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Abstract

A hypergraph is simple if every two edges share at most one vertex. It is triangle-

free if in addition every three pairwise intersecting edges have a vertex in common.

We prove that there is an absolute constant c such that the chromatic number of a

simple triangle-free triple system with maximum degree ∆ is at most c
√

∆/ log ∆.

This extends a result of Johansson about graphs, and is sharp apart from the con-

stant c.

1 Introduction

Many of the recent important developments in extremal combinatorics have been con-

cerned with generalizing well-known basic results in graph theory to hypergraphs. The

most famous of these is the generalization of Szemerédi’s regularity lemma to hyper-

graphs and the resulting proofs of removal lemmas and the multidimensional Szemerédi

theorem about arithmetic progressions [4, 11, 14]. Other examples are the extension of

Dirac’s theorem on hamilton cycles [13] and the Chvatal-Rödl-Szemerédi-Trotter theorem

on Ramsey numbers of bounded degree graphs [9]. In this paper we continue this theme,

by generalizing a result about the chromatic number of graphs.
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The basic bound on the chromatic number of a graph of maximum degree ∆ is ∆ + 1

obtained by coloring the vertices greedily; Brooks theorem states that equality holds only

for cliques and odd cycles. Taking this further, one may consider imposing additional

local constraints on the graph and asking whether the aforementioned bounded decreases.

Kahn and Kim [6] conjectured that if the graph is triangle-free, then the upper bound

can be improved to O(∆/ log ∆). Kim [7] proved this with the additional hypothesis that

G contains no 4-cycle. Soon after, Johansson proved the conjecture.

Theorem 1 (Johansson [5]) There is an absolute constant c such that every triangle-

free graph with maximum degree ∆ has chromatic number at most c ∆/ log ∆.

It is well known that Theorem 1 is sharp apart from the constant c, and Johansson’s

result was considered a major breakthrough. We prove a similar result for hypergraphs.

For k ≥ 2, a k-uniform hypergraph (k-graph for short) is a hypergraph whose edges all

have size k. A proper coloring of a k-graph is a coloring of its vertices such that no edge is

monochromatic, and the chromatic number is the minimum number of colors in a proper

coloring. An easy consequence of the Local Lemma is that every 3-graph with maximum

degree ∆ has chromatic number at most 3
√

∆. Our result improves this if we impose local

constraints on the 3-graph. Say that a k-graph is simple if every two edges share at most

one vertex. A triangle in a simple k-graph is a collection of three pairwise intersecting

edges containing no common point. We extend Johansson’s theorem to hypergraphs as

follows.

Theorem 2 There are absolute positive constants c, c′ such that the following holds: Ev-

ery simple triangle-free 3-graph with maximum degree ∆ has chromatic number at most

c
√

∆/ log ∆. Moreover, there exist simple triangle-free 3-graphs with maximum degree ∆

and chromatic number at least c′
√

∆/ log ∆.

Theorem 2 can also be considered as a generalization of a classical result of Komlos-Pintz-

Szemerédi [8] who proved, under the additional hypotheses that there are no 4-cycles, that

triple systems with n vertices and maximum degree ∆ have an independent set of size at

least c(n/∆1/2)(log ∆)1/2 where c is a constant.

Simple hypergraphs share many of the complexities of (more general) hypergraphs but

also have many similarities with graphs. We believe that Theorem 2 can be proved for

general 3-graphs, but the proof would probably require several new ideas. Our argument

uses simplicity in several places (see Section 11). In fact, we conjecture that a similar
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result holds for k-graphs as long as any fixed subhypergraph is forbidden. The analogous

conjecture for graphs was posed by Alon-Krivelevich-Sudakov [2].

Conjecture 3 Let F be a k-graph. There is a constant cF depending only on F such that

every F -free k-graph with maximum degree ∆ has chromatic number at most

cF (∆/ log ∆)1/(k−1).

Note that this Conjecture implies that the upper bound in Theorem 2 holds even if we

exclude the triangle-free hypothesis 1. Indeed, the condition of simplicity is the same as

saying that the 3-graph is F -free, where F is the 3-graph of two edges sharing two vertices.

The proof of the lower bound in Theorem 2 is fairly standard. The idea is to take a

random k-graph with appropriate edge probability, and then cleverly delete all copies of

triangles from it. This approach was used by Krivelevich [10] to prove lower bounds for

off diagonal Ramsey numbers. More recently, it was extended to families of hypergraphs

in [3] and we will use this result.

The proof of the upper bound in Theorem 2 is our main contribution. Here we will heavily

expand on ideas used by Johansson in his proof of Theorem 1. The approach, which has

been termed the semi-random, or nibble method, was first used by Rödl (although his

proof was inspired by earlier work in [1]) to settle the Erdős-Hanani conjecture about the

existence of asymptotically optimal designs. Subsequently, inspired by work of Kahn [6],

Kim [7] proved Theorem 1 for graphs with girth five. Finally Johansson using a host of

additional ideas, proved his result. The approach used by Johansson for the graph case

is to iteratively color a small portion of the (currently uncolored) vertices of the graph,

record the fact that a color already used at v cannot be used in future on the uncolored

neighbors of v, and continue this process until the graph induced by the uncolored vertices

has small maximum degree. Once this has been achieved, the remaining uncolored vertices

are colored using a new set of colors by the greedy algorithm. Since the initial maximum

degree is ∆, we require that the final degree is of order ∆/ log ∆ in order for the greedy

algorithm to be efficient. At each step, the degree at each vertex will fall roughly by a

multiplicative factor of (1 − 1/ log ∆), and so the number of steps in the semi random

phase of the algorithm is roughly log ∆ log log ∆.

In principle our method is the same, but there are several difficulties we encounter. The

first, and most important, is that our coloring algorithm must necessarily be more com-

plicated. A proper coloring of a 3-graph allows two vertices of an edge to have the same

1The authors have recently proved this particular special case of Conjecture 3 for arbitrary k ≥ 3.
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color, indeed, to obtain optimal results one must permit this. To facilitate this, we in-

troduce a graph at each stage of our algorithm whose edges comprise pairs of uncolored

vertices that form an edge of the 3-graph with a colored vertex. Keeping track of this

graph requires controlling more parameters during the iteration and dealing with some

more lack of independence and this makes the proof more complicated. Finally, we remark

that our theorem also proves the same upper bound for list chromatic number, although

we phrase it only for chromatic number.

In the next section we present the lower bound in Theorem 2 and the rest of the pa-

per is devoted to the proof of the upper bound. The last section describes the minor

modifications to the main argument that would yield the corresponding result for list

colorings.

2 Random construction

In this section we prove the lower bound in Theorem 2. We will actually observe that a

slightly more general result follows from a theorem in [3]. Let us begin with a definition.

Call a hypergraph nontrivial if it has at least two edges.

Definition 4 Let F be a nontrivial k-graph. Then

ρ(F ) = max
F ′⊂F

e′ − 1

v′ − k
,

where F ′ is nontrivial with v′ vertices and e′ edges. For a finite family F of nontrivial

k-graphs, ρ(F) = minF∈F ρ(F ).

Theorem 5 Let F be a finite family of nontrivial k-graphs with ρ(F) > 1/(k−1). There

is an absolute constant c = cF such that the following holds: for all ∆ > 0, there is an

F-free k-graph with maximum degree ∆ and chromatic number at least c(∆/ log ∆)1/(k−1).

Proof. Fix k ≥ 2 and let ρ = ρ(F). Consider the random k-graph Gp with vertex

set [n] and each edge appearing independently with probability p = n−1/ρ. Then an

easy calculation using the Chernoff bounds shows that with probability tending to 1, the

maximum degree ∆ of G satisfies ∆ < nk−1−1/ρ. Let us now delete the edges of a maximal

collection of edge disjoint copies of members of F from Gp. The resulting k-graph G′
p

is clearly F -free. Moreover, it is shown in [3] that with probability tending to 1, the

maximum size t of an independent set of vertices in G′
p satisfies

t < c1(n
1/ρ log n)1/(k−1)
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where c1 depends only on F . Consequently, the chromatic number of G′
p is at least

c2

(

nk−1−1/ρ

log n

)1/(k−1)

> c3

(

∆

log ∆

)1/(k−1)

,

where c2 and c3 depend only on F . This completes the proof. �

The lower bound in Theorem 2 is an easy consequence of Theorem 5. Indeed, let k = 3

and F = {F1, F2}, where F1 is the 3-graph of two edges sharing two vertices, and F2 is

a simple triangle i.e. F2 = {abc, cde, efa}. Then ρ(F1) = 1 and ρ(F2) = 2/3 so they are

both greater than 1/2 and Theorem 5 applies.

3 Local Lemma

The driving force of our upper bound argument, both in the semi-random phase and the

final phase, is the Local Lemma. We use it in the form below.

Theorem 6 (Local Lemma) Let A1, . . . ,An be events in an arbitrary probability space.

Suppose that each event Ai is mutually independent of a set of all the other events Aj but

at most d, and that P (Ai) < p for all 1 ≤ i ≤ n. If ep(d + 1) < 1, then with positive

probability, none of the events Ai holds.

Note that the Local Lemma immediately implies that every 3-graph with maximum degree

∆ can be properly colored with at most
⌈

3
√

∆
⌉

colors. Indeed, if we color each vertex

randomly and independently with one of these colors, the probability of the event Ae,

that an edge e is monochromatic, is at most 1/9∆. Moreover Ae is independent of all

other events Af unless |f ∩ e| > 0, and the number of f satisfying this is less than 3∆.

We conclude that there is a proper coloring.

4 Coloring Procedure

In the rest of the paper, we will prove the upper bound in Theorem 2. Suppose that

H is a simple triangle-free 3-graph with maximum degree ∆. We will assume that ∆

is sufficiently large that all implied inequalities below hold true. Also, all asymptotic

notation should be taken as ∆ → ∞. Let V be the vertex set of H. As usual, we write

χ(H) for the chromatic number of H. Let ε > 0 be a sufficiently small fixed number.

Throughout the paper, we will omit the use of floor and ceiling symbols.
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Let

q =
∆1/2

ω1/2

where

ω =
ε log ∆

104
.

We color V with 2q colors and therefore show that

χ(H) ≤ 200

ε1/2

∆1/2

(log ∆)1/2
.

We use the first q colors to color H in rounds and then use the second q colors to color

any vertices not colored by this process.

Our algorithm for coloring in rounds is semi-random. At the beginning of a round certain

parameters will satisfy certain properties, (6) – (11) below. We describe a set of random

choices for the parameters in the next round and we use the local lemma to prove that

there is a set of choices that preserves the required properties.

• C = [q] denotes the set of available colors for the semi-random phase.

• U (t): The set of vertices which are currently uncolored. (U (0) = V ).

• H (t): The sub-hypergraph of H induced by U (t).

• W (t) = V \ U (t): The set of vertices that have been colored. We use the notation κ

to denote the color of an item e.g. κ(w), w ∈ W (t) denotes the color permanently

assigned to w.

• G(t): An edge-colored graph with vertex set U (t). There is an edge uv ∈ G(t) iff

there is a vertex w ∈ W (t) and an edge uvw ∈ H. Because H is simple, w is unique,

if it exists. The edge uv is given the color κ(uv) = κ(w). (This graph is used to

keep track of some coloring restrictions).

• p
(t)
u ∈ [0, 1]C for u ∈ U (t): This is a vector of coloring probabilities. The cth

coordinate is denoted by p
(t)
u (c) and p

(0)
u = (q−1, q−1, . . . , q−1).

We can now describe the “algorithm” for computing U (t+1), p
(t+1)
u , u ∈ U (t+1) etc., given

U (t), p
(t)
u , u ∈ U (t) etc.: Let

θ =
ε

ω
=

104

log ∆

where we recall that ε is a sufficiently small positive constant.
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For each u ∈ U (t) and c ∈ C we tentatively activate c at u with probability θp
(t)
u (c). A

color c is lost at u ∈ U (t), p
(t+1)
u (c) = 0 and p

(t′)
u (c) = 0 for t′ > t if there is an edge

uvw ∈ H (t) such that c is tentatively activated at v and w. In addition, a color c is lost

at u ∈ U (t) if there is an edge uv ∈ G(t) such that c is tentatively activated at v and

κ(uv) = c.

The vertex u ∈ U (t) is given a permanent color if there is a color tentatively activated at

u which is not lost due to the above reasons. If there is a choice, it is made arbitrarily.

Then u is placed into W (t+1).

We fix

p̂ =
1

∆11/24
.

(We can replace 11/24 by any α ∈ (5/12, 1/2)).

We keep

p(t)
u (c) ≤ p̂

for all t, u, c.

We let

B(t)(u) =
{

c : p(t)
u (c) = p̂

}

for all u ∈ V.

A color in B(t)(u) cannot be used at u. The role of B(t)(u) is clarified later.

Here are some more details:

Coloring Procedure: Round t

Make tentative random color choices

Independently, for all u ∈ U (t), c ∈ C, let

γ(t)
u (c) =







1 Probability = θp
(t)
u (c)

0 Probability = 1 − θp
(t)
u (c)

(1)

Θ(t)(u) =
{

c : γ(t)
u (c) = 1

}

= the set of colors tentatively activated at u.

Deal with color clashes

L(t)(u) =
{

c : ∃uvw ∈ H (t) such that c ∈ Θ(t)(v) ∩ Θ(t)(w)
}

∪
{

c : ∃uv ∈ G(t) such that κ(uv) = c ∈ Θ(t)(v)
}

is the set of colors lost at u in this round.

A(t)(u) = A(t−1)(u) ∪ L(t)(u).
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Assign some permanent colors

Let

Ψ(t)(u) = Θ(t)(u)\(A(t)(u)∪B(t)(u)) = set of activated colors that can be used at u.

If Ψ(t)(u) 6= ∅ then choose c ∈ Ψ(t)(u) arbitrarily. Let κ(u) = c.

We now describe how to update the various parameters:

(a)

U (t+1) = U (t) \
{

u : Ψ(t)(u) 6= ∅
}

.

(b) G(t+1) is the graph with vertex set U (t+1) and edges
{

uv : ∃uvw ∈ H, w /∈ U (t+1)
}

.

Edge uv has color κ(uv) = κ(w). (H simple implies that there is at most one w for

any uv).

(c) p
(t)
u (c) is replaced by a random value p′

u(c) which is either 0 or at least p
(t)
u (c). Fur-

thermore, if u ∈ U (t) \U (t+1) then by convention p
(t′)
u = p

(t+1)
u for all t′ > t. The key

property is

E(p′u(c)) = p(t)
u (c). (2)

The update rule is as follows: If c ∈ A(t−1)(u) then p
(t)
u (c) remains unchanged at

zero. Otherwise,

p′u(c) =





































0 c ∈ L(t)(u)
p
(t)
u (c)

q
(t)
u (c)

c /∈ L(t)(u)

p
(t)
u (c)

q
(t)
u (c)

< p̂ Case A

η
(t)
u (c)p̂ p

(t)
u (c)

q
(t)
u (c)

≥ p̂ Case B,

(3)

where

•
q(t)
u (c) =

∏

uvw∈H(t)

(1 − θ2p(t)
v (c)p(t)

w (c))
∏

uv∈G(t)

κ(uv)=c

(1 − θp(t)
v (c))

is the probability that c /∈ A(t)(u) assuming that c /∈ A(t−1)(u) .

• η
(t)
u (c) ∈ {0, 1} and P(η

(t)
u (c) = 1) = p

(t)
u (c)/p̂, independently of other variables.
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Remark 7 It is as well to remark here that the probability space on which our events for

iteration t are defined is a product space where each component corresponds to γ
(t)
u (c) or

η
(t)
u (c) for u ∈ V, c ∈ C. Hopefully, this will provide the reader with a clear understanding

of the probabilities involved below.

There will be

t0 = ε−1 log ∆ log log ∆ rounds.

Before getting into the main body of the proof, we check (2).

If p
(t)
u (c)/q

(t)
u (c) < p̂ then

E(p′u(c)) = q(t)
u (c)

p
(t)
u (c)

q
(t)
u (c)

= p(t)
u (c).

If p
(t)
u (c)/q

(t)
u (c) ≥ p̂ then

E(p′u(c)) = p̂
p

(t)
u (c)

p̂
= p(t)

u (c).

Note that once a color enters B(t)(u), it will be in B(t′)(u) for all t′ ≥ t. This is because

we update pu(c) according to Case B and P(η
(t)
u (c) = 1) = 1. We arrange things this way,

because we want to maintain (2). Then because p
(t)
u (c) cannot exceed p̂, it must actually

remain at p̂. This could cause some problems for us if a neighbor of u had been colored

with c. This is why B(t)(u) is excluded in the definition of Ψ(t)(u) i.e. we cannot color u

with c ∈ B(t)(u).

5 Correctness of the coloring

Observe that if color c enters A(t)(x) at some time t then κ(x) 6= c since A(i)(x) ⊆ A(i+1)(x)

for all i. Suppose that some edge uvw is improperly colored by the above algorithm.

Suppose that u, v, w get colored at times tu ≤ tv ≤ tw and that κ(u) = κ(v) = κ(w) = c.

If tu = tv = t then c ∈ L(t)(w) and so κ(w) 6= c. If tu < tv = t then vw is an edge of G(t)

and κ(vw) = c and so c ∈ L(t)(w) and again κ(w) 6= c.

6 Parameters for the problem

We will now drop the superscript (t), unless we feel it necessary. It will be implicit i.e.

pu(c) = p
(t)
u (c) etcetera. Furthermore, we use a ′ to replace the superscript (t + 1) i.e.
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p′u(c) = p
(t+1)
u (c) etcetera. The following are the main parameters that we need in the

course of the proof:

euvw =
∑

c∈C

pu(c)pv(c)pw(c) for edge uvw of H (t).

fu =
∑

c∈C

∑

uv∈G

1κ(uv=c)pu(c)pv(c)

hu = −
∑

c∈C

pu(c) log pu(c).

dG(u, c) = | {v : uv ∈ G and κ(uv) = c} |
dG(u) =

∑

c∈C

dG(u, c) = degree of u in G

dH(t)(u) = |
{

vw : uvw ∈ H (t)
}

| = degree of u in H (t)

d(u) = dG(u) + dH(t)(u)

It will also be convenient to define the following auxiliary parameters:

eu =
∑

uvw∈H(t)

euvw

evw(c) = pv(c)pw(c)

eu(c) =
∑

uvw∈H(t)

evw(c)

fu(c) =
∑

{uv∈G: κ(uv)=c}

pv(c)

This gives

eu =
∑

c∈C

pu(c)eu(c) (4)

fu =
∑

c∈C

pu(c)fu(c). (5)

7 Invariants

Following Johansson [5], we define a set of properties such that if they are satisfied at

time t then it is possible to extend our partial coloring and maintain these properties at

time t + 1. These properties are now listed. They are only claimed for u ∈ U .
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∣

∣

∣

∣

∣

1 −
∑

c

pu(c)

∣

∣

∣

∣

∣

≤ t∆−1/8. (6)

euvw ≤ e(0)
uvw +

t

∆10/9
∀uvw ∈ H (t) (7)

≤ ω

∆
+

t

∆10/9
.

fu ≤ 3(1 − θ/4)tω. (8)

hu ≥ h(0)
u − 5ε

t
∑

i=0

(1 − θ/4)i. (9)

d(u) ≤
(

1 − θ

3

)t

∆. (10)

dG(u, c) ≤ 2tθ∆p̂. (11)

Equation (10) shows that after t0 rounds we find that the maximum degree in the hyper-

graph induced by the uncolored vertices satisfies

∆(H(t0)) ≤
(

1 − θ

3

)t0

∆

≤ e−θt0/3∆

< e−4000 log log ∆∆

=
∆

(log ∆)4000
. (12)

and then the local lemma (see the argument after Theorem 6) will show that the remaining

vertices can be colored with a set of 3(∆/(log ∆)4000)1/2 + 1 < q new colors.
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8 Dynamics

To prove (6) – (11) we show that we can find updated parameters such that
∣

∣

∣

∣

∣

∑

c

p′u(c) −
∑

c

pu(c)

∣

∣

∣

∣

∣

≤ ∆−1/8 (13)

e′uvw ≤ euvw + ∆−10/9. (14)

f ′
u − fu ≤ θ(2eu − (1 − 7ε)fu) + ∆−1/21. (15)

hu − h′
u ≤ 5ε(1 − θ/4)t (16)

d′(u) ≤ (1 − 3θ/7)d(u) + ∆2/3. (17)

dG′(u, c) ≤ dG(u, c) + 2θ∆p̂ (18)

9 (13)–(18) imply (6)–(11)

First let us show that (13)–(18) are enough to inductively prove that (6)–(10) hold

throughout.

Property (6): Trivial.

Property (7): Trivial.

Property (8): Fix u and note that (7) and (10) imply

eu ≤
( ω

∆
+ t∆−10/9

)

d(u) ≤ ω(1 − θ/3)t + ∆−1/10. (19)

Therefore,

f ′
u − fu ≤ θ(2ω(1 − θ/3)t + ∆−1/22 − (1 − 7ε)fu)

from (15) and (19). So, using fu ≤ 3(1 − θ/4)tω,

f ′
u ≤ 3(1 − θ(1 − 7ε))(1 − θ/4)tω + 2θω(1 − θ/3)t + θ∆−1/22

= 3(1 − θ/4)t+1ω + ω(1 − θ/4)t

(

−3θ(1 − 7ε) + 2θ

(

1 − θ/3

1 − θ/4

)t
)

+ θ∆−1/22

≤ 3(1 − θ/4)t+1ω + ω(1 − θ/4)t(−3θ(1 − 7ε) + 2θ) + θ∆−1/22

≤ 3(1 − θ/4)t+1ω − ωθ(1 − 21ε)(log∆)−O(1) + θ∆−1/22

≤ 3(1 − θ/4)t+1ω.

Property (9): Trivial.
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Property (10): If d(u) ≤ (1 − θ/3)t∆ then from (17) we get

d′(u) ≤
(

1 − 3θ

7

)(

1 − θ

3

)t

∆ + ∆2/3

=

(

1 − θ

3

)t+1

∆ − 2θ

21

(

1 − θ

3

)t

∆ + ∆2/3

≤
(

1 − θ

3

)t+1

∆.

Property (11): Trivial.

To complete the proof it suffices to show that there are choices for γu(c), ηu(c), u ∈ U, c ∈
C such that (13)–(18) hold.

In order to help understand the following computations, the reader is reminded that

quantities eu, fu, ω, θ−1 can all be upper bounded by ∆o(1).

10 Bad colors

We now put a bound on the weight of the colors in B(u).

Assume that (6)–(10) hold. It follows from (9) that

h(0)
u − h(t)

u ≤ 5ε

∞
∑

i=0

(1 − θ/4)i = 20ω =
ε log ∆

500
. (20)

Since p
(0)
u (c) = 1/q for all u, c we have

h(0)
u = −

∑

c

p(0)
u (c) log p(0)

u (c)

= −
∑

c

p(t)
u (c) log p(0)

u (c) − (log 1/q)
∑

c

(p(0)
u (c) − p(t)

u (c))

≥ −
∑

c

p(t)
u (c) log p(0)

u (c) − t∆−1/9 log ∆.

where the last inequality uses (6).

Plugging this lower bound on h
(0)
u into (20) gives

∑

c

p(t)
u (c) log(p(t)

u (c)/p(0)
u (c)) ≤ ε log ∆

500
+ ∆−1/10. (21)
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Now, all terms in (21) are non-negative (p
(t)
u (c) = 0 or p

(t)
u (c) ≥ p

(0)
u (c)). Thus after

dropping the contributions from c /∈ B(u) we get

ε log ∆

500
+ ∆−1/10 ≥

∑

c∈B(u)

p(t)
u (c) log(p(t)

u (c)/p(0)
u (c))

=
∑

c∈B(u)

p(t)
u (c) log(p̂q) =

∑

c∈B(u)

p(t)
u (c) log(∆1/24−o(1))

≥ 1

25
pu(B(u)) log ∆.

So,

pu(B(u)) ≤ ε

10
. (22)

11 Verification of Dynamics

Let E13(u) – E18(u) be the events claimed in equations (13) – (18). Let E(u) = E13(u) ∩
· · · ∩ E18(u). We have to show that

⋂

u∈U E(u) has positive probability. We use the local

lemma. The dependency graph of the E(u), u ∈ U has maximum degree ∆O(1) and so it is

enough to show that each event E13(u), . . . , E18(u), u ∈ U has failure probability e−∆Ω(1)
.

While parameters eu, fu etc. are only needed for u ∈ U we do not for example consider

e′u conditional on u ∈ U ′. We do not impose this conditioning and so we do not have to

deal with it. Thus the local lemma will guarantee a value for eu, u ∈ U \ U ′ and we are

free to disregard it for the next round.

In the following we will use various forms of Hoeffding’s inequality for sums of bounded

random variables: We will use it in two forms: Suppose first that X1, X2, . . . , Xm are

independent random variables and |Xi| ≤ ai for 1 ≤ i ≤ m. Let X = X1 +X2 + · · ·+Xm.

Then, for any t > 0,

max {P(X − E(X) ≥ t), P(X − E(X) ≤ −t)} ≤ exp

{

− 2t2
∑m

i=1 a2
i

}

. (23)

We will also need the following version in the special case that X1, X2, . . . , Xm are inde-

pendent 0,1 random variables. For α > 1 we have

P(X ≥ αE(X)) ≤ (e/α)αE(X). (24)

11.1 Dependencies

In our random experiment, we start with the pu(c)’s and then we instantiate the inde-

pendent random variables γu(c), ηu(c), u ∈ U, c ∈ C and then we compute the p′
u(c) from
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these values. Observe first that p′
u(c) depends only on γv(c), ηv(c) for v = u or v a neigh-

bor of u in H. So p′u(c) and p′v(c
∗) are independent if c 6= c∗, even if u = v. We call this

color independence.

Let

N(u) = {v ∈ U : ∃uvw ∈ H} .

(We do mean H and not H (t) here).

Observe that by repeatedly using (1 − a)(1 − b) ≥ 1 − a − b for a, b ≥ 0 we see that

qu(c) ≥ 1 − θ2eu(c) − θfu(c). (25)

This inequality will be used below. Recall that 1 − qu(c) is the probability that c will be

placed in L(u) in the current round.

For each v ∈ N(u) we let

Cu(v) = {c ∈ C : γu(c) = 1} ∪ L(v) ∪ B(v).

Note that while the first two sets in this union depend on the random choices made in

this round, the set B(v) is already defined at the beginning of the round.

We will later use the fact that if c∗ /∈ Cu(v) and γv(c
∗) = 1 then this is enough to place

c∗ into Ψ(v) and allow v to be colored. Indeed, γv(c
∗) = 1 implies that pv(c) 6= 0 from

which it follows that c∗ 6∈ A(v).

Let Yv =
∑

c pv(c)1c∈Cu(v) = pv(Cu(v)). Cu(v) is a random set and Yv is the sum of q

independent random variables each one bounded by p̂. Then by (4), (5) and (25),

E(Yv) ≤
∑

c∈C

pv(c)P(γu(c) = 1) +
∑

c∈C

pv(c)(1 − qv(c)) + pv(B(v))

≤ θ
∑

c∈C

pu(c)pv(c) + θ2ev + θfv + pv(B(v)).

Now let us bound each term separately:

θ
∑

c∈C

pu(c)pv(c) ≤ θqp̂2 < θ∆1/2∆−11/12 <
104∆−5/12

log ∆
<

ε

3
.

Using (7) we obtain

θ2ev < ωθ2 + tθ2∆−1/9 ≤ εθ + tθ2∆−1/9 <
ε

6
+

ε

6
=

ε

3
.

Using (8) we obtain

θfv ≤ 3θ(1 − θ/4)tω < 3θω = 3ε.
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Together with P(B(v)) ≤ ε/10 we get

E(Yv) ≤ 4ε.

Hoeffding’s inequality then gives

P(Yv ≥ E(Yv) + ρ) ≤ exp

{

−2ρ2

qp̂2

}

= e−2ρ2∆11/12−1/2−o(1)

.

Taking ρ = ∆−1/6 say, it follows that

P(pv(Cu(v)) ≥ 5ε) = P(Yv ≥ 5ε) ≤ e−∆1/12−o(1)

. (26)

Let E(26) be the event {pv(Cu(v)) ≤ 5ε}.
Now consider some fixed vertex u ∈ U . It will sometimes be convenient to condition on

the values γx(c), ηx(c) for all c ∈ C and all x /∈ N(u) and for x = u. This conditioning is

needed to obtain independence. We let C denote these conditional values.

Note that C determines whether or not E(26) occurs. (Note that if uvw is an edge of H

then L(v) depends on γw. We have however made {c ∈ C : γu(c) = 1} part of Cu(v) and

this removes the dependence of Cu(v) on γw).

Given the conditioning C, simplicity and triangle freeness imply that the events {v /∈ U ′},
{w /∈ U ′} for v, w ∈ N(u) are independent provided uvw /∈ H. Indeed, triangle-freeness

implies that for uvw 6∈ H, there is no edge containing both v and w. Therefore the

random choices at w will not affect the coloring of v (and vice versa). Thus random

variables p′v(c), p
′
w(c) will become (conditionally) independent under these circumstances.

We call this conditional neighborhood independence.

11.1.1 Some expectations

Let us fix a color c and an edge uvw ∈ H (here we mean H and not H (t)) where u, v ∈ U .

In this subsection we will estimate the expectations of p′
u(c)p

′
v(c)p

′
w(c) when uvw ∈ H (t)

and e′uv(c) × 1u,v∈U ′ when uv ∈ G and κ(uv) = c.

Estimate for E(p′

u
(c)p′

v
(c)p′

w
(c)) when uvw ∈ H (t): Our goal is to prove (29).

If c ∈ A(t−1)(u)∪A(t−1)(v)∪A(t−1)(w) then p′u(c)p
′
v(c)p

′
w(c) = 0 = pu(c)pv(c)pw(c). Assume

then that c /∈ A(t−1)(u) ∪ A(t−1)(v) ∪ A(t−1)(w). If Case B of (3) occurs for v and w then

E(p′u(c)p
′
v(c)p

′
w(c)) = E(p′u(c))pv(c))pw(c). This is because in Case B, the value of ηw(c),

is independent of all other random variables and so we may use (2). So let us assume

that at least two of p′
u(c), p

′
v(c), p

′
w(c) are both determined according to Case A. Let us in
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fact assume that all three of them are determined by Case A. The case where only two

are so determined is similar. Now p′
u(c)p

′
v(c)p

′
w(c)) = 0 unless c /∈ L(u) ∪ L(v) ∪ L(w).

Consequently,

E(p′u(c)p
′
v(c)p

′
w(c)) =

pu(c)

qu(c)
· pv(c)

qv(c)
· pw(c)

qw(c)
· P(c /∈ L(u) ∪ L(v) ∪ L(w)).

Now

P(c /∈ L(u) ∪ L(v) ∪ L(w) | γu(c) = γv(c) = γw(c) = 0) =

qu(c)qv(c)qw(c)(1 − θ2pv(c)pw(c))−1(1 − θ2pu(c)pw(c))−1(1 − θ2pu(c)pv(c))
−1 ≤

qu(c)qv(c)qw(c)(1 + 4θ2p̂2). (27)

Let us now argue that

P(c /∈ L(u) ∪ L(v) ∪ L(w) | γu(c) + γv(c) + γw(c) > 0) ≤
P(c /∈ L(u) ∪ L(v) ∪ L(w) | γu(c) = γv(c) = γw(c) = 0) (28)

As before, let Ω denote the probability space of outcomes of the γ’s and η’s. For each

i, j, k ∈ {0, 1}, define Ωi,j,k to be the set of outcomes in Ω such that γu(c) = i, γv(c) =

j, γw(c) = k. The sets Ωi,j,k partition Ω. For each i, j, k with i + j + k > 0, consider the

map fi,j,k : Ωi,j,k → Ω0,0,0 which sets each of γu(c), γv(c), γw(c) to 0. For x ∈ {u, v, w}
define pi

x = θpx(c) if i = 1 and 1 − θpx(c) if i = 0. Let Ω′
i,j,k be the set of outcomes in

Ωi,j,k in which c /∈ L(u) ∪ L(v) ∪ L(w). Then

P(Ωi,j,k)

P(Ω0,0,0)
=

pi
up

j
vp

k
w

p0
up

0
vp

0
w

=
P(Ω′

i,j,k)

P(f(Ω′
i,j,k))

.

Observe that if i+ j + k > 0, then fi,j,k(Ω
′
i,j,k) ⊂ Ω′

0,0,0. Indeed, if c /∈ L(u)∪L(v)∪L(w),

then changing a specific γ value from 1 to 0 will still leave c /∈ L(u) ∪ L(v) ∪ L(w).

Consequently, for each i, j, k,

P(Ω′
0,0,0)

P(Ω0,0,0)
≥

P(f(Ω′
i,j,k))

P(Ωi,j,k)
· P(Ωi,j,k)

P(Ω0,0,0)
=

P(Ω′
i,j,k)

P(Ωi,j,k)
.

It is easy to see that this implies (28). We conclude that

E(p′u(c)p
′
v(c)p

′
w(c)) ≤ pu(c)pv(c)pw(c))(1 + 4θ2p̂2). (29)

Estimate for E(e′

uv
(c) × 1u,v∈U ′) when uv ∈ G and κ(uv) = c: Our goal is to prove

E(e′uv(c) × 1u,v∈U ′) ≤ euv(c)(1 + 3θp̂). (30)
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If c ∈ A(t−1)(u) ∪ A(t−1)(v) then e′uv(c) = 0 = euv(c). Assume then that c /∈ A(t−1)(u) ∪
A(t−1)(v). If Case B of (3) occurs for either u or v then E(e′uv(c)) = euv(c). This is because

in Case B, the value of ηu(c) say, is independent of all other random variables and we

may use (2). So let us assume that p′
u(c), p

′
v(c) are both determined according to Case A.

Then e′uv(c) = 0 unless c /∈ L(u) and c /∈ L(v). Consequently,

E(e′uv(c) × 1u,v∈U ′)

=
pu(c)

qu(c)
· pv(c)

qv(c)
· P(c /∈ L(u) ∪ L(v) ∧ u, v ∈ U ′)

≤ pu(c)

qu(c)
· pv(c)

qv(c)
· P(c /∈ L(u) ∪ L(v))

≤ pu(c)

qu(c)
· pv(c)

qv(c)
· P(c /∈ L(u) ∪ L(v) | γu(c) = γv(c) = 0) (31)

≤ pu(c)pv(c)(1 − θp̂)−2. (32)

≤ (1 + 3θp̂)pu(c)pv(c) (33)

Explanation: Equation (31) follows as for (28). Equation (32) now follows because the

events c /∈ L(u), c /∈ L(v) become conditionally independent. And then P(c /∈ L(u) |
γu(c) = 0) gains a factor (1 − θpv(c))

−1 ≤ (1 − θp̂)−1.

11.2 Proof of (13)

Given the pu(c) we see that if Z ′ =
∑

c∈C p′u(c) then E(Z ′) =
∑

c∈C pu(c). This follows on

using (2). By color independence Z ′ is the sum of q independent non-negative random

variables each bounded by p̂. Applying (23) we see that

P(|Z ′ − E(Z ′)| ≥ ρ) ≤ 2 exp

{

−2ρ2

qp̂2

}

= 2e−2ρ2∆11/12−1/2−o(1)

.

We take ρ = ∆−1/9 to see that E13(u) holds with high enough probability.

11.3 Proof of (14)

Let euvw(c) = pu(c)pv(c)pw(c). Given the pu(c) we see that by (29), e′uvw has expectation

no more than euvw(1 + 4θ2p̂2) and is the sum of q independent non-negative random

variables, each of which is bounded by p̂3. We have used color independence again here.

Applying (23) we see that

P(e′uvw ≥ euvw(1 + 4θ2p̂2) + ρ/2) ≤ exp

{

− ρ2

2qp̂6

}

≤ e−ρ2∆11/4−1/2−o(1)

.
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We also have

4euvwθ2p̂2 ≤ 4

(

ω

∆
+

t

∆10/9

)

θ2p̂2 =
4ωθ2p̂2

∆
+

4tθ2p̂2

∆10/9
<

1

2∆10/9
.

We take ρ = ∆−10/9 to obtain

P(e′uvw ≥ euvw + ∆−10/9) ≤ e−∆Ω(1)

and so E14(u) holds with high enough probability.

11.4 Proof of (15)

Recall that

fu =
∑

c∈C

∑

v∈N(u)

1κ(uv)=cpu(c)pv(c).

If uv /∈ G then κ(uv) is defined to be 0 /∈ C.

So,

f ′
u − fu =

∑

c∈C

∑

v∈N(u)

(

1κ′(uv)=c p′u(c)p
′
v(c) − 1κ(uv)=c pu(c)pv(c)

)

= D1 + D2,

where

D1 =
∑

c∈C

∑

v∈N(u)
κ(uv)=c

(1κ′(uv)=c p′u(c)p
′
v(c) − pu(c)pv(c))

D2 =
∑

c∈C

∑

v∈N(u)
κ(uv)=0

1κ′(uv)=c p′u(c)p
′
v(c)

Here D1 accounts for the contribution from edges leaving G and D2 accounts for the

contribution from edges entering G.

We bound E(D1), E(D2) separately.

E(D1):

D1 =
∑

c∈C

∑

v∈N(u)
κ(uv)=c

(1κ′(uv)=c p′u(c)p
′
v(c) − pu(c)pv(c))

=
∑

c∈C

∑

v∈N(u)
κ(uv)=c
κ′(uv)=c

(p′u(c)p
′
v(c) − pu(c)pv(c)) −

∑

c∈C

∑

v∈N(u)
κ(uv)=c
κ′(uv)6=c

pu(c)pv(c).
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Now suppose that v 6∈ U ′. This means that v has been colored in the current round and

so uv 6∈ G′. In particular, κ′(uv) 6= c. Therefore the prior expression is bounded from

above by

−D1,1 + D1,2

where

D1,1 =
∑

c∈C

∑

v∈N(u)
κ(uv)=c

pu(c)pv(c)1v/∈U ′

D1,2 =
∑

c∈C

∑

v∈N(u)
κ(uv)=c

(p′u(c)p
′
v(c) − pu(c)pv(c)) × 1u,v∈U ′.

Suppose that x /∈ U and uvx ∈ H and κ(x) = c. Recall that

Cu(v) = {c ∈ C : γu(c) = 1} ∪ L(v) ∪ B(v).

If there is a tentatively activated color c∗ at v (i.e. γv(c
∗) = 1) that lies outside Cu(v)∪{c},

then c∗ ∈ Ψ(v) and v will be colored in this round. Therefore

P(v /∈ U ′ | C) ≥ P(∃c∗ /∈ Cu(v) ∪ {c} : γv(c
∗) = 1 | C).

We have introduced the conditioning C because we will need it later when we prove

concentration.

So by inclusion-exclusion and the independence of the γv(c
∗) we can write

E (1v/∈U ′ | C) ≥ P(∃c∗ /∈ Cu(v) ∪ {c} : γv(c
∗) = 1 | C)

≥
∑

c∗ /∈Cu(v)∪{c}

P(γv(c
∗) = 1 | C) − 1

2

∑

c∗1 6=c∗2 /∈Cu(v)∪{c}

P(γv(c
∗
1) = γv(c

∗
2) = 1 | C)

≥
∑

c∗ /∈Cu(v)∪{c}

θpv(c
∗) − 1

2





∑

c∗ /∈Cu(v)∪{c}

θpv(c
∗)





2

Now

∑

c∗ /∈Cu(v)∪{c}

θpv(c
∗) =

∑

c∗∈C

θpv(c
∗) −

∑

c∗∈Cu(v)

θpv(c
∗) − θpv(c)

≥ θ((1 − t∆−1/8) − pv(Cu(v)) − p̂)

> θ(1 − pv(Cu(v)) − ε/2)
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where we have used (6). Also by (6) and the definition of p̂ we have
∑

c6=c∗

pv(c
∗) ≤ 1 + ∆−1/9 < 1.1.

Consequently

1

2





∑

c∗ /∈Cu(v)∪{c}

θpv(c
∗)





2

=
θ2

2





∑

c∗ /∈Cu(v)∪{c}

pv(c
∗)





2

≤ 2θ2

3
<

θε

2
.

Putting these facts together yields

E (1v/∈U ′ | C) ≥ θ(1 − pv(Cu(v)) − ε).

Consequently

E(D1,1 | C) ≥
∑

c∈C

∑

v∈N(u)
κ(uv)=c

pu(c)pv(c)θ(1 − pv(Cu(v)) − ε) = θ(1 − pv(Cu(v)) − ε)fu.

So,

E(D1,1 | C) ≥ θ(1 − 6ε)fu, for C such that E(26) occurs. (34)

We now consider D1,2.

It follows from (8) that fu < 3ω. Together with (30), this gives

E(D1,2) =
∑

c∈C

∑

v∈N(u)
κ(uv)=c

E((p′u(c)p
′
v(c) − pu(c)pv(c)) × 1u,v∈U ′

≤ 3θp̂fu

≤ 9εp̂. (35)

E(D2):

First observe that

D2 =
∑

c∈C

∑

uv1v2∈H(t)

(1κ′

uv1
(c)=1 p′u(c)p

′
v1

(c) + 1κ′

uv2
(c)=1 p′u(c)p

′
v2

(c)).

Fix an edge uvw ∈ H (t). If w is colored with c in this round, then certainly c must have

been tentatively activated at w. Therefore

E(1κ′(w)=cp
′
u(c)p

′
v(v)) ≤ E(1γw(c)=1 p′u(c)p

′
v(v))

≤ θpw(c)
pu(c)

qu(c)

pv(c)

qv(c)
P(c /∈ L(u) ∪ L(v) | γw(c) = 1)

≤ θpw(c)
pu(c)

qu(c)

pv(c)

qv(c)
P(c /∈ L(u) ∪ L(v)) (36)

≤ θpw(c)pu(c)pv(c)(1 + 4θ2p̂2). (37)
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We use the argument for (28) to obtain (36) and the argument for (27) to obtain (37).

Going back to (37) we see that

E(D2) ≤ 2θeu(1 + 4θ2p̂2).

11.4.1 Concentration

We first deal with D1,1. For this we condition on the values γw(c), ηw(c) for all c ∈ C and

all w /∈ N(u) and for w = u. Then by conditional neighborhood independence D1,1 is the

sum of at most ∆ independent random variables of value at most p̂2. So, for ρ > 0,

P(D1,1 − E(D1,1 | C) ≤ −ρ | C) ≤ exp

{

− 2ρ2

∆p̂4

}

= e−ρ2∆5/6−o(1)

.

So, by (34),

P(D1,1 ≤ θ(1 − 13ε/2)fu − ∆−1/8)

=
∑

C

P(D1,1 ≤ θ(1 − 13ε/2)fu − ∆−1/8 | C)P(C)

≤
∑

C:E(26) occurs

P(D1,1 ≤ θ(1 − 13ε/2)fu − ∆−1/8 | C)P(C) + P(¬E(26))

≤
∑

C:E(26) occurs

P(D1,1 ≤ E(D1,1 | C) − θεfu/2 − ∆−1/8 | C)P(C) + P(¬E(26))

≤ e−∆5/6−o(1)

+ e−∆1/12−o(1)

= e−∆1/12−o(1)

. (38)

Now consider the sum D1,2. Let ac = | {v ∈ N(u) : κ(uv) = c} |. Note that (11) implies

ac ≤ ∆0 = 2t0∆θp̂ and note also that
∑

c ac ≤ ∆. These inequalities give
∑

c a2
c ≤ ∆0∆.

By color independence, D1,2 is the sum of q independent random variables

Yc =
∑

v∈N(u)
κ(uv)=c

(p′u(c)p
′
v(c) − pu(c)pv(c))

where |Yc| ≤ acp̂
2. So, for ρ > 0,

P(D1,2 − E(D1,2) ≥ ρ) ≤ exp

{

− 2ρ2

∑

c a2
c p̂

4

}

≤ exp

{

− 2ρ2

∆∆0p̂4

}

≤ e−ρ2∆7/24+o(1)

.

We take ρ = ∆−1/8 and use (35) to see that P(D1,2 ≥ 2∆−1/8) ≤ e−∆1/24−o(1)
. Combining

this with (38) we see that

P
(

D1 ≥ −θ(1 − 7ε)fu + 3∆−1/8
)

≤ P
(

D1,1 ≤ θ(1 − 13
2
ε)fu + ∆−1/8

)

+ P(D1,2 ≥ 2∆−1/8)

≤ e−∆1/24−o(1)

. (39)
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We now deal with D2. There is a minor problem in that D2 is the sum of random variables

for which we do not have a sufficiently small absolute bound. These variables do however

have a small bound which holds with high probability. There are several ways to use this

fact. We proceed as follows: Let

D2,c =
∑

uv1v2∈H(t)

κ(uvi)=0,i=1,2

(1κ′(uv1)=c p′u(c)p
′
v1

(c) + 1κ′(uv2)=c p′u(c)p
′
v2

(c))

and

D̂2 =
∑

c∈C

min
{

2∆p̂3, D2,c

}

.

Observe that D̂2 is the sum of q independent random variables each bounded by 2∆p̂3.

So, for ρ > 0,

P(D̂2 − E(D̂2) ≥ ρ) ≤ exp

{

− ρ2

2q∆2p̂6

}

≤ e−ρ2∆1/4+o(1)

.

We take ρ = ∆−1/10 to see that

P(D̂2 ≥ E(D̂2) + ∆−1/10) ≤ e−∆1/21

. (40)

We must of course compare D2 and D̂2. Now D2 6= D̂2 only if there exists c such that

D2,c > 2∆p̂3. The latter implies that at least ∆p̂ of the γvi
(c) defining D2,c are one. We

now use (24) with E(X) = 2∆θp̂ and α = 1/(2θ). this gives

P(D2 6= D̂2) ≤ qP(Bin(2∆, θp̂) ≥ ∆p̂) ≤ q(2eθ)∆p̂. (41)

It follows from (41) and D̂2 ≤ D2 ≤ 2q∆p̂2 that

|E(D2) − E(D̂2)| ≤ 2q∆p̂2
P(D2 6= D̂2) ≤ 2∆p̂2q2(2eθ)∆p̂ < (log ∆)−∆13/24+o(1).

Applying (40) and (41) we see that

P(D2 ≥ E(D2) + ∆−1/20 + 2∆p̂2q2(eθ)∆p̂) ≤
P(D̂2 ≥ E(D̂2) + ∆−1/20) + P(D2 6= D̂2) ≤ e−∆1/21

+ q(2eθ)∆p̂.

Combining this with (39) we see that with probability at least 1 − e−∆Ω(1)
,

f ′
u − fu

≤ −θ(1 − 7ε)fu + 3∆−1/8 + 8ωθ2p̂2 + 2θeu(1 + 4θ2p̂2) + ∆−1/20 + 2∆p̂2q2(eθ)∆p̂

≤ θ(2eu − (1 − 7ε)fu) + ∆−1/21.

This confirms (15).
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11.5 Proof of (16)

Fix c and write p′ = p′u(c) = pδ. We consider two cases, but in both cases E(δ) = 1 and δ

takes two values, 0 and 1/P(δ > 0). Then we have

E(−p′ log p′) = −p log p − p log(1/P(δ > 0)).

(i) p = pu(c) and δ = γu(c)/qu(c) and γu(c) is a {0, 1} random variable with P(δ > 0) =

qu(c).

(ii) p = pu(c) = p̂ and δ is a {0, 1} random variable with P(δ > 0) = pu(c)/p̂ ≥ qu(c).

Thus in both cases

E(−p′ log p′) ≥ −p log p − p log 1/qu(c).

Observe next that 0 ≤ a, b ≤ 1 implies that (1−ab)−1 ≤ (1−a)−b and − log(1−x) ≤ x+x2

for 0 ≤ x � 1. So,

log 1/qu(c) ≤ −
∑

uvw∈H(t)

pv(c)pw(c) log(1 − θ2) −
∑

uv∈G(t)

κ(uv)=c

pv(c) log(1 − θ)

≤ (θ2 + θ4)eu(c) + (θ + θ2)fu(c).

Now

E(hu − h′
u) ≤ E

(

∑

c

−pu(c) log pu(c)

)

− E

(

∑

c

−p′u(c) log p′u(c)

)

≤
∑

c

−pu(c) log pu(c) −
(

∑

c

−pu(c) log pu(c) − pu(c) log 1/qu(c)

)

=
∑

c

pu(c) log 1/qu(c)

≤ (θ2 + θ4)
∑

c

pu(c)eu(c) + (θ + θ2)
∑

c

pu(c)fu(c)

= (θ2 + θ4)eu + (θ + θ2)fu

≤ (θ2 + θ4)(ω + t∆−1/9)(1 − θ/3)t + 3(θ + θ2)(1 − θ/4)tω

≤ 4ε(1 − θ/4)t.

Given the pu(c) we see that h′
u is the sum of q independent non-negative random variables

with values bounded by −p̂ log p̂ ≤ ∆−11/24+o(1). Here we have used color independence.

So,

P(hu − h′
u ≥ 4ε(1 − θ/4)t + ρ) ≤ exp

{

− 2ρ2

q(p̂ log p̂)2

}

= e−2ρ2∆5/12−o(1)

.
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We take ρ = ε(1− θ/4)t ≥ (log ∆)−O(1) to see that hu −h′
u ≤ 5ε(1− θ/4)t holds with high

enough probability.

11.6 Proof of (17)

Fix u and condition on the values γw(c), ηw(c) for all c ∈ C and all w /∈ N(u) and for

w = u. Now write u ∼ v to mean that there exists w such that uvw is an edge of H (t) or

that uv is an edge of G. Then write

Zu = d(u) − d′(u) ≥ 1

2

∑

u∼v

Zu,v where Zu,v = 1v/∈U ′.

Now, for e = uvw ∈ H (t) let Zu,e = Zu,v + Zu,w and if e = uv ∈ G let Zu,e = Zu,v.

Conditional neighborhood independence implies that the collection Zu,e constitute an

independent set of random variables. Applying (23) to Zu =
∑

e Zu,e we see that

P(Zu ≤ E(Zu) − ∆2/3) ≤ exp

{

− 2∆4/3

4 · ∆/2

}

= e−∆1/3

. (42)

and so we only have to estimate E(Zu).

Fix v ∼ u. Let Cu(v) be as in (26). Condition on C. v is a member of U ′ if none of the

colors c /∈ Cu(v)) are tentatively activated. (It is tempting to write iff but this would not

be true. If uvw ∈ H then we could add the effect of those colors which are activated at u

and not w to the RHS of (43). Cu(v) contains any of these). The activations we consider

are done independently and so

P(v ∈ U ′ | C) ≤
∏

c/∈Cu(v)

(1 − θpv(c)) (43)

≤ exp







−
∑

c/∈Cu(v)

θpv(c)







≤ exp
{

−θ(1 − ∆−1/9) + θpv(Cu(v))
}

If E(26) occurs then pv(Cu(v)) ≤ 5ε. Consequently,

P(v /∈ U ′) ≥
∑

C:E(26) occurs

(

1 − exp
{

−θ(1 − ∆−1/9) + 5θε
})

P(C)

≥ 6θ/7.

This gives

E(Zu) ≥
3

7
θd(u).
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11.7 Proof of (18)

Observe that if uw ∈ G′ \G and κ′(uw) = c then there must exist a vertex v and an edge

uvw ∈ H (t) such that v gets colored in Step t. In particular we must have γv(c) = 1.

Hence,

dG′(u, c) − dG(u, c) ≤
∑

u∼v

1γv(c)=1

is bounded by the sum of ∆ independent 0-1 random variables each having expectation

at most θp̂. Therefore

P(dG′(u, c) − dG(u, c) ≥ 2∆θp̂) ≤ e−∆θp̂/3.

12 List Coloring

Here we describe the small modifications needed to our argument to prove the same result

for list colorings. Each vertex v ∈ V starts with a set Av of 2q available colors. Choose

for each v a set Bv ⊆ Av where |Bv| = q. Let now C =
⋃

v∈V Bv. We initialise pv(c) =

q−11c∈Bv and follow the main argument as before. When the semi-random procedure

finishes, the local lemma can be used to show that the lists Av \ Bv can be used to color

the vertices that remain uncolored.
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[9] A. Kostochka, V. Rödl, On Ramsey numbers of uniform hypergraphs with given

maximum degree, J. Combin. Theory Ser. A 113 (2006), no. 7, 1555–1564.

[10] M. Krivelevich, Bounding Ramsey numbers through large deviation inequalities, Ran-

dom Structures Algorithms 7 (1995), no. 2, 145–155.
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