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Abstract

We present computer-generated proofs for some summation identities for (q-)Stir-
ling and (q-)Eulerian numbers that were obtained by combining a recent summation
algorithm for Stirling number identities with a recurrence solver for difference fields.

1 Introduction

In a recent article [5], summation algorithms for a new class of sequences defined by certain
types of triangular recurrence equations are given. With these algorithms it is possible to
compute recurrences in n and m for sums of the form

F (m, n) =
n∑

k=0

h(m, n, k)S(n, k)

where h(m, n, k) is a hypergeometric term and S(n, k) are, e.g., Stirling numbers or Eule-
rian numbers. Recall that these may be defined via

S1(n, k) = S1(n − 1, k − 1) − (n − 1)S1(n − 1, k) S1(0, k) = δ0,k, (1)

S2(n, k) = S2(n − 1, k − 1) + kS2(n − 1, k) S2(0, k) = δ0,k, (2)

E1(n, k) = (n − k)E1(n − 1, k − 1) + (k + 1)E1(n − 1, k) E1(0, k) = δ0,k. (3)
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The original algorithms exploit hypergeometric creative telescoping [9]. More generally,
the algorithms can be extended to work for any sequence h(m, n, k) that can be rephrased
in a difference field in which one can solve creative telescoping problems. Since such
problems can be solved in Karr’s ΠΣ-fields [3, 8], we can allow for h(m, n, k) any indefinitely
nested sum or product expression, such as (q-)hypergeometric terms, harmonic numbers
Hk =

∑k

i=1
1
i
, etc. Moreover, S(n, k) may satisfy any triangular recurrence of the form

S(n, k) = a1(n, k)S(n + α, k + β) + a2(n, k)S(n + γ, k + δ) (4)

with α, β, γ, δ ∈ Z and
∣
∣
∣
α

β

γ

δ

∣
∣
∣ = ±1 and coefficients a1(n, k) and a2(n, k) that can be defined

by any indefinite nested sum or product over k. In connection with creative telescoping in
ΠΣ-fields, the algorithms of [5] directly extend to this more general class of summands.

Given a summand f(m, n, k) = h(m, n, k)S(n, k) as specified above and given a finite
set of pairs S ⊆ Z

2, the algorithms construct, if possible, expressions ci,j(m, n), free of k,
and g(m, n, k) such that the creative telescoping equation

∑

(i,j)∈S

ci,j(m, n)f(m + i, n + j, k) = g(m, n, k + 1) − g(m, n, k) (5)

holds and can be independently verified by simple arithmetic.
Summing (5) over the summation range leads to a recurrence relation, not necessarily

homogeneous, of the form

∑

(i,j)∈S

ci,j(m, n)F (m + i, n + j) = d(m, n). (6)

The validity of this recurrence follows, similar to the hypergeometric setting [6], from (5),
but is typically not obvious if (5) is not available. Therefore, g(m, n, k) (the only informa-
tion contained in (5) but not in (6)) is called the certificate of the recurrence.

In the following section, we give a detailed example for proving a Stirling number
identity involving harmonic numbers in this way. A collection of further identities about
q-Stirling numbers that can be proven analogously is given afterwards.

2 A Detailed Example

Consider the sum

F (m, n) =

m∑

k=1

Hm−k(m − k)!(−1)m−k+1

(
m

k − 1

)

︸ ︷︷ ︸

=:h(m,n,k)

S1(k − 1, n)

︸ ︷︷ ︸

=:S(n,k)
︸ ︷︷ ︸

=:f(m,n,k)

.

Here, S1 refers to the (signed) Stirling numbers of the first kind.
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The algorithm of [5] reduces the recurrence construction to some creative telescoping
problems which can be solved by algorithms for ΠΣ fields [7]. The solutions to all these
equations are combined to the recurrence equation

F (m, n) − 2mF (m, n + 1) − 2F (m + 1, n + 1)

+ m2F (m, n + 2) + (2m + 1)F (m + 1, n + 2) + F (m + 2, n + 2)

= S1(m − 1, n + 1) − (m − 1)S1(m − 1, n + 2),

which the algorithm returns as output along with the certificate

g(m, n, k) = (k−1)
(k−m−3)(k−m−2)

(−1)m−k(m − k)!

(
m

k − 1

)

×
(
(k2 − 3mk − 6k + 2m2 + 6m + 6 + (k − 2)(k − m − 1)Hm−k)S1(k − 1, n + 2)

+ (k − m − 3)((k − m − 1)Hm−k − 1)S1(k − 1, n + 1)
)
.

The certificate g(m, n, k) allows us to verify the recurrence for F (m, n) independently.
Indeed, using the triangular recurrence (1) for S1 and the obvious relations for factorials,
harmonic numbers, etc. it is readily checked that

f(m, n, k) − 2mf(m, n + 1, k) − 2f(m + 1, n + 1, k)

+ m2f(m, n + 2, k) + (2m + 1)f(m + 1, n + 2, k) + f(m + 2, n + 2, k)

= g(m, n, k + 1) − g(m, n, k).

Now sum this equation for k = 1, . . . , m − 1. This gives

m−1∑

k=1

f(m, n, k) − 2m
m−1∑

k=1

f(m, n + 1, k) − 2
m−1∑

k=1

f(m + 1, n + 1, k)

+ m2
m−1∑

k=1

f(m, n + 2, k) + (2m + 1)
m−1∑

k=1

f(m + 1, n + 2, k) +
m−1∑

k=1

f(m + 2, n + 2, k)

=
m−1∑

k=1

(
g(m, n, k + 1) − g(m, n, k)

)
.

The right hand side collapses to g(m, n, m) − g(m, n, 1). On the left hand side, we can
express the sums in terms of the F (m + i, n + j) using, e.g.,

m−1∑

k=1

f(m + 1, n + 2, k) = F (m + 1, n + 2) − f(m + 1, n + 2, m) − f(m + 1, n + 2, m + 2).

Bringing finally everything but the F (m + i, n + j) to the right hand side and doing some
straightforward simplifications gives the recurrence claimed by the algorithm.
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With the recurrence for F (m, n) at hand, it is an easy matter to prove the closed form
representation

F (m, n) = 1
2
(n + 1)(n + 2)S1(m, n + 2).

Just check that the closed form satisfies the same recurrence (this is easy) and a suitable
set of initial values.

The creative telescoping problems arising during the execution of the algorithm are
interesting also from a computational point of view. One of these equations, as an example,
is

(k−1)(k−m−1)((k−m)Hm−k+1)

k(k−m)2Hm−k
b2(m, n, k + 1) − b2(m, n, k)

− c2,0(m, n) +
(m+1)((m−k+1)Hm−k+1)

(m−k+2)Hm−k
c2,1(m, n)

−
(m+1)(m+2)((m−k+1)Hm−k +1)((m−k+2)Hm+1−k+1)

(m−k+2)(m−k+3)Hm−kHm+1−k
c2,2(m, n) = 0,

where b2(m, n, k) and the ci(n, m) are to be determined. This equation differs from most
equations arising from natural (non-Stirling-) sums in that harmonic number expressions
also arise in denominators.

3 Some q-Identities

Subsequently, we consider some q-versions of the well-known identities

n∑

k=m

(
n

k

)

S2(k, m) = S2(n + 1, m + 1), (7)

n∑

k=m

(−1)n−k

(
k

m

)

S1(n, k) = (−1)n−mS1(n + 1, m + 1). (8)

Following Gould [2], we define the q-Stirling numbers via

S
(q)
1 (n, k) = q1−nS

(q)
1 (n − 1, k − 1) − [n − 1]S

(q)
1 (n − 1, k), S

(q)
1 (0, k) = δ0,k,

S
(q)
2 (n, k) = qk−1S

(q)
2 (n − 1, k − 1) + [k]S

(q)
2 (n − 1, k), S

(q)
2 (0, k) = δ0,k,

where [n] = (qn − 1)/(q − 1) and δ refers to the Kronecker delta. By
[
n

k

]

q
we denote the

q-binomial coefficient, defined as
[
n

k

]

q
= [n]!/[k]!/[n − k]!.

1. We prove the identity [4, Id. 1]

n∑

k=m

qk

(
n

k

)

S
(q)
2 (k, m) = S

(q)
2 (n + 1, m + 1)

by computing the recurrence

q(1 − q)F (m + 1, n + 1) − (1 − q)qm+2F (m, n) − q(1 − qm+2)F (m + 1, n) = 0
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for the sum F (m, n) =
∑n

k=m qk
(

n

k

)
S

(q)
2 (k, m) with the proof certificate

g(m, n, k) = −
k(q − 1)qk+1

k − n − 1

(
n

k

)

S
(q)
2 (k, m + 1).

2. The identity [4, Id. 2]

n∑

k=m

(−1)n−k

(
k

m

)

S
(q)
1 (n, k)q−k = (−1)n−mS

(q)
1 (n + 1, m + 1)

follows from the recurrence

−(q − 1)qn+1F (m + 1, n + 1) + (q − 1)F (m, n) + (qn+1 − 1)F (m + 1, n) = 0

with the proof certificate

g(m, n, k) =
(−1)n−k(m − k)(q − 1)q1−k

m + 1

(
k

m

)

S
(q)
1 (n, k − 1).

3. For the sum

F (m, n) =

n∑

k=m

(−1)n−k

[
k

m

]

q

S1(n, k)q−k,

involving a q-binomial, we compute the recurrence relation

F (m, n) + q(qm + n)F (m + 1, n) − qF (m + 1, n + 1) = 0

with the proof certificate

g(m, n, k) = −
(−1)n−kq(qk − qm)

qm+k(qm+1 − 1)

[
k

m

]

q

S1(n, k − 1).

This yields another q-version of identity (8). Namely, define S̃
(q)
1 (n, k) by

S̃
(q)
1 (n + 1, k + 1) = q−1S̃

(q)
1 (n, k) − (qk + n)S̃

(q)
1 (n, k + 1)

and S̃
(q)
1 (0, k) = δ0,k. Observe that in the limit q → 1 this also specializes to S1(n, k). Then

by construction we get the q-version

n∑

k=m

(−1)n−k

[
k

m

]

q

S1(n, k)q−k = (−1)n−mS̃
(q)
1 (n + 1, m + 1).

4. For

F (m, n) =

n∑

k=m

(−1)n−k

[
k

m

]

q

S
(q)
1 (n, k)q−k
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we compute the recurrence

−(q − 1)qn+1F (m + 1, n + 1) + q(−qm + qm+1 + qn − 1)F (m + 1, n) + (q − 1)F (m, n) = 0

with the proof certificate

g(m, n, k) = −
(−1)n−k(q − 1)q(qk − qm)

qm+k(qm+1 − 1)

[
k

m

]

q

S
(q)
1 (n, k − 1).

If we define S̄
(q)
1 (m, n) by

S̄
(q)
1 (n + 1, k + 1) =

1

(1 − q)qn
(−qk + qk+1 + qn − 1)S̄

(q)
1 (n + 1, k) + q−n−1S̄

(q)
1 (n, k)

and S̄
(q)
1 (0, k) = δ0,k, which specializes in the limit q → 1 to S1(n, k), we arrive at the

q-version
n∑

k=m

(−1)n−k

[
k

m

]

q

S1(n, k)q−k = (−1)n−mS̄
(q)
1 (n + 1, m + 1).

5. Carlitz [1] defines the q-Eulerian numbers E
(q)
1 (n, m) by requesting that they satisfy

[m]n =

n+1∑

k=1

E
(q)
1 (n, k)

[
m + k − 1

n

]

q

,

which is a q-analogue of the Worpintzky identity [1]. He derives the recurrence equation

E
(q)
1 (n + 1, k) = [n + 2 − k]E

(q)
1 (n, k − 1) + qn+1−k[k]E

(q)
1 (n, k).

Conversely, taking this recurrence equation and suitable initial conditions as the definition
of the q-Eulerian numbers, we find that the sum

F (n, m) =

n+1∑

k=1

E
(q)
1 (n, k)

[
m + k − 1

n

]

q

satisfies the recurrence

(qm − 1)F (n, m) − (q − 1)F (n + 1, m) = 0,

the certificate being

g(m, n, k) = −
q−k−1(qk+m − q)(qk − qn+2)

qn+1 − 1

[
k + m − 2

n

]

q

E
(q)
1 (n, k − 1).

The identity F (m, n) = [m]n follows easily.
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Remark. A closed form representation cannot be found for every sum, but almost
always it is possible to construct a recurrence equation. For instance, for

F (m, n) =
n∑

k=m

k(−1)n−k

[
k

m

]

q

S1(n, k)q−k

we compute the recurrence relation

− q2(qm+1 + n)2F (m + 2, n) + q2(2qm+1 + 2n + 1)F (m + 2, n + 1)

− q2F (m + 2, n + 2)− q(qm + qm+1 + 2n)F (m + 1, n) + 2qF (m + 1, n + 1)−F (m, n) = 0

with the proof certificate

g(m, n, k) =
(−1)n−kq−k−2m+1(qk

−qm)[ k

m]
q
((k−1)(qk+1

−1)S1(n,k−1)qm+k(qk
−qm+1)S1(n,k−2))

−qm+1−qm+2+q2m+3+1
.
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