Comment on "On the chromatic number of simple triangle-free triple systems"
 by
 Jeff Cooper, Alan Frieze, Dhruv Mubayi

June 29, 2012

We have found several errors in the paper [1] and the goal here is to present corrections to all of them. Equational references with square brackets [..] are with respect to the published version. Those with round brackets (..) are with respect to this comment. The notation is from [1].

There was a substantial error in the proof of [15] (in Section 11.4.1 of [1]) and a trivial error in the calculation to the proof of [8] (in Section 9 of [1]). These are corrected in Sections 1 and 2, respectively of the current note.

1 Correction to the proof of [15]

Observe that

$$
\begin{aligned}
f_{u}^{\prime} & =\sum_{c} \sum_{v \in N(u)} p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{\kappa^{\prime}(u v)=c}+\sum_{c} \sum_{\substack{\kappa(u v)=0 \\
\kappa^{\prime}(u v)=c}} p_{u}^{\prime}(c) p_{v}^{\prime}(c) \\
& \leq \sum_{c} \sum_{\kappa(u v)=c} p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}} \\
& +\sum_{c} \sum_{u v w \in H}\left(p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{\gamma_{w}(c)=1}+p_{u}^{\prime}(c) p_{w}^{\prime}(c) 1_{\gamma_{v}(c)=1}\right) \\
& :=S_{1}+S_{2} .
\end{aligned}
$$

We will bound each term separately.

$1.1 \quad S_{1}$

Recall that

$$
S_{1}=\sum_{c} \sum_{\kappa(u v)=c} p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}
$$

For each color c, let D_{c} be the event that $\gamma_{v}(c)=1$ for at most $\Delta \hat{p}$ vertices $v \in N(u)$. Since $\mathbf{P}\left[\gamma_{v}(c)=1\right] \leq \hat{p} \theta$,

$$
\mathrm{P}\left[\bar{D}_{c}\right] \leq\binom{\Delta}{\Delta \hat{p}}(\hat{p} \theta)^{\Delta \hat{p}} \leq\left(\frac{e}{\hat{p}}\right)^{\Delta \hat{p}}(\hat{p} \theta)^{\Delta \hat{p}}=(e \theta)^{\Delta \hat{p}}<e^{-\Delta^{1 / 2}}
$$

Let D denote the event that D_{c} holds for all c. By the union bound,

$$
\mathrm{P}[\bar{D}] \leq q e^{-\Delta^{1 / 2}}
$$

By (1) below,

$$
\begin{aligned}
\mathbf{E}\left[S_{1}\right] & =\sum_{c} \sum_{\kappa(u v)=c} \mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right] \\
& \leq \sum_{c} \sum_{\kappa(u v)=c} p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon)) \\
& =f_{u}(1-\theta(1-6 \epsilon))
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{E}\left[S_{1} \mid D\right] & =\left(\mathbf{E}\left[S_{1}\right]-\mathbf{E}\left[S_{1} \mid \bar{D}\right] \mathrm{P}[\bar{D}]\right) / \mathrm{P}[D] \\
& \leq \mathbf{E}\left[S_{1}\right] / \mathrm{P}[D] \\
& =f_{u}(1-\theta(1-6 \epsilon)) /\left(1-q e^{-\Delta^{1 / 2}}\right) \\
& \leq f_{u}(1-\theta(1-7 \epsilon))
\end{aligned}
$$

For a vertex subset X, let $N(X)=\{v: \exists x \in X$ and w with $x v w \in H\}$. Let T_{c} denote the set of color trials for color c at all vertices in $\{u\} \cup N(u) \cup N(N(u))$. Then the trials T_{1}, \ldots, T_{q} determine the variable S_{1}. Observe that T_{c} affects every term of the form $p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}$. For $d \neq c, T_{c}$ affects $p_{u}^{\prime}(d) p_{v}^{\prime}(d) 1_{v \in U^{\prime}}$ only if $\gamma_{v}(c)=1$; this is because if $\gamma_{v}(c)=0$, the trials for color c have no impact on whether or not $v \in U^{\prime}$. Thus, given that $\gamma_{v}(c)=1$ for at most $\Delta \hat{p}$ of the variables in T_{c}, changing the values in T_{c} can change S_{1} by at most $d(u, c) \hat{p}^{2}+2(\Delta \hat{p}) \hat{p}^{2}$.

Let $\pi\left(t_{i}\right)=\mathrm{P}\left(T_{i}=t_{i} \mid D\right)$ for $i=1,2, \ldots, q$ and let

$$
\rho\left(t_{i}, t_{i+1}, \ldots, t_{q}\right)=\pi\left(t_{i}\right) \pi\left(t_{i+1}\right) \cdots \pi\left(t_{q}\right)=\mathrm{P}\left(T_{j}=t_{j}, j=i, i+1, \ldots, q \mid D\right)
$$

Here we use the fact that conditioning on D still leaves the choices $t_{1}, t_{2}, \ldots, t_{q}$ for the distinct sets of colors $T_{1}, T_{2}, \ldots, T_{c}$ independent of each other. Thus,

$$
\begin{aligned}
& \left|\mathbf{E}\left[S_{1} \mid D, T_{1}=t_{1}, \ldots, T_{c}=t_{c}\right]-\mathbf{E}\left[S_{1} \mid D, T_{1}=t_{1}, \ldots, T_{c-1}=t_{c-1}, T_{c}=t_{c}^{\prime}\right]\right| \\
& =\left|\sum_{t_{c+1}, \ldots, t_{q}}\left[S_{1}\left(t_{1}, \ldots, t_{c-1}, t_{c}, t_{c+1}, \ldots, t_{q}\right)-S_{1}\left(t_{1}, \ldots, t_{c-1}, t_{c}^{\prime}, t_{c+1}, \ldots, t_{q}\right)\right] \rho\left(t_{c+1}, \ldots, t_{q}\right)\right| \\
& \leq d(u, c) \hat{p}^{2}+2 \Delta \hat{p}^{3} \\
& \leq 2 t_{0} \theta \Delta \hat{p}^{3}+2 \Delta \hat{p}^{3} \\
& \leq 3 t_{0} \theta \Delta \hat{p}^{3} .
\end{aligned}
$$

Since

$$
\sum_{c}\left(3 t_{0} \theta \Delta \hat{p}^{3}\right)^{2}=9 q t_{0}^{2} \theta^{2} \Delta^{2} \hat{p}^{6} \leq 9 t_{0}^{2} \theta^{2} \Delta^{2+1 / 2-66 / 24} \leq \Delta^{-5 / 24}
$$

the Azuma-Hoeffding inequality implies

$$
\begin{aligned}
\mathrm{P}\left[S_{1}>f_{u}(1-\theta(1-7 \epsilon))+\Delta^{-1 / 12} \mid D\right] & \leq \mathrm{P}\left[S_{1}>\mathbf{E}\left[S_{1} \mid D\right]+\Delta^{-1 / 12} \mid D\right] \\
& \leq e^{-\Delta^{5 / 24-2 / 12}} \\
& =e^{-\Delta^{1 / 24}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathrm{P}\left[S_{1}>f_{u}(1-\theta(1-7 \epsilon))+\Delta^{-1 / 12}\right] & \leq \mathrm{P}\left[S_{1}>f_{u}(1-\theta(1-7 \epsilon))+\Delta^{-1 / 12} \mid D\right] \mathrm{P}[D]+\mathrm{P}[\bar{D}] \\
& \leq e^{-\Delta^{1 / 24}}\left(1-q e^{-\Delta^{1 / 2}}\right)+q e^{-\Delta^{1 / 2}} \\
& \leq e^{-\Delta^{1 / 25}}
\end{aligned}
$$

1.1.1 Proof of (1)

We prove that if $\kappa(u v)=c$,

$$
\begin{equation*}
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right] \leq p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon)) \tag{1}
\end{equation*}
$$

We first establish the following claim.
Claim. $\mathrm{P}\left[v \notin U^{\prime} \mid c \notin L(v)\right] \geq \mathrm{P}\left[v \notin U^{\prime}\right] \geq \theta(1-5 \epsilon)$.
Proof of claim. The vertex v is colored (i.e., not in U^{\prime}) if and only if for some color $d \notin B(v), \gamma_{v}(d)=1$ and $d \notin L(v)$. Let R_{d} denote the event that $\gamma_{v}(d)=1$ and $d \notin L(v)$. If $c \in B(v)$, then

$$
\mathrm{P}\left[v \notin U^{\prime} \mid c \notin L(v)\right]=\mathrm{P}\left[v \notin U^{\prime}\right] .
$$

Otherwise, since $\gamma_{v}(c)=1$ is independent of $c \notin L(v)$ and R_{d} is independent of $c \notin L(v)$ for $c \neq d$,

$$
\begin{aligned}
\mathrm{P}\left[v \notin U^{\prime} \mid c \notin L(v)\right] & =\mathrm{P}\left[\left(\cup_{d \notin B(v) \cup\{c\}} R_{d}\right) \cup\left(R_{c}\right) \mid c \notin L(v)\right] \\
& =\mathrm{P}\left[\left(\cup_{d \notin B(v) \cup\{c\}} R_{d}\right) \cup\left(\gamma_{v}(c)=1 \cap c \notin L(v)\right) \mid c \notin L(v)\right] \\
& =\mathrm{P}\left[\left(\cup_{d \notin B(v) \cup\{c\}} R_{d}\right) \cup\left(\gamma_{v}(c)=1\right)\right] \\
& \geq \mathrm{P}\left[\left(\cup_{d \notin B(v) \cup\{c\}} R_{d}\right) \cup R_{c}\right] \\
& =\mathrm{P}\left[v \notin U^{\prime}\right] .
\end{aligned}
$$

In either case,

$$
\begin{aligned}
\mathrm{P}\left[v \notin U^{\prime} \mid c \notin L(v)\right] & \geq \mathrm{P}\left[v \notin U^{\prime}\right] \\
& =\mathrm{P}\left[\cup_{d \notin B(v)} R_{d}\right] \\
& \geq \sum_{d \notin B(v)} \mathrm{P}\left[R_{d}\right]-\sum_{d, d^{\prime} \notin B(v)} \mathrm{P}\left[R_{d}\right] \mathrm{P}\left[R_{d^{\prime}}\right] \\
& =\sum_{d \notin B(v)} \theta p_{v}(d) q_{v}(d)-\sum_{d, d^{\prime} \notin B(v)} \theta^{2} p_{v}(d) p_{v}\left(d^{\prime}\right) q_{v}(d) q_{v}\left(d^{\prime}\right) \\
& \geq \theta \sum_{d \in C} p_{v}(d) q_{v}(d)-\theta \sum_{d \in B(v)} p_{v}(d) q_{v}(d)-\theta^{2} \sum_{d, d^{\prime} \notin B(v)} p_{v}(d) p_{v}\left(d^{\prime}\right) \\
& \geq \theta \sum_{d \in C} p_{v}(d) q_{v}(d)-\theta|B(v)| \hat{p}-\theta^{2} \sum_{d, d^{\prime} \notin B(v)} p_{v}(d) p_{v}\left(d^{\prime}\right) .
\end{aligned}
$$

Using the inequality $\prod_{x}(1-x) \geq 1-\sum_{x} x$ (for $x \in[0,1]$), we obtain

$$
\begin{aligned}
q_{v}(d) & =\prod_{u v w \in H}\left(1-\theta^{2} p_{u}(d) p_{w}(d)\right) \prod_{\substack{u v \in G \\
\kappa(u v)=d}}\left(1-\theta p_{u}(d)\right) \\
& \geq 1-\sum_{u v w \in H} \theta^{2} p_{u}(d) p_{w}(d)-\sum_{\substack{u v \in G \\
\kappa(u v)=d}} \theta p_{u}(d) \\
& =1-\theta^{2} \sum_{u v w \in H} p_{u}(d) p_{w}(d)-\theta \sum_{\substack{u v \in G \\
\kappa(u v)=d}} p_{u}(d) \\
& =1-\theta^{2} e_{v}(d)-\theta f_{v}(d) .
\end{aligned}
$$

Since $\sum_{d \in C} p_{v}(c)=1+o(1)$,

$$
\theta^{2} \sum_{d, d^{\prime} \notin B(v)} p_{v}(d) p_{v}\left(d^{\prime}\right)=\frac{1}{2} \theta^{2} \sum_{d \in C} \sum_{d^{\prime} \in C: d^{\prime} \neq d} p_{v}(d) p_{v}\left(d^{\prime}\right) \leq \frac{1}{2} \theta^{2}\left(\sum_{d \in C} p_{v}(d)\right)^{2} \leq \theta^{2}
$$

By [22], $|B(v)|<\epsilon / \hat{p}$. By [8], $f_{v}<3 \omega$, so $\theta f_{v}<3 \epsilon$. By [7] and [10] (see [19]), $e_{v} \leq \omega+\Delta^{-1 / 10}$, so $\theta^{2} e_{v}<\epsilon / 3$. Using these three inequalities and $\sum_{d \in C} p_{v}(c) \geq(1-\epsilon / 3)$,
we finally obtain

$$
\begin{aligned}
\mathrm{P}\left[v \notin U^{\prime}\right] & \geq \theta \sum_{d} p_{v}(d)\left(1-\theta^{2} e_{v}(d)-\theta f_{v}(d)\right)-\theta|B(v)| \hat{p}-\theta^{2} \\
& \geq \theta \sum_{d} p_{v}(d)-\theta^{3} \sum_{d} p_{v}(d) e_{v}(d)-\theta^{2} \sum_{d} p_{v}(d) f_{v}(d)-\theta \epsilon-\theta^{2} \\
& =\theta \sum_{d} p_{v}(d)-\theta^{3} e_{v}-\theta^{2} f_{v}-\theta \epsilon-\theta^{2} \\
& \geq \theta(1-\epsilon / 3)-\theta \epsilon / 3-3 \theta \epsilon-\theta \epsilon-\theta \epsilon / 3 \\
& =\theta(1-5 \epsilon) .
\end{aligned}
$$

We now bound $\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right]$. First assume that $p_{u}^{\prime}(c)$ and $p_{v}^{\prime}(c)$ are determined by Case A (see [3]). Since $\kappa(u v)=c$, the edge containing u and v no longer exists in the hypergraph. By triangle-freeness, there are no vertices w which share an edge with both u and v. Therefore the events $c \notin L(u)$ and $c \notin L(v)$ are independent. Also, if $c \notin L(u)$, then $\gamma_{w}(c)=0$ for all $w \in N_{G}(u)$, so in particular, $\gamma_{v}(c)=0$. Consequently,

$$
\mathrm{P}\left[\bar{R}_{c} \mid c \notin L(u) \cup L(v)\right]=\mathrm{P}\left[\bar{R}_{c} \mid c \notin L(u)\right]=\mathrm{P}\left[\gamma_{v}(c)=0 \cup c \in L(v) \mid c \notin L(u)\right]=1 .
$$

Therefore, by the independence of colors,

$$
\begin{aligned}
\mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u) \cup L(v)\right] & =\mathrm{P}\left[\cap_{d \notin B(v)} \bar{R}_{d} \mid c \notin L(u) \cup L(v)\right] \\
& =\mathrm{P}\left[\cap_{d \notin B(v) \cup\{c\}} \bar{R}_{d}\right] \mathrm{P}\left[\bar{R}_{c} \mid c \notin L(u) \cup L(v)\right] \\
& =\mathrm{P}\left[\cap_{d \notin B(v) \cup\{c\}} \bar{R}_{d}\right] \\
& =\mathrm{P}\left[\cap_{d \notin B(v) \cup\{c\}} \bar{R}_{d}\right] \mathrm{P}\left[\bar{R}_{c}\right] / \mathrm{P}\left[\bar{R}_{c}\right] \\
& =\mathrm{P}\left[\cap_{d \notin B(v)} \bar{R}_{d}\right] / \mathrm{P}\left[\bar{R}_{c}\right] \\
& \leq \mathrm{P}\left[v \in U^{\prime}\right] /(1-\theta \hat{p}) \\
& \leq \mathrm{P}\left[v \in U^{\prime}\right](1+2 \theta \hat{p}) .
\end{aligned}
$$

Note that this also implies $\mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u)\right] \leq \mathrm{P}\left[v \in U^{\prime}\right](1+2 \theta \hat{p})$. If $c \in L(v) \cup L(u)$,
then $p_{u}^{\prime}(c) p_{v}^{\prime}(c)=0$, so by the claim,

$$
\begin{aligned}
& \mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right]=\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
& \leq \frac{p_{u}(c)}{q_{u}(c)} \frac{p_{v}(c)}{q_{v}(c)} \mathrm{P}\left[c \notin L(u) \cup L(v) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
&=\frac{p_{u}(c)}{q_{u}(c)} \frac{p_{v}(c)}{q_{v}(c)} \\
& \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u) \cup L(v)\right] \mathrm{P}[c \notin L(u) \cup L(v)] \\
&=\frac{p_{u}(c)}{q_{u}(c)} \frac{p_{v}(c)}{q_{v}(c)} \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u) \cup L(v)\right] \mathrm{P}[c \notin L(u)] \mathrm{P}[c \notin L(v)] \\
&=p_{u}(c) p_{v}(c) \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u) \cup L(v)\right] \\
& \leq p_{u}(c) p_{v}(c) \mathrm{P}\left[v \in U^{\prime}\right](1+2 \theta \hat{p}) \\
& \leq p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon)) .
\end{aligned}
$$

Suppose $p_{u}^{\prime}(c)$ is determined by Case A, and $p_{v}^{\prime}(c)$ is determined by Case B. Recall that the previous case showed that $\mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u)\right] \leq \mathrm{P}\left[v \in U^{\prime}\right](1+2 \theta \hat{p})$. If $c \in L(u)$, then $p_{u}^{\prime}(c) p_{v}^{\prime}(c)=0$, so

$$
\begin{aligned}
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right] & =p_{v}(c) \mathbf{E}\left[p_{u}^{\prime}(c) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
& \leq p_{v}(c) \frac{p_{u}(c)}{q_{u}(c)} \mathrm{P}\left[c \notin L(u) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
& =p_{v}(c) \frac{p_{u}(c)}{q_{u}(c)} \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u)\right] \mathrm{P}[c \notin L(u)] \\
& =p_{u}(c) p_{v}(c) \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(u)\right] \\
& \leq p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon)) .
\end{aligned}
$$

Suppose $p_{u}^{\prime}(c)$ is determined by Case B , and $p_{v}^{\prime}(c)$ is determined by Case A. If $c \in L(v)$, then $p_{u}^{\prime}(c) p_{v}^{\prime}(c)=0$, so by the claim,

$$
\begin{aligned}
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right] & =p_{u}(c) \mathbf{E}\left[p_{v}^{\prime}(c) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
& \leq p_{u}(c) \frac{p_{v}(c)}{q_{v}(c)} \mathrm{P}\left[c \notin L(v) \mid v \in U^{\prime}\right] \mathrm{P}\left[v \in U^{\prime}\right] \\
& =p_{u}(c) \frac{p_{v}(c)}{q_{v}(c)} \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(v)\right] \mathrm{P}[c \notin L(v)] \\
& =p_{u}(c) p_{v}(c) \mathrm{P}\left[v \in U^{\prime} \mid c \notin L(v)\right] \\
& \leq p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon)) .
\end{aligned}
$$

If both $p_{u}^{\prime}(c)$ and $p_{v}^{\prime}(c)$ are determined by Case B , then $p_{u}^{\prime}(c)$ and $p_{v}^{\prime}(c)$ are independent
of each other and of $v \in U^{\prime}$. Hence

$$
\begin{aligned}
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{v \in U^{\prime}}\right] & =\mathbf{E}\left[p_{u}^{\prime}(c)\right] \mathbf{E}\left[p_{v}^{\prime}(c)\right] \mathbf{E}\left[1_{v \in U^{\prime}}\right] \\
& =p_{u}(c) p_{v}(c) \mathrm{P}\left[v \in U^{\prime}\right] \\
& \leq p_{u}(c) p_{v}(c)(1-\theta(1-6 \epsilon))
\end{aligned}
$$

$1.2 \quad S_{2}$

By (2) below,

$$
\begin{aligned}
\mathbf{E}\left[S_{2}\right] & =\sum_{c} \sum_{u v w}\left(\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{\gamma_{w}(c)=1}\right]+\mathbf{E}\left[p_{u}^{\prime}(c) p_{w}^{\prime}(c) 1_{\gamma_{v}(c)=1}\right]\right) \\
& =\sum_{c} \sum_{u v w} \mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) \mid \gamma_{w}(c)=1\right] \mathrm{P}\left[\gamma_{w}(c)=1\right] \\
& +\sum_{c} \sum_{u v w} \mathbf{E}\left[p_{u}^{\prime}(c) p_{w}^{\prime}(c) \mid \gamma_{v}(c)=1\right] \mathrm{P}\left[\gamma_{v}(c)=1\right] \\
& \leq \sum_{c} \sum_{u v w}\left(p_{u}(c) p_{v}(c) \mathrm{P}\left[\gamma_{w}(c)=1\right]+p_{u}(c) p_{w}(c) \mathrm{P}\left[\gamma_{v}(c)=1\right]\right) \\
& =\sum_{c} \sum_{u v w}\left(p_{u}(c) p_{v}(c) \theta p_{w}(c)+p_{u}(c) p_{w}(c) \theta p_{v}(c)\right) \\
& =2 \theta e_{u}
\end{aligned}
$$

Let

$$
S_{2, c}=\sum_{u v w}\left(p_{u}^{\prime}(c) p_{v}^{\prime}(c) 1_{\gamma_{w}(c)=1}+p_{u}^{\prime}(c) p_{w}^{\prime}(c) 1_{\gamma_{v}(c)=1}\right)
$$

and

$$
\hat{S}_{2}=\sum_{c} \min \left\{S_{2, c}, 2 \Delta \hat{p}^{3}\right\}
$$

Then \hat{S}_{2} is the sum of q independent random variables, each bounded by $2 \Delta \hat{p}^{3}$. By [23],

$$
\mathrm{P}\left[\hat{S}_{2} \geq \mathbf{E}\left[\hat{S}_{2}\right]+\Delta^{-1 / 10}\right] \leq e^{-\frac{\Delta^{-1 / 5}}{4 q \Delta^{2} \hat{p}^{6}}} \leq e^{-\Delta^{-1 / 5-1 / 2-2+66 / 24} / 4}=e^{-\Delta^{1 / 20} / 4}
$$

Observe that if $S_{2} \neq \hat{S}_{2}$, then $S_{2, c}>2 \Delta \hat{p}^{3}$ for some color c. This would imply that $\gamma_{w}(c)=1$ for at least $\Delta \hat{p}$ neighbors w of u. Therefore,

$$
\mathrm{P}\left[S_{2} \neq S_{2, c}\right] \leq q\binom{2 \Delta}{\Delta \hat{p}}(\hat{p} \theta)^{\Delta \hat{p}} \leq q\left(\frac{2 e}{\hat{p}}\right)^{\Delta \hat{p}}(\hat{p} \theta)^{\Delta \hat{p}}=q(2 e \theta)^{\Delta^{13 / 24}}
$$

Since $\mathbf{E}\left[S_{2}\right]>\mathbf{E}\left[\hat{S}_{2}\right]$, this implies

$$
\begin{aligned}
\mathrm{P}\left[S_{2}>\mathbf{E}\left[S_{2}\right]+\Delta^{-1 / 10}\right] & \leq \mathrm{P}\left[S_{2}>\mathbf{E}\left[\hat{S}_{2}\right]+\Delta^{-1 / 10}\right] \\
& \leq \mathrm{P}\left[S_{2} \neq \hat{S}_{2}\right]+\mathrm{P}\left[\hat{S_{2}}>\mathbf{E}\left[\hat{S_{2}}\right]+\Delta^{-1 / 10}\right] \\
& \leq q(2 e \theta)^{\Delta^{13 / 24}}+e^{-\Delta^{1 / 20} / 4} \\
& <e^{-\Delta^{1 / 21}}
\end{aligned}
$$

Therefore, with probability at least $1-e^{-\Delta^{1 / 21}}-e^{-\Delta^{1 / 25}}$,

$$
\begin{aligned}
f_{u}^{\prime} & \leq f_{u}(1-\theta(1-7 \epsilon))+\Delta^{-1 / 12}+2 \theta e_{u}+\Delta^{-1 / 10} \\
& \leq f_{u}(1-\theta(1-7 \epsilon))+2 \theta e_{u}+\Delta^{-1 / 21}
\end{aligned}
$$

which is [15].

1.2.1 Proof of (2)

We prove that

$$
\begin{equation*}
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) \mid \gamma_{w}(c)=1\right] \leq p_{u}(c) p_{v}(c) \tag{2}
\end{equation*}
$$

We assume first that both $p_{u}^{\prime}(c)$ and $p_{v}^{\prime}(c)$ are determined by Case A. If $c \in L(u)$ or $c \in L(v)$, then $p_{u}^{\prime}(c) p_{v}^{\prime}(c)=0$, so

$$
\mathbf{E}\left[p_{u}^{\prime}(c) p_{v}^{\prime}(c) \mid \gamma_{w}(c)=1\right] \leq \frac{p_{u}(c)}{q_{u}(c)} \frac{p_{v}(c)}{q_{v}(c)} \mathrm{P}\left[c \notin L(u) \cup L(v) \mid \gamma_{w}(c)=1\right]
$$

Since

$$
\mathrm{P}[c \notin L(u)]=\prod_{u x y \in H}\left(1-\mathrm{P}\left[\gamma_{x}(c)=1, \gamma_{y}(c)=1\right]\right) \prod_{\kappa(u x)=c}\left(1-\mathrm{P}\left[\gamma_{x}(c)=1\right]=q_{u}(c),\right.
$$

we see that

$$
\begin{aligned}
& \mathrm{P}\left[c \notin L(u) \mid c \notin L(v), \gamma_{w}(c)=1\right] \\
& =\left(1-\mathrm{P}\left[\gamma_{v}(c)=1\right]\right) \prod_{u x y \in H-u v w}\left(1-\mathrm{P}\left[\gamma_{x}(c)=1, \gamma_{y}(c)=1\right]\right) \prod_{\kappa(u x)=c}\left(1-\mathrm{P}\left[\gamma_{x}(c)=1\right]\right) \\
& =\frac{1-\mathrm{P}\left[\gamma_{v}(c)=1\right]}{1-\mathrm{P}\left[\gamma_{v}(c)=1, \gamma_{w}(c)=1\right]} q_{u}(c) \\
& =\frac{1-\theta p_{v}(c)}{1-\theta^{2} p_{v}(c) p_{w}(c)} q_{u}(c) .
\end{aligned}
$$

Similiarly,

$$
\mathrm{P}\left[c \notin L(v) \mid \gamma_{w}(c)=1\right]=\frac{1-\theta p_{u}(c)}{1-\theta^{2} p_{u}(c) p_{w}(c)} q_{v}(c) .
$$

Therefore, using $\theta p_{w}(c) \leq 1$,

$$
\begin{aligned}
\mathrm{P}\left[c \notin L(u) \cup L(v) \mid \gamma_{w}(c)=1\right] & =\mathrm{P}\left[c \notin L(u) \mid c \notin L(v), \gamma_{w}(c)=1\right] \mathrm{P}\left[c \notin L(v) \mid \gamma_{w}(c)=1\right] \\
& =\frac{q_{u}(c)\left(1-\theta p_{v}(c)\right)}{1-\theta^{2} p_{v}(c) p_{w}(c)} \frac{q_{v}(c)\left(1-\theta p_{u}(c)\right)}{1-\theta^{2} p_{u}(c) p_{w}(c)} \\
& \leq q_{u}(c) q_{v}(c),
\end{aligned}
$$

and (2) follows.
If $p_{u}^{\prime}(c)$ or $p_{v}^{\prime}(c)$ is determined by Case B , then these values are independent, and (2) follows in a similar way.

2 Correction to the proof of property [8]

There was a trivial error in the calculation justifying [8]. We correct here for completeness. Replace the last sentence with: So, using $f_{u} \leq 3(1-\theta / 4)^{t} \omega$,

$$
\begin{aligned}
f_{u}^{\prime} & \leq 3(1-\theta(1-7 \epsilon))(1-\theta / 4)^{t} \omega+2 \theta \omega(1-\theta / 3)^{t}+\theta \Delta^{-1 / 22} \\
& =3(1-\theta / 4)^{t+1} \omega+\omega(1-\theta / 4)^{t}\left(-\theta(9 / 4-21 \epsilon)+2 \theta\left(\frac{1-\theta / 3}{1-\theta / 4}\right)^{t}\right)+\theta \Delta^{-1 / 22} \\
& \leq 3(1-\theta / 4)^{t+1} \omega+\omega(1-\theta / 4)^{t}(-\theta(9 / 4-21 \epsilon)+2 \theta)+\theta \Delta^{-1 / 22} \\
& \leq 3(1-\theta / 4)^{t+1} \omega-\omega \theta(1 / 4-21 \epsilon)(\log \Delta)^{-O(1)}+\theta \Delta^{-1 / 22} \\
& \leq 3(1-\theta / 4)^{t+1} \omega
\end{aligned}
$$

References

[1] A.M. Frieze and D. Mubayi, On the chromatic number of simple triangle-free triple systems, Electronic Journal of Combinatorics 15 (2008), no. 1, Research Paper 121, 27 pp.

