamma\left(G_{k}\right)}{\left|V\left(G_{k}\right)\right|} \geq \frac{1}{3}+\frac{1}{78}$, and a sequence $\left\{G_{l}^{\prime}\right\}_{l=1}^{\infty}$ of connected cubic graphs where for each G_{l}^{\prime} we have $\frac{\gamma\left(G_{l}^{\prime}\right)}{\left|V\left(G_{l}^{\prime}\right)\right|}>\frac{1}{3}+\frac{1}{69}$.

1 Introduction

A set D of vertices is dominating in a graph G if every vertex of $G \backslash D$ is adjacent to a vertex in D. An arbitrary set A of vertices in a graph G dominates itself and the vertices at distance one from it. The domination number, $\gamma(G)$, of a graph G is the minimum size of a dominating set in G.

Ore [8] proved that $\gamma(G) \leq n / 2$ for every n-vertex graph without isolated vertices (i.e., with $\delta(G) \geq 1$). Blank [3] proved that $\gamma(G) \leq 2 n / 5$ for every n-vertex graph with $\delta(G) \geq 2$. Blank's result was also discovered by McCuaig and Shepherd [6]. Reed [9] proved that $\gamma(G) \leq 3 n / 8$ for every n-vertex graphs with $\delta(G) \geq 3$. All these bounds are best possible. However, Reed [9] conjectured that the domination number of each connected 3-regular (cubic) n-vertex graph is at most $\lceil n / 3\rceil$. In [1] this conjecture was disporved by exhibiting a connected cubic graph G on 60 vertices with $\gamma(G)=21$ and a sequence $\left\{G_{k}\right\}_{k=1}^{\infty}$ of connected cubic graphs with $\lim _{k \rightarrow \infty} \frac{\gamma\left(G_{k}\right)}{\left|V\left(G_{k}\right)\right|} \geq \frac{1}{3}+\frac{1}{69}$. All the counter-examples in [1] had cut-edges. In [2] Reed's upper bound of $\gamma(G) \leq 3 n / 8$ was

[^0]improved to $\gamma(G) \leq 4 n / 11$ for every connected cubic n-vertex graph G with at least 10 vertices by using by using Reed's techniques and examining some problematic cases more carefully and by adding a discharging argument. Kawarabayashi, Plummer, and Saito [5] proved that Reed's conjecture is at least close to the truth for cubic graphs with large girth by showing that if G is a connected cubic n-vertex graph that has a 2 -factor of girth at least $g \geq 3$, then
$$
\gamma(G) \leq n\left(\frac{1}{3}+\frac{1}{9\lfloor g / 3\rfloor+3}\right)
$$

In [2] this result of Kawarabayashi, Plummer, and Saito was improved by proving that if G is a cubic connected n-vertex graph of girth g, then

$$
\gamma(G) \leq n\left(\frac{1}{3}+\frac{8}{3 g^{2}}\right)
$$

Also recently result Lowenstein and Rautenbach [7] further improved these resuls related to girth and showed that Reeds conjecture is true for girth at least 83.

In this note, we present a sequence of 2 -connected counter-examples to Reed's conjecture and improve the lowerbound of $\gamma(G)$. We will contruct two sequences, with the first sequence being $\left\{G_{k}\right\}_{k=1}^{\infty}$ of 2 -connected cubic graphs with $\lim _{k \rightarrow \infty} \frac{\gamma\left(G_{k}\right)}{\left|V\left(G_{k}\right)\right|} \geq \frac{1}{3}+\frac{1}{78}$, and the second sequence being $\left\{G_{l}^{\prime}\right\}_{l=1}^{\infty}$ of connected cubic graphs where for each G_{l}^{\prime} we have $\frac{\gamma\left(G_{l}^{\prime}\right)}{\left|V\left(G_{l}^{\prime}\right)\right|}>\frac{1}{3}+\frac{1}{69}$. Note that $\left(G_{1}^{\prime}\right)$ is a connected cubic graph on 80 vertices and has the same ratio of $\frac{\gamma\left(G_{1}^{\prime}\right)}{\left|V\left(G_{1}^{\prime}\right)\right|}=\frac{1}{3}+\frac{1}{60}$ with the graph G on 60 vertices in [1], but has 20 more vertices. In the next section we construct the examples and in the last small section briefly discuss the results.

Note that Kelmans [10] has recently constructed a sequence $\left\{G_{j}\right\}_{j=1}^{\infty}$ of 2-connected cubic graphs with $\lim _{j \rightarrow \infty} \frac{\gamma\left(G_{j}\right)}{\left|V\left(G_{j}\right)\right|} \geq \frac{1}{3}+\frac{1}{60}$, and a connected cubic graph G^{*} with $\frac{\gamma\left(G^{*}\right)}{\left|V\left(G^{*}\right)\right|} \geq$ $\frac{1}{3}+\frac{1}{54}$.

2 Examples

Our basic building block is the graph H_{1} in Fig. 1.
The following claims in were proved [1].
Claim 1 [1] $\gamma\left(H_{1}\right)=\gamma\left(H_{1}-v_{6}\right)=\gamma\left(H_{1}-v_{7}\right)=3$.
Claim 1 is easy to check. This claim has the following immediate consequence.
Corollary 1 [1] For every cubic graph G containing H_{1} and any dominating set D of G, either $\left|D \cap V\left(H_{1}\right)\right| \geq 3$ or both v_{6} and v_{7} are dominated from the outside of H_{1}.

The bigger block, H_{2} in Fig. 2, is constructed using two copies of H_{1} and two additional vertices.

Figure 1

Figure 2

Claim 2 [1] $\gamma\left(H_{2}\right)=\gamma\left(H_{2}-v_{10}\right)=\gamma\left(H_{2}-v_{9}-v_{10}\right)=6$. In particular, every dominating set in any cubic graph containing $V\left(H_{2}\right)$ has at least 6 vertices in $V\left(H_{2}\right)-v_{10}$.

The above claim is easy to check using Claim 1.
Our yet bigger block on 36 vertices, H_{3}, is obtained from two copies H_{2} and H_{2}^{\prime} of H_{2} by identifying v_{10} with v_{10}^{\prime} into a new vertex v_{10}^{*} and adding a new vertex v_{0} adjacent only to v_{10}^{*} The following property immediately follows from Claim 2.

Claim 3 [1] Every dominating set in any cubic graph containing $V\left(H_{3}\right)$ has at least 12 vertices in $V\left(H_{3}\right)-v_{10}^{*}-v_{0}$.

Theorem 1 There is a sequence $\left\{G_{k}\right\}_{k=1}^{\infty}$ of cubic 2 connected graphs such that for every $k,\left|V\left(G_{k}\right)\right|=26 k$ and $\gamma\left(G_{k}\right) \geq 9 k$ so that $\lim _{k \rightarrow \infty} \frac{\gamma\left(G_{k}\right)}{\left|V\left(G_{k}\right)\right|} \geq \frac{9}{26}$.

Proof. Our big block, F_{i}, for constructing G_{k} consists of three copies of H_{1} which are labeled, H, H^{\prime} and $H^{\prime \prime}$, and two special vertices, x_{i} and y_{i}, where x_{i} is adacent to v_{6} in H and v_{6}^{\prime} in H^{\prime}, and y_{i} is adacent to v_{7} in H and $v_{6}^{\prime \prime}$ in $H^{\prime \prime}$. Furthermore, v_{7}^{\prime} in H^{\prime} is adjacent to $v_{7}^{\prime \prime}$ in $H^{\prime \prime}$ (see Figure 3). This block has 26 vertices and exactly two of them, x_{i} and y_{i}, are of degree two. The main property of F_{i} that we will prove and use is:
(P1) For every cubic graph G containing F_{i} and any dominating set D in G, the set D has at least 9 vertices in $V\left(F_{i}\right)$.

If D contains neither x_{i} nor y_{i}, then by Claim $1 D$ must contain 3 vertices in each of $V(H), V\left(H^{\prime}\right)$, and $V\left(H^{\prime \prime}\right)$. If D contains x_{i} but does not contain y_{i}, then by Claim $1, D$ must contain 3 vertices in $V(H), 3$ vertices in $V\left(H^{\prime \prime}\right)$, and at least 2 vertices in $V\left(H^{\prime}\right)$. The case where D contains y_{i} but not x_{i} is symmetric. If D contains both x_{i} and y_{i}, then again by Claim 1, D has at least 2 vertices in $V(H)$, and least 5 vertices in $V\left(H^{\prime} \cup H^{\prime \prime}\right)$. As a result in all the cases D contains at least 9 verices in $V\left(F_{i}\right)$. This proves (P1).

The graph G_{k} consists of disjoint graphs $F_{1}, \ldots F_{k}$, where y_{i} is connected by an edge to x_{i+1} for $i=1, \ldots, k-1$, and y_{k} is connected by an edge to x_{1}. Clearly, $\left|V\left(G_{k}\right)\right|=26 k$ and, by (P1), $\gamma\left(G_{k}\right) \geq 9 k$. In F_{i}, any copy of H_{1} is connected by 2 edges to the rest of the graph. Since H_{1} is 2-connected and since F_{i} has an edge connecting it to F_{i-1} and another edge connecting it to F_{i+1}, the graph G_{k} is 2-connected.

Figure 3

Theorem 2 There is a sequence $\left\{G_{l}^{\prime}\right\}_{l=1}^{\infty}$ of cubic connected graphs such that for every l, $\left|V\left(G_{l}^{\prime}\right)\right|=46 l+34$ and $\gamma\left(G_{l}^{\prime}\right) \geq 16 l+12$ and, as a result, $\frac{\gamma\left(G_{l}^{\prime}\right)}{\left|V\left(G_{l}^{\prime}\right)\right|}>\frac{8}{23}$. Furthermore, $\left(G_{1}^{\prime}\right)$ is a connected cubic graph on 80 vertices with $\frac{\gamma\left(G_{1}^{\prime}\right)}{\left|V\left(G_{1}^{\prime}\right)\right|}=\frac{1}{3}+\frac{1}{60}$

Proof. The big block, F_{j}, for constructing G_{l} consists of a copy of H_{1}, a copy of H_{3} and two special vertices, x_{j} and y_{j}, where x_{j} is adacent to v_{6} in H_{1} and v_{0} in H_{3} and y_{j} is adacent to v_{7} in H_{1} and v_{0} in H_{3}. This block has 46 vertices and exactly two of them, x_{j} and y_{j}, are of degree two. The main property of F_{j}, which was proved in [1], that we will use is:
(P2) [1] For every cubic graph G containing F_{j} and any dominating set D in G, the set D has at least 16 vertices in $V\left(F_{j}\right)$.

Now, the graph G_{l} consists of disjoint graphs $F_{1}, \ldots F_{l}$, where y_{l} is connected by an edge to x_{l+1} for $j=1, \ldots, l-1$, and to each of x_{1} and y_{l} we attach one copy of H_{2}, let us call them H_{2} and H_{2}^{\prime}. We identify x_{1} with vertex v_{10} of H_{2} and identify y_{l} with vertex v_{10}^{\prime} of H_{2}^{\prime}. By Claim 2 any dominating set D must contain 12 vertices in $V\left(H_{2} \cup H_{2}^{\prime}\right)-x_{1}-y_{l}$, and by (P2) D must contain 16 vertices in each $V\left(F_{j}\right)$. This completes our proof.

3 Comments

It is not clear what the supremum of $\frac{\gamma(G)}{|V(G)|}$ over connected cubic graphs is. The situation we face now $\frac{4}{11} \geq \sup \frac{\gamma(G)}{|V(G)|} \geq \frac{1}{3}+\frac{1}{69}$. We believe that both the upper and lower bounds could be improved. The upper bound was proved in [2] by exploiting Reed's techniques in [9] and examining some of the cases in Reed's proof more carefully and adding a discharging argument. However, exploting Reed's ideas further seems difficult (but possible) as the number of cases to be analyzed grows quickly.

It would also be interesting to find out whether 3-connected counter-examples to Reed's conjecture exist.

Acknowledgment. I thank Alexandr Kostochka for helpful comments.

References

[1] A. V. Kostochka and B. Y. Stodolsky, On domination in connected cubic graphs, Discrete Math., 304 (2005), 45-50.
[2] A. V. Kostochka and B. Y. Stodolsky, An upper bound on domination number of n-vertex connected cubic graphs, Discrete Math., submitted.
[3] M. Blank, An estimate of the external stability of a graph without pendant vertices, Prikl. Math. i Programmirovanie, 10 (1993) 3-11.
[4] The domination number of cubic Hamiltonian graphs, in preparation.
[5] K. Kawarabayashi, M. Plummer, and A. Saito, Domination in a graph with a 2-factor, Journal of Graph Theory, 52 (2006) 1-6..
[6] W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, Journal of Graph Theory, 13 (2006) 749-762.
[7] C. Lowenstein und D. Rautenbach, Domination in Graphs of Minimum Degree at least Two and large Girth, manuscript.
[8] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 3 (1962).
[9] B. Reed, Paths, stars, and the number three, Combin. Probab. Comput. 5 (1996) 277-295.
[10] A. Kelmans, Counterexamples to the cubic graph domination conjecture, arXiv:math.CO/0607512 v1 20 July 2006.

[^0]: *Department of Mathematics, University of Illinois, Urbana, IL 61801, USA. Email: stodlsky@math.uiuc.edu.

