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Abstract
A weaving drawdown is a rectangular grid of black and white squareswith

at least one black and one white square in each row and column. A pattern
results from vertical and horizontal translations of the de�ning grid. Any such
grid de�nes a tiling pattern. However, from a weaving point of view, some
of these grids de�ne actual fabrics while others correspond to collections of
threads that fall apart. This article addressesthat issue,along with a discus-
sion of binary representations of fabric structures. The article also catalogs
all weaving (or tiling) patterns de�ned by grids having three distinct columns
and three to six distinct rows, and groups thesepatterns into design families
basedon weaving symmetries.

1 In tro duction.

Weaving is a processof creating a fabric by interlacing a set of yarn strands called
the weft with another set of strandscalledthe warp. The lengthsof yarn calledwarp
endsare tied in parallel and held under tension on the weaving deviceor loom. At
each step in the weaving process,the weaver separateswarp ends into two layers,
upper and lower, passesa weft strand through the resulting opening(called the shed),
then moves or beats that weft strand so that it lies against previously woven weft
yarns, perpendicular to the warp. Lifting another subsetof warp ends, the weaver
repeats the processuntil the fabric is completed.
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Figure 1: (a) A weaver's draft of plain weave fabric structure. Each of the two
outlined 2 � 2 blocks is su�cien t to de�ne plain weave. (b) Draft of a basket weave
de�ned by the outlined 4 � 4 block.

A loom with a harnessmechanism aids the weaving process.If a warp thread is
attachedto a harness,the thread risesand falls with that harness.The simplestsuch
loom has two harnesses,su�cien t to create the fabric structure called plain weave
or tabby. With even-numbered warp ends passedthrough one harnessand odd-
numbered through the other, the weaver lifts the harnessesalternately to produce
the familiar checkerboard look of plain weave illustrated in Figure 1a.

The weaver's draft in Figure 1a shows ten warp and ten weft threads, although
two of each would be su�cien t to de�ne the plain weave structure. Following textile
industry practice, warp endsare shown herein black and weft in white [25]. A black
squareindicates that a warp end is lifted and therefore passesover the weft yarn,
while a white squareindicatesweft passingover warp. The 2� 10 rectangleat the top
of the draft is the threading diagram, with harnessesnumberedfrom bottom to top,
showing how warp yarnspassthrough the harnesses.Numbering warp endsfrom left
to right, the �rst row of the threading diagram shows that the odd-numberedwarp
threads passthrough harness1, evens through harness2. The 10 � 2 rectangleat
the right of the draft shows the harnesslifting plan. With harnessesnumberedfrom
left to right, column 1 contains a black squarewhen harness1 is lifted, column 2 is
black when harness2 is lifted. To produce the exact pattern shown in Figure 1a,
the weaver starts at the bottom of the draft and passesthe �rst weft thread through
the shed with harness1 (odd-numbered warp ends) lifted, passesthe secondweft
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through with harness2 (even-numbered warp ends) lifted, and so on, creating the
10 � 10 grid of fabric represented in the bottom left of the diagram. This 10 � 10
grid, called the drawdown, de�nes the fabric.

In any drawdown, each row and column must contain at least onewhite and one
black square[18]. Gr•unbaum and Shephard[7] pointed out that this requirement is
not su�cien t to guarantee that a draft represents a weaving that \hangs together".
A number of authors have addressedthis issue,including Lourie [18], Clapham [4],
Enns [6], Gr•unbaum and Shephard[8] and Delaney[5], and we will as well.

A drawdown represents the physical interlacement structure of warp and weft.
Wewill focuson this interlacement structure, ignoring for now the designpossibilities
that comewith the useof color.

Using the terminology of Gr•unbaum and Shephard[7], we say that plain weave is
a periodic designor pattern de�ned by vertical and horizontal translations of either
of the 2� 2 fundamental blocks outlined in Figure 1a. From a weaving or tiling point
of view, these two blocks are equivalent, since both de�ne the samedesign when
extendedover the plane. In general,an m � n grid of black and white squaresis a
fundamentalblock of a pattern if each row and columncontains at leastonewhite and
oneblack squareand the pattern results from vertical and horizontal translations of
this block.

By the above de�nition, the 10 � 10 grid in Figure 1a is a fundamental block
representing the plain weave fabric structure, asare the 2� 10 and 10� 2 rectangles
in that �gure. However, the 2� 2 fundamental blocks are the smallestblocks we can
use to de�ne plain weave and are therefore irreducible or basic blocks. In general,
we will say a fundamental block is a basic block if it is irreducible in the sensethat
no block with fewer rows or columnsde�nes the samepattern.

Many patterns aregeneratedby basicblocks that havesomeidentical rowsand/or
columns. One such pattern is the basket weave illustrated by the draft in Figure 1b.
This basket weave is a variation on plain weave in that it can be woven on two
harnesses,and we call it a 2-harnessdesign,even though the structure is de�ned by
a 4� 4 basicblock. In general,we will call a fabric structure a k-harnessdesignif k
is the minimum number of harnessesrequired to weave it. A basicblock generating
a k-harnessdesignhasexactly k distinct columns[18]. The plain weave in Figure 1a
and the basketweave in 1b are 2-harnessdesigns,generatedby basic blocks having
two distinct columns.

We might reasonablyask: How many fabric structures can be woven on a given
number of harnesses?Equivalently, how many rectangular-grid two-color tiling pat-
terns result from basicblocks with a given number of distinct columns?Steggall[22]
found the number of basicblocks of sizen � n that have exactly oneblack squarein
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each row and column. Gr•unbaum and Shephard[7], [8], [9], [10] consideredclasses
of patterns they called isonemalfabrics, including satinsand twills. Relatedwork on
twills and twillins was reported by J.A. Hoskins, W.D. Hoskins, Praeger,Stanton,
Street and Thomas (see,for example:[12], [13], [14]).

With the restriction that adjacent rows and columnsare not equal, the checker-
board pattern of simpleplain weave shown in Figure 1a is the only 2-harnessdesign.
How about 3-harnessdesigns?Weaving with three harnesses(or shafts) has a long
tradition, as suggestedby de Ruiter's [21] discussionof three-harnessdesignsand
an analysisof 18th and 19th century textiles by Thompson,Grant and Keyser [24].
However, this author has not found a study of the number of patterns that can be
woven on three harnesses.In later sections,we will begin this study by �nding the
number of patterns generatedby m� 3 basicblocks having no equalrowsor columns.
We will alsogroup thesepatterns into familiesor equivalenceclassesof fabric designs
basedon weaving symmetriesand illustrate thesedesignfamilies.

Beforeproceeding,however, wemust addressthe problemof determining whether
or not a weaving hangstogether. Such a determination is easierif we represent drafts
with binary matrices,as discussedin the next section.

2 Weaving and binary matrices

We can display the interlacement structure of a fabric consisting of m weft and n
warp threadsasan m � n grid of black and white squares,called the drawdown. An
alternative representation of the fabric structure is an m � n matrix of 0's and 1's,
with 1 indicating a warp thread passingover weft (black squarein the drawdown)
and 0 otherwise. We will refer to this binary representation asthe drawdownmatrix.

Lourie [18] and Hoskins [11], among others, discussedthe idea of factoring an
m � n drawdown matrix into a product of two matrices, one representing the warp
threading and the other, the lift plan. Let D denotethe m � n drawdown matrix of
an h-harnessdesign(that is, there are h distinct columnsin D). Using the notation
of Lourie [18], de�ne the harnessthreading matrix H as the h � n (0,1)-matrix with
rows 1 through h representing harnesses1 through h, respectively, and columns
corresponding to warp threads numbered from left to right. H has a 1 in position
(i, j) if warp thread j passesthrough harnessi, and 0 otherwise. (This mathematical
de�nition of H reversesthe row order traditionally used by weavers at the top of
a draft to illustrate harnessthreading.) De�ne the lift plan matrix L as the m � h
matrix that hasa 1 in position (i, j) if all of the warp threadslifted by harnessj pass
over the weft thread corresponding to row i of the drawdown, 0 otherwise. Then,
L � H = D.
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Consider, for example, the basketweave de�ned by 4 � 4 basic block b outlined
in Figure 1b. If D represents the drawdown matrix corresponding to b, the matrix
equation L � H = D becomes:

0

B
B
@

1 0
1 0
0 1
0 1

1

C
C
A �

�
1 1 0 0
0 0 1 1

�
=

0

B
B
@

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

1

C
C
A

In this case, the lift plan matrix L is the transpose of the harnessthreading
matrix H , and the resulting drawdown matrix D is symmetric.

Supposea pattern is generatedby an m � n basic block b whosen columnsare
all distinct. In such a case,the block itself gives all the information necessaryfor
threading the loom and weaving; we do not require the harnessthreading and lift
plan portions of the weaver's draft. We state this in the following theorem:

Theorem 1. Supposeb is an m � n basic block whosen columnsare all distinct. If
D is the drawdownmatrix for b, then we can write D = L � H , where the harness
threading matrix H equalsthe n � n identity matrix and the lift plan matrix L equals
D.

Proof. For threading such a design,we can usewhat weaverscall a straight draw [2]:
warp thread j passesthrough harnessj for j = 1; : : : ; n. Then the threading matrix
H is the n � n identit y matrix I , and D = L � H = L � I = L.

For example, considerthe 4 � 4 block b outlined in Figure 2a. Both b and its
drawdown matrix D have four distinct columnsand the matrix equationL � H = D
is:

0

B
B
@

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

1

C
C
A �

0

B
B
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C
C
A =

0

B
B
@

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

1

C
C
A

In Sections4 through 7, we consider only basic blocks whosecolumns are all
distinct. All patterns are generatedby horizontal and vertical translations of the
generatingblock b. Then bprovidesall the information normally provided in a draft,
describingthe fabric structure, threading and lift plan.
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(a)                                      (b)

Figure 2: (a) A weaver's draft of a fabric that hangstogether, with its 4 � 4 basic
block outlined. (b) Draft of a weaving structure that doesnot hang together. The
4 � 4 basicblock that de�nes the tiling pattern is outlined.

3 When a weaving hangs together

Consider the tiling patterns in Figure 2. Each is a 4-harnessdesign that can be
represented by a 4 � 4 basic block having at least one black and one white square
in each row and column and each can be usedto producea weaving. Following the
draft in Figure 2a results in a fabric with interlacement structure indicated directly
by the pattern of black and white squaresin the draft. This is not the casefor
the draft in Figure 2b. Weaving from this draft results in two separateplain weave
fabrics: whenever either harness2 or 4 is lifted, soare harnesses1 and 3, sothat the
fabric involving harnesses2 and 4 lies below that involving harnesses1 and 3.

Weaverscall the fabric structure in Figure 2b doubleweaveand useit in a number
of ways. If separateweft threadsare usedfor each row of the design,two completely
separateplain weave fabrics result: oneis woven above the other and the two fabrics
can be lifted apart. Handweaversgenerallywrap a singlelong length of weft yarn on
a shuttle and then passthe shuttle back and forth through the warp. The order in
which the harnessesare lifted then determinestopological properties of the fabric.
If a weaver follows the draft in Figure 2b with a single long weft thread that starts
from the right sideof the loom, asshown in Figure 3a, the two resulting plain weave
fabrics are locked together at each side in the form of a 
attened cylinder. If the
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  (a)                                                   (b)

Figure 3: (a) Weaving with a continuous weft as shown results in two fabric layers
locked together on each side, creating a 
attened cylinder. (b) Using a continuous
weft and weaving as shown results in two fabric layers locked on the right side,
opening to a fabric twice as wide as the warp spanon the loom.

weaver changesthe harnesslifting order to that in Figure 3b, the resulting fabric
layers are locked only on the right side. When removed from the loom, the weaving
can be openedinto a singleplaneof fabric twice aswide asthe spanof warp threads
on the loom, with length corresponding to half the weft passesusedin the weaving.

Artists alsousedoubleweave for decorative purposes.As a simple example,con-
sider the sampleof 4-harnessdoubleweave shown in Figure 4. The weaver used a
total of 48 warp threads: 4 dark warp strands in each of harnesses2 and 4 and 4
light warp strands in each of harnesses1 and 2 acrossthe middle third of the piece
and 24 light warp threads (6 per harness)on each side. The weft is madeup of 48
passeswith the light-colored yarn. Using harnesses1 and 3 producesa fabric that
is all light-colored; harnesses2 and 4 result in a fabric with a vertical dark/ligh t
checkered stripe down the middle. The weaver wove the bottom and top thirds of
the samplewith the solid-color fabric layer on top and the middle third with the
striped layer on top. The resulting piece,showing 24 warp and 24 weft strands on
each side,hasthe interesting property that two planesof fabric intersect twice. The
color pattern in Figure 4 cannot be woven as a single layer. Delaney[5] called such
a designessentially reducible.

We canconceive weavings with more than two layersof fabric, although a weaver
might �nd them technically di�cult to construct. Albers[1], who dedicatedher book
to the weaversof ancient Peru, reported that the Peruviansmadeuseof double,triple
and quadruple weaves.

For the remainder of this section, we assumethat a pattern is generatedby an
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Figure 4: Doubleweave samplewith a solid color plain weave fabric twiceintersecting
a striped plain weave fabric.

m � n fundamental block. We also assumethat the weaver usesindividual weft
threads to produce the \w eaving" from the draft. Then, a weaving \falls apart" if
there are sets of threads that can be physically separated. We'll say such sets are
mutually unconnected. If a set of threads cannot be pulled apart in this way, we'll
say these threads are mutually connected and the corresponding weaving \hangs
together".

How can we tell whether or not a drawdown represents a weaving that hangs
together? Clapham [4] provided a procedure for such a determination, which we
will repeat here. Let r sumi denote the row sum of row i of the drawdown matrix
and csumj the column sum of column j . Supposethat the rows and columnsof the
matrix are arrangedso that r sum1 � r sum2 � : : : � r summ and csum1 � csum2 �
: : : � csumn (whether a weaving hangstogether doesnot depend on the order of the
rows or columnsof the drawdown). Let s and t be integerssuch that 0 � s � m and
0 � t � n, excluding the possibility that (s; t) is either (0; 0) or (m; n), and de�ne
the function E(s; t) this way:

E(s; t) = t(m � s) � (csum1 + : : : + csumt ) + (r sum1 + : : : + r sums)
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Clapham [4] proved that E(s; t) � 0 and that the weaving falls apart if and only
if E(s; t) = 0 for some(s; t), providing a simple method of determining whether a
weaving hangstogether, repeatedbelow:

Determining Whether a W eaving Hangs Together (Clapham)
If r sum1 = 0, take s = 1 and t = 0 and the weft strand corresponding to
r sum1 canbelifted o�. If not, for each t = 1; : : : ; n, �nd the largests such
that r sums < t (the row sumsareincreasing)and evaluateE(s; t) de�ned
above. If any of theseequals0 (excluding E(m; n)) then the weft strands
corresponding to rows with row sums rsum1; : : : ; r sums and the warp
threads corresponding to columns with column sums csum1; : : : ; csumt

can be lifted o�. Otherwise the fabric hangstogether.

Considerbinary matrix representations Da and Db of the basicblocks of Figures
2a and 2b, respectively, each rearrangedsothat row sumsare increasingand column
sumsare decreasing:

Da =

0

B
B
@

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

1

C
C
A Db =

0

B
B
@

1 0 0 0
0 1 0 0
1 1 0 1
1 1 1 0

1

C
C
A

The row sumsfor the binary matrix Da are 1; 1; 2 and 2, the column sumsare
2; 2; 1 and 1, and E(s; t) is always greater than 0. For the matrix D b, the row sums
are1; 1; 3 and 3, the column sumsare3; 3; 1 and 1, E(2; 2) = 0 and E(s; t) > 0 for all
pairs (s; t) other than (2; 2). This agreeswith our earlier observation that the draft
in Figure 2b results in two plain weave fabrics, while the draft in Figure 2a results
in a single fabric.

Clapham's procedureapplies to any draft that can be represented by an m �
n binary array, no matter how many unconnectedlayers. If the binary matrix is
arrangedso that row sumsare nondecreasingand column sumsare nonincreasing,
then E(s; t) = 0 if andonly if the �rst s \ro w" or weft strandsand the �rst t \column"
or warp strands can be lifted o� the others. Theses weft and t warp threads may
make up a single fabric or it may be possibleto partition them into separatefabric
layers and/or loosestrands.

The drawdown matrix for the samplein Figure 4 meetsClapham's criterion for
a weaving that hangstogether. However, there are three separatehorizontal strips
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of doubleweave in this sample,connectedwherethe fabric layers intersect. The ap-
pearanceof the 48� 48 grid of black and white squaresin the draft doesnot directly
correspond to the physical appearanceof the woven piece; the samplehas just 24
warp and 24 weft threads showing on each side. Similarly, the appearanceof the
12 � 12 drawdown in Figure 2b doesnot correspond to the physical appearanceof
the resulting doubleweave; each sideof the woven samplereveals6 warp and 6 weft
strands. We seethat a weaving may \hang together" but not consist of a single
fabric layer of mutually interlaced warp and weft threads. In that case,the pattern
of black and white squaresin the draft is not the apparent interlacement structure
on either sideof the weaving. In what follows, we will describe somecasesfor which
a simple criterion doesguarantee that the draft directly correspondsto the physical
interlacement structure of the fabric.

Recall that a fabric structure is a k-harnessdesignif k is the minimum number
of harnessesrequired to weave it; a fundamental block corresponding to a k-harness
designhas exactly k distinct column colorings. All warp threads corresponding to
the same column coloring are threaded through the sameharness; they rise and
fall together as a unit, as the harnessrises and falls. The columns of a draft are
partitioned into k such units of warp threads, onefor each of the k distinct columns.
Similarly, weft threads corresponding to identical row colorings in a draft have the
sameinterlacement pattern; we will say they composea unit of weft threadsand note
that theseunits partition the set of all weft strands in the draft. Threads in a single
unit, either warp or weft, have identical interlacements and therefore are either in
the sameset of mutually connectedthreadsor elsecan be separatedfrom the rest of
the weaving.

Lemma 1. If a weaving contains exactly one unit of warp and/or weft, then it
separatesor \fal ls apart" into mutually unconnected units of warp and weft.

Proof. Suppose the weaving contains only one unit of warp threads. Becauseall
strands in the unit have the sameinterlacement structure, any weft thread must
either passover all the warp strands or under all of them. Weft threads that pass
over all the warp strandscanbe lifted o� the top, while weft threadsthat passunder
drop o� from below. Therefore,the weft threadscompletelyseparatefrom the warp
since there are no interlacements at all. Similarly, if a weaving contains only one
unit of weft threads, then it separatesinto individual units of warp and weft.

Lemma 1 leadsto the following result:

Theorem 2. If a weaving hangstogether, then it is wovenwith at least two units of
warp and at least two units of weft threads.
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Proof. Supposea weaving hangstogether. If it is woven with just oneunit of warp
or weft, then by Lemma 1 it falls apart, a contradiction.

A corollary of Theorem2 is intuitiv ely obvious: plain weave is the simplest fabric
structure, created with exactly two units of warp and two units of weft. We now
prove the following:

Theorem 3. Any weaving can be partitioned into mutually unconnected sets of
threads, each set either a fabric that hangstogetheror a singleunit of warp or weft.

Proof. If the entire weaving hangs together, then the theorem is satis�ed. Let W
denotea set of threads that can be separatedfrom the others. If W hangstogether
or consistsof a singleunit of warp or weft, the theorem is satis�ed.

Supposethen that W falls apart and consistsof two or more units of warp and
of weft. We will useproof by induction twice to show that W satis�es the conditions
of the theorem.

If W contains exactly two warp units and two weft units, then onewarp and/or
one weft unit separatesfrom the others. Then by Lemma 1, W falls apart into
mutually unconnectedunits of warp and weft, so the theorem is satis�ed.

If W contains exactly two warp and three weft units and a warp unit separates
from the others, then we canagainapply Lemma1. If a weft unit separatesfrom the
others, then two warp and and either oneor two weft units remain. If just oneweft
unit remains,again by Lemma 1 we know the theorem is satis�ed. If two warp and
two weft units remain, then they either hang together or, as shown in the previous
step, fall apart into separateunits of warp and weft.

Assumenow that the theoremis satis�ed by any set of threadswith exactly two
units of warp and k units of weft, k � 2.

If W contains exactly two units of warp and k + 1 units of weft and a single
warp separatesfrom the others, then we again apply Lemma 1. If oneor more weft
units separatefrom the others, then by the induction assumption, the theorem is
satis�ed by the thread units that remain. Therefore,the theoremis satis�ed for sets
W containing two warp units and two or more weft units.

Assumenow that the theorem is satis�ed by any set of threads having m warp
units and two or more weft units, for somem � 2. If W consistsof m + 1 warp
and two or more weft units and falls apart, we remove any weft threads that lift o�
the top or drop o� the bottom. If the remaining set of threads hangstogether, we
are �nished. If this set falls apart, then it must be that at least one warp unit can
be separatedfrom the others, with or without weft, leaving subsetswith m or fewer
warp threads each and, by the induction assumption,the theorem is satis�ed.
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In later sections,we will consider3-harnessdrafts with two or moredistinct rows
and at least oneblack and onewhite squarein each row and column. Such a design
contains three warp units, corresponding to distinct columnsin the draft. The next
theorem states that such a draft has from two to six weft units and the resulting
fabric hangstogether.

Theorem 4. Suppose a drawdownhas two or more weft units and each row and
column has at least one blackand one white square.

If the drawdownhas exactly two warp units, then it also has exactly two weft
units, and the weaving hangstogether.

If the drawdownhas exactly three warp units, then it has no more than six weft
units, and the weaving hangstogether.

Proof. We will prove the theorem for the casethat the drawdown has exactly three
warp units. The proof for the caseof two warp units is similar. Becauseall the
threadsin a warp unit riseand fall together,we canwithout lossof generality assume
the draft has exactly three columns, all distinct. Then each row has three squares
of black or white. Of the eight ways to color thesethree positions, six have at least
oneblack and onewhite square.Therefore,there are six possibleweft units.

If a any warp lifts o� the top of the weaving, it passesover all weft strandsand so
its corresponding column in the draft is all black, a contradiction. Supposea single
warp and at least one weft unit can be lifted o� the top of the weaving. Sincethe
warp thread cannot passover all weft strands,at leastoneweft that is lifted o� must
passover this warp, so its corresponding row is all white, a contradiction. A similar
argument shows that it is not possiblefor a singlewarp, with or without weft units,
to drop o� the bottom of the weaving.

Supposea warp thread is in the \middle" of the weaving and not connectedwith
the other two warp strands. Then one of these other two warp strands must lift
of the top of the weaving (with or without weft threads) and the other must drop
o� the bottom. But we just showed this cannot happen. Therefore, the three warp
units cannot be separated.Then, if a weft thread lifts o� the top of the weaving, it
must lift o� of all three warp units, so its row is all white, a contradiction. Similarly,
a weft thread cannot drop o� the bottom of the weaving. Therefore, the weaving
hangstogether.

Theorem4 immediately leadsto the following corollary:

Corollary 1. If a 2-harnessor 3-harnessdesignis generated by a basic block, then
the resulting weaving hangstogether.
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Proof. By de�nition, a basic block has at least one black and one white squarein
each row and column. If the basic block generatesa k-harnessdesign, then it has
exactly k distinct columnsor warp units. If k equals2 or 3, then by Theorem4, the
resulting weaving hangstogether.

In the sectionsthat follow, we will consider3-harnessdesignsgeneratedby m � 3
basicblocks having distinct rows and columns. First, we will �nd out how many of
theseblocks there are.

4 Coun ting m� 3 basic blo cks having distinct rows
and columns

De�ne B(m; 3) asthe set of m � 3 basicblocks having m distinct rows and 3 distinct
columns,m > 1. In the following lemma, we show that m must be an integer from
3 to 6.

Lemma 2. If an m � 3 basic block b has m distinct rows and 3 distinct columns,
then 3 � m � 6.

Proof. Becauseb is a basic block, each row and column has at least one black and
onewhite square. If b hastwo rows, then each column hastwo squaresto be colored
in black or white. There are only two ways to color such a column with one black
and onewhite square,so two columnsmust be identical, a contradiction. Therefore,
m � 3. Sinceb hasthree columns,each row hasthree squaresto be coloredin black
or white. Of the 8 ways to color such a row, 6 useat least oneblack and onewhite
square.Therefore,m � 6.

We will needthe following result to �nd the number of elements of B(m; 3).

Lemma 3. Supposean m � 3 grid of blackand white squareshasno equal rowsand
no row is all one color, 3 � m � 6. Then no two columns are equal. If m = 3, no
more than one column is all one color. If m > 3, no column is all one color.

Proof. Supposetwo columnsare equal, say columns1 and 2. Sinceonly two colors
are used,each column must contain at least two squaresthe samecolor. Without
lossof generality, supposethe squaresin the �rst two rows of columns1 and 2 are
black. With the �rst two positions of row 1 both black, the third position must be
white sinceno row is all black. The sameis true of row 2, meaningrows 1 and 2 are
equal, a contradiction. Therefore,no columnsare equal.
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Let m = 3. Supposeone column is all white and another is all black. Since
the remaining column must have at least two squaresthe samecolor, the two cor-
responding rows must be identical, a contradiction. Therefore, if the grid has three
rows, no more than onecolumn can be all onecolor.

Supposem > 3 and onecolumn is all onecolor, say column 1 is all black. There
are three ways to color the remaining positions of any row with at least one white
square.Sincethere are more than three rows, at least two rows must be identical, a
contradiction. Therefore, if the grid hasmore than three rows, no column is all one
color.

In Theorem5, we determinethe number of elements of B(m; 3), 3 � m � 6.

Theorem 5. There are 84 basic blocks in B(3; 3), 360 in B(4; 3), and 720 in each
of B(5; 3) and B(6; 3).

Proof. Supposem = 3. Of the eight ways to color any row in black and/or white, six
useat leastoneblack and onewhite square.Therefore,thereareP(6; 3) = 120blocks
with no two rows are alike, whereP(n; k) denotesthe number of k-permutations of
n distinct objects. By Lemma 3, we know that no more than one column in any of
these120 blocks is all one color. How many of them have a column that is all one
color? Column 1 is all black if one row has black only in the �rst position, another
has black in the �rst and secondpositions and the third has black in the �rst and
third positions. Thesethree rows can be arranged in any of 3! ways, so there are
six colorings in which column 1 is all black and similarly six in which column 1 is
all white. The sameappliesto columns2 and 3, so that 36 of the 120blocks have a
column that is either all black or all white. Therefore,there are 84 blocks in B(3; 3).

Now supposem > 3. There areP(6; m) blocks with no two rowsalike and no row
all onecolor. By Lemma3, all three columnsin each of theseblocks hasat least one
white and oneblack squareand thereforeis in B(m; 3). Therefore,there the number
of basicblocks in B(m; 3) is P(m; 3), which is 360for m = 4 and 720for m = 5 and
6.

In the next section, we �nd the number of patterns associated with B(m; 3),
3 � m � 6, by counting equivalenceclassesbasedon row and column translations of
a de�ning block.

5 Patterns unique under row/column translations

How many di�erent patterns or fabric structures are associated with B(m; 3)? To
begin, let m = 3 and considerthe designrepresented in Figure 5a and the nine basic
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blocks outlined there.
If a pattern is generatedby a 3 � 3 basicblock, we can identify such a block by

placing a 3 � 3 grid on the design. Horizontal and vertical translations of this grid
generatethe samedesign[27]. A 3� 3 block b1 is outlined in the upper left cornerof
Figure 5a. Outlined to the immediate right of b1 is the block c(b1) that results from
sliding the original grid 1 (mod 3) column to the right. Block c(b1) alsoresults from
a cyclic permutation of columnsof block b1, with column 1 moving to the column 3
position and the other two columnsmoving oneposition to the left. We can think of
c as a function from B(3; 3) to itself. Sincec is one-to-one,it is a permutation [17]
of B(3; 3).

Block cc(b1) = c(c(b1)) outlined in the upper right of Figure 5a results from
sliding the original grid 2 (mod 3) columnsto the right. Sliding the grid 3 (mod 3)
positions to the right, we �nd the original block b1, so ccc(b1) = b1 = i(b1) where
i denotesthe identit y permutation. Similarly, sliding the original grid in Figure 5a
down one or two positions is equivalent to making a cyclic permutation of rows of
block b1: r (b1) and r r (b1), respectively. Composition of row and column translations
results in the four remainingbasicblocks in Figure 5a. Sincecomposition of row and
column translations is commutativ e, the nine row/column translation permutations
i; c;cc;r; r r; cr; crr; ccr; ccrr composea permutation group G(3; 3) of the set B(3; 3).
A pattern correspondsto an equivalenceclassof basicblocks under the permutation
group of row/column translations. The equivalenceclassfor the pattern in Figure 5a
contains nine basicblocks of B(3; 3), one for each of the permutations in G(3; 3).

Considernow the pattern in Figure 6a with its corresponding basic blocks out-
lined. This structure is an exampleof a regular or simple twil l: shifting the colorings
in any row oneposition to the right (as in this casefor a right twill) or the left (for
a left twill) gives the coloringsof the row below it [2]. The basic block b2 outlined
at the top left of Figure 6a de�nes the 3-harnessright twill pattern, as doeseach of
the other 3� 3 blocks outlined in the �gure. The equivalenceclassfor the right twill
pattern in Figure 6a contains three distinct blocks of B(3; 3) and for each of these
blocks b, b = rc(b) = r r cc(b). That is, each right twill block is invariant under the
permutations r c and r r cc. In general,a block b is invariant under a permutation g
and the pair (g; b) is an invariance if b= g(b). The equivalenceclassfor the designin
Figure 6a is associated with the nine invariances(i; b2), (r c;b2), (r r cc;b2), (i; c(b2)),
(r c;c(b2)), (r r cc;c(b2)), (i; cc(b2)), (r c;cc(b2)), (r r cc;cc(b2)).

The equivalence class of Figure 5a is associated with the nine invariances
(i; b1), (i; c(b1)), (i; cc(b1)), (i; r (b1)), (i; r c(b1)), (i; r cc(b1)), (i; r r (b1)), (i; r r c(b1)),
(i; r r cc(b1)). In general,each equivalenceclassof B(3; 3) is associated with a set of
nine invariancesand thesesets form a partition of the collection of all invariances
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                        (a)   pattern generated by b1                                      (b)   reverse side

  b1              c(b1)            cc(b1)                                                                            vx(b1) = xv(b1)

Figure 5: (a) Fabric structure de�ned by the 3� 3 basicblock b1 outlined in the upper
left. The remaining blocks correspond to row/column translations of b1. Labeling
from left to right, the basicblocks in the �rst row areb1, c(b1) andcc(b1); in the second
row, r (b1), r c(b1) and rcc(b1); and in the third row, r r (b1), r r c(b1) and r r cc(b1).
(b) Reverseof the fabric in (a), de�ned by the block outlined in the upper right.

under row/column translations. Therefore, the total number of invariancesequals
nine (the number of permutations) times the number of equivalenceclasses.If we
can �nd the number of invariances,we will know the number of equivalenceclasses
or designs. This is a special caseof a theorem known as Burnside's Lemma ( [17],
page136; [26], page95), stated below:

Burnside's Lemma Let G be a permutation group of a set S. The
number of equivalenceclassesof S inducedby G equalsthe total number
of invariances(g; s) divided by the number of permutations in G, where
g 2 G and s 2 S.

We useBurnside's Lemma now to prove that under row/column permutations,
there are twelve equivalenceclassesof patterns generatedby blocks in B(3; 3).

Lemma 4. There are 12 patterns associated with B(3; 3).

Proof. By Theorem 5, there are 84 invariancesof the form (i; b) whereb 2 B(3; 3).
Becauseno block in B(3; 3) hasequalrowsor equalcolumns,there areno invariances
of the form (r; b); (r r; b); (c;b) or (cc;b). Considerthe permutation r c. Letting (i, j)
denote the color in the (row i, column j) position of a basic block b, we denote the
coloringsof b and rc(b) = c(r (b)) as follows:
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b2                    c(b2)                 cc(b2)  

(a)

(b)

(c)

Figure 6: (a) The right twill fabric structure de�ned by the 3� 3 basicblock b2 out-
lined in the upper left of the draft. The remaining blocks correspond to row/column
translations of b2. Labeling from left to right, the basic blocks in the �rst row are
b2 = rc(b2) = r r cc(b2), c(b2) = r cc(b2) = r r (b2) and cc(b2) = r (b2) = r r c(b2).
(b) The 6 basic blocks invariant under r c and r r cc are right twills. (c) The 6 basic
blocks invariant under r r c and rcc are left twills.
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We seethat b is invariant under r c if the color in the (i, j) position of b is in the
(i � 1, j� 1) (mod 3) position of r c(b), so the color is constant within the three right
diagonals(upper left to lower right). Any diagonalcan be either black or white, but
the three diagonalscannot all be the samecolor (or the block would beall onecolor);
therefore, there are six blocks that are invariant under r c. Thesesix blocks, shown
in Figure 6b, are right twill designs.Note that the blocks in the secondrow are color
reversalsof the blocks in the �rst row. Thesesamesix blocks are invariant under
the permutation r r cc that movesthe color in the (i, j) position of b to the (i � 2, j� 2)
(mod 3) position of r r cc(b).

The permutation r cc corresponds to sliding a 3 � 3 grid on a pattern down one
row position and to the right two column positions, equivalent to sliding one row
down and onecolumn to the left. The color in the (i, j) position of a block b is in the
(i � 1, j� 2)=(i � 1, j+1) (mod 3) position of r cc(b). Therefore,a block b is invariant
under r cc if the color is constant within the three left diagonals(upper right to lower
left). The six blocks that are invariant under r cc, as well as r r c, correspond to left
twill designs,shown in Figure 6c.

Each of the four compositions r c;r cc;r r c and r r cc hassix invariances.These24
invariances,combined with the 84 identit y invariances,give the 108 invariancesof
B(3; 3) under the 9 row/column translations. By Burnside'sLemma,therefore,there
are 12 equivalenceclassesunder thesetranslations.

We now prove that under row/column permutations, there are 30 equivalence
classesof patterns generatedby blocks in B(4; 3) and 48 generatedby blocks in
B(5; 3).

Lemma 5. There are 30 patterns associated with B(4; 3) and 48 associated with
B(5; 3).

Proof. By Theorem5, there are 360basicblocks in B(4; 3) and 720 in B(5; 3).
Consider�rst patterns associated with B(4; 3). There are twelve elements in the

permutation group G(4; 3) of row/column translations of B(4; 3). Is there a basic
block b in B(4; 3) that is invariant under a row/column translation other than the
identit y? There are no invariancesunder simple row translations becauseno rows
of b are equal and similarly no invariancesunder simple column translations. If b

the electr onic journal of combina torics 15 (2008), #R1 18



were invariant under r c, then any three consecutive rows would represent a right
twill pattern and this canonly happen if all rows are the samecolor, a contradiction.
Similarly, b is not invariant under r cc, becausethen any three consecutive rowswould
represent a left twill pattern that again can only happen if the entire block is the
samecolor. A similar argument shows that there are no invariancesunder r r r c and
r r r cc. Invarianceunder r r c or r r cc implies that all the squaresin rows 1 and 3 are
the samecolorand likewisefor rows2 and 4, a contradiction. Therefore,thereare360
invariancesunder row/column translations, all of the form (i; b) whereb is in B(4; 3)
and i is the identit y permutation. Applying Burnside's Lemma, we seethat there
are 30 equivalenceclasses(or patterns) of B(4; 3) under row/column translations.

The permutation group G(5; 3) of row/column translations of 5 � 3 blocks has
�fteen elements. By an argument similar to the 4 � 3 case,we know that the only
5� 3 blocks invariant under a permutation in G(5; 3) other than the identit y are the
two blocks that are all one color and they are not members of B(5; 3). Therefore,
the only invariancesunder row/column translations are of the form (i; b) were b is
in B(5; 3) and i is the identit y permutation, and there are 720 of these. Then by
Burnside's Lemma, we seethat there are 48 designsassociated with B(5; 3).

More proof is required to show that under row/column permutations there are
44 equivalenceclassesof patterns associated with B(6; 3). The reasonis that, as in
the 3 � 3 case,there are invariancesunder permutations other than the identit y.

Lemma 6. There are 44 patterns associated with B(6; 3).

Proof. There are eighteen row/column permutations in G(6; 3). Let b be a block
in B(6; 3). If b is invariant under r c, then rows 1 and 4 are equal, as are row 2
and 5, and rows 3 and 6, a contradiction sinceblocks in B(6; 3) have distinct rows.
Similarly, if b is invariant under any permutation other than r r c, r r r r c, r r cc and
r r r r cc, then somerows are equal, a contradiction. For b to be invariant under r r c
or r r r r cc, there must be a right twill in odd numbered rows and another right twill
(the color inverseof the �rst) in even numbered rows, as in b24 of Figure 7. To see
how many such blocks there are, we note that the �rst row can have either one or
two black squares.After that selection,there are three ways to start the twill that
beginsin row 1 and three ways to start its color inversein row 2. Therefore, there
are 18 blocks in B(6; 3) invariant under r r c and r r r r cc. If b is invariant under r r cc
or r r r r c, then there must be a left twill in odd numbered rows and its color inverse
in even numbered rows, and there are 18 such blocks. By Theorem 5, there are 720
b in B(6; 3) and therefore720invariancesof the form (i; b). There are 18 invariances
under each of the permutations r r c, r r r r cc, r r ccand r r r r c. Therefore,there are 792
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b1                             b2                            b3                              b4                           b5                            b6

b7                            b8                           b9                           b10                        b11                       b12

b13                        b14                         b15                        b16                         b17                       b18

b19                       b20                    b21                   b22                           b23                         b24

  b25                         b26                        b27                           b28                       b29                        b30

Figure 7: Thirt y basicblocks of size3 � 3 through 6 � 3.

invariancesassociated with the 18 permutations of G(6; 3). Therefore,by Burnside's
Lemma, there are 44 patterns associated with B(6; 3).

We summarizethe results of this sectionin the following theorem:

Theorem 6. For B(3; 3), B(4; 3), B(5; 3) and B(6; 3), respectively, the number of
patterns or equivalence classesunder row/column translations is 12, 30, 48 and 44.

The next step is to discusshow thesepatterns canbegrouped into designfamilies
basedon weaving symmetries. We will �nd it helpful to refer to the basic blocks
shown in Figure 7. With the exceptionof b2, all of the blocks have at least one row
with two black squares;sincerow and column translations of a block do not change
the pattern generated,we are freeto considertheseblocks ashaving black squaresin
the �rst two positions of the �rst row, as in Figure 7. This restriction will be useful
in counting designfamilies in the following sections.

We begin with weaving symmetriesassociated with B(3; 3).
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6 Weaving symmetries

Consider the 11 � 17 design in Figure 5a as a piece of woven fabric and imagine
turning it over, with top and bottom positions maintained, to seethe reverseside
represented by the 11� 17 designin Figure 5b. Turning the fabric over reversesthe
order of the columnsin the original design.Also, becausewarp threadsthat show on
the faceof the fabric are hidden under weft threads on the reverse(and vice versa),
the colors must be exchanged. To achieve this \reverseside" directly, the weaver
threads warp yarns through the harnessesin reverseorder and lifts, for each weft
yarn, only the warp threads that were not lifted in the original draft.

The 3 � 3 basic block outlined in Figure 5b de�nes the \reverse" side of the
pattern in Figure 5a, which is generatedby the block b1. To obtain this new block
from b1, we reverse the order of the columns and exchange colors. Let v denote
the operation that reversesthe order of the columnsof a block (re
ecting acrossthe
vertical axis) and x the operation that exchangesblack and white. Then the outlined
block in Figure 5b is vx(b1) = xv(b1).

Reversing the order of the lifting sequencecorresponds to the operation h that
reversesthe order of the rows of a block (re
ecting over the horizontal axis). The
composition hv is equivalent to rotating a block 180degrees.

Noting that the operations v; h; vh and x are commutativ e, we de�ne weaving
symmetriesas the operations in the set W = f i; v; h; hv; x; vx; hx; hvxg. Let S(3; 3)
denote the set of patterns generatedby blocks in B(3; 3). Each weaving symmetry
is a one-to-onefunction from S(3; 3) to itself and thereforea permutation, and W is
a permutation group of S(3; 3). A designfamily contains all patterns that are equiv-
alent under these weaving symmetries. Using the terminology of Gr•unbaum and
Shephard( [8], page286), patterns in di�erent designfamilies are \essentially dis-
tinct", meaningthey are geometrically\of di�erent homeomerictypes" with respect
to symmetry.

The pattern in Figure 5a and its reversein Figure 5b aremembersof the nontwill
designfamily of B(3; 3), shown in Figure 8a. There are eight patterns in this design
family, generatedby w(b1), wherew 2 W.

Figure 8b shows the weaving symmetriesfor the twill designfamily of B(3; 3).
There are four unique patterns in this family and each of thesepatterns is invariant
under hv. The members of this family are the right and left twills of Figures 6b
and 6c, respectively. The left twill structure de�ned by xv(b2) = xh(b2) is called
jeans twil l or denim when usedto weave the fabric for blue jeans [2]. Steggall [22]
reported two patterns generatedby 3 � 3 blocks having exactly oneblack squarein
each row and column; thesepatterns are generatedby b2 and v(b2). In their article
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     i                                                                                   v                i                                                                                   v       

   h                                                                                    hv

 
   x                                                                                    xv

 xh                                                                                   xhv       xh                                                                             xvh

   (a)   nontwill design family,  8 patterns             (b)   twill design family,  4 patterns  

   

          h                                                                                  hv

          x                                                                                  xv

Figure 8: (a) The weaving symmetriesof the nontwill designfamily of B(3; 3). The
pattern in the upper left is generatedby b1. The 8 patterns in this family are equiv-
alent to this �rst pattern under weaving symmetries. (b) The weaving symmetries
of the twill design family of B(3; 3). The pattern in the upper left generatedby
b2 = i(b2) is the sameas that generatedby hv(b2), so for this family, we say i = hv.
In the twill designfamily there are 4 distinct patterns, with i = hv, v = h, x = xhv
and xv = xh.
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on satinsand twills, Gr•unbaum and Shephard[7] found one\distinct twill" of period
3, corresponding to the twill designfamily of B(3; 3) represented in Figure 8b.

Figure 8 shows that the weaving symmetries partition the twelve patterns in
S(3; 3) into two designfamilies, as stated in Theorem7:

Theorem 7. The 12 patterns or fabric structures associated with B(3; 3) are parti-
tioned into two designfamilies or equivalence classesunder weaving symmetries: the
twill family with 4 patterns and the nontwill family with 8 patterns.

For any b 2 B(3; 3), no row/column translation is equivalent to a weaving sym-
metry. Therefore, to �nd the number of designfamilies associated with B(3; 3), we
can apply Burnside'sLemmato the permutation group W of weaving symmetriesof
the set S(3; 3) of patterns associated with B(3; 3). There are 12 invariancesof the
form (i; s) for s 2 S(3; 3). There areno invariancesunder v becausethis would imply
equal columns and similarly, no invariancesunder h. Since there are nine squares
in b, the number of black squaresdoesnot equal the number of white squares(b is
not color balanced),sob cannot be invariant under color exchangex. Therefore,the
only remaining invariancesare the four associated with hv, asillustrated in Figure 8.
Using Burnside's Lemma, we divide the total of 16 invariancesby the number 8 of
weaving symmetries,to seethat there are two equivalenceclassesof patterns under
weaving symmetries.

For m > 3, there is not always a separationbetweenrow/column translations and
weaving symmetries.Consider,for example,the 4 � 3 blocks b8 and b10 in Figure 7.
Note that x(b8) = r r (b8) and v(b10) = r r (b10). Rather than consideringrow/column
translations and weaving symmetries together, we will catalog the design families
directly, starting with B(4; 3).

By Theorem 6, we know that there are 30 patterns associated with B(4; 3). We
will identify these30patterns and classifythem into designfamiliesbasedon weaving
symmetries.

To �nd blocks in B(4; 3) that correspond to the 30 patterns, we look at possible
colorings. Any block in B(4; 3) is a 4 � 3 grid of black and white squares. Of the
twelve squares,the number colored black cannot be lessthan �v e or greater than
seven becausethis would result in equal rows or columns. In Lemma 7, we �nd the
number of patterns associated with blocks having 5, 6 and 7 black squares.

Lemma 7. There are 6 patterns associated with blocksin B(4; 3) having5 blackand
7 white squares, 18 patterns with blocks having 6 black and 6 white squares, and 6
patterns with blocks having 7 blackand 5 white squares.

Proof. If a block bin B(4; 3) has�v eblack squares,then threerowshavea singleblack
and onerow hastwo black squares.How many di�erent patterns are associated with
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such a coloring? Sincerow and column translations of a basic block do not change
the pattern, we can without lossof generality supposecolumns1 and 2 of the �rst
row are colored black. There are then six ways to �ll each of the remaining three
rows with one black squareso that no rows or columnsare equal. Therefore, there
are six patterns associated with blocks having �v e black and seven white squares.
Similarly, there are six patterns that correspond to blocks with seven black and �v e
white squares.

The remaining eighteen patterns must be generatedby blocks having six black
and six white squares.We can show this directly by noting that any block in B(4; 3)
having six black and six white squaresmust have two rows with two black squares
and two rows with one black. There are six ways to choosetwo rows to have two
blacks, six ways to �ll in those two rows with two blacks and one white, and six
ways to �ll in the remaining two rows with two whites and oneblack, for a total of
216basicblocks. Recall that the only invariancesunder row/column translations in
B(4; 3) are with the identit y permutation i . Applying Burnside'sLemma, we divide
the number of invariances(216) by the number of row/column permutations (12), to
seethat there are 18 patterns generatedby blocks having the samenumber of black
and white squares.

We will say that a pattern associated with a basicblock having an equalnumber
of black and white squaresis color balanced; otherwise,it is color unbalanced. There
are no color balancedpatterns associated with B(3; 3). By Lemma 7, we know that
thereareeighteenpatterns associated with B(4; 3) that arecolorbalancedand twelve
that are not.

An unbalancedpattern associated with B(4; 3) is generatedby a block having
either �v e or seven black squares. A block with seven black squaresis the color
reversal of a block with �v e, so for identifying designfamilies, we can consideronly
blocks with �v e black squares.Two such blocks are b3 and b4 of Figure 7. Account-
ing for row/column translations and weaving symmetries, theseare the only color
unbalancedblocks in B(4; 3) we needconsider.

The twelve unbalancedpatterns of B(4; 3) are illustrated in Figure 9, separated
into two designfamilies basedon weaving symmetries. Figure 9a shows the design
family associated with the block b3 that hasblack squaresin the �rst two columnsof
the �rst row and in columns1, 2 and 3, respectively, of the remaining rows. There
are no invariancesunder weaving symmetries in this design family, so the family
contains eight patterns.

As Figure 9b illustrates, there are four patterns in the designfamily generated
by the block b4 that hasblack squaresin the �rst two columnsof the �rst row and in
columns1, 3 and 2, respectively, of rows2; 3 and 4. To denotethe pattern invariances
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   i                                                                                   v

  h                                                                                   hv

  x                                                                                   xv

xh                                                                                  xhv

  i   =   hv                    v   =   h

x   =   xhv                xv   =   xh

 (a)

 (b)

Figure 9: There are 12 color unbalanced patterns associated with B(4; 3): (a) 8
patterns in the designfamily generatedby b3 and (b) 4 patterns in the designfamily
generatedby the basicblock b4.
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in this family, we say i = hv; v = h; x = xhv and xv = xh. The patterns in this
family have a more twill-lik e appearancethan thoseof Figure 9a.

The eighteenbalancedpatterns of B(4; 3), illustrated in Figure 10,arepartitioned
into six designfamiliesbasedon weaving symmetries.Three of thesefamiliescontain
four patterns each and three contain two patterns each.

The blocks b5-b8 representing the designfamilies in Figures 10a-dhave adjacent
rows of double blacks alternating with adjacent rows of singleblacks. The blocks b9

and b10 have alternating rows of doubleand singleblacks and the families associated
with them are illustrated in Figures10eand 10f.

As Figure 10d shows, a balancedpattern can equal its own color inverse,even
though that cannot be true of a basicblock. In this case,x(b8) = r r (b8). Also, if a
block hasno equalcolumns,then it cannotequalits own vertical re
ection. However,
as Figure 10f shows, it is possiblethat such a block generatesa pattern that equals
its own re
ection. In this case,the pattern is generatedby b10, and v(b10) = r r (b10).

Theorem8 summarizestheseresults for B(4; 3):

Theorem 8. There are 30 patterns associated with B(4; 3), 18 color balanced and
12 not. These30 patterns are partitioned into eight designfamilies based on weaving
symmetries. Two of these design families contain color unbalanced patterns, one
family with eight patterns and the other with four patterns. Of the six designfamilies
containing balanced patterns, three contain four patterns each and three contain two
patterns each.

We now �nd the design families associated with B(5; 3). Any block in B(5; 3)
contains �v eof the six possiblecoloringsof rowswith at leastoneblack and onewhite
square,and thereforehaseither sevenor eight black squares.A block with eight black
squaresis the color reversalof a block with seven, so for identifying designfamilies,
we canconsideronly blocks with seven black squares.A 5� 3 block with seven black
squareshastwo rowsof doubleblacks and three rowsof singleblacks. The two double
rows can be adjacent or separatedby rows with single blacks. Taking row/column
translations and weaving symmetriesinto account, we needonly considerthe 5 � 3
blocks b11-b18 in Figure 7.

Figure 11 shows the four designfamilies associated with the blocks b11-b14 that
have adjacent rowsof doubleblacks. The designfamilies in Figures11cand 11dhave
no invariancesunder weaving symmetriesother than i and socontain eight patterns
each. Therearefour patterns in the designfamiliesillustrated in Figures11aand11b;
in each of thesefamilies, i = hv, v = h, x = xhv and xv = xh.

The four remaining designfamilies associated with B(5; 3), shown in Figure 12,
aregeneratedby basicblocks in which the two rowsof doubleblacks arenot adjacent.
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    i   =   xhv                    v   =   xh                                                   i   =   xv                         v   =   x

    h   =   xv                      hv   =   x                                                  h   =   xhv            hv   =   xh        

  i  =  hv  =  xv  =  xh

v  =  h  =  x  =  xhv  

i  =  hv  =  x  =  xhv

v  =  h  =  xv  =  xh

i   =   xhv                                        v   =   xh

h   =   xv                                          hv   =   x

i  =  v  =  xh  =  xhv

h  =  hv  =  x  =  xv

Figure 10: The designfamilies in (a)-(f ) are generatedby 4 � 3 basicblocks b5-b10,
respectively. Thesepatterns are all balancedin the sensethat the generatingblocks
have an equal number of black and white squares.
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 i  =  hv                                                                                                                                                                                                     v  =  h

x  =  xhv                                                                                                                                                                                                 xv  =  xh

  i                                                                                                                                                                                                      v

  h                                                                                                                                                                                                    hv

  x                                                                                                                                                                                                     xv

xh                                                                                                                                                                                                   xhv

 (a)                                                                                       (b)                 

    (c)                                                                                         (d)    

  

Figure 11: The designfamilies in (a)-(d) are generatedby 5 � 3 basicblocks b11-b14,
respectively. Thesefour basicblocks all have adjacent rows of double blacks.
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 i                                                                                                                                                                                                   v

h                                                                                                                                                                                                  hv

 x                                                                                                                                                                                                  xv

xh                                                                                                                                                                                               xhv

    i  =  hv                                                                                                                                                            v  =  h

x  =  xhv                                                                                                                                                                                                xv  =  xh

(a)                                                                                        (b)

 (c)                                                                                      (d)

      

Figure 12: The design familes in (a)-(d) are generatedby the 5 � 3 basic blocks
b15-b18, respectively, that do not have adjacent rows of double blacks.
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The designfamilies in Figures 12a and 12b, generatedby b15 and b16, respectively,
contain eight patterns each, having no invariancesunder weaving symmetriesother
than i . The patterns in the designfamilies of Figures 9c (generatedby b17) and 9d
(generatedby b18) have the sameinvariancesunder weaving symmetries,i = hv; v =
h; x = xhv and xv = xh, and so these design families have four patterns each.
Theorem9 summarizestheseresults for B(5; 3).

Theorem 9. There are 48 patterns associated with B(5; 3), all color unbalanced.
These48 patterns are partitioned into eight designfamilies based on weaving sym-
metries, four families with eight patterns each and four with four patterns each.

Note that no block with an odd number of squarescanbeassociatedwith a design
family of size2 sinceinvarianceundercolor reversalrequiresan equalnumber of black
and white squares.Designfamiliesassociated with B(3; 3) and B(5; 3) contain either
eight or four patterns. B(4; 3), on the other hand, has three designfamilies of four
patterns each and three families of two patterns each. We might expect B(6; 3) to
have a design family with exactly two patterns, and as we will see,there are four
such families.

The rows of any block in B(6; 3) include all six possiblecoloringswith at least
one black and one white. Taking row/column translations and weaving symmetries
into account, the only basic blocks we needconsiderare b19-b30 of Figure 7. These
basic blocks have one of these three forms: three adjacent rows of double blacks
alternating with three adjacent rows of single blacks as in b19-b22 and Figures 13a-
d; rows of double blacks alternating with rows of single blacks as in b23-b25 and
Figures 13e-g; and two adjacent rows of double blacks and two adjacent rows of
singleblacks alternating with onerow of each as in b26-b30 and Figure 14.

Figure 13 shows twenty patterns organizedinto seven families. The patterns in
the designfamilies in Figure 13a (four patterns), 13b (two patterns) and 13d (four
patterns) have three rows of right twill alternating with three rows of right twill or
three rows of left twill alternating with three rows of left. The two patterns in the
designfamily of Figure 13calternate three rows of right twill with three rows of left
twill. The two patterns in the designfamily shown in Figure 13g have left twill in
oneset of alternate rows and right twill in the other.

The patterns illustrated in Figures13eand 13f are alternating twil ls in the sense
that alternate rows make up a simple twill pattern, with the two setsof twills go-
ing in the samedirection. Thesetwo designfamilies have very di�erent looks. The
patterns in Figure 13eare not at all twill-lik e, while those in Figure 13f are. Alder-
man [2] called the patterns in Figure 13f double-faced twil ls, while Gr•unbaum and
Shephard[7] called them color-alternate twil ls. In a color-alternatetwill, exchanging
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    i                                                                                 v
xhv                                                                             xh

   h                                                                                hv
  xv                                                                                x                                                      

 i                                                                                  v
hv                                                                               h
xv                                                                               x
xh                                                                              xhv

   i                                                                                     v
 hv                                                                                   h
  x                                                                                    xv
xhv                                                                                xh                                                    

   i                                                                                 v
 xv                                                                               x

 
  h                                                                                 hv
xhv                                                                              xh

    i                                                                                     v
xhv                                                                                xh

   
   h                                                                                    hv
  xv                                                                                    x

    i                                                                                   v
  hv                                                                                 h
   x                                                                                  xv
xhv                                                                               xh

  i                                                                                    v
hv                                                                                  h
xv                                                                                  x
xh                                                                                xhv

(a)

(b)

(e)

(c)

(d)

(f)

(g)

Figure 13: The 6 � 3 basic blocks b19-b25 generatethe design families in (a)-(g),
respectively.
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the coloringsof any row and shifting one position to the right (the pattern on the
right of Figure 13f) or left (the pattern on the left of 13f) givesthe row below. The
patterns in Figure 13f are the only color-alternate twills possibleon three harnesses.

The remaining �v e designfamilies of B(6; 3), illustrated in Figure 14, include 24
patterns: eight in the design family of Figure 14e and four in each of the design
families represented in Figures 14a-d. Theorem 10 summarizesthese results for
B(6; 3).

Theorem 10. There are 44 patterns associated with B6; 3), partitioned into 12 de-
sign families based on weaving symmetries. One of these families includes eight
patterns, sevenfamilies havefour patterns each and four families havetwo patterns
each.

The resultsof this and the previoussectionare presented in the table below. For
each basicblock sizem � 3, the representativ e blocks of B(m; 3) are listed by color
sequence(number of black squaresper row). Among the ten color sequences,there
are 134patterns organizedinto 30 designfamilies basedon weaving symmetries.

Somepatterns have a twill-lik e look, with in�nite diagonalsof black (or white)
squares. Others tend to have connectedsets of black squaresseparatedfrom con-
nectedsetsof white squares.In the next section,we considerthe appearanceof these
tilings of the plane and relate someto polyominoes.

7 Tiling the plane

Each of the 30 designfamilies associated with B(m; 3), 3 � m � 6, is represented
in Figure 15 by a 4 � 4 repetition of oneof the basicblocks b1-b30 of Figure 7. The
appearanceof someof thesepatterns can be described by geometricalforms created
by the black and white squares.

Tilings 2, 4, 18and 24have in�nite diagonalsof edge-wiseconnectedblack squares
and/or edge-wiseconnectedwhite squares. The other tilings show distinct shapes
createdby a �nite number of edge-wiseconnectedsquaresof the samecolor. A shape
madeby connectinga collection of unit squares,each squarejoined to another along
an edge,is a polyomino [15]. We can think of the patterns represented in Figure 15
as tilings of the plane in polyominoes.

Pattern 24 is a color-alternate twill with in�nite diagonalsin each color, alter-
nate diagonalsof one color completely separatedby diagonalsof the other color.
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  i                                                                                 v

 h                                                                                 hv

 x                                                                                  xv

xh                                                                               xhv

    i                                                                                     v
xhv                                                                                 xh

   h                                                                                   hv
 xv                                                                                    x

 i                                                                                    v
xh                                                                               xhv

 h                                                                                 hv
 x                                                                                 xv

    i                                                                                  v
xhv                                                                             xh

    h                                                                                hv
  xv                                                                                 x

   i                                                                                  v
xhv                                                                             xh

   h                                                                                hv
 xv                                                                                x

(a)                                                                                                                                                                                             (d)

(b)                                                                                                                                                                                                                                 
                                                                                                                                                                                          

                                                                                                                                                                                                 (e)

(c)

   

Figure 14: The 6 � 3 basic blocks b26-b30 generatethe design families in Figures
11a-11e,respectively.
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Patterns and designsassociated with B(m; 3); 3 � m � 6

Block Black squares Pattern Patterns Design Total
size per row of bi i in family families patterns Figure

3 � 3 2,1,1 1 8 1 8 8a
1,1,1 2 4 1 4 8b

Total: 2 12

4 � 3 2,1,1,1 3 8 1 8 9a
4 4 1 4 9b

2,2,1,1 5; 6 4 2 8 10a,b
7; 8 2 2 4 10c,d

2,1,2,1 9 4 1 4 10e
10 2 1 2 10f

Total: 8 30

5 � 3 2,2,1,1,1 11; 12 4 2 8 11a,b
13; 14 8 2 16 11c,d

2,1,2,1,1 15; 16 8 2 16 12a,b
17; 18 4 2 8 12c,d

Total: 8 48

6 � 3 2,2,2,1,1,1 19; 22 4 2 8 13a,d
20; 21 2 2 4 13b,c

2,1,2,1,2,1 23 4 1 4 13e
24; 25 2 2 4 13f,g

2,2,1,2,1,1 26-29 4 4 16 14a-d
30 8 1 8 14e

Total: 12 44

Grand total: 30 134
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1                       2                          3                         4                          5                          6

 7                          8                         9                       10                         11                      12

 13                         14                      15                      16                       17                       18

19                          20                      21                      22                       23                       24

25                          26                      27                      28                       29                       30

Figure 15: Patterns 1-30are generatedby basicblocks b1-b30, respectively.

the electr onic journal of combina torics 15 (2008), #R1 35



Each diagonalconsistsof connectedstraight trominos, a straight tromino createdby
connectingthree squaresin a line. We might call tiling 24 a pure diagonalbecause
squaresof each color are connectedin in�nite diagonals.

In tiling 2, a right twill, we seein�nite white diagonalsof edge-wiseconnected
dominoes. The black diagonalsconsist of separatemonominoes connectedonly at
corners. This is a mixed pattern becauseit has in�nite diagonalsin one color and
diagonals of separatepolyominoes in the other color. Another mixed pattern is
tiling 4, which hasin�nite white diagonalsresulting from repeatededge-wiseconnec-
tions of two dominoesand one straight tromino, and black diagonalsof alternating
skew tetrominoes and monominoes. The remaining mixed pattern is tiling 18; its
in�nite white diagonalsconsist of repeated edge-wiseconnectionsof a domino and
two straight trominoesand its black diagonalsconsistof translations of the a single
heptomino.

Six patterns in Figure 15 are pure polyomino tilings in the sensethat each is
createdfrom a singlepolyomino, translated and possiblyrotated or re
ected. Tiling
6 is createdfrom a singlehexominoin black and vertical re
ections of that hexomino
in white. Pattern 9 hasa hexominoin black and a 180rotation of that hexominoin
white. In pattern 10, vertical re
ections of a right tromino appear in both black and
white, while tiling 23 contains a right tromino in black and its 180degreerotation in
white. Tiling 28hasa nonomino(nine squares)in black and its 180degreerotation in
white. Tiling 8 is the \purest" purepolyomino in that it consistsof simpletranlations
of a single hexomino in black and white. Each of the other tilings in Figure 15 is
a multiple polyomino tiling since at least two di�erent polyominoes make up the
pattern.

Many of the polyominoproblemsdiscussedin Golomb [15]andMartin [19] involve
tiling a region such as a rectanglewith polyminoes. In this work, we proceededin
the other direction by creating tilings of the plan from rectanglesof black and white
squaresand then noting how the resulting patterns could be related to polyominoes.

8 Discussion

Each of the patterns discussedin this paper is generatedby a basic block { a grid
of black and white squareshaving three distinct columns and three to six rows,
also distinct. There is a great deal of variation in appearanceof these patterns,
constructed as they are from simple rectanglesof nine to eighteen black and white
\tiles". Somehavepropertiesof optical illusions. Someseemto vibrate. Others, such
aspattern 12, look very di�erent whenviewed from di�erent angles,especially when
observed obliquely. A consideration of the aestheticsof tilings is open to further
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study.
The requirement that a basicblock have at least oneblack and onewhite square

in each row and column comesfrom the necessity in weaving that each warp thread
be interlaced with weft threads (and vice versa) as part of the fabric. We showed
that this requirement is enoughto ensurethat a 2- or 3-harnessfabric designhangs
together.

Looseningthe restriction that a generatingblock have distinct rows and columns
expandsthe designpossibilities. We can createinteresting patterns, for instance,by
incorporating weaving symmetriesinto a draft, as suggestedby the representations
of design families in Figures 8 through 14. Weavers often describe fabric design
possibilities as \in�nite" and they are of coursecorrect if we do not restrict the
number of rows or columns in the generating block. There are, however, many
recurring themesin drafts of fabrics (and other ornamentation) that can be de�ned
in terms of rectangular grids of �nite dimension. This study is a �rst step of an
inquiry into the number of weaving pattern patterns possibleon a given number of
harnesses,or the number of tilings that can be created from blocks with a given
number of distinct columns.

The author has woven all 134 patterns in the 30 design families described in
this report. Visual similarity of the cloth with the draft dependson factors such as
the yarn usedand the sett or spacingof the warp threads. Weavers know that not
all drafts lead to satisfactory cloth. A woven samplemay not resemble its draft in
appearancebecauseof physical properties of the yarn. The drafted fabric structure
may lead to overlapping of adjacent weft threads and/or various distortions caused
by di�erences in tensionand interlacement. Someof thesedeviations from draft are
expectedand exploitedby weaversto interestinge�ect [2]. Many of thesephenomena
are outside the realm of tiling and await mathematical attention.

Note: All �gures in this article werecreatedin Fiberworks [16] and edited using
Windows Paint and Adobe Illustrator CS2.

Ac kno wledgemen ts: Thanks to the reviewers, whosecareful reading and de-
tailed suggestionsgreatly improved the manuscript. Thanks alsoto Alina Stancufor
helpful discussionsand to Daniel Klain for sharing his enthusiasmfor geometry.
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