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Abstract

A group divisible Steiner quadruple system, is a triple (X,H,B) where X is a
v-element set of points, H = {H1,H2, . . . ,Hr} is a partition of X into holes and
B is a collection of 4-element subsets of X called blocks such that every 3-element
subset is either in a block or a hole but not both. In this article we investigate the
existence and non-existence of these designs. We settle all parameter situations on
at most 24 points, with 6 exceptions. A uniform group divisible Steiner quadruple
system is a system in which all the holes have equal size. These were called by Mills
G-designs and their existence is completely settled in this article.

1 Introduction

Given a partition H = {H1, H2, . . . , Hr} of a set X we say that a subset T ⊆ X is
transverse with respect to H if |T ∩ Hi| = 0 or 1 for each i = 1, 2, . . . , r.

A group divisible Steiner triple system is a triple (X,H,B) where X is a v-element
set of points, H = {H1, H2, . . . , Hr} is a partition of X into holes and B is a collection of
transverse 3-element subsets with respect to H called triples such that:

1. every transverse pair is in a unique triple;

equivalently

2. every pair is either in a hole or a triple, but not both.

Following these two equivalent definitions we see that there are two natural ways to
generalize the concept of group divisible Steiner triple systems.

First, a transverse quadruple system is a triple (X,H,B) where X is a v-element set of
points, H = {H1, H2, . . . , Hr} is a partition of X into holes and B is a collection of trans-
verse 4-element subsets with respect to H called quadruples such that every transverse
3-element subset is in exactly one quadruple.
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This article will concentrate on the second generalization. A group divisible Steiner
quadruple system, is a triple (X,H,B) where X is a v-element set of points, H =
{H1, H2, . . . , Hr} is a partition of X into holes and B is a collection of 4-element sub-
sets of X called blocks such that every 3-element subset is either in a block or a hole but
not both.

Let hi = |Hi| be the size of the hole Hi ∈ H. The type of a quadruple system is the
multi-set {h1, h2, . . . , hr} of hole sizes. It is our custom to write su1

1 su2

2 . . . sum

m = h1h2 · · ·hr

for the type of a quadruple system with ui holes of size si, i = 1, 2, . . . , m. If all the holes
have the same size h, then the quadruple system is said to be uniform. Such a system
would have type hu for some u.

A transverse Steiner quadruple system of type su1

1 su2

2 . . . sum

m is denoted by
TSQS(su1

1 su2

2 . . . sum

m ), and a group divisible Steiner quadruple system of the same type
is denoted by GSQS(su1

1 su2

2 . . . sum

m ). We may also write GSQS(h1h2 · · ·hr) for a GSQS
on r holes h1, h2, . . . , hr. Mills was the first to study uniform TSQS, and uniform GSQS
he called them H-designs and G-designs respectively, [21, 22]. (He also calls them H and
G systems.) The current status on the existence of H-designs is given in Theorems 2, 3,
and 4. The existence of G-designs is completely settled in Theorem 10.

Because every block of a GSQS contains exactly 4 triples and these triples are not in
any hole, it is easy to count the number of blocks.

Theorem 1 There are exactly

b = |B| =
1

4

(

(

v

3

)

−

r
∑

i=1

(

hi

3

)

)

blocks in a GSQS(h1h2 · · ·hr) and consequently,

(

v

3

)

≡
r
∑

i=1

(

hi

3

)

(mod 4). (1)

The following result on transverse Steiner quadruple systems was established by Mills
in [21].

Theorem 2 (Mills, 1990) For u ≥ 4, u 6= 5, a TSQS(hu) exists if and only if hu is even
and h(u − 1)(u − 2) ≡ 0 (mod 3).

As reported in Lauinger et. al., 2005 [20], with reference to the case u = 5, Mills [21]
notes the non-existence of a TSQS of type 25 (proved by Stanton and Mullin [24]). The
existence of a TSQS of type 65 is shown by Mills in Lemma 7 of [22]. Mills reports the
existence of a TSQS of type 45 but does not present a construction for it. Lauinger,
Kreher, Rees, and Stinson give a construction in [20]. (Hartman and Phelps (Section
7 in [12]) comment on the relevance of this design to the Granville-Hartman bound for
embeddings of SQSs.) The following result was obtained by Lauinger, Kreher, Rees, and
Stinson in [20].
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Theorem 3 (Lauinger, et. al., 2005 [20]) There exists a TSQS of type h5 for all h ≡
0, 4, 6, or 8 (mod 12).

This result was recently improved by L. Ji [14].

Theorem 4 (L. Ji, 2008 [14]) There exists a TSQS of type h5 if h is even, h 6= 2 and
h 6≡ 10 or 26 (mod 48).

Let (X,H,B) be a GSQS and let S ⊂ X. The derived design with respect to S is a
triple (X ′,H′,B′) where X ′ = X \S, B′ = {B\S : S ⊂ B}, and H′ = {Hi∩X ′ : Hi ∈ H}.
Following are some necessary conditions for the existence of a GSQS that can be obtained
by considering derived designs.

Theorem 5 If a GSQS(h1h2 · · ·hr) exists, then v = h1 + h2 + · · ·+ hr is even.

Proof. Consider the derived design with respect to S = {x, y} such that x ∈ Hi and
y ∈ Hj, for some i 6= j. This derived design forms a matching on the other v − 2 points.
Therefore, v − 2 ≡ 0 (mod 2), so v is even. �

Example 6 If all the holes have size 1, then a GSQS is an SQS(v). Hence a GSQS(1v)
exists if and only if v ≡ 2 or 4 (mod 6).

Lemma 7 If a GSQS(h1h2 · · ·hr) exists, then all of the holes which have size greater
than one are even.

Proof. Let v = h1 + h2 + · · · + hr be the number of points. Consider the derived design
with respect to S = {x, y} such that x, y ∈ Hi for some i, where |Hi| > 2 and x 6= y. This
design forms a matching on the other v − |Hi| points. Therefore, v − |Hi| ≡ 0 (mod 2).
Thus applying Theorem 5 we see that |Hi| is even. �

The next theorem provides necessary conditions for the existence of a
GSQS(h1h2 · · ·hr) on v points. Note in particular the condition provided by Equation 1
is redundant, because the number of points and all the holes of size larger than 1 are even.

Theorem 8 (Necessary conditions) If a GSQS(h1h2 · · ·hr) on v points exists, then

1. either v ≡ 0 (mod 6) and all the holes are of size 0 (mod 6),

2. or v ≡ 2 or 4 (mod 6) and hi = 1 or hi ≡ 2 or 4 (mod 6), for all i = 1 . . . r.

Proof. If (X,H,B) is a group divisible Steiner quadruple system on v = |X| points and
x ∈ H ∈ H, then the derived design with respect to x is an incomplete Steiner triple
system of order v − 1 with a hole of size |H| − 1. The number of triples in such a system
is

1

3

{(

v − 1

2

)

−

(

|H| − 1

2

)}

.
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Thus if |H| = 1 or 2, we see that 1
3

(

v−1
2

)

is an integer and consequently, because v is
even by Theorem 5 we have v ≡ 2 or 4 (mod 6). If |H| > 2, then we obtain |H|2 ≡ v2

(mod 3). Consequently, if there is a hole of size 0 (mod 6), then all the holes must have
size 0 (mod 6) and also v ≡ 0 (mod 6).

Now suppose |Hi| ≡ 2 or 4 (mod 6) for some i and |Hi| > 2, then v2 ≡ 4 (mod 6)
and it follows that v ≡ 2 or 4 (mod 6).

�

Remark 9 Kreher and Rees [16] have shown that the maximum size of a block in any
Steiner t-wise balanced design has size at most v/2 when t is odd. (Kramer [18], had
already established this for t = 3.) Thus if there exists a GSQS on v points, then the
maximum size of a hole is v/2.

2 Existence and non-existence results

Consider any pair of holes H1 and H2 that have the same even cardinality m. Construct
the complete graph Gi on hole Hi, i = 1, 2. Let Fi = {Fi1 , Fi2 , . . . , Fim−1

} be a one-
factorization for i = 1 and i = 2. Pair the one-factors of F1 and F2 to construct blocks.
That is for i 6= j we take as blocks {a, b, c, d} where {a, b} ∈ Fik and {c, d} ∈ Fjk

,
k = 1, 2, . . . , m−1. These blocks will cover triples consisting of two points from H1 and one
point from H2 or one point from H1 and two points from H2. We refer to this construction
as the doubling one-factorization or DOF construction, and write DOF(H1, H2) for the
set of quadruples so obtained.

The uniform case, where all the holes are of the same size, can be completely set-
tled by using candelabra quadruple systems, Theorem 2, the doubling one-factorization
construction and a result of Hartman or Lenz.

Necessary conditions for the existence of a uniform GSQS(gu) can be obtained as
follows. If g = 1, then a GSQS(gu) is an SQS(u) which exists if and only if u = 2 or 4
(mod 6). So suppose g > 1 and a GSQS(gu) exists. Then g is even by Lemma 7 and we
consider the derived design with respect to a point. We obtain a 2-(gu−1, {3, (g−1)?}, 1)
design, i.e. an incomplete Steiner triple system of order gu − 1 with a hole of size g − 1.
The number of triples in such a design is

1

3

{(

gu − 1

2

)

−

(

g − 1

2

)}

.

Hence
(gu − 1)(gu − 2) ≡ (g − 1)(g − 2) (mod 3).

Thus considering the possibilities for g (mod 3), we see that

g(u − 1)(u − 2) ≡ 0 (mod 3).

A Candelabra quadruple system of type (gn1

1 gn2

2 · · · gnk

k : s) denoted by
CQS(gn1

1 gn2

2 · · ·gnk

k : s) is a quadruple (X, S,H,B) where X is a set of size v =
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s + n1g1 + n2g2 + · · · + nkgk, S is a subset of X of size s, and H = {H1, H2, . . . , Hr}
is a partition of X \ S of type gn1

1 gn2

2 · · · gnk

k , r = n1 + n2 + · · · + nk. The set B con-
tains 4-element subsets of X called blocks, such that every 3-element subset T ⊆ X with
|T ∩ (S ∪ Hi)| < 3 for all i is contained in a unique block and no 3-element subset of
S ∪ Hi is contained in any block. The members of H are called the branches and S is
called the stem.

A short survey of candelabra quadruple systems can be found in [12]. Here we will
use the existence of a CQS(g4 : s) for all even g and s with g ≥ s, which was established
by Granville and Hartman [7]. Starting with a CQS(g4 : g) , if we apply the DOF con-
struction between each branch and the stem, then the result is a GSQS(g5). Theorem 2
of Mills establishes necessary and sufficient conditions for the existence of TSQS(gu) for
all u ≥ 4, and u 6= 5. Thus when g is even we can again apply the DOF construction
between each pair of holes to obtain a GSQS(gu). The existence of a GSQS(g3) for
g ≡ 0 (mod 6) has been proved by Hartman [9], also by Lenz [19]. It is easy to see
that a GSQS(g2) exists if and only if g is even, by applying the DOF construction.

The combination of the above results yields the following theorem.

Theorem 10 There exists a GSQS(gu) if and only if either g = 1 and u = 2 or 4
(mod 6), or g is even and g(u− 1)(u − 2) ≡ 0 (mod 3).

This theorem surprisingly does not already appear in the literature.
A hole H of a GSQS can be filled in with any GSQS of order |H| thus we obtain the

following useful theorem.

Theorem 11 If there exists a GSQS(h1h2 · · ·hr) and a GSQS(g1g2 · · · gs), where hr =
g1 + g2 + · · ·+ gs, then there exists a GSQS(h1h2 · · ·hr−1g1g2 · · · gs) .

In particular holes of size 2 can be replaced by two holes of size 1, and in this case
the converse is also true, because holes of size 1 and 2 do not contain any triple. Thus we
have the rather obvious but useful pair of theorems.

Theorem 12 A GSQS(1x2yg1g2 · · ·gr) exists if and only if a GSQS(1x+22y−1g1g2 · · ·gr)
exists, gi > 2, i = 1, 2, . . . , r.

Theorem 13 There exists a GSQS(1u2w) if and only if u + 2w ≡ 2 or 4 (mod 6), and
a GSQS(1u2w41) exists if and only if u + 2w ≡ 0 or 4 (mod 6), u, w ≥ 0.

Proof. A GSQS(1u2w) exists if and only if u+2w ≡ 2 or 4 (mod 6) because it is just an
SQS(u+ 2w). If u +2w ≡ 0 or 4 (mod 6), then u + 2w + 4 ≡ 2 or 4 (mod 6), so there
exists an SQS(u + 2w + 4). Remove one block from this design, and form the hole of size
4 with the points from this block. Form the remaining u holes of size 1 and w holes of size
2 with the remaining points. Every triple is contained in exactly one block, so the only
triples that are contained in a hole are the ones that are in the hole of size 4. However,
this block has been removed from the design, so what remains is a GSQS(1u2w41).
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Conversely, given a GSQS(1u2w41) we can fill in the hole of size 4 with a quadruple
and obtain a SQS(u+2w+4). Therefore, u+2w+4 ≡ 2 or 4 (mod 6). Thus, u+2w ≡ 0
or 4 (mod 6). �

This result can be generalized to Steiner quadruple systems with m disjoint blocks.

Theorem 14 A SQS(v) with m disjoint blocks, exists if and only if a GSQS(1x2y4m)
exists where, x, y > 0 and x + 2y + 4z = v.

Proof. Remove the m disjoint blocks in the SQS(v) to form m holes of size 4. On the
remaining v− 4m points form y holes of size 2 and x = v− 2y− 4m holes of size 1. Every
triple is contained in exactly one block, so the only triples that are contained in holes are
the ones that are in the holes of size 4. However, these blocks have been removed from
the design, so what remains is a GSQS(1x2y4m).

Conversely given a GSQS(1x2y4m) where, x, y > 0 and x + 2y + 4z = v, fill in the
holes of size 4 with a block to obtain a SQS(v). �

Using Theorem 14 we can show that the necessary conditions given in Theorem 8 are
sufficient, when the number of points is at most 18.

Theorem 15 A GSQS(h1h2 · · ·hr) on v ≤ 18 points exists if and only if

1. either v ≡ 0 (mod 6) and all the holes are of size 0 (mod 6),

2. or v ≡ 2 or 4 (mod 6) and hi = 1 or hi ≡ 2 or 4 (mod 6), for all i = 1 . . . r.

Proof. These conditions were shown to be necessary in Theorem 8. For the converse first
assume v ≤ 18 and v ≡ 0 (mod 6). Then v ∈ {6, 12, 18} and we see by Remark 9, that
all the holes have size 6. Hence the GSQS is uniform and thus exists by Theorem 10. If
v ∈ {1, 2, 4}, the required GSQS trivially exists. If v ∈ {8, 10, 14} the maximum size of a
hole is 4. Thus it is sufficient to construct a SQS(v) with m = b v

4
c and use Theorem 14.

The unique SQS(8) and SQS(10) can both easily be shown to have 2 disjoint blocks.
An SQS(14) on V = {xi : x ∈ Z7, i ∈ Z2} is obtained when the five base blocks

{30, 40, 31, 41} {00, 10, 20, 40} {00, 11, 21, 41} {40, 50, 21, 31} {50, 60, 11, 21}

are developed with the automorphisms xi 7→ (3x)i and xi 7→ (x + 1)i. This SQS(14)
contains the disjoint quadruples

{30, 40, 31, 41} {20, 50, 21, 51} {10, 60, 11, 61},

which can be seen by developing the first base block with the first automorphism. This
SQS(14) appears in Example 5.29 of Part II of the CRC Handbook of Combinatorial
Designs [5].

If v = 16 and the maximum size of a hole is 4, we observe that a SQS(16) with 4
disjoint blocks is equivalent to a GSQS(44), which exists by Theorem 10. The desired
GSQS on 16 points can then be constructed by using Theorem 14. If a hole of size 8 is
required, we first construct a GSQS(82) using Theorem 10. A hole of size 8 can then be
filled in with a GSQS on 8 points to obtain the desired GSQS on 16 points. �

The necessary conditions provided by Theorem 8 are in general not sufficient as the
following theorem shows.
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Theorem 16

a. If a GSQS has only three holes, then it has type hg2, g ≤ 2h ≤ 4g ,and hg(h+g) ≡ 0
(mod 3).

b. There does not exist a GSQS of type 1x2y4zbc, when c > b > 4 = x + 2y + 4z.

Proof. For Part a, let (X,B,H) be a GSQS(abc) with holes A, B, C, where a = |A|,
b = |B| and c = |C|. We classify triples and possible quadruples according to how they
intersect A, B, C. For m = 3, 4, let

Sm(i, j, k) = {S ⊆ X : |S| = 3, (|S ∩ A|, |S ∩ B|, |S ∩ C|) = (i, j, k), i + j + k = m}

The cardinality of Sm(i, j, k) is
(

a

i

)(

b

j

)(

c

k

)

. Let M be the incidence matrix defined by

M [S3(i, j, k), S4(i
′, j ′, k′)] = |{T ∈ S3(i, j, k) : T ∈ Q}|,

where Q ∈ S4(i
′, j ′, k′) is any representative. Then M is the 7 by 6 matrix:

S4(2, 2, 0) S4(2, 0, 2) S4(0, 2, 2) S4(2, 1, 1) S4(1, 2, 1) S4(1, 1, 2)
S3(2, 1, 0) 2 0 0 1 0 0
S3(2, 0, 1) 0 2 0 1 0 0
S3(0, 2, 1) 0 0 2 0 1 0
S3(1, 2, 0) 2 0 0 0 1 0
S3(1, 0, 2) 0 2 0 0 0 1
S3(0, 1, 2) 0 0 2 0 0 1
S3(1, 1, 1) 0 0 0 2 2 2

.

Let

W = [|S3(2, 1, 0)|, |S3(2, 0, 1)|, |S3(0, 2, 1)|, |S3(1, 2, 0)|,

|S3(1, 0, 2)|, |S3(0, 1, 2)|, |S3(1, 1, 1)|]

=
[(

a

2

)

b,
(

a

2

)

c,
(

b

2

)

c, a
(

b

2

)

, a
(

c

2

)

, b
(

c

2

)

, abc
]

and let
U =

[

uS4(2,2,0), uS4(2,0,2), uS4(0,2,2), uS4(2,1,1), uS4(1,2,1), uS4(1,1,2)

]

,

where uS4(i,j,k) = |B ∩ S4(i, j, k)|. Then

MU = W.

Observe that E = [1,−1, 1,−1, 1,−1, 0]T is in the null-space of MT . Thus

~0 = ET MU = ET W =

(

a

2

)

b−

(

a

2

)

c+

(

b

2

)

c−a

(

b

2

)

+a

(

c

2

)

−b

(

c

2

)

=
1

2
(a−b)(a−c)(b−c).
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Thus at least two of the hole sizes must be equal. We will assume c = b. The columns
of M are easily seen to be linearly independent. Hence there is a unique solution to the
equation MU = W . When c = b this solution is

U =

[

ab(a + b − 3)

12
,
ab(a + b − 3)

12
,
b(a2 − 3b − 2ab + 3b2)

12
,

a(2a − b)b

6
,
a(2b − a)b

6
,
a(2b − a)b

6

]

.

The entries of U are non-negative integers. So it follows that b ≤ 2a ≤ 4b and that
ab(a + b) ≡ 0 (mod 3). (Recall Theorem 8 says either both a and b are 0 (mod 3) or
neither are.)

For Part b we repeat nearly the same argument as was given in Part a. Let (X,B,H)
be a GSQS of order 4 + b + c, with holes B and C, where b = |B| and c = |C| and we
let A be the remaining 4 points. Note that the set A cannot be a quadruple for then
there would exist a SQS of type 41a1b1, which is impossible by Part a. We again classify
triples and possible quadruples according to how they intersect A, B, C, and construct
the incidence matrix M in the same manner as in Part a. Then M is the 8 by 8 matrix:

S4(2, 2, 0) S4(2, 0, 2) S4(0, 2, 2) S4(2, 1, 1) S4(1, 2, 1) S4(1, 1, 2) S4(3, 1, 0) S4(3, 0, 1)

S3(2, 1, 0) 2 0 0 1 0 0 3 0
S3(2, 0, 1) 0 2 0 1 0 0 0 3
S3(0, 2, 1) 0 0 2 0 1 0 0 0
S3(1, 2, 0) 2 0 0 0 1 0 0 0
S3(1, 0, 2) 0 2 0 0 0 1 0 0
S3(0, 1, 2) 0 0 2 0 0 1 0 0
S3(1, 1, 1) 0 0 0 2 2 2 0 0
S3(3, 0, 0) 0 0 0 0 0 0 1 1

Let
W=[|S3(2, 1, 0)|,|S3(2, 0, 1)|,|S3(0, 2, 1)|,|S3(1, 2, 0)|,

|S3(1, 0, 2)|,|S3(0, 1, 2)|,|S3(1, 1, 1)|,|S3(3, 0, 0)|]

=
[

6b, 6c,
(

b

2

)

c, 4
(

b

2

)

, 4
(

c

2

)

, b
(

c

2

)

, 4bc, 4
]

and let

U =
[

uS4(2,2,0), uS4(2,0,2), uS4(0,2,2), uS4(2,1,1), uS4(1,2,1), uS4(1,1,2), uS4(3,1,0), uS4(3,0,1)

]

,

where uS4(i,j,k) = |B ∩ S4(i, j, k)|. Then

MU = W.

It is easy to see that M is nonsigular and thus has a unique solution U . Considering
E = [1,−1, 1,−1, 1,−1, 0, 3]T , we see that

6uS4(3,1,0) = [0, 0, 0, 0, 0, 0, 6, 0]U = ET MU = ET W =
1

2
(4 − b)(4 − c)(b − c) + 12.
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Because 4 < b < c, the quantities 4 − b, 4 − c and b − c are all negative.
If v ≡ 2, 4 (mod 6), then b, c ≡ 2, 4 (mod 6), by Theorem 8. Thus 4− b, 4− c ≤ −4

and b − c ≤ −2. Hence

6uS4(3,1,0) =
1

2
(4 − b)(4 − c)(b − c) + 12 ≤

1

2
(−4)(−4)(−2) + 12 = −4

Thus no such GSQS can exist.
If v ≡ 0 (mod 6), then b, c ≡ 0 (mod 6), by Theorem 8. Considering E ′ =

[1,−1, 1,−1, 1,−1,−3, 0]T , we see that

−6uS4(3,0,1) = [0, 0, 0, 0, 0, 0, 0,−6]U = E ′T MU = E ′T W =
1

2
(4 − b)(4 − c)(b − c) − 12.

so
(4 − b)(4 − c)(c − b) = 12uS4(3,0,1) − 24 ≡ 0 (mod 12).

Thus b ≡ c (mod 12) and consequently b − c ≤ −12. Also we know 4 − b, 4 − c ≤ −2.
Hence

6uS4(3,1,0) =
1

2
(4 − b)(4 − c)(b − c) + 12 ≤

1

2
(−2)(−2)(−12) + 12 = −12

Thus no such GSQS can exist. �

Corollary 17 GSQS(12g2) and a GSQS(21g2) exist, if and only if g = 0, 1 or 4.

Proof. If g = 0, then observe that both a GSQS(12) and GSQS(21) trivialy exist. So
suppose g 6= 0 and note that a GSQS(12g2) exists if and only if a GSQS(21g2) exists.
To the latter which we may apply Theorem 16a and thus g = 1 or 4. A GSQS(2142)
and a GSQS(1242) are constructed in Theorem 15. A single quadruple of size 4 is a
GSQS(2112) and a GSQS(14). �

Theorem 18 A GSQS(1u2wg1) exists if and only if there exists a SQS(u + 2w + g)
containing a sub-SQS(g).

Proof. If a GSQS(1u2wg1) exists, then g ≡ 2, 4 (mod 6), by Theorem 8. Hence there
exists a SQS(g). We now fill in the hole of size g with a SQS(g). This results in a
SQS(u + 2w + g), because holes of size 1 and 2 contain no triples.

Conversely if a SQS(u + 2w + g) exists and contains a SQS(g) as a subsystem,
then removing the quadruples in the SQS(g) produces a GSQS(1u+2wg1) which is also a
GSQS(1u2wg1), because holes of size 1 or 2 do not contain any triples. �

Hartman [10] and Lenz [19] have shown that whenever v ≥ 16, then there is a SQS(v)
containing a sub-GSQS(8). The sub-design problem was thoroughly investigated by
Granville and Hartman [7]. In particular the existence of a SQS(22) containing a sub-
SQS(10) can be deduced from their results.
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A SQS(v) has bi =
(

v−i

3−i

)

/
(

4−i

3−i

)

quadruples containing a given set of i points, for
i = 0, 1, 2, 3. If it contains a sub-SQS(w), then an easy inclusion-exclusion argument
shows that it has

b0 − wb1 +

(

w

2

)

b2 −

(

w

3

)

+
1

4

(

w

3

)

quadruples disjoint from the sub-system. This quantity can easily be shown to be positive.
Consequently we have the following result by removing a quadruple disjoint from a sub-
system.

Theorem 19 If there exists a SQS(v) containing a sub-SQS(g), then there exists a
GSQS(1x2y41g1) for all x, y ≥ 0, x + 2y + 4 + g = v.

Theorem 20 If there exists a GSQS(h1h2 · · ·hr) and a GSQS(g1g2 · · · gs), where
v = h1 +h2 + · · ·+hr = g1 +g2 + · · ·+gs, then there exists a GSQS(h1h2 · · ·hrg1g2 · · · gs).

Proof. Because there exists a GSQS(h1h2 · · ·hr) (X,H,B) and a GSQS(g1g2 · · ·gs),
(X ′,H′,B′), the only other triples we need to cover are the ones which have 2 points
in X and 1 point in X ′ or 1 point in X and 2 points in X ′. We simply apply the
DOF construction between the point set X and the point set X ′. That is we include
DOF(X, X ′) as additional quadruples. �

Theorem 21 There exists a GSQS(hu(2h)k) if and only if h = 1 and u + 2k ≡ 2 or
4 (mod 6) or h > 1 and h(u + 2k − 1)(u + 2k − 2) ≡ 0 (mod 3) except possibly when
h ≡ 10 or 26 (mod 48) and (u, k) ∈ {(3, 1), (1, 2)}.

Proof. When h = 2 and u + 2k = 5, the required GSQS is obtained from either The-
orem 10 or Theorem 15. When h ≡ 10 or 26 (mod 48), the GSQS is obtained by
Theorem 10. Otherwise from Theorems 2 and 4 we see that these conditions imply the
existence of a TSQS(hu+2k) with holes Hi, Gj, G

′
j, i = 1, 2, . . . , u, j = 1, 2, . . . , k. We in-

clude the additional quadruples in DOF(Hi1 , Hi2), i1 6= i2, DOF(Hi, Gj), DOF(Hi, G
′

j),
DOF(Gj1, G

′

j2
), j1 6= j2.

If a GSQS(hu(2h)k) exists and h = 1, then u + 2k ≡ 2 or 4 (mod 6), because it is a
SQS(u + 2k).

If h > 1, then h is even by Lemma 7, and we consider the derived design with respect
to a point in the hole of size h. This forms a 2-(hu + 2hk − 1, {3, (h − 1)∗}, 1) design. It
has

1

3

((

hu + 2hk − 1

2

)

−

(

h − 1

2

))

triples. Therefore (h(u+2k)−1)(h(u+2k)−2) ≡ (h−1)(h−1) (mod 3). So considering
the possibilities for h mod 3, we see that

h(u + 2k − 1)(u + 2k − 2) ≡ 0 (mod 3).

�
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Theorem 22 A GSQS of order 20 exists if and only if it has type 1a2b4c8d10e, where
a + 2b + 4c + 8d + 10e = 20, and (d, e) 6= (1, 1).

Proof. We see from Theorem 10 that a GSQS(45) and a GSQS(102) exist. A GSQS(4182)
can be constructed using Theorem 21. Using Theorem 11 we can can construct all possible
configurations of holes for GSQS of order 20, except types 1281101 and 2181101 which do
not exist by Theroem 16a and Theorem 12. �

Theorem 23 If there exists a CQS(g3 : s) and an SQS(g + s) with a sub-SQS(s), then
there exists a SQS(3g+s) with a sub-SQS(g+s) and 3 disjoint blocks that are disjoint from
the subsystem, and therefore a GSQS(1a2b)43(g +s)1), exists, for all a+2b = 2g−s−12,
a, b ≥ 0.

Proof. If s = 0, then a CQS(g3 : s) is a GSQS(g3) and we simply fill in the holes with a
SQS(g) that has two disjoint blocks. Now assume s > 0. There does not exist an SQS(4)
with a subsystem, therefore, we must have that g + s ≥ 8. So if s = 1, then g ≥ 7, and
if s ≥ 2, then g ≥ 6, i.e. g is always at least 6. Let H1, H2, H3 be the three branches
of the CQS. Here we denote the type of a set S, by (|S ∩ H1|, |S ∩ H2|, |S ∩ H3|). Let
x = the number of quadruples of type (2, 2, 0), (2, 0, 2), or (0, 2, 2), let y = the number of
quadruples of type (2, 1, 1), (1, 2, 1), or (1, 1, 2), and let z = the number of quadruples of
type (1, 1, 1). Also let T1 be the set of all triples of type (2, 1, 0), (2, 0, 1), (0, 2, 1), (1, 2, 0),
(0, 1, 2), or (1, 0, 2), and let T2 be the triples of type (1, 1, 1). Then |T1| = 6

(

g

2

)

g = 3g3−g,
and |T2| = g3. Counting the number of quadruples of each type that cover the triples in
Ti, we obtain the following two equations respectively for i = 1 and i = 2:

4x+2y = 3g3−g.
2y+z = g3

Subtracting yields 4x = 2g3 − g + z. Therefore, since g 6= 0, we have that x > 0.
Consequently we may assume that there is a quadruple X of type (0, 2, 2). Construct a
SQS(g + s) on H2 ∪ S that has a sub-SQS(s) on S. (If s = 1, or 2, the sub-SQS(s)
is trivial.) The argument preceding Theorem 19 shows that the SQS(g + s) contains
at least one block, B2, disjoint from the sub-system on S; and because g ≥ 6, we may
assume that it is also disjoint from X. Remove the sub-SQS(s). Do the same thing for
H3∪S, obtaining block B3. We now have three disjoint blocks: B2, B3, X. Now construct
a SQS(g+s) on H1∪S. This yields an SQS(3g+s) with a sub-SQS(g+s) and 3 disjoint
blocks that are disjoint from the sub-SQS(g + s).

Finally, to construct a GSQS(12g−s−1243(g + s)1), we do the following. Remove the
sub-SQS(g + s) and the 3 disjoint blocks, and partition the remaining points into a holes
of size 1 and b holes of size 2, where a + 2b = 2g − s − 12, a, b ≥ 0. �

Hartman ([11], [9]) gave direct constructions for CQS(g3 : s) for all even s and all
g ≡ 0 or s (mod 6) with g ≥ s.

Example 24 Any block of a SQS(10) can be considered as a sub-SQS(4). Thus us-
ing the CQS(63 : 4) constructed by Hartman and applying Theorem 23 we obtain a
GSQS(43101).
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The following theorem was proved by Mohacsy and Ray-Chaudhuri [13].

Theorem 25 Let q be a prime power and v be a positive integer. If there is an S(3, q +
1, v + 1), then there exist

a. a 3-CS of branch type (qv : 1) with block size q + 1 and

b. a 3-CS of branch type (vq : 1) with block size q + 1.

Example 26 An SQS(8) can easily be shown to have 2 disjoint blocks, and we can see
from Theorem 25 that there exists a CQS(73 : 1), therefore we can apply Theorem 23
to obtain a GSQS(214381).

The situation on 22 points is not completely resolved. Using Theorem 21 and the above
examples we can construct a GSQS(2145), a GSQS(214381) and a GSQS(43101). Then
using Theorem 11 we can can construct all possible configurations of holes for GSQS of
order 22, except when there are 2 holes of size 8 or when there are 2 holes of size 10.
Theorem 17 establishes the non-existence of an order 22 GSQS with two holes of size
10. Thus the only unresolved types of GSQS of order 22 are: 1682 , 142182, 122282, 2382,
124182 and 214182.

Following the technique used in Theorem 16 we can suppose the existence of GSQS
of order 22 with two holes B and C each of size 8. Let A be the remaining 6 points and
note that the set A cannot contain more than 3 quadruples for if it did a triple would
be covered twice. We again classify triples and possible quadruples according to how
they intersect A, B, C, and construct the incidence matrix M in the same manner as in
Theorem 16. Then M is the 8 by 9 matrix:

S4(2, 2, 0)S4(2, 0, 2)S4(0, 2, 2)S4(2, 1, 1)S4(1, 2, 1)S4(1, 1, 2)S4(3, 1, 0)S4(3, 0, 1)S4(4, 0, 0)
S3(2, 1, 0) 2 0 0 1 0 0 3 0 0
S3(2, 0, 1) 0 2 0 1 0 0 0 3 0
S3(0, 2, 1) 0 0 2 0 1 0 0 0 0
S3(1, 2, 0) 2 0 0 0 1 0 0 0 0
S3(1, 0, 2) 0 2 0 0 0 1 0 0 0
S3(0, 1, 2) 0 0 2 0 0 1 0 0 0
S3(1, 1, 1) 0 0 0 2 2 2 0 0 0
S3(3, 0, 0) 0 0 0 0 0 0 1 1 4

Let
W = [|S3(2, 1, 0)|, |S3(2, 0, 1)|, |S3(0, 2, 1)|, |S3(1, 2, 0)|, |S3(1, 0, 2)|,

|S3(0, 1, 2)|, |S3(1, 1, 1)|, |S3(3, 0, 0)|, |S3(4, 0, 0)|]

= [120, 120, 224, 168, 168, 224, 384, 20]

and let

U =
[

uS4(2,2,0), uS4(2,0,2), uS4(0,2,2), uS4(2,1,1), uS4(1,2,1), uS4(1,1,2), uS4(3,1,0), uS4(3,0,1), uS4(4,0,0)

]

,

where uS4(i,j,k) = |B ∩ S4(i, j, k)|. Then

MU = W.
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There are exactly 4 possible solutions to MU = W , that have 0 ≤ uS4(4,0,0) ≤ 3. They
are:

uS4(2,2,0) uS4(2,0,2) uS4(0,2,2) uS4(2,1,1) uS4(1,2,1) uS4(1,1,2) uS4(3,1,0) uS4(3,0,1) uS4(4,0,0)

39 39 67 12 90 90 10 10 0
40 40 68 16 88 88 8 8 1
41 41 69 20 86 86 6 6 2
42 42 70 24 84 84 4 4 3

Several different automorsphism groups were assumed to aide in the computer search for
a GSQS with one of the above possible distribution of quadruples. So far all attemps
have failed and the construction of an SQS(22) with two disjoint substsyems of size 8
remains an open problem.

The situation for 24 points is easy, because GSQS(122) and GSQS(62) exist by The-
orem 10.

3 Final remarks

The results presented in this article establish necessary and sufficient conditions for the
existence of uniform group divisible Steiner quadruple systems, the so called G-designs
of Mills. Also all parameter situations of arbitrary GSQS on less than 24 points are
settled except for 6 open cases on 22 points. The difficulty appears to be the construction
of Steiner quadruple systems on v ≡ 2 (mod 6) points having large subsystems, in
particular, two disjoint subsystems of order (v − 6)/2.
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