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We have found several errors in the paper [1] and the goal here is to present corrections

to all of them. Equational references with square brackets [..] are with respect to the

published version. Those with round brackets (..) are with respect to this comment.

The notation is from [1].

There was a substantial error in the proof of [15] (in Section 11.4.1 of [1]) and a trivial

error in the calculation to the proof of [8] (in Section 9 of [1]). These are corrected in

Sections 1 and 2, respectively of the current note.

1 Correction to the proof of [15]

Observe that

f ′
u =

∑

c

∑

v∈N(u)

p′u(c)p
′
v(c)1κ′(uv)=c +

∑

c

∑

κ(uv)=0
κ′(uv)=c

p′u(c)p
′
v(c)

≤
∑

c

∑

κ(uv)=c

p′u(c)p
′
v(c)1v∈U ′

+
∑

c

∑

uvw∈H

(p′u(c)p
′
v(c)1γw(c)=1 + p′u(c)p

′
w(c)1γv(c)=1)

:= S1 + S2.

We will bound each term separately.
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1.1 S1

Recall that

S1 =
∑

c

∑

κ(uv)=c

p′u(c)p
′
v(c)1v∈U ′ .

For each color c, let Dc be the event that γv(c) = 1 for at most ∆p̂ vertices v ∈ N(u).

Since P[γv(c) = 1] ≤ p̂θ,

P[D̄c] ≤

(

∆

∆p̂

)

(p̂θ)∆p̂ ≤ (
e

p̂
)∆p̂(p̂θ)∆p̂ = (eθ)∆p̂ < e−∆1/2

.

Let D denote the event that Dc holds for all c. By the union bound,

P[D̄] ≤ qe−∆1/2

.

By (1) below,

E[S1] =
∑

c

∑

κ(uv)=c

E[p′u(c)p
′
v(c)1v∈U ′ ]

≤
∑

c

∑

κ(uv)=c

pu(c)pv(c)(1− θ(1− 6ǫ))

= fu(1− θ(1− 6ǫ)).

Therefore,

E[S1|D] = (E[S1]− E[S1|D̄]P[D̄])/P[D]

≤ E[S1]/P[D]

= fu(1− θ(1− 6ǫ))/(1− qe−∆1/2

)

≤ fu(1− θ(1− 7ǫ)).

For a vertex subset X, let N(X) = {v : ∃x ∈ X and w with xvw ∈ H}. Let Tc denote

the set of color trials for color c at all vertices in {u}∪N(u)∪N(N(u)). Then the trials

T1, . . . , Tq determine the variable S1. Observe that Tc affects every term of the form

p′u(c)p
′
v(c)1v∈U ′ . For d 6= c, Tc affects p′u(d)p

′
v(d)1v∈U ′ only if γv(c) = 1; this is because

if γv(c) = 0, the trials for color c have no impact on whether or not v ∈ U ′. Thus,

given that γv(c) = 1 for at most ∆p̂ of the variables in Tc, changing the values in Tc can

change S1 by at most d(u, c)p̂2 + 2(∆p̂)p̂2.

Let π(ti) = P(Ti = ti | D) for i = 1, 2, . . . , q and let

ρ(ti, ti+1, . . . , tq) = π(ti)π(ti+1) · · · π(tq) = P(Tj = tj, j = i, i+ 1, . . . , q | D).
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Here we use the fact that conditioning on D still leaves the choices t1, t2, . . . , tq for the

distinct sets of colors T1, T2, . . . , Tc independent of each other. Thus,

|E[S1|D,T1 = t1, . . . , Tc = tc]− E[S1|D,T1 = t1, . . . , Tc−1 = tc−1, Tc = t′c]|

=

∣

∣

∣

∣

∣

∣

∑

tc+1,...,tq

[S1(t1, . . . , tc−1, tc, tc+1, . . . , tq)− S1(t1, . . . , tc−1, t
′
c, tc+1, . . . , tq)]ρ(tc+1, . . . , tq)

∣

∣

∣

∣

∣

∣

≤ d(u, c)p̂2 + 2∆p̂3

≤ 2t0θ∆p̂3 + 2∆p̂3

≤ 3t0θ∆p̂3.

Since

∑

c

(3t0θ∆p̂3)2 = 9qt20θ
2∆2p̂6 ≤ 9t20θ

2∆2+1/2−66/24 ≤ ∆−5/24,

the Azuma-Hoeffding inequality implies

P[S1 > fu(1− θ(1− 7ǫ)) + ∆−1/12|D] ≤ P[S1 > E[S1|D] + ∆−1/12|D]

≤ e−∆5/24−2/12

= e−∆1/24

.

Thus

P[S1 > fu(1− θ(1− 7ǫ)) + ∆−1/12] ≤ P[S1 > fu(1− θ(1− 7ǫ)) + ∆−1/12|D]P[D] + P[D̄]

≤ e−∆1/24

(1− qe−∆1/2

) + qe−∆1/2

≤ e−∆1/25

.

1.1.1 Proof of (1)

We prove that if κ(uv) = c,

E[p′u(c)p
′
v(c)1v∈U ′ ] ≤ pu(c)pv(c)(1− θ(1− 6ǫ)). (1)

We first establish the following claim.

Claim. P[v /∈ U ′|c /∈ L(v)] ≥ P[v /∈ U ′] ≥ θ(1− 5ǫ).

Proof of claim. The vertex v is colored (i.e., not in U ′) if and only if for some color

d /∈ B(v), γv(d) = 1 and d /∈ L(v). Let Rd denote the event that γv(d) = 1 and

d /∈ L(v). If c ∈ B(v), then

P[v /∈ U ′|c /∈ L(v)] = P[v /∈ U ′].
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Otherwise, since γv(c) = 1 is independent of c /∈ L(v) and Rd is independent of c /∈ L(v)

for c 6= d,

P[v /∈ U ′|c /∈ L(v)] = P[(∪d/∈B(v)∪{c}Rd) ∪ (Rc)|c /∈ L(v)]

= P[(∪d/∈B(v)∪{c}Rd) ∪ (γv(c) = 1 ∩ c /∈ L(v))|c /∈ L(v)]

= P[(∪d/∈B(v)∪{c}Rd) ∪ (γv(c) = 1)]

≥ P[(∪d/∈B(v)∪{c}Rd) ∪Rc]

= P[v /∈ U ′].

In either case,

P[v /∈ U ′|c /∈ L(v)] ≥ P[v /∈ U ′]

= P[∪d/∈B(v)Rd]

≥
∑

d/∈B(v)

P[Rd]−
∑

d,d′ /∈B(v)

P[Rd]P[Rd′ ]

=
∑

d/∈B(v)

θpv(d)qv(d)−
∑

d,d′ /∈B(v)

θ2pv(d)pv(d
′)qv(d)qv(d

′)

≥ θ
∑

d∈C

pv(d)qv(d)− θ
∑

d∈B(v)

pv(d)qv(d)− θ2
∑

d,d′ /∈B(v)

pv(d)pv(d
′)

≥ θ
∑

d∈C

pv(d)qv(d)− θ|B(v)|p̂− θ2
∑

d,d′ /∈B(v)

pv(d)pv(d
′).

Using the inequality
∏

x(1− x) ≥ 1−
∑

x x (for x ∈ [0, 1]), we obtain

qv(d) =
∏

uvw∈H

(1− θ2pu(d)pw(d))
∏

uv∈G
κ(uv)=d

(1− θpu(d))

≥ 1−
∑

uvw∈H

θ2pu(d)pw(d)−
∑

uv∈G
κ(uv)=d

θpu(d)

= 1− θ2
∑

uvw∈H

pu(d)pw(d)− θ
∑

uv∈G
κ(uv)=d

pu(d)

= 1− θ2ev(d)− θfv(d).

Since
∑

d∈C pv(c) = 1 + o(1),

θ2
∑

d,d′ /∈B(v)

pv(d)pv(d
′) =

1

2
θ2
∑

d∈C

∑

d′∈C:d′ 6=d

pv(d)pv(d
′) ≤

1

2
θ2(
∑

d∈C

pv(d))
2 ≤ θ2.

By [22], |B(v)| < ǫ/p̂. By [8], fv < 3ω, so θfv < 3ǫ. By [7] and [10] (see [19]),

ev ≤ ω+∆−1/10, so θ2ev < ǫ/3. Using these three inequalities and
∑

d∈C pv(c) ≥ (1−ǫ/3),
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we finally obtain

P[v /∈ U ′] ≥ θ
∑

d

pv(d)(1− θ2ev(d)− θfv(d))− θ|B(v)|p̂− θ2

≥ θ
∑

d

pv(d)− θ3
∑

d

pv(d)ev(d)− θ2
∑

d

pv(d)fv(d)− θǫ− θ2

= θ
∑

d

pv(d)− θ3ev − θ2fv − θǫ− θ2

≥ θ(1− ǫ/3)− θǫ/3− 3θǫ− θǫ− θǫ/3

= θ(1− 5ǫ).

We now bound E[p′u(c)p
′
v(c)1v∈U ′ ]. First assume that p′u(c) and p′v(c) are determined

by Case A (see [3]). Since κ(uv) = c, the edge containing u and v no longer exists in

the hypergraph. By triangle-freeness, there are no vertices w which share an edge with

both u and v. Therefore the events c /∈ L(u) and c /∈ L(v) are independent. Also, if

c /∈ L(u), then γw(c) = 0 for all w ∈ NG(u), so in particular, γv(c) = 0. Consequently,

P[R̄c|c /∈ L(u) ∪ L(v)] = P[R̄c|c /∈ L(u)] = P[γv(c) = 0 ∪ c ∈ L(v)|c /∈ L(u)] = 1.

Therefore, by the independence of colors,

P[v ∈ U ′|c /∈ L(u) ∪ L(v)] = P[∩d/∈B(v)R̄d|c /∈ L(u) ∪ L(v)]

= P[∩d/∈B(v)∪{c}R̄d]P[R̄c|c /∈ L(u) ∪ L(v)]

= P[∩d/∈B(v)∪{c}R̄d]

= P[∩d/∈B(v)∪{c}R̄d]P[R̄c]/P[R̄c]

= P[∩d/∈B(v)R̄d]/P[R̄c]

≤ P[v ∈ U ′]/(1− θp̂)

≤ P[v ∈ U ′](1 + 2θp̂).

Note that this also implies P[v ∈ U ′|c /∈ L(u)] ≤ P[v ∈ U ′](1 + 2θp̂). If c ∈ L(v) ∪ L(u),
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then p′u(c)p
′
v(c) = 0, so by the claim,

E[p′u(c)p
′
v(c)1v∈U ′ ] = E[p′u(c)p

′
v(c)|v ∈ U ′]P[v ∈ U ′]

≤
pu(c)

qu(c)

pv(c)

qv(c)
P[c /∈ L(u) ∪ L(v)|v ∈ U ′]P[v ∈ U ′]

=
pu(c)

qu(c)

pv(c)

qv(c)
P[v ∈ U ′|c /∈ L(u) ∪ L(v)]P[c /∈ L(u) ∪ L(v)]

=
pu(c)

qu(c)

pv(c)

qv(c)
P[v ∈ U ′|c /∈ L(u) ∪ L(v)]P[c /∈ L(u)]P[c /∈ L(v)]

= pu(c)pv(c)P[v ∈ U ′|c /∈ L(u) ∪ L(v)]

≤ pu(c)pv(c)P[v ∈ U ′](1 + 2θp̂)

≤ pu(c)pv(c)(1− θ(1− 6ǫ)).

Suppose p′u(c) is determined by Case A, and p′v(c) is determined by Case B. Recall

that the previous case showed that P[v ∈ U ′|c /∈ L(u)] ≤ P[v ∈ U ′](1+2θp̂). If c ∈ L(u),

then p′u(c)p
′
v(c) = 0, so

E[p′u(c)p
′
v(c)1v∈U ′ ] = pv(c)E[p

′
u(c)|v ∈ U ′]P[v ∈ U ′]

≤ pv(c)
pu(c)

qu(c)
P[c /∈ L(u)|v ∈ U ′]P[v ∈ U ′]

= pv(c)
pu(c)

qu(c)
P[v ∈ U ′|c /∈ L(u)]P[c /∈ L(u)]

= pu(c)pv(c)P[v ∈ U ′|c /∈ L(u)]

≤ pu(c)pv(c)(1− θ(1− 6ǫ)).

Suppose p′u(c) is determined by Case B, and p′v(c) is determined by Case A. If c ∈ L(v),

then p′u(c)p
′
v(c) = 0, so by the claim,

E[p′u(c)p
′
v(c)1v∈U ′ ] = pu(c)E[p

′
v(c)|v ∈ U ′]P[v ∈ U ′]

≤ pu(c)
pv(c)

qv(c)
P[c /∈ L(v)|v ∈ U ′]P[v ∈ U ′]

= pu(c)
pv(c)

qv(c)
P[v ∈ U ′|c /∈ L(v)]P[c /∈ L(v)]

= pu(c)pv(c)P[v ∈ U ′|c /∈ L(v)]

≤ pu(c)pv(c)(1− θ(1− 6ǫ)).

If both p′u(c) and p′v(c) are determined by Case B, then p′u(c) and p′v(c) are independent
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of each other and of v ∈ U ′. Hence

E[p′u(c)p
′
v(c)1v∈U ′ ] = E[p′u(c)]E[p

′
v(c)]E[1v∈U ′ ]

= pu(c)pv(c)P[v ∈ U ′]

≤ pu(c)pv(c)(1− θ(1− 6ǫ)).

1.2 S2

By (2) below,

E[S2] =
∑

c

∑

uvw

(E[p′u(c)p
′
v(c)1γw(c)=1] + E[p′u(c)p

′
w(c)1γv(c)=1])

=
∑

c

∑

uvw

E[p′u(c)p
′
v(c)|γw(c) = 1]P[γw(c) = 1]

+
∑

c

∑

uvw

E[p′u(c)p
′
w(c)|γv(c) = 1]P[γv(c) = 1]

≤
∑

c

∑

uvw

(pu(c)pv(c)P[γw(c) = 1] + pu(c)pw(c)P[γv(c) = 1])

=
∑

c

∑

uvw

(pu(c)pv(c)θpw(c) + pu(c)pw(c)θpv(c))

= 2θeu.

Let

S2,c =
∑

uvw

(p′u(c)p
′
v(c)1γw(c)=1 + p′u(c)p

′
w(c)1γv(c)=1),

and

Ŝ2 =
∑

c

min{S2,c, 2∆p̂3}.

Then Ŝ2 is the sum of q independent random variables, each bounded by 2∆p̂3. By [23],

P[Ŝ2 ≥ E[Ŝ2] + ∆−1/10] ≤ e
− ∆−1/5

4q∆2p̂6 ≤ e−∆−1/5−1/2−2+66/24/4 = e−∆1/20/4.

Observe that if S2 6= Ŝ2, then S2,c > 2∆p̂3 for some color c. This would imply that

γw(c) = 1 for at least ∆p̂ neighbors w of u. Therefore,

P[S2 6= S2,c] ≤ q

(

2∆

∆p̂

)

(p̂θ)∆p̂ ≤ q

(

2e

p̂

)∆p̂

(p̂θ)∆p̂ = q(2eθ)∆
13/24

.
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Since E[S2] > E[Ŝ2], this implies

P[S2 > E[S2] + ∆−1/10] ≤ P[S2 > E[Ŝ2] + ∆−1/10]

≤ P[S2 6= Ŝ2] + P[Ŝ2 > E[Ŝ2] + ∆−1/10]

≤ q(2eθ)∆
13/24

+ e−∆1/20/4

< e−∆1/21

.

Therefore, with probability at least 1− e−∆1/21
− e−∆1/25

,

f ′
u ≤ fu(1− θ(1− 7ǫ)) + ∆−1/12 + 2θeu +∆−1/10

≤ fu(1− θ(1− 7ǫ)) + 2θeu +∆−1/21,

which is [15].

1.2.1 Proof of (2)

We prove that

E[p′u(c)p
′
v(c)|γw(c) = 1] ≤ pu(c)pv(c). (2)

We assume first that both p′u(c) and p′v(c) are determined by Case A. If c ∈ L(u) or

c ∈ L(v), then p′u(c)p
′
v(c) = 0, so

E[p′u(c)p
′
v(c)|γw(c) = 1] ≤

pu(c)

qu(c)

pv(c)

qv(c)
P[c /∈ L(u) ∪ L(v)|γw(c) = 1].

Since

P[c /∈ L(u)] =
∏

uxy∈H

(1− P[γx(c) = 1, γy(c) = 1])
∏

κ(ux)=c

(1− P[γx(c) = 1] = qu(c),

we see that

P[c /∈ L(u)|c /∈ L(v), γw(c) = 1]

= (1− P[γv(c) = 1])
∏

uxy∈H−uvw

(1− P[γx(c) = 1, γy(c) = 1])
∏

κ(ux)=c

(1− P[γx(c) = 1])

=
1− P[γv(c) = 1]

1− P[γv(c) = 1, γw(c) = 1]
qu(c)

=
1− θpv(c)

1− θ2pv(c)pw(c)
qu(c).

Similiarly,

P[c /∈ L(v)|γw(c) = 1] =
1− θpu(c)

1− θ2pu(c)pw(c)
qv(c).
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Therefore, using θpw(c) ≤ 1,

P[c /∈ L(u) ∪ L(v)|γw(c) = 1] = P[c /∈ L(u)|c /∈ L(v), γw(c) = 1]P[c /∈ L(v)|γw(c) = 1]

=
qu(c)(1− θpv(c))

1− θ2pv(c)pw(c)

qv(c)(1− θpu(c))

1− θ2pu(c)pw(c)

≤ qu(c)qv(c),

and (2) follows.

If p′u(c) or p
′
v(c) is determined by Case B, then these values are independent, and (2)

follows in a similar way.

2 Correction to the proof of property [8]

There was a trivial error in the calculation justifying [8]. We correct here for complete-

ness. Replace the last sentence with: So, using fu ≤ 3(1− θ/4)tω,

f ′
u ≤ 3(1− θ(1− 7ǫ))(1− θ/4)tω + 2θω(1− θ/3)t + θ∆−1/22

= 3(1− θ/4)t+1ω + ω(1− θ/4)t

(

−θ (9/4− 21ǫ) + 2θ

(

1− θ/3

1− θ/4

)t
)

+ θ∆−1/22

≤ 3(1− θ/4)t+1ω + ω(1− θ/4)t(−θ(9/4− 21ǫ) + 2θ) + θ∆−1/22

≤ 3(1− θ/4)t+1ω − ωθ(1/4− 21ǫ)(log∆)−O(1) + θ∆−1/22

≤ 3(1− θ/4)t+1ω.
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