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Abstract
A weaving drawdown is a rectangular grid of black and white squareswith

at least one black and one white squarein ead row and column. A pattern
results from vertical and horizontal translations of the de ning grid. Any such
grid de nes a tiling pattern. Howewer, from a weaving point of view, some
of these grids de ne actual fabrics while others correspond to collections of
threads that fall apart. This article addresseghat issue,along with a discus-
sion of binary represerations of fabric structures. The article also catalogs
all weaving (or tiling) patterns de ned by grids having three distinct columns
and three to six distinct rows, and groups these patterns into design families
basedon weaving symmetries.

1 Intro duction.

Weaving is a processof creating a fabric by interlacing a set of yarn strands called
the weft with another setof strandscalledthe warp. The lengthsof yarn calledwarp
endsare tied in parallel and held under tension on the weaving deviceor loom. At
eat step in the weaving process,the weaver separateswarp endsinto two layers,
upper and lower, passes weft strand through the resulting opening(called the shed),
then moves or beats that weft strand sothat it lies against previously woven weft
yarns, perpendicular to the warp. Lifting another subsetof warp ends,the weaver
repeatsthe processuntil the fabric is completed.
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Figure 1: (a) A weaver's draft of plain weave fabric structure. Eac of the two
outlined 2 2 blocks is su cient to de ne plain weave. (b) Draft of a baslet weare
de ned by the outlined 4 4 block.

A loom with a harnessmedanism aids the weaving process.If a warp thread is
attachedto a harnessthe thread risesand falls with that harness.The simplestsuct
loom hastwo harnessessu cient to createthe fabric structure called plain weave
or tabby. With ewen-rumbered warp ends passedthrough one harnessand odd-
numbered through the other, the weaver lifts the harnesseslternately to produce
the familiar chedkerboard look of plain weare illustrated in Figure l1a.

The weaver's draft in Figure 1a shows ten warp and ten weft threads, although
two of eat would be su cient to de ne the plain weave structure. Following textile
industry practice, warp endsare shavn herein black and weft in white [25]. A black
squareindicates that a warp end is lifted and therefore passesover the weft yarn,
while a white squareindicatesweft passingover warp. The 2 10rectangleat the top
of the draft is the threading diagram, with harnessesiumbered from bottom to top,
shawing how warp yarns passthrough the harnessesNumbering warp endsfrom left
to right, the rst row of the threading diagram shows that the odd-numbered warp
threads passthrough harnessl, evensthrough harness2. The 10 2 rectangleat
the right of the draft shows the harnesslifting plan. With harnessesiumberedfrom
left to right, column 1 cortains a black squarewhen harnessl is lifted, column 2 is
black when harness2 is lifted. To produce the exact pattern shavn in Figure 1a,
the weaver starts at the bottom of the draft and passeghe rst weft thread through
the shedwith harnessl (odd-numbered warp ends) lifted, passesthe secondweft
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through with harness2 (even-rumbered warp ends) lifted, and so on, creating the
10 10 grid of fabric represeted in the bottom left of the diagram. This 10 10
grid, calledthe drawdown de nes the fabric.

In any drawdown, eat row and column must cortain at leastonewhite and one
black square[18]. Granbaum and Shephard[7] pointed out that this requiremen is
not su cient to guarartee that a draft represets a weaving that \hangs together".
A number of authors have addressedhis issue,including Lourie [18], Clapham [4],
Enns [6], Granbaum and Shephard[8] and Delaney|[5], and we will aswell.

A drawdown represets the physical interlacemen structure of warp and weft.
Wewill focuson this interlacemer structure, ignoring for now the designpossibilities
that comewith the useof color.

Using the terminology of Granbaum and Shephard[7], we say that plain weave is
a periodic designor pattern de ned by vertical and horizontal translations of either
ofthe 2 2 fundamertal blocks outlined in Figure 1a. From a weaving or tiling point
of view, these two blocks are equivalert, since both de ne the samedesignwhen
extendedover the plane. In general,an m n grid of black and white squaresis a
fundamentalblcack of a pattern if ead row and column cortains at leastonewhite and
onebladk squareand the pattern results from vertical and horizontal translations of
this block.

By the above de nition, the 10 10 grid in Figure 1ais a fundamertal block
represeting the plain weave fabric structure, asarethe 2 10and 10 2 rectangles
in that gure. Howewer, the 2 2 fundamertal blocks are the smallestblocks we can
useto de ne plain weave and are therefore irreducible or basic blocks. In general,
we will say a fundamental block is a basic black if it is irreducible in the sensethat
no block with fewer rows or columnsde nes the samepattern.

Many patterns are generatedby basicblocks that have someidertical rowsand/or
columns. One sud pattern is the baslet weave illustrated by the draft in Figure 1b.
This baslket weave is a variation on plain weave in that it can be woven on two
harnessesand we call it a 2-harnessdesign,even though the structure is de ned by
a4 4 basicblock. In general,we will call a fabric structure a k-harnessdesignif k
is the minimum number of harnessegequiredto weave it. A basicblock generating
a k-harnessdesignhasexactly k distinct columns[18]. The plain weare in Figure 1a
and the basletweare in 1b are 2-harnessdesigns,generatedby basic blocks having
two distinct columns.

We might reasonablyask: How many fabric structures can be woven on a given
number of harnessesEquivalertly, how many rectangular-grid two-colortiling pat-
terns result from basicblocks with a given number of distinct columns? Steggall[22]
found the number of basicblocks of sizen n that have exactly oneblack squarein
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eath row and column. Grunbaum and Shephard[7], [8], [9], [1] consideredclasses
of patterns they calledisonemalfabrics, including satinsand twills. Relatedwork on
twills and twillins was reported by J.A. Hoskins, W.D. Hoskins, Praeger, Starnton,
Street and Thomas (see,for example:[12], [13], [14]).

With the restriction that adjacert rows and columnsare not equal, the cheder-
board pattern of simple plain weare shown in Figure l1ais the only 2-harnessdesign.
How about 3-harnessdesigns?Weaving with three harnessegor shafts) hasa long
tradition, as suggestedby de Ruiter's [21] discussionof three-harnessdesignsand
an analysisof 18th and 19th certury textiles by Thompson, Grant and Keyser[24].
Howe\er, this author has not found a study of the number of patterns that can be
woven on three harnesses.n later sections,we will begin this study by nding the
number of patterns generatedby m 3 basicblocks having no equalrows or columns.
We will alsogroup thesepatternsinto families or equivalenceclasse®f fabric designs
basedon weaving symmetriesand illustrate thesedesignfamilies.

Beforeproceeding,however, we must addressthe problem of determining whether
or not a weaving hangstogether. Sud a determination is easierif we represen drafts
with binary matrices, as discussedn the next section.

2 Weaving and binary matrices

We can display the interlacemen structure of a fabric consisting of m weft and n
warp threadsasanm n grid of black and white squares,called the drawdown An
alternative represetation of the fabric structure isan m n matrix of O'sand 1's,
with 1 indicating a warp thread passingover weft (black squarein the drawdown)
and 0 otherwise. We will referto this binary represetation asthe drawdownmatrix.

Lourie [18] and Hoskins [11], among others, discussedthe idea of factoring an
m n drawdown matrix into a product of two matrices, one represeting the warp
threading and the other, the lift plan. Let D denotethe m n drawdown matrix of
an h-harnessdesign(that is, there are h distinct columnsin D). Using the notation
of Lourie [18], de ne the harnessthreading matrix H asthe h  n (0,1)-matrix with
rows 1 through h represeting harnessesl through h, respectively, and columns
correspnding to warp threads numbered from left to right. H hasa 1 in position
(i, j) if warp thread j passeghrough harnessi, and 0 otherwise. (This mathematical
de nition of H reversesthe row order traditionally usedby weavers at the top of
a draft to illustrate harnessthreading.) De ne the lift plan matrix L asthe m h
matrix that hasa 1 in position (i, j) if all of the warp threadslifted by harnessj pass
over the weft thread correspnding to row i of the drawdown, O otherwise. Then,
L H=D.
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Consider, for example,the basketweave de ned by 4 4 basic block b outlined
in Figure 1b. If D represets the drawdown matrix correspnding to b, the matrix
equationL H = D becomes:

0 1 0 1
10 1100
%1 0 1100 _ %1 10 o§
01 0011 - 0011
01 0011
In this case,the lift plan matrix L is the transpose of the harnessthreading

matrix H, and the resulting drawdown matrix D is symmetric.

Supposea pattern is generatedby an m  n basicblock b whosen columnsare
all distinct. In sud a case,the block itself givesall the information necessaryfor
threading the loom and weaving; we do not require the harnessthreading and lift
plan portions of the weaver's draft. We state this in the following theorem:

Theorem 1. Supmsebis anm n hasic black whosen columnsare all distinct. If
D is the drawdownmatrix for b, then we can write D = L  H, wheee the harness
threading matrix H equalsthe n n identity matrix and the lift plan matrix L equals
D.

Proof. For threading sud a design,we can usewhat weavers call a straight draw [2]:

H isthen nidentity matrix |, andD =L H=L | =1L. O

For example, considerthe 4 4 block b outlined in Figure 2a. Both b and its
drawdown matrix D have four distinct columnsand the matrix equationL H = D
is:

0 1 0 1 0 1

0011 1000 0
%0010§ %01oo§_%o §
1100 0010 B 1
1000 0001 1000

In Sections4 through 7, we consideronly basic blocks whose columns are all
distinct. All patterns are generatedby horizontal and vertical translations of the
generatingblock b. Then b providesall the information normally provided in a draft,
describingthe fabric structure, threading and lift plan.

= OO
oOr R
O O
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Figure 2: (a) A weaver's draft of a fabric that hangstogether, with its 4 4 basic
block outlined. (b) Draft of a weaving structure that doesnot hang together. The
4 4 basicblock that de nes the tiling pattern is outlined.

3 When a weaving hangs together

Consider the tiling patterns in Figure 2. Ead is a 4-harnessdesignthat can be
represeted by a 4 4 basicblock having at least one black and one white square
in ead row and column and ead can be usedto producea weaving. Following the
draft in Figure 2aresultsin a fabric with interlacemen structure indicated directly
by the pattern of black and white squaresin the draft. This is not the casefor
the draft in Figure 2b. Weaving from this draft resultsin two separateplain weave
fabrics: wheneer either harness2 or 4 is lifted, soare harnessed and 3, sothat the
fabric involving harnesse® and 4 lies below that involving harnessed and 3.
Weavers call the fabric structure in Figure 2b doublewaveand useit in a number
of ways. If separateweft threadsare usedfor eat row of the design,two completely
separateplain weave fabricsresult: oneis woven above the other and the two fabrics
canbelifted apart. Handweavers generallywrap a singlelong length of weft yarn on
a shuttle and then passthe shuttle badk and forth through the warp. The order in
which the harnessesare lifted then determinestopological properties of the fabric.
If a weaver follows the draft in Figure 2b with a single long weft thread that starts
from the right side of the loom, asshown in Figure 3a, the two resulting plain weave
fabrics are locked together at ead side in the form of a attened cylinder. If the
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Figure 3: (a) Weaving with a cortinuous weft as shovn results in two fabric layers
locked together on ead side, creating a attened cylinder. (b) Using a cortinuous
weft and weaving as shawvn results in two fabric layers locked on the right side,
openingto a fabric twice aswide asthe warp spanon the loom.

weaver changesthe harnesslifting order to that in Figure 3b, the resulting fabric
layers are locked only on the right side. When removed from the loom, the weaving
can be openedinto a single plane of fabric twice aswide asthe spanof warp threads
on the loom, with length correspnding to half the weft passeausedin the weaving.

Artists alsousedoubleweave for decorative purposes.As a simple example,con-
sider the sample of 4-harnessdoublewease shavn in Figure 4. The weaver useda
total of 48 warp threads: 4 dark warp strands in ead of harnesse® and 4 and 4
light warp strandsin ead of harnessedl and 2 acrossthe middle third of the piece
and 24 light warp threads (6 per harness)on ead side. The weft is made up of 48
passeswith the light-colored yarn. Using harnessesl and 3 producesa fabric that
is all light-colored; harnesse2 and 4 result in a fabric with a vertical dark/light
chedered stripe down the middle. The weaver wove the bottom and top thirds of
the samplewith the solid-color fabric layer on top and the middle third with the
striped layer on top. The resulting piece,shaving 24 warp and 24 weft strands on
eadt side, hasthe interesting property that two planesof fabric intersecttwice. The
color pattern in Figure 4 cannot be woven as a single layer. Delaney|[5] called suc
a designessentialy reducible

We can conceie weavings with morethan two layers of fabric, although a weaver
might nd them technically di cult to construct. Albers[1], who dedicatedher book
to the weaversof anciert Peru, reported that the Peruviansmadeuseof double, triple
and quadruple weaves.

For the remainder of this section, we assumethat a pattern is generatedby an
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Figure 4: Doubleweare samplewith a solid color plain weave fabric twice intersecting
a striped plain weave fabric.

m n fundamertal block. We also assumethat the weaver usesindividual weft
threads to producethe \weaving” from the draft. Then, a weaving \falls apart" if
there are sets of threads that can be physically separated. We'll say sudh setsare
mutually unconnected. If a set of threads cannot be pulled apart in this way, we'll
sa&y these threads are mutually connected and the correspnding weaving \hangs
together".

How can we tell whether or not a drawdown represetts a weaving that hangs
together? Clapham [4] provided a procedurefor sud a determination, which we
will repeat here. Let rsum; denotethe row sum of row i of the drawdown matrix
and csum; the column sum of columnj. Supposethat the rows and columnsof the
matrix are arrangedsothat rsum; rsum, ::: rsumy, andcsum; csum,

csum, (whether a weaving hangstogether doesnot depend on the order of the
rows or columnsof the drawdown). Let s andt beintegerssuchhthat 0 s m and
0 t n, excludingthe possibility that (s;t) is either (0;0) or (m;n), and de ne
the function E(s;t) this way:

E(s;t)=t(m s) (csumg+ :::+ csumy) + (rsumg + :::+ rsums)
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Clapham [4] proved that E(s;t) 0 and that the weaving falls apart if and only
if E(s;t) = 0 for some(s;t), providing a simple method of determining whether a
weaving hangstogether, repeated below:

Determining Whether a Weaving Hangs Together (Clapham)
If rsum; = 0,takes = 1andt = 0 and the weft strand correspnding to

that rsumsg < t (the row sumsareincreasing)and evaluate E (s;t) de ned
above. If any of theseequalsO (excluding E (m; n)) then the weft strands

canbelifted o. Otherwisethe fabric hangstogether.

Considerbinary matrix represemations D, and Dy, of the basicblocks of Figures
2aand 2b, respectively, eah rearrangedsothat row sumsare increasingand column
sumsare decreasing:

0 0

Da=% Db=% §

The row sumsfor the binary matrix D, are 1;1;2 and 2, the column sumsare
2;2;1 and 1, and E(s;t) is always greaterthan 0. For the matrix Dy, the row sums
arel;1;3and 3, the columnsumsare 3;3;1and 1, E(2;2) = 0Oand E(s;t) > Ofor all
pairs (s;t) other than (2;2). This agreeswith our earlier obsenation that the draft
in Figure 2b resultsin two plain weave fabrics, while the draft in Figure 2a results
in a singlefabric.

Clapham's procedure appliesto any draft that can be represeted by an m
n binary array, no matter how many unconnectedlayers. If the binary matrix is
arranged so that row sumsare nondecreasingand column sumsare nonincreasing,
then E(s;t) = Oif andonly if the rst s\row" or weft strandsandthe rst t \column"
or warp strands can be lifted o the others. Theses weft and t warp threads may
make up a singlefabric or it may be possibleto partition them into separatefabric
layers and/or loosestrands.

The drawdown matrix for the samplein Figure 4 meetsClapham's criterion for
a weaving that hangstogether. Howewer, there are three separatehorizonal strips

oOr or
R OR O
Or oo
R OO0OOo

>0 -
PR ok
PR RO
LOOO
oOr oo
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of doubleweare in this sample,connectedwherethe fabric layersintersect. The ap-
pearanceof the 48 48 grid of black and white squaresin the draft doesnot directly
corresnd to the physical appearanceof the woven piece; the sample has just 24
warp and 24 weft threads shoving on ead side. Similarly, the appearanceof the
12 12 drawdown in Figure 2b doesnot correspnd to the physical appearanceof
the resulting doubleweave; ead side of the woven samplereveals6 warp and 6 weft
strands. We seethat a weaszing may \hang together" but not consist of a single
fabric layer of mutually interlaced warp and weft threads. In that case,the pattern
of black and white squaresin the draft is not the apparert interlacemen structure
on either side of the weaving. In what follows, we will describe somecasedor which
a simple criterion doesguarartee that the draft directly correspndsto the physical
interlacemen structure of the fabric.

Recall that a fabric structure is a k-harnessdesignif k is the minimum number
of harnessesequiredto weave it; a fundamertal block correspnding to a k-harness
designhas exactly k distinct column colorings. All warp threads correspnding to
the same column coloring are threaded through the same harness;they rise and
fall together as a unit, asthe harnessrisesand falls. The columns of a draft are
partitioned into k sud units of warp threads onefor eat of the k distinct columns.
Similarly, weft threads correspnding to idertical row coloringsin a draft have the
sameinterlacemen pattern; we will say they composea unit of weft threadsand note
that theseunits partition the setof all weft strandsin the draft. Threadsin a single
unit, either warp or weft, have idertical interlacemerts and therefore are either in
the sameset of mutually connectedthreadsor elsecan be separatedfrom the rest of
the weaving.

Lemma 1. If a weaving contains exactly one unit of warp and/or weft, then it
sefaratesor \fal Is apart” into mutually unconnected units of warp and weft.

Proof. Supposethe weaving cortains only one unit of warp threads. Becauseall
strands in the unit have the sameinterlacemen structure, any weft thread must
either passover all the warp strands or under all of them. Weft threads that pass
over all the warp strandscanbe lifted o the top, while weft threadsthat passunder
drop o from below. Therefore,the weft threads completely separatefrom the warp
sincethere are no interlacemens at all. Similarly, if a weaving cortains only one
unit of weft threads, then it separatesnto individual units of warp and weft. O

Lemmal leadsto the following result:

Theorem 2. If a weaving hangstogether,thenit is wovenwith at least two units of
warp and at least two units of weft threads.
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Proof. Supposea weaving hangstogether. If it is woven with just oneunit of warp
or weft, then by Lemma lit falls apart, a cortradiction. O

A corollary of Theorem2 is intuitiv ely obvious: plain weave is the simplestfabric
structure, created with exactly two units of warp and two units of weft. We now
prove the following:

Theorem 3. Any weaving can be partitioned into mutually unconnected sets of
threads, each set either a fabric that hangstogetheror a single unit of warp or weft.

Proof. If the entire weaving hangstogether, then the theoremis satis ed. Let W
denotea set of threadsthat can be separatedfrom the others. If W hangstogether
or consistsof a singleunit of warp or weft, the theoremis satis ed.

Supposethen that W falls apart and consistsof two or more units of warp and
of weft. We will useproof by induction twiceto show that W satis es the conditions
of the theorem.

If W corntains exactly two warp units and two weft units, then one warp and/or
one weft unit separatesfrom the others. Then by Lemma 1, W falls apart into
mutually unconnectedunits of warp and weft, sothe theoremis satis ed.

If W contains exactly two warp and three weft units and a warp unit separates
from the others, then we canagainapply Lemmal. If a weft unit separatesrom the
others, then two warp and and either one or two weft units remain. If just oneweft
unit remains,again by Lemma 1 we know the theoremis satis ed. If two warp and
two weft units remain, then they either hang together or, as shown in the previous
step, fall apart into separateunits of warp and weft.

Assumenow that the theoremis satis ed by any set of threadswith exactly two
units of warp and k units of weft, k 2.

If W cortains exactly two units of warp and k + 1 units of weft and a single
warp separatesirom the others, then we again apply Lemma 1. If one or more weft
units separatefrom the others, then by the induction assumption, the theoremis
satis ed by the thread units that remain. Therefore,the theoremis satis ed for sets
W cortaining two warp units and two or more weft units.

Assumenow that the theorem s satis ed by any set of threads having m warp
units and two or more weft units, for somem 2. If W consistsof m + 1 warp
and two or more weft units and falls apart, we remove any weft threadsthat lift o
the top or drop o the bottom. If the remaining set of threads hangstogether, we
are nished. If this setfalls apart, then it must be that at least one warp unit can
be separatedfrom the others, with or without weft, leaving subsetswith m or fewer
warp threads eat and, by the induction assumption,the theoremis satis ed. O
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In later sections,we will consider3-harnesgrafts with two or more distinct rows
and at leastoneblack and one white squarein ead row and column. Sud a design
contains three warp units, correspnding to distinct columnsin the draft. The next
theorem states that sud a draft has from two to six weft units and the resulting
fabric hangstogether.

Theorem 4. Supmse a drawdownhas two or more weft units and each row and
column has at least one blackand one white squae.

If the drawdown has exactly two warp units, then it also has exactly two weft
units, and the weaving hangstogether.

If the drawdownhas exactly three warp units, then it has no more than six weft
units, and the weaving hangstogether.

Proof. We will prove the theoremfor the casethat the drawdown has exactly three
warp units. The proof for the caseof two warp units is similar. Becauseall the
threadsin a warp unit rise and fall together, we canwithout lossof generality assume
the draft has exactly three columns, all distinct. Then eat row hasthree squares
of bladk or white. Of the eight ways to color thesethree positions, six have at least
oneblack and onewhite square. Therefore,there are six possibleweft units.

If aany warp lifts o the top of the weaving, it passesver all weft strandsand so
its correspnding column in the draft is all bladk, a cortradiction. Supposea single
warp and at least one weft unit can be lifted o the top of the weaving. Sincethe
warp thread cannot passover all weft strands, at leastoneweft that is lifted o must
passover this warp, soits correspnding row is all white, a cortradiction. A similar
argumern shows that it is not possiblefor a singlewarp, with or without weft units,
to drop o the bottom of the weaving.

Supposea warp thread is in the \middle" of the weaving and not connectedwith
the other two warp strands. Then one of these other two warp strands must lift
of the top of the weaving (with or without weft threads) and the other must drop
o the bottom. But we just shoved this cannot happen. Therefore,the three warp
units cannot be separated. Then, if a weft thread lifts o the top of the weaving, it
must lift o of all three warp units, soits row is all white, a cortradiction. Similarly,
a weft thread cannot drop o the bottom of the weaving. Therefore, the weaving
hangstogether. O

Theorem 4 immediately leadsto the following corollary:

Corollary 1. If a 2-harnessor 3-harnessdesignis geneated by a basic black, then
the resulting weaving hangstogether.
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Proof. By de nition, a basic block has at least one black and one white squarein
eat row and column. If the basic block generatesa k-harnessdesign,then it has
exactly k distinct columnsor warp units. If k equals2 or 3, then by Theorem4, the
resulting weaving hangstogether. O

In the sectionsthat follow, we will consider3-harnessdesignsgeneratedoy m 3
basic blocks having distinct rows and columns. First, we will nd out how many of
theseblocks there are.

4 Counting m 3basic blocks having distinct rows
and columns

De ne B(m; 3) asthe setof m 3 basicblocks having m distinct rows and 3 distinct
columns,m > 1. In the following lemma, we shov that m must be an integer from
310 6.

Lemma 2. If an m 3 basic black b has m distinct rows and 3 distinct columns,
then3 m 6.

Proof. Becauseb is a basicblock, eat row and column has at least one black and
onewhite square.If b hastwo rows, then eat column hastwo squaresto be colored
in black or white. There are only two ways to color sud a column with one black
and onewhite square,sotwo columnsmust be idertical, a cortradiction. Therefore,
m 3. Sinceb hasthree columns,ead row hasthree squaresto be coloredin black
or white. Of the 8 ways to color sud a row, 6 useat least one black and one white
square. Therefore,m 6. O

We will needthe following result to nd the number of elemens of B (m; 3).

Lemma 3. Supmsean m 3 grid of blackand white squaes hasno equalrowsand
no rowis all onecolor, 3 m 6. Then no two columns are equal. If m = 3, no
more than one column is all one color. If m > 3, no column is all one color.

Proof. Supposetwo columnsare equal, say columns1 and 2. Sinceonly two colors
are used, ead column must cortain at leasttwo squaresthe samecolor. Without
loss of generality, supposethe squaresin the rst two rows of columns1 and 2 are
black. With the rst two positions of row 1 both blad, the third position must be
white sinceno row is all bladk. The sameis true of row 2, meaningrows 1 and 2 are
equal, a cortradiction. Therefore,no columnsare equal.
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Let m = 3. Supposeone column is all white and another is all bladk. Since
the remaining column must have at least two squaresthe samecolor, the two cor-
responding rows must be idertical, a cortradiction. Therefore,if the grid hasthree
rows, no more than one column can be all one color.

Supposem > 3 and onecolumn is all onecolor, say column 1 is all black. There
are three ways to color the remaining positions of any row with at least one white
square. Sincethere are more than three rows, at leasttwo rows must be idertical, a
contradiction. Therefore,if the grid has more than three rows, no columnis all one
color. O

In Theorem5, we determinethe number of elemeits of B(m;3),3 m 6.

Theorem 5. There are 84 basic blacksin B (3;3), 360in B(4;3), and 720in each
of B(5; 3) and B(6; 3).

Proof. Supposem = 3. Of the eight ways to color any row in bladk and/or white, six
useat leastoneblack and onewhite square. Therefore,there are P (6; 3) = 120blocks
with no two rows are alike, where P (n; k) denotesthe number of k-permutations of
n distinct objects. By Lemma 3, we know that no more than one columnin any of
these 120 blocks is all one color. How many of them have a column that is all one
color? Column 1 is all black if onerow hasbladk only in the rst position, another
has bladk in the rst and secondpositions and the third hasblack in the rst and
third positions. Thesethree rows can be arrangedin any of 3! ways, so there are
six coloringsin which column 1 is all bladck and similarly six in which column 1 is
all white. The sameappliesto columns2 and 3, sothat 36 of the 120blocks have a
columnthat is either all black or all white. Therefore,there are 84 blocks in B(3; 3).

Now supposem > 3. There are P (6; m) blocks with no two rows alike and no row
all onecolor. By Lemma 3, all three columnsin ead of theseblocks hasat leastone
white and onebladk squareand thereforeis in B(m; 3). Therefore,there the number
of basicblocks in B (m; 3) is P(m; 3), which is 360for m = 4 and 720for m = 5 and
6. O

In the next section,we nd the number of patterns assaiated with B(m; 3),
3 m 6, by courting equivalenceclassedasedon row and column translations of
a de ning block.

5 Patterns unique under row/column translations

How many di erent patterns or fabric structures are asseiated with B(m; 3)? To
begin,let m = 3 and considerthe designrepreseted in Figure 5aand the nine basic

the electr onic journal of combinatorics 15 (2008), #R1 14



blocks outlined there.

If a pattern is generatedby a 3 3 basicblock, we can identify sud a block by
placinga 3 3 grid on the design. Horizontal and vertical translations of this grid
generatethe samedesign[27]. A 3 3 block b, is outlined in the upper left corner of
Figure 5a. Outlined to the immediate right of by is the block c(by) that results from
sliding the original grid 1 (mod 3) columnto the right. Block c(b;) alsoresults from
a cyclic permutation of columnsof block by, with column 1 moving to the column 3
position and the other two columnsmoving oneposition to the left. We canthink of
c asa function from B (3; 3) to itself. Sincec is one-to-one,it is a permutation [17]
of B(3; 3).

Block cqby) = c(c(by)) outlined in the upper right of Figure 5a results from
sliding the original grid 2 (mod 3) columnsto the right. Sliding the grid 3 (mod 3)
positions to the right, we nd the original block by, soccdlby) = by = i(b) where
i denotesthe idertity permutation. Similarly, sliding the original grid in Figure 5a
down one or two positions is equilalert to making a cyclic permutation of rows of
block by: r(by) andrr(by), respectively. Composition of row and column translations
resultsin the four remainingbasicblocks in Figure 5a. Sincecomposition of row and
column translations is commutativ e, the nine row/column translation permutations
I; C;CC;r; rr; cr;crr; ccr,ccrr composea permutation group G(3; 3) of the set B (3; 3).
A pattern correspndsto an equivalenceclassof basicblocks under the permutation
group of row/column translations. The equivalenceclassfor the pattern in Figure 5a
cortains nine basicblocks of B (3; 3), onefor eat of the permutations in G(3; 3).

Considernow the pattern in Figure 6a with its correspnding basic blocks out-
lined. This structure is an exampleof a regular or simple twill: shifting the colorings
in any row one position to the right (asin this casefor a right twill) or the left (for
a left twill) givesthe coloringsof the row below it [2]. The basicblock b, outlined
at the top left of Figure 6a de nes the 3-harnessright twill pattern, as doesead of
the other 3 3 blocks outlined in the gure. The equivalenceclassfor the right twill
pattern in Figure 6a cortains three distinct blocks of B(3; 3) and for eat of these
blocks b, b= rc(b) = rrcab). That is, ead right twill block is invariant under the
permutations rc and rrcc. In general,a block b is invariant under a permutation g
and the pair (g; b) is an invarianceif b= g(b). The equivalenceclassfor the designin
Figure 6ais asseiated with the nine invariances(i; k), (rc;by), (rrec;by), (i; o)),
(re;e(by)), (rrecie(by)), (i; cdby)), (re;edby)), (rrec;ecdby)).

The equivalence class of Figure 5a is assaiated with the nine invariances
(i; b)), (i c(by)), (i; edby)), (s r(by), (i; re(by), (i reaby)), (i rr(on), (i rre(by)),
(i; rrcdby)). In general,ead equivalenceclassof B (3; 3) is assa@iated with a set of
nine invariancesand these setsform a partition of the collection of all invariances
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Figure 5: (a) Fabric structure de ned by the 3 3 basicblock b; outlined in the upper
left. The remaining blocks correspnd to row/column translations of b,. Labeling
from left to right, the basicblocksin the rst row areby, c(b;) and cqly); in the second
row, r(b), rc(by) and rcqly); and in the third row, rr(by), rrc(by) and rredlby).
(b) Rewerseof the fabric in (a), de ned by the block outlined in the upper right.

under row/column translations. Therefore, the total number of invariancesequals
nine (the number of permutations) times the number of equivalenceclasses.If we
can nd the number of invariances,we will know the number of equivalenceclasses
or designs. This is a special caseof a theorem known as Burnside's Lemma ( [17],
page136;[26], page95), stated below:

Burnside's Lemma Let G be a permutation group of a setS. The
number of equivalenceclassef S inducedby G equalsthe total number
of invariances(g; s) divided by the number of permutations in G, where
g2 Gands2S.

We use Burnside's Lemma now to prove that under row/column permutations,
there are twelve equivalenceclasseof patterns generatedby blocks in B (3; 3).

Lemma 4. There are 12 patterns assaiated with B (3; 3).

Proof. By Theorem 5, there are 84 invariancesof the form (i; b whereb 2 B (3; 3).

Becauseno block in B (3; 3) hasequalrows or equalcolumns,there are no invariances
of the form (r;b); (rr;b); (c;b) or (cc;b). Considerthe permutation rc. Letting (i, j)

denotethe color in the (row i, columnj) position of a basicblock b, we denotethe
coloringsof band rc(b) = c(r(b) asfollows:
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Figure 6: (a) The right twill fabric structure de ned by the 3 3 basicblock b, out-
lined in the upper left of the draft. The remaining blocks correspnd to row/column
translations of b,. Labeling from left to right, the basic blocks in the rst row are
b, = rc(y) = rredby), c(by) = reqby) = rr(ky) and coly) = r(ke) = rre(ly).
(b) The 6 basicblocks invariant under rc and rrcc are right twills. (c) The 6 basic
blocks invariant under rrc and rcc are left twills.
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We seethat bis invariant under rc if the colorin the (i, j) position of bis in the
(i 1,j 1) (mod 3) position of rc(b), sothe color is constart within the three right
diagonals(upper left to lower right). Any diagonal can be either bladk or white, but
the three diagonalscannotall be the samecolor (or the block would be all onecolor);
therefore, there are six blocks that are invariant under rc. Thesesix blocks, shovn
in Figure 6b, areright twill designs.Note that the blocks in the secondrow are color
reversalsof the blocks in the rst row. Thesesamesix blocks are invariant under
the permutation rrccthat movesthe colorin the (i, j) positionof bto the (i 2,] 2)
(mod 3) position of rrcdb).

The permutation rcc correspndsto sliding a3 3 grid on a pattern down one
row position and to the right two column positions, equivalert to sliding one row
down and onecolumnto the left. The colorin the (i, j) position of a block bisin the
i 1,5 2=@ 1,j+1) (mod 3) position of rcqb). Therefore,a block b is invariant
under r ccif the coloris constart within the three left diagonals(upper right to lower
left). The six blocks that are invariant under rcc, aswell asrrc, correspnd to left
twill designs,shovn in Figure 6c.

Ead of the four compositionsrc;rcc;rrc and rrcc hassix invariances. These24
invariances,combined with the 84 identity invariances,give the 108 invariancesof
B (3; 3) underthe 9 row/column translations. By Burnside'sLemma, therefore,there
are 12 equivalenceclasseaunder thesetranslations. O

We now prove that under row/column permutations, there are 30 equivalence
classesof patterns generatedby blocks in B(4;3) and 48 generatedby blocks in
B(5;3).

Lemma 5. There are 30 patterns assaiated with B (4;3) and 48 asseiated with
B (5; 3).

Proof. By Theorem5, there are 360basicblocks in B (4;3) and 720in B(5; 3).
Consider rst patterns assaiated with B (4;3). There are twelve elemerts in the
permutation group G(4; 3) of row/column translations of B (4;3). Is there a basic
block b in B(4; 3) that is invariant under a row/column translation other than the
idertity? There are no invariancesunder simple row translations becauseno rows
of b are equal and similarly no invariancesunder simple column translations. If b
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were invariant under rc, then any three consecutie rows would represen a right
twill pattern and this canonly happenif all rows are the samecolor, a cortradiction.
Similarly, bis not invariant underr cc, becauseghen any three consecutie rows would
represen a left twill pattern that again can only happen if the ertire block is the
samecolor. A similar argumert shavs that there are no invariancesunder rrrc and
rrrcc Invarianceunderrrc or rrccimplies that all the squaresin rows 1 and 3 are
the samecolor and likewisefor rows 2 and 4, a cortradiction. Therefore,there are 360
invariancesunder row/column translations, all of the form (i; b) wherebis in B (4; 3)
and i is the idertity permutation. Applying Burnside's Lemma, we seethat there
are 30 equivalenceclasseqor patterns) of B (4; 3) under row/column translations.
The permutation group G(5; 3) of row/column translations of 5 3 blocks has
fteen elemens. By an argumen similar to the 4 3 case,we know that the only
5 3blocksinvariant under a permutation in G(5; 3) other than the idertity are the
two blocks that are all one color and they are not menbers of B(5;3). Therefore,
the only invariancesunder row/column translations are of the form (i; b) were b is
in B(5;3) and i is the idertity permutation, and there are 720 of these. Then by
Burnside's Lemma, we seethat there are 48 designsasseiated with B (5; 3). O

More proof is required to show that under row/column permutations there are
44 equivalenceclasseof patterns assaiated with B (6;3). The reasonis that, asin
the 3 3 case,there are invariancesunder permutations other than the idertity.

Lemma 6. There are 44 patterns assaiated with B (6; 3).

Proof. There are eighteen row/column permutations in G(6;3). Let b be a block

in B(6;3). If bis invariant under rc, then rows 1 and 4 are equal, as are row 2
and 5, and rows 3 and 6, a cortradiction sinceblocks in B (6; 3) have distinct rows.
Similarly, if b is invariant under any permutation other than rrc, rrrrc, rrcc and
rrrrcc then somerows are equal, a cortradiction. For b to be invariant underrrc
or rrrrcg there must be a right twill in odd numbered rows and another right twill

(the color inverseof the rst) in even numberedrows, asin by, of Figure 7. To see
how many sud blocks there are, we note that the rst row can have either one or

two black squares.After that selection,there are three ways to start the twill that

beginsin row 1 and three ways to start its color inversein row 2. Therefore,there
are 18 blocks in B(6; 3) invariant underrrcand rrrrcc If bis invariant underrrcc
or rrrrc, then there must be a left twill in odd numbered rows and its color inverse
in even numbered rows, and there are 18 sud blocks. By Theorem 5, there are 720
bin B (6; 3) and therefore 720invariancesof the form (i; b). There are 18 invariances
under eat of the permutations rrc, rrrrcg rrccandrrrrc. Therefore,there are 792
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Figure 7: Thirty basicblocks of size3 3 through 6 3.

invariancesassaiated with the 18 permutations of G(6; 3). Therefore,by Burnside's
Lemma, there are 44 patterns assaiated with B (6; 3). O

We summarizethe results of this sectionin the following theorem:

Theorem 6. For B(3;3), B(4;3), B(5;3) and B(6; 3), respectively, the numker of
patterns or equivalene classesunder row/column translationsis 12, 30, 48 and 44.

The next stepis to discusshow thesepatterns canbe groupedinto designfamilies
basedon weasing symmetries. We will nd it helpful to refer to the basic blocks
shown in Figure 7. With the exceptionof by, all of the blocks have at least onerow
with two black squares;sincerow and column translations of a block do not change
the pattern generated,we are freeto considertheseblocks ashaving black squaresn
the rst two positionsof the rst row, asin Figure 7. This restriction will be useful
in courting designfamiliesin the following sections.

We beginwith weaving symmetriesassaiated with B (3; 3).
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6 Weaving symmetries

Considerthe 11 17 designin Figure 5a as a piece of woven fabric and imagine
turning it over, with top and bottom positions maintained, to seethe reverseside
represeted by the 11 17 designin Figure 5b. Turning the fabric over reversesthe
order of the columnsin the original design. Also, becausewarp threadsthat shav on
the faceof the fabric are hidden under weft threads on the reverse(and vice versa),
the colors must be exdianged. To acdiewe this \reverseside” directly, the weaver
threads warp yarns through the harnessesn reverseorder and lifts, for ead weft
yarn, only the warp threadsthat were not lifted in the original draft.

The 3 3 basic block outlined in Figure 5b de nes the \reverse" side of the
pattern in Figure 5a, which is generatedby the block b;. To obtain this new block
from by, we reversethe order of the columns and excange colors. Let v denote
the operation that reversesthe order of the columnsof a block (re ecting acrossthe
vertical axis) and x the operation that exchangesblack and white. Then the outlined
block in Figure 5bis vx(ly) = xv(l).

Rewersing the order of the lifting sequencecorrespndsto the operation h that
reversesthe order of the rows of a block (re ecting over the horizontal axis). The
composition hv is equivalert to rotating a block 180degrees.

Noting that the operations v; h;vh and x are commnutative, we de ne weaving
symmetriesasthe operationsin the setW = fi; v; h; hv; x; vx; hx; hvxg. Let S(3;3)
denotethe set of patterns generatedby blocks in B (3;3). Each weaving symmetry
is a one-to-onefunction from S(3; 3) to itself and thereforea permutation, and W is
a permutation group of S(3; 3). A designfamily cortains all patterns that are equiv-
alent under these weaving symmetries. Using the terminology of Granbaum and
Shephard( [8], page 286), patterns in di erent designfamilies are \essenially dis-
tinct", meaningthey are geometrically\of di erent homeomerictypes" with respect
to symmetry.

The pattern in Figure 5aand its reversein Figure 5b are menbersof the nontwill
designfamily of B (3; 3), shown in Figure 8a. There are eight patterns in this design
family, generatedby w(b,), wherew 2 W.

Figure 8b shaws the wearing symmetriesfor the twill designfamily of B(3;3).
There are four unique patterns in this family and ead of thesepatterns is invariant
under hv. The members of this family are the right and left twills of Figures 6b
and 6c¢, respectively. The left twill structure de ned by xv(k,) = xh(ky) is called
jeans twill or denim when usedto weave the fabric for blue jeans[2]. Steggall[22]
reported two patterns generatedby 3 3 blocks having exactly one bladk squarein
eat row and column; thesepatterns are generatedby b, and v(ly). In their article
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Figure 8: (a) The weaving symmetriesof the nontwill designfamily of B(3;3). The
pattern in the upper left is generatedby b;. The 8 patterns in this family are equiv-
alent to this rst pattern under weaving symmetries. (b) The weaving symmetries
of the twill designfamily of B(3;3). The pattern in the upper left generatedby
b, = i(ky) is the sameasthat generatedby hv(l,), sofor this family, we say i = hv.
In the twill designfamily there are 4 distinct patterns, with i = hv, v = h, x = xhv
and xv = xh.
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on satinsand twills, Granbaum and Shephard[7] found one\distinct twill" of period
3, correspnding to the twill designfamily of B (3; 3) represeted in Figure 8b.

Figure 8 shows that the weaving symmetries partition the twelve patterns in
S(3; 3) into two designfamilies, as stated in Theorem7:

Theorem 7. The 12 patterns or fabric structures asseiated with B (3; 3) are parti-
tioned into two designfamilies or equivalene classesunder weaving symmetries: the
twill family with 4 patterns and the nontwill family with 8 patterns.

For any b2 B(3;3), no row/column translation is equivalert to a weaszing sym-
metry. Therefore,to nd the number of designfamilies assaiated with B (3; 3), we
can apply Burnside'sLemmato the permutation group W of weaving symmetriesof
the set S(3; 3) of patterns assaiated with B(3;3). There are 12 invariancesof the
form (i; s) for s 2 S(3; 3). There are no invariancesunder v becausehis would imply
equal columns and similarly, no invariancesunder h. Sincethere are nine squares
in b, the number of bladk squaresdoesnot equal the number of white squares(b is
not color balanced),sob cannot be invariant under color exdhangex. Therefore,the
only remaininginvariancesare the four assaiated with hv, asillustrated in Figure 8.
Using Burnside's Lemma, we divide the total of 16 invariancesby the number 8 of
weaving symmetries,to seethat there are two equivalenceclasseof patterns under
weaving symmetries.

For m > 3, thereis not always a separationbetweenrow/column translations and
weaving symmetries. Consider,for example,the 4 3 blocks by and by in Figure 7.
Note that x(kg) = rr(kg) and v(by) = rr(by). Rather than consideringrow/column
translations and weaving symmetriestogether, we will catalog the designfamilies
directly, starting with B (4; 3).

By Theorem 6, we know that there are 30 patterns assaiated with B (4; 3). We
will idertify these30 patterns and classifythem into designfamiliesbasedon weaving
symmetries.

To nd blocks in B(4; 3) that correspnd to the 30 patterns, we look at possible
colorings. Any block in B(4;3) isa 4 3 grid of black and white squares. Of the
twelve squares,the number colored black cannot be lessthan v e or greater than
se\en becausethis would result in equalrows or columns. In Lemma7, we nd the
number of patterns assaiated with blocks having 5, 6 and 7 bladk squares.

Lemma 7. There are 6 patterns assaiated with blacksin B (4; 3) having5 blackand
7 white squaes, 18 patterns with blacks having 6 black and 6 white squaes, and 6
patterns with blacks having 7 blackand 5 white squaes.

Proof. If ablock bin B (4; 3) has v ebladk squaresthen threerows have a singleblack
and onerow hastwo bladk squares.How many di erent patterns are assaiated with
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sud a coloring? Sincerow and column translations of a basic block do not change
the pattern, we can without lossof generality supposecolumns1 and 2 of the rst
row are colored black. There are then six ways to |l ead of the remaining three
rows with one black squaresothat no rows or columnsare equal. Therefore, there
are six patterns assaiated with blocks having v e bladk and sewen white squares.
Similarly, there are six patterns that correspnd to blocks with seven black and v e
white squares.

The remaining eighteen patterns must be generatedby blocks having six bladk
and six white squares.We can show this directly by noting that any block in B (4; 3)
having six bladk and six white squaresmust have two rows with two black squares
and two rows with one black. There are six ways to choosetwo rows to have two
blacks, six ways to Il in those two rows with two blacks and one white, and six
ways to Il in the remaining two rows with two whites and one bladk, for a total of
216 basicblocks. Recallthat the only invariancesunder row/column translations in
B (4; 3) are with the identity permutation i. Applying Burnside'sLemma, we divide
the number of invariances(216) by the number of row/column permutations (12), to
seethat there are 18 patterns generatedby blocks having the samenumber of black
and white squares. O

We will say that a pattern assaiated with a basicblock having an equalnumber
of black and white squaresis color balancd; otherwise, it is color unkalanced. There
are no color balancedpatterns assaiated with B (3; 3). By Lemma7, we know that
there are eighteen patterns assaiated with B (4; 3) that are color balancedand twelve
that are not.

An unbalanced pattern assaiated with B (4; 3) is generatedby a block having
either v e or sewen black squares. A block with sewen black squaresis the color
reversal of a block with v e, sofor idertifying designfamilies, we can consideronly
blocks with v e black squares.Two sud blocks are b; and b, of Figure 7. Accourt-
ing for row/column translations and weaving symmetries, these are the only color
unbalancedblocks in B (4; 3) we needconsider.

The twelve unbalancedpatterns of B (4; 3) are illustrated in Figure 9, separated
into two designfamilies basedon weaving symmetries. Figure 9a shows the design
family assaiated with the block b; that hasbladk squaresin the rst two columnsof
the rst row and in columnsl, 2 and 3, respectively, of the remaining rows. There
are no invariancesunder weavzing symmetriesin this designfamily, so the family
cortains eight patterns.

As Figure 9b illustrates, there are four patterns in the designfamily generated
by the block b, that hasbladk squaresn the rst two columnsof the rst row andin
columnsl, 3and 2, respectively, of rows2; 3and 4. To denotethe pattern invariances
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Figure 9: There are 12 color unbalanced patterns assaiated with B(4;3): (a) 8
patterns in the designfamily generatedby b; and (b) 4 patterns in the designfamily
generatedby the basicblock by.
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in this family, we say i = hv;v = h;x = xhv and xv = xh. The patterns in this
family have a more twill-lik e appearancethan those of Figure 9a.

The eighteenbalancedpatterns of B (4; 3), illustrated in Figure 10, are partitioned
into six designfamilies basedon weaving symmetries. Three of thesefamilies cortain
four patterns ead and three cortain two patterns ead.

The blocks bs-by represeting the designfamiliesin Figures 10a-d have adjacert
rows of double bladks alternating with adjacen rows of single blacks. The blocks by
and byg have alternating rows of double and single blacks and the families assaiated
with them are illustrated in Figures 10eand 10f.

As Figure 10d shows, a balancedpattern can equalits own color inverse,even
though that cannot be true of a basicblock. In this case,x(bg) = rr(ks). Also, if a
block hasno equalcolumns,then it cannotequalits own vertical re ection. Howe\er,
as Figure 10f shaws, it is possiblethat sud a block generatesa pattern that equals
its own re ection. In this case,the pattern is generatedby byg, and v(byg) = rr(by).

Theorem 8 summarizestheseresults for B (4; 3):

Theorem 8. There are 30 patterns assaiated with B (4; 3), 18 color balanced and
12 not. These30 patterns are partitioned into eight designfamilies basal on weaving
symmetries. Two of these designfamilies contain color unkalanced patterns, one
family with eight patterns and the other with four patterns. Of the six designfamilies
containing balanad patterns, three contain four patterns each and three contain two
patterns each.

We now nd the designfamilies ass@iated with B(5;3). Any block in B(5; 3)
cortains v e of the six possiblecoloringsof rowswith at leastoneblack and onewhite
square,and thereforehaseither seenor eight black squares.A block with eight bladk
squaresis the color reversal of a block with sewen, sofor idertifying designfamilies,
we can consideronly blocks with sevenblack squares.A 5 3 block with sewen black
squareshastwo rows of doublebladks and three rows of singleblacks. The two double
rows can be adjacern or separatedby rows with single blacks. Taking row/column
translations and weaving symmetriesinto accour, we needonly considerthe 5 3
blocks by;-byg in Figure 7.

Figure 11 shows the four designfamilies assaiated with the blocks by;-by4 that
have adjacen rows of doublebladks. The designfamiliesin Figuresllcand 11d have
no invariancesunder weaving symmetriesother than i and socortain eigh patterns
eat. Therearefour patternsin the designfamiliesillustrated in Figuresllaand11b;
in ead of thesefamilies, i = hv, v= h, x = xhv and xv = xh.

The four remaining designfamilies assaiated with B (5; 3), shovn in Figure 12,
aregeneratedby basicblocks in which the two rows of double bladks are not adjacen.
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Figure 10: The designfamiliesin (a)-(f) are generatedby 4 3 basic blocks bs-by,
respectively. Thesepatterns are all balancedin the sensethat the generatingblocks

have an equal number of black and white squares.
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Figure 11: The designfamiliesin (a)-(d) are generatedby 5 3 basicblocks by1-by4,
respectively. Thesefour basicblocks all have adjacen rows of double blacks.
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Figure 12: The designfamilesin (a)-(d) are generatedby the 5 3 basic blocks
bis-byg, respectively, that do not have adjacen rows of double bladcks.
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The designfamilies in Figures 12a and 12b, generatedby b,s and byg, respectively,
cortain eight patterns ead, having no invariancesunder weaszing symmetriesother
than i. The patterns in the designfamilies of Figures 9c (generatedby b,7;) and 9d
(generatedby byg) have the sameinvariancesunder weasing symmetries,i = hv;v =
h;x = xhv and xv = xh, and so these design families have four patterns ead.
Theorem 9 summarizestheseresults for B (5; 3).

Theorem 9. There are 48 patterns assaiated with B(5; 3), all color untalancd.
These 48 patterns are partitioned into eight designfamilies based on weaving sym-
metries, four families with eight patterns each and four with four patterns each.

Note that no block with an odd number of squarescanbe assaiated with a design
family of size2 sinceinvarianceunder color reversalrequiresan equalnumber of black
and white squares.Designfamilies asseiated with B (3;3) and B (5; 3) cortain either
eight or four patterns. B(4; 3), on the other hand, hasthree designfamilies of four
patterns eat and three families of two patterns eatr. We might expect B (6; 3) to
have a designfamily with exactly two patterns, and as we will see,there are four
sud families.

The rows of any block in B(6; 3) include all six possiblecoloringswith at least
one black and one white. Taking row/column translations and weaving symmetries
into accour, the only basic blocks we needconsiderare byo-bzg of Figure 7. These
basic blocks have one of these three forms: three adjacent rows of double blacks
alternating with three adjacern rows of single bladks asin byg-by, and Figures 13a-
d; rows of double bladks alternating with rows of single blacks as in by3-b»s and
Figures 13e-g; and two adjacert rows of double blacks and two adjacert rows of
single blacks alternating with onerow of eat asin -z and Figure 14.

Figure 13 shows twerty patterns organizedinto sewen families. The patterns in
the designfamilies in Figure 13a (four patterns), 13b (two patterns) and 13d (four
patterns) have three rows of right twill alternating with three rows of right twill or
three rows of left twill alternating with three rows of left. The two patterns in the
designfamily of Figure 13calternate three rows of right twill with three rows of left
twill. The two patterns in the designfamily shavn in Figure 13g have left twill in
one set of alternate rows and right twill in the other.

The patterns illustrated in Figures 13eand 13f are alternating twills in the sense
that alternate rows make up a simple twill pattern, with the two setsof twills go-
ing in the samedirection. Thesetwo designfamilies have very di erent looks. The
patterns in Figure 13eare not at all twill-lik e, while thosein Figure 13f are. Alder-
man [2] called the patterns in Figure 13f double-faed twills, while Granbaum and
Shephard[7] calledthem color-alternate twills. In a color-alternatetwill, exchanging
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Figure 13: The 6 3 basic blocks byg-bys generatethe designfamilies in (a)-(g),

respectively.
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the coloringsof any row and shifting one position to the right (the pattern on the
right of Figure 13f) or left (the pattern on the left of 13f) givesthe row belon. The
patterns in Figure 13f are the only color-alternatetwills possibleon three harnesses.

The remaining v e designfamilies of B (6; 3), illustrated in Figure 14, include 24
patterns: eight in the designfamily of Figure 14e and four in ead of the design
families represeted in Figures 14a-d. Theorem 10 summarizesthese results for
B (6; 3).

Theorem 10. There are 44 patterns assaiated with B6; 3), partitioned into 12 de-
sign families basel on weaving symmetries. One of these families includes eight
patterns, sevenfamilies havefour patterns each and four families havetwo patterns
each.

The results of this and the previoussectionare presered in the table below. For
eat basicblock sizem 3, the represetativ e blocks of B (m; 3) are listed by color
sequencgnumber of bladk squaresper row). Among the ten color sequencesthere
are 134 patterns organizedinto 30 designfamilies basedon weaving symmetries.

Somepatterns have a twill-lik e look, with in nite diagonalsof black (or white)
squares. Others tend to have connectedsets of bladk squaresseparatedfrom con-
nectedsetsof white squares.In the next section,we considerthe appearanceof these
tilings of the plane and relate someto polyominoes.

7 Tiling the plane

Eadh of the 30 designfamilies assa@iated with B(m;3), 3 m 6, is represeted
in Figure 15by a4 4 repetition of one of the basicblocks b,-bso of Figure 7. The
appearanceof someof thesepatterns can be descrited by geometricalforms created
by the black and white squares.

Tilings 2, 4, 18and 24 havein nite diagonalsof edge-wise&onnectedblack squares
and/or edge-wiseconnectedwhite squares. The other tilings show distinct shapes
createdby a nite number of edge-wiseconnectedsquaresof the samecolor. A shape
madeby connectinga collection of unit squares,ead squarejoined to another along
an edge,is a polyomino [15]. We can think of the patterns represeted in Figure 15
astilings of the planein polyominoes.

Pattern 24 is a color-alternate twill with in nite diagonalsin ead color, alter-
nate diagonalsof one color completely separatedby diagonalsof the other color.
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Patterns and designsassaiated with B(m;3);3 m 6

Block Black squares Pattern Patterns  Design Total
size perrowoflh i in family families patterns Figure
3 3 211 1 8 1 8 8a
1,11 2 4 1 4 8b
Total: 12
4 3 2111 3 8 1 8 9a
4 4 1 4 9b
22,11 5;6 4 2 8 10a,b
7,8 2 2 4 10cd
2,12,1 9 4 1 4 10e
10 2 1 2 10f
Total: 8 30
5 3 22111 11,12 4 2 8 1l1a,b
13 14 8 2 16 11c,d
212,11 15,16 8 2 16 12a,b
17,18 4 2 8 12c,d
Total: 8 48
6 3 222111 19,22 4 2 8 13a,d
20,21 2 2 4 13b,c
212,121 23 4 1 4 13e
24,25 2 2 4 13f,g
22,1211 26-29 4 4 16 14a-d
30 8 1 8 1de
Total: 12 44
Grand total: 30 134
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Figure 15: Patterns 1-30are generatedby basicblocks by -bsg, respectively.
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Eadh diagonal consistsof connectedstraight trominos, a straight tromino createdby
connectingthree squaresin a line. We might call tiling 24 a pure diagonal because
squaresof ead color are connectedin in nite diagonals.

In tiling 2, a right twill, we seein nite white diagonalsof edge-wiseconnected
dominoes. The black diagonalsconsist of separatemonominces connectedonly at
corners. This is a mixed pattern becauseit hasin nite diagonalsin one color and
diagonals of separate polyominoes in the other color. Another mixed pattern is
tiling 4, which hasin nite white diagonalsresulting from repeatededge-wiseconnec-
tions of two dominoesand one straight tromino, and bladk diagonalsof alternating
skew tetrominoes and monominces. The remaining mixed pattern is tiling 18; its
in nite white diagonalsconsist of repeated edge-wiseconnectionsof a domino and
two straight trominoesand its black diagonalsconsistof translations of the a single
heptomino.

Six patterns in Figure 15 are pure polyomino tilings in the sensethat ead is
createdfrom a single polyomino, translated and possiblyrotated or re ected. Tiling
6 is createdfrom a singlehexominoin black and vertical re ections of that hexomino
in white. Pattern 9 hasa hexominoin bladk and a 180rotation of that hexominoin
white. In pattern 10, vertical re ections of a right tromino appearin both bladk and
white, while tiling 23 corntains a right tromino in black and its 180degreerotation in
white. Tiling 28hasa nonomino(nine squares)n black and its 180degreerotation in
white. Tiling 8isthe \purest" pure polyominoin that it consistsof simpletranlations
of a single hexominoin black and white. Eadh of the other tilings in Figure 15 is
a multiple polyomino tiling since at least two di erent polyominoes make up the
pattern.

Many of the polyomino problemsdiscussedn Golomb [15]and Martin [19]involve
tiling a region sud as a rectanglewith polyminoes. In this work, we proceededin
the other direction by creating tilings of the plan from rectanglesof bladk and white
squaresand then noting how the resulting patterns could be related to polyominoes.

8 Discussion

Eadh of the patterns discussedn this paper is generatedby a basic block { a grid
of bladk and white squareshaving three distinct columns and three to six rows,
also distinct. There is a great deal of variation in appearanceof these patterns,
constructed as they are from simple rectanglesof nine to eighteen black and white
\tiles". Somehave propertiesof optical illusions. Someseemto vibrate. Others, suth
aspattern 12, look very di erent whenviewed from di erent angles,especially when
obsened obliquely. A consideration of the aestheticsof tilings is open to further
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study.

The requiremen that a basicblock have at leastonebladk and onewhite square
in ead row and column comesfrom the necessi in weaving that ead warp thread
be interlaced with weft threads (and vice versa) as part of the fabric. We shaved
that this requiremen is enoughto ensurethat a 2- or 3-harnesdabric designhangs
together.

Looseningthe restriction that a generatingblock have distinct rows and columns
expandsthe designpossibilities. We can createinteresting patterns, for instance, by
incorporating weaving symmetriesinto a draft, assuggestedoy the represertations
of designfamilies in Figures 8 through 14. Weavers often descrike fabric design
possibilities as \in nite" and they are of coursecorrect if we do not restrict the
number of rows or columns in the generating block. There are, howewer, many
recurring themesin drafts of fabrics (and other ornameration) that can be de ned
in terms of rectangular grids of nite dimension. This study is a rst step of an
inquiry into the number of weaving pattern patterns possibleon a given number of
harnessespr the number of tilings that can be created from blocks with a given
number of distinct columns.

The author has woven all 134 patterns in the 30 design families descriled in
this report. Visual similarity of the cloth with the draft dependson factors sud as
the yarn usedand the sett or spacingof the warp threads. Weavers know that not
all drafts lead to satisfactory cloth. A woven samplemay not resenble its draft in
appearancebecauseof physical properties of the yarn. The drafted fabric structure
may lead to overlapping of adjacert weft threads and/or various distortions caused
by di erencesin tensionand interlacemen. Someof thesedeviationsfrom draft are
expectedand exploited by weaversto interestinge ect [2]. Many of thesephenomena
are outside the realm of tiling and await mathematical attention.

Note: All gures in this article werecreatedin Fiberworks [16] and edited using
Windows Paint and Adobe lllustrator CS2.
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