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Abstract

We study the linear codes and their extensions associated with sets of points
in the plane corresponding to cubic curves. Instead of merely studying linear ex-
tensions, all possible extensions of the code are studied. In this way several new
results are obtained and some existing results are strengthened. This type of anal-
ysis was carried out by Alderson, Bruen, and Silverman [J. Combin. Theory Ser.

A, 114(6), 2007] for the case of MDS codes and by the present authors [Des. Codes

Cryptogr., 47(1-3), 2008] for a broader range of codes. The methods cast some light
on the question as to when a linear code can be extended to a nonlinear code. For
example, for p prime, it is shown that a linear [n, 3, n− 3]p code corresponding to a
non-singular cubic curve comprising n > p + 4 points admits only extensions that
are equivalent to linear codes. The methods involve the theory of Rédei blocking
sets and the use of the Bruen-Silverman model of linear codes.

1 Introduction

Much of the theory of linear codes is concerned with obtaining bounds on the length
of such codes subject to certain constraints involving various parameters such as the
minimum distance and with characterization of optimal cases. Similar remarks apply
to finite geometries. There one wants to find bounds, for example, on the maximum or
minimum number of points obeying certain combinatorial conditions and the structure
in the optimal case. One thinks for example of the famous characterization of conics due
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to B. Segre. Such problems have been well-studied and many interesting open problems
remain open.

Here, a more general point of view is taken by studying the linear code associated with
sets of points in the plane and their extensions. Our point of departure is that, instead of
merely studying linear extensions, all possible extensions of the code are studied. In this
way one can obtain several new results as well as a strengthening of existing results. This
was carried out in [3] for the case of MDS codes. Moreover, the methods cast some light
on the question as to when a linear code can be extended but not by a linear code. Here
the focus is on the codes associated with cubic curves and results analogous to those in
[3] are obtained. Our methods involve the theory of Rédei blocking sets and the use of
the Bruen-Silverman model of linear codes.

Recall that a q-ary code of length n is a collection of n-tuples (codewords) over an
alphabet A of size q. An [n, k, d]q-code is a q-ary code consisting of qk codewords of length
n and minimum (hamming) distance d. In an [n, k, d]q-code C there exist two codewords
agreeing in n − d coordinates and no two codewords agree in as many as n − d + 1 (in
particular, any n − d + 1 coordinates form an information set). In the special case that
A = GF (q) and C is a vector space of dimension k, C is a linear [n, k, d]q-code.

Definition 1.1. The code C1 of length n1 > n is said to be an extension of C if

1. the code C is obtained from C1 upon deleting the entries in some fixed set of n1 −n

positions of C1 , and

2. the minimum distance of C1 is d + n1 − n ,where d is the minimum distance of C.

The code C is said to be maximal if C admits no extensions.

Next, suppose that n1 = n + 1 where C is a linear [n, k, d] code. Let X denote the set
of all codewords in C1 having a given symbol in a given position, say position j. Then, by
deleting the jth coordinate position from X a code of length n os obtained, with minimum
distance d and having qk−1 codewords.

This then gives rise to the following result.

Theorem 1.2. An [n, k, d]q code C is extendable to a code C1 of length n + 1 if and only
if there exists a partition P = X1, X2, . . . , Xq of C such that each Xi is a code of length
n and minimum distance d + 1.

Consider a linear [n, k, d]q-code C over F = GF (q) with generator matrix G. A linear
extension of C arises by appending an appropriate column vector to G. There are in
total qk possible column vectors to check using an exhaustive search. Consider the qk ×n

array M whose rows are the codewords of C. A general (i.e. not necessarily linear)
extension arises by augmenting M with an appropriate column vector. Over F there are
a total of qqk

possible column vectors. The search for for an arbitrary extension of C

therefore grows exponentially when one considers general, and not just linear, extensions.
In investigating the maximality of a given linear code it may therefore be quite useful to
know when nonlinear extensions can be ruled out.
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2 A construction of codes from curves

Let Γ be a non-singular curve over a finite field F = GF (q) of order q in the projective
plane π = PG(2, q). A well-known construction of codes using Γ is the family of so-
called Goppa codes which generalize Reed-Solomon codes. Their construction uses linear
systems of divisors on Γ and the machinery of algebraic geometry. These codes have been
shown to be very useful in that, in certain cases, they improve on the Gilbert-Varshamov
bound for the existence of linear codes: see [9] for further details.
Here a much more elementary construction for a code associated with Γ is used. This
construction is described as follows. Suppose that Γ has degree t and that S is a subset
of the points of Γ with |S| = n say. Then S gives rise to a linear code C with generator
matrix G of size 3×n where the columns of G correspond to the coordinates of the points
in S. Assuming that the chosen points do not all lie on a line then G has rank 3.

Theorem 2.1. If some line of π contains t points of S and not all points of S lie on a
line then the code C is a linear [n, 3, n − t]q-code.

Proof. Suppose that some non-trivial linear combination of the rows of G has m zeros
in it. Then the columns of G corresponding to these m column positions are linearly
dependent. Thus, the columns correspond to a set of m points lying on a line. Since C is
non-singular, and therefore irreducible, by the theorem of Bézout it follows that m ≤ t.
Thus the minimum weight of the linear code C is at least n − t. Therefore the minimum
distance of C is at least n− t. It follows that the code C is a linear [n, 3, n− t]q-code.

3 Code extensions, the Bruen-Silverman model

One of our main new tools is the family of Bruen-Silverman codes [BRS codes] associated
with a given linear code. Some pertinent details on this and related questions of code
extensions are provided in what follows.
First we discuss equivalence of codes. Let C1 and C2 be codes of length n over an alphabet
A. Identify each code with a matrix, the rows of each matrix being the code words. The
code C2 is said to be equivalent to C1 if C2 can be obtained from C1 by a sequence of
operations of the following three types:

1. A permutation of the rows of C1 ;

2. A permutation of the columns of C1 ;

3. A permutation of the alphabet A is applied (entry-wise) to a column of C.

If two codes are equivalent then the codes are essentially identical. A code that is
equivalent to a linear code is said to be equivalent to linear. Such a code need not be
linear. For example, suitably permuting the symbols in a given column of a linear code
removes the zero vector.
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Let C be a linear [n, 3, d]q-code and take any 3×n generator matrix G associated with
C. Each codeword of C is a linear combination of the rows of G. Denote the entries of G

as follows:

G =





a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n



 .

Then a code word w of C can be written as

w =

3
∑

i=1

αiRi (3.1)

where Ri denotes the ith row of G.
A better geometrical picture of C is desired. This may be obtained as follows.

Associate with C the projective space Σ = PG(3, q) of dimension 3, having homoge-
neous coordinates (x1, x2, x3, x4). Assume the plane at infinity Π

∞
has equation x4 = 0.

Each column in G, say the ith column, gives rise to a line `i in Π
∞

where `i is defined to
be the solution set of the following system of equations:

{

x4 = 0,
a1ix1 + a2ix2 + a3ix3 = 0.

Let E = Σ \ Π
∞

denote the associated 3-dimensional affine space. Thus E has q3

points or vectors. Each point P in E has homogeneous coordinates (α1, α2, α3, 1). We
wish to associate with P a code word (λ1, λ2, . . . , λn). The point P lies on a certain plane
labeled Hi(P ) containing the line `i for each i, 1 ≤ i ≤ n. If the q planes of Σ other than
Π

∞
containing `i are labeled, then P will lie on say the plane labeled λi ∈ F . In this way

the resulting code C1 consists of q3 code words (λ1, λ2, . . . , λn) of length n over F .
The code C1 will of course depend on the labeling of Hi(P ). Different labelings equate

to symbol permutations of the code C1. In [3] the following is shown.

Theorem 3.1. The code C1 is equivalent to the original code C. In particular C1 is
equivalent to linear.

The code C1 will be a Bruen-Silverman (BRS) code associated with C (or a BRS
model of C). The BRS model was first introduced in [1].

To summarize, a code word w in C is identified with the set of coefficients α1, α2, α3

as in formula 3.1. Alternatively, the code word can be thought of as a point P =
(α1, α2, α3, 1) in 3-dimensional affine space. To find the ith coordinate of w, given P ,
the label of the unique plane containing `i and P is calculated. Here `i is a line of Π

∞

corresponding to the ith column of G, the generator matrix of C.
From this picture it is clear that the set of code words with a given symbol in the ith

coordinate position corresponds to the points of E = AG(3, q) contained in a certain
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plane. The code words with given symbols in two fixed positions i and j correspond to
the intersection of two planes, and so on. Hence, two code words w1 and w2 correspond-
ing to the affine points P and Q will have t common entries if and only if the line PQ

intersects Π
∞

in a point belonging to t of the `i’s.
Next, let S be the set of n points in π = PG(2, q) lying on a non-singular cubic curve Γ.
As in Theorem 2.1, some line is incident with 3 points of S and no line is incident with
as many as 4 points of S. Any such set in the plane is called a cubic arc. A cubic arc of
size n is complete if it is not contained in a cubic arc of size n + 1. A complete cubic arc
in π therefore corresponds to a linear [n, 3, n − 3]q code admitting no linear extensions.
Dualizing, S may also be thought of as a dual cubic arc (of lines) T in π. Just as no four
points of S lie on a line so also, no four lines of T pass through a point of π. A point of
π lying on i lines of T is called an i-point of T for i = 1, 2, 3.

We will need the following definition.

Definition 3.2. Let T be a dual cubic arc in Π = PG(2, q) and let Σ = PG(3, q). Then,
a point set W of size q2 in Σ \Π is called a transversal set of T if no two points of W are
collinear with a 3-point of T .

Considering Theorem 1.2 and the BRS model as above we have the following.

Theorem 3.3. Let C be a linear [n, 3, n− 3]q-code corresponding to the dual cubic arc T

in Π = PG(2, q). Consider Π as embedded in Σ = PG(3, q) and let E = Σ \Π. The code
C can be extended if and only if there exists a partition {X1, X2, . . . , Xq} of E where each
Xi is a transversal set of T .

4 Geometry and Combinatorics of Cubic Curves

Part 1 of the following result uses an adaptation of a classical result (see e.g. [7]).

Theorem 4.1. Let Γ be a non-singular cubic curve in π = PG(2, q) with |Γ| = n. Let P

be a point of Γ. Then

1. there are at most 4 lines on P that contain exactly 2 points of S;

2. there are at least 1

2
(n − 5) lines of π on P , each containing 3 points of Γ.

Proof. A classical result implies that there are at most 4 points X unequal to P such that
PX is a tangent to the curve Γ at X. Now if Z is any point on Γ such that the line PZ

is a bi-secant to Γ it follows, since Γ is a cubic, that the line PZ is a tangent to Γ at Z.
This proves part 1.
Let us denote by x, y and z the number of uni-secants, bi-secants and tri-secants of S on
P . Counting the number of points of S yields y + 2z = n − 1. Since y ≤ 4 it follows that
z ≥ 1

2
(n − 5).
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Corollary 4.2. Let Γ be a non-singular cubic curve in π = PG(2, q) with |Γ| = N , and
let S be any subset of the points of Γ with |S| = n. Let δ = N − n and let P be a point of
S. Then there are at least 1

2
(n− 5− δ) lines of π on P intersecting S in exactly 3 points.

Proof. As in the previous theorem P is incident with at least 1

2
(N−5) lines, each contain-

ing 3 points of Γ. It follows that P is incident with at least 1

2
(N − 5) − δ = 1

2
(n − 5 − δ)

lines intersecting S in exactly 3 points.

Theorem 4.3. Let Γ be a non-singular cubic curve in π = PG(2, q), |Γ| = n . Assume
that n > q + 7. Then each point P of π with P not on Γ lies on at least one tri-secant of
Γ. In particular, Γ is a complete cubic arc.

Proof. It is classical that P lies on at most 6 lines PX, X 6= P such that PX is a tangent
to Γ at X. Therefore, P lies on at most 6 bisecants to Γ since Γ is a cubic curve.
Let u, v, w denote the number of unisecants, bisecants and trisecants of Γ on P . Certainly
u + v + w ≤ q + 1. Counting the points of S gives

u + 2v + 3w = n.

This gives
n ≤ q + 1 + v − 2w.

Since v ≤ 6 the assumption w = 0 gives the result.

Corollary 4.4. Let C be a linear [n, 3, n − 3]q-code corresponding to non-singular cubic
curve. If n > q + 7 then C admits no linear extensions.

Let Nq(1) denote the maximum number of rational points on an elliptic curve over
GF (q). If q = ph then from the work of Waterhouse ([10]) it follows that

Nq(1) =

{

q + b2√qc if p
∣

∣ b2√qc and h ≥ 3 is odd,
q + b2√qc + 1 otherwise.

(4.1)

Regarding the completeness of the cubic arcs arising from nonsingular cubic curves,
Hirschfeld and Voloch [6] show the following.

Theorem 4.5. If q ≥ 79 is not a power of 2 or 3, then an elliptic curve Γ with n rational
points is a complete cubic arc unless the j-invariant j(Γ) = 0, in which case the completion
of Γ has at most n + 3 points.

Corollary 4.6. Let Γ be an elliptic curve in π = PG(2, q), q ≥ 79 not a power of 2 or 3,
having n rational points. If j(Γ) 6= 0 then the linear [n, 3, n− 3]q-code corresponding to Γ
admits no linear extensions.

In the next section the maximality of codes corresponding to cubic curves is discussed.
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5 The Main Results

The following theorem was shown in [2].

Theorem 5.1. Let K be a cubic arc of size n in PG(2, p), p a prime. Let C be the linear
[n, 3, n−3]p-code corresponding to K. If n > 3

2
(p+5) then any extension of C is equivalent

to a linear code.

For codes corresponding to cubic curves a significant improvement to the bound in
the previous theorem is obtained.

Theorem 5.2. Let p be prime. Let C be a linear [n, 3, n − 3]p code corresponding to the
non-singular cubic curve Γ in Π = PG(2, p). If n > p + 4 then every extension of C is
equivalent to a linear code.

Proof. It will be convenient to dualize Γ so that Γ may be thought of as a cubical set of
n lines T in Π. The proof is more or less identical to that in [3]. However, let us give a
sketch here. Let l be a line of T . Then, by 4.1 part 2 there are at least 1

2
(n − 5) 3-points

of T on l. By our assumption on n this implies that the set Z of points on l which are
not 3-points of T is less than 1

2
(p + 3). Let C1 be an extension of C. As in 2.3 C1 gives

rise to a partition {X1, X2, . . . , Xp}. Each Xi gives rise to a transversal set of T as in 3.2.
Let X1 correspond to the transversal set W in Σ = PG(3, p). Each plane of PG(3, p) on
l intersects W in a set H of p points. Moreover, no two points of H are collinear with a
3-point of T . Thus, by a celebrated result on blocking sets due to Lovász and Schrijver
[8] it follows that the set of points on H lie on a line in the plane.
This process may be repeated with another line l1 of T . Then, exactly as in [3], it
transpires that W is an affine plane. Consequently, the collection X1, X2, . . .Xp gives rise
to a family of parallel planes. This family intersects the base plane Π in a line x which
extends T (as a dual cubic arc). In other words, the set Y = T ∪ {x} gives a set of n + 1
lines with no point of π lying on more than 3 points of Y . Moreover, the line x provides
the linear extension of the code C.

Remark 5.3. Theorem 5.2 is notably restricted to the prime case. The reason for this is
that in order to apply the result of Lovász and Schrijver (or related results such as those
in [4, 5]) for q non-prime, Γ is required to hold a number of points exceeding the bounds
(4.1).

Remark 5.4. In [2, 3] various classes of linear codes are shown to admit only linear
extensions. It transpires that all codes for which these previous results apply necessarily
meet the Griesmer bound :

n ≥
k−1
∑

i=0

⌈

d

qi

⌉

.

Such codes are known as Griesmer codes. Theorem 5.2 offers an improvement on the pre-
vious bounds, however the codes meeting the conditions of Theorem 5.2 are also Griesmer
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codes. This gives rise to the following question:

Are there classes of linear codes that are not Griesmer codes yet admit only linear exten-
sions?

More generally, given a set of n points S lying on a non-singular cubic curve Γ in
Π = PG(2, p) where p is a prime, consider the corresponding linear code C.

Theorem 5.5. Let Γ be a nonsingular cubic arc in Π = PG(2, p), p a prime, |Γ| = N .
Let S be a subset of Γ with |S| = n and let δ = N − n. If n − δ > p + 4 then the linear
code C corresponding to S is a [n, 3, n − 3]p-code and admits only linear extensions.

Proof. Assume n−δ > p+4. First note that as |S| > p+4, not all points of S are on a line
and some line contains at least 3 points of S. So C is indeed a [n, 3, n − 3]p code. Next,
observe that from the Corollary 4.2, each point of S is incident with at least 1

2
(n− δ − 5)

3-lines of S. Dualizing as in Theorem 5.2 consider the dual cubic arc T corresponding to
S. By assumption n − δ > p + 4 whence each line of T is incident with at least 1

2
(p − 1)

3-points of T . The remainder of the proof follows as in the proof of Theorem 5.2.

From Theorem 5.2 and Corollary 4.4 the following is obtained.

Corollary 5.6. Let C be a non-singular cubic in π = PG(2, p) having at least p+8 points.
Then the linear [n, 3, n − 3]p-code corresponding to C is a maximal code.

From Theorems 5.2 and 4.5 the following is obtained.

Corollary 5.7. Let Γ be an elliptic curve in π = PG(2, p), p ≥ 79 a prime, having
n > p + 4 points. Then the linear [n, 3, n − 3]-code C corresponding to Γ is a maximal
code unless the j-invariant j(Γ) = 0, in which case C can be extended at most to a code
of length n + 3 and any such extension is necessarily linear.
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Hungar., 16(3-4):449–454, 1983.

[9] Jacobus H. van Lint and Gerard van der Geer. Introduction to coding theory and
algebraic geometry, volume 12 of DMV Seminar. Birkhäuser Verlag, Basel, 1988.
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