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Abstract

We determine the minimum cardinality of an identifying code of Kn�Kn, the
Cartesian product of two cliques of same size. Moreover we show that this code is
unique, up to row and column permutations, when n ≥ 5 is odd. If n ≥ 4 is even,
we exhibit two distinct optimal identifying codes.

1 Introduction

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1 and G2,
denoted by G1�G2, is the graph on vertex set V1 × V2 such that

• (x, y)(x, y′) ∈ E(G1�G2) if and only if yy′ ∈ E(G2),

• (x, y)(x′, y) ∈ E(G1�G2) if and only if xx′ ∈ E(G1),

• and (x, y)(x′, y′) 6∈ E(G1�G2) if x 6= x′ and y 6= y′.

In coding theory, it is somehow natural to focus on the Cartesian product, since the
most studied metrics (respectively the Hamming and the Lee metrics) in d-dimensional
spaces can be defined as the iterated Cartesian product of, respectively, cliques and cycles.
In this way, the (generalized) hypercube and the torus can be seen as Cartesian products
of cliques and cycles, respectively.
In this manuscript, we are interested on identifying codes in Cartesian product of graphs.
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Given a graph G = (V, E), let us denote by N(x) the neighbourhood of x ∈ V , that is,
the set of vertices adjacent to x. The closed neighbourhood N [x] of x ∈ V is the union of
x and N(x). A subset C of V is said to be an identifying code of G if the sets N [x] ∩ C

are non-empty and distinct for all x ∈ V .
The notion of identifying code was introduced by Karpovsky, Chakrabarty and Levitin
[6] to model a fault-detection problem in multiprocessor systems. For another application
to sensor networks consult [9]. The challenging problem is, given a graph G, to find a
minimum size identifying code of G. Identifying codes are closely related to other types of
codes, like covering codes (which can be used to construct identifying codes in Hamming
spaces, see e.g. [2, 3, 6]). In [7], the authors propose a construction of codes identifying sets
of vertices in Cartesian products of graphs. There is a large and fast-growing bibliography
on identifying codes, which can be found on Antoine Lobstein’s webpage [10].
Even for special structures, determining the minimum cardinality of an identifying code
is still an open problem. For instance, only recently, it was proven that the minimum
density of an identifying code of the two dimensional grid graph (which can be see as the
Cartesian product of two infinite paths) is equal to 7

20
[4, 1]. Nevertheless, only partial

results are known in the finite case [5].
Additionally, Blass, Honkala and Litsyn proposed in [3] the following natural conjecture :
the cardinality of a smallest identifying code in the hypercube will increase with the di-
mension. This conjecture was only partially solved in [8].
In this note, we determine the size of a minimum identifying code of the Cartesian product
of two cliques of the same size. Moreover we show that, up to row and column permuta-
tions, there exists a unique minimum identifying code in the case where the size of the
cliques is odd.

Theorem 1 Let C be a minimum identifying code of Kn�Kn. Then |C| = b3n

2
c. More-

over, if n ≥ 5 is odd there is a unique (up to row and column permutations) identifying
code with cardinality b 3n

2
c.

2 Proof of Theorem 1

We will note {1, . . . , n} the vertex set of the complete graph Kn on n vertices.

First we exhibit identifying codes of cardinality b 3n

2
c (see Figure 1 and Figure 2).

Let D = {(x, x)|x = 1, . . . , n}. If n is odd let A = {(n − x + 1, x)|x = 1, ..., n−1
2
}.

Otherwise, let A = {(n − x + 1, x)|x = 1, ..., n

2
}.

We will prove that D ∪ A is an identifying code of Kn�Kn. First observe that D is a
dominating set since it contains an element of each row. Now we check that each pair of
vertices (x, y), (a, b) ∈ V (Kn�Kn) is separated.
If a 6= x and a 6= y (respectively b 6= x and b 6= y) then (a, a) ∈ N((a, b))\N((x, y)) (resp.
(b, b) ∈ N((a, b)) \ N((x, y))).
So, since (a, b) 6= (x, y), without loss of generality, we have either a = b = x or (a = y and
b = x (with x 6= y)).
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Figure 1: The code D ∪ A in the case n even.

Figure 2: The code D ∪ A in the case n odd.

If a = b = x then (y, y) ∈ N((x, y)) \ N((a, b)).
Assume, now that (a, b) = (y, x) and x < y. First, when 1 ≤ x ≤ bn

2
c, (n + 1 − x, x) ∈

N((y, x)) \ N((x, y)). Finally, when x ≥ dn

2
e then (y, n + 1 − y) ∈ N((y, x)) \ N((x, y)).

This proves that C is an identifying codes of cardinality |D| + |A| = n + bn

2
c = b3n

2
c.

Let C be an identifying code of Kn�Kn. We will prove that |C| ≥ b 3n

2
c. Additionally,

we show that if n ≥ 5 is odd and C is a minimum size identifying code then, up to row
and column permutations, C = D ∪ A.
We will need some additional definitions. A row Rx for some x ∈ {1, . . . , n} (respectively
column Cx) of Kn�Kn is the vertex set {(x, i) for i = 1, . . . , n} (resp. {(i, x) for i =
1, . . . , n}). Let I(x, y) = N [(x, y)] ∩ C. Remark that if C is an identifying code then
I(x, y) 6= I(u, v) for all pairs (x, y) 6= (u, v). A vertex (x, y) which is in C is an [a, b]-
vertex if |Rx ∩ C| = a and |Cy ∩ C| = b.
We need a simple and useful Lemma :

Lemma 1 There are no two [∗, 1]-vertices in the same row. By symmetry, there are no
two [1, ∗]-vertices in the same column.
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Proof: Suppose that the vertices (1, x) and (1, y) (x 6= y) are [∗, 1]-vertices, that
is to say (1, x) is a [a, 1]-vertex, and (1, y) is a [a′, 1]-vertex. Then I(1, x) = I(1, y), a
contradiction.

As a direct consequence of Lemma 1, one can observe that if there is a row containing
exactly one vertex (x, y) of C then the row of any other vertex of Cy ∩C contains at least
two vertices of C.

If n = 1, 2 then trivially the result holds. For n = 3, it is easy to see that |C| ≥ 4. It
is worth to note that there is another identifying code of cardinality 4 than D ∪ A (see
Figure 3).

Figure 3: Another optimal identifying code for n = 3.

So assume now that n ≥ 4.

Case 1 : there exists a row Rx such that Rx ∩ C = ∅.
Without loss of generality, we may suppose that x = 1. If there exists some u 6= 1 such

that Ru ∩ C = ∅ then I(1, v) = I(u, v) for all v, which contradicts that C is a identifying
code. If there is a [1, b]-vertex (u, v) then I(1, v) = I(u, v), a contradiction. Therefore,
each row Rx with x 6= 1 contains at least 2 vertices of C, thus |C| ≥ 2(n − 1) ≥ 3n

2
if

n ≥ 4.
Moreover, observe that if n ≥ 4 is odd and |C| = b 3n

2
c then |Rx ∩ C| ≥ 1 for all x.

Now, by symmetry, one may assume that there is no column Cy with Cy ∩C = ∅. Let us
now introduce some notations. A 1-row (respectively 1-column) is a row Rx (resp. column
Cy) such that |Rx ∩ C| = 1 (resp. |Cy ∩ C| = 1). A non 1-row (resp. column) will be
denoted by 2+-row (resp. 2+-column).

Case 2 : There is no [1, 1]-vertex.
Let n1 be the number of 1-rows and 1-columns and n2 = 2n − n1.
We claim that n1 ≤ n2. Indeed, associate to each 1-row Rx the column Cy where (x, y) =
Rx ∩C. Since there is no [1, 1]-vertex, Cy is a 2+-column. By Lemma 1, a column Cy can
not be associated to two distinct 1-rows.
Similarly, one can construct an injection from the set of 1-columns to the set of 2+-rows.
Thus n1 ≤ n2. Since n1 + n2 = 2n, this implies that:

n2 ≥ n (1)

the electronic journal of combinatorics 15 (2008), #N4 4



Moreover, by double counting, we have:

|C| ≥
n1 + 2n2

2
(2)

By (1) and (2), we obtain that

|C| ≥
2n + n2

2
≥

3n

2
(3)

Now, from (3), if n is odd then |C| > b 3n

2
c and we are done, which concludes Case 2.

In order to get the uniqueness result we need the following lemma :

Lemma 2 Let n be an even integer and C be an identifying code of Kn�Kn. If there is
no [1, 1]-vertex and |C| = 3n

2
then, up to row and column permutations, C = D ∪ A.

Proof: By (1)–(3), we have that n1 = n2 = n and each 2+-row (resp. column) contains
exactly 2 elements of C. Let r1 (resp. c1) be the number of 1-rows (resp. 1-columns).
Since r1 + 2(n − r1) = c1 + 2(n − c1) = |C|, then r1 = c1. Since r1 + c1 = n1 = n then
r1 = c1 = n

2
. Up to row (resp. column) permutations, one may assume that R1, . . . , Rn

2

(resp. Cn

2
+1, . . . , Cn) are 1-rows (resp. 1-columns).

Since there is no [1, 1]-vertex, then for every x ∈ {1, . . . , n

2
} and y ∈ {n

2
+ 1, . . . , n} we

have
(x, y) 6∈ C (A).

This implies that for every y ∈ {n

2
+ 1, . . . , n}, we have

|(Cy ∩ (∪x∈{n

2
+1,...,n}Rx)) ∩ C| = 1 (∗).

Now, by (A) and Lemma 1, for x ∈ {n

2
+1, . . . , n}, there is at most one y ∈ {n

2
+1, . . . , n}

such that (x, y) ∈ C. By (∗), for every x ∈ {n

2
+ 1, . . . , n}, we have

|(Rx ∩ (∪y∈{n

2
+1,...,n}Cy)) ∩ C| = 1 (∗∗).

Thus, by (∗) and (∗∗), up to column permutations one may assume that (x, x) belongs
to C for every x ∈ {n

2
+ 1, . . . , n}.

Since each row Rx with x ≤ n

2
is a 1-row, then, by Lemma 1, each column Cy with y ≤ n

2

contains at most one element in C ∩ {1, . . . , n

2
} × {y}. Moreover, by (A), each element

(x, y) ∈ C with x ∈ {1, . . . , n

2
} satisfies that y ∈ {1, . . . , n

2
}. Here, again, up to row

permutations, one may assume that (x, x) ∈ C with x ∈ {1, . . . , n

2
}.

Now, since each row Rx (resp. column Cy) with x > n

2
(resp. y ≤ n

2
) contains two elements

of C, up to row (or column) permutations one may assume that (n− x + 1, x) ∈ C for all
x ≤ n

2
.
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Now to conclude that, up to rows and columns permutations, C = D ∪ A it is enough to
first make, say, row permutations on {R n

2
+1, . . . , Rn} in order to get A.

Case 3 : There exists a [1, 1]-vertex.
Without loss of generality, suppose that (1, 1) is a [1, 1]-vertex. Observe that C \ {(1, 1)}
is an identifying code of the subgraph G2,n induced by {2, . . . , n} × {2, . . . , n}.
If there is a [1, 1]-vertex (x, y) in G2,n then I(x, 1) = I(1, y) = {(1, 1), (x, y)}, a contradic-
tion.
If n is odd then by Case 2, |C| ≥ 1 + 3(n−1)

2
= b3n

2
c. This shows the first part of Theorem

1. For the uniqueness when |C| = b 3n

2
c, we apply Lemma 2 as shown in Figure 4.

Figure 4: Uniqueness in the case where n is odd.

If n is even then, again, by Case 2, |C| ≥ d1 + 3(n−1)
2

e ≥ b3n

2
c. This terminates the proof

of Theorem 1.

Note that for the case where n is even, there are at least two distinct minimum
identifying codes of Kn�Kn. We exhibited one in Figure 1, in which there is no [1, 1]-
vertex. It is easy to construct another one, having a [1, 1]-vertex, say (1, 1). Indeed,
consider the (unique) optimal identifying code C of G2,n, and let (x, x) be the unique
[1, 1]-vertex of C. It is easy to see that C ∪ {(1, 1), (x, y)} is a minimum identifying code
of Kn�Kn, where y is any coordinate different from x.
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