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Abstract

Let G be a connected graph, and let f be a function mapping V (G) into N. We
define f(H) =

∑
v∈V (H) f(v) for each subgraph H of G. The function f is called

an IC-coloring of G if for each integer k in the set {1, 2, · · · , f(G)} there exists an
(induced) connected subgraph H of G such that f(H) = k, and the IC-index of G,
M(G), is the maximum value of f(G) where f is an IC-coloring of G. In this paper,
we show that M(Km,n) = 3 · 2m+n−2 − 2m−2 + 2 for each complete bipartite graph
Km,n, 2 ≤ m ≤ n.

1 Introduction

Given a connected graph G. Let f be a function mapping V (G) into N. We define
f(H) =

∑
v∈V (H) f(v) for each subgraph H of G. Then, f is called an IC-coloring of

G if for each integer k in the set [1, f(G)] = {1, 2, · · · , f(G)} there exists an (induced)
connected subgraph H of G such that f(H) = k. Clearly, the constant function f(v) = 1
for each v ∈ V (G) is an IC-coloring in which f(G) = |V (G)|. It is interesting to know
the maximum value of f(G), such that f is an IC-coloring of G. This maximum value is
defined as the IC-index of G, denoted by M(G). We say that f is a maximal IC-coloring
of G if f is an IC-coloring of G with f(G) = M(G).
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The study of the IC-index of a graph originated from the so-called postage stamp
problem in Number Theory, which has been extensively studied in the literature [1, 6v9,
11, 13v16]. In 1992, G. Chappel formulated IC-colorings as “subgraph sums problem”
and he observed the IC-index of cycle Cn is bounded above by n2 − n + 1, i.e., M(Cn) ≤
n2 − n + 1. Later, in 1995, Penrice [12] introduced the concept of stamp covering of G
and he showed that (1) M(Kn) = 2n − 1 and (2) M(K1,n) = 2n + 2 for all n ≥ 2. Then,
in 2005, Salehi et al proved that M(K2,n) = 3 · 2n + 1 for n ≥ 2 [13]. In this paper, we
prove that for 2 ≤ m ≤ n, M(Km,n) = 3 · 2m+n−2 − 2m−2 + 2.

2 Preliminaries

We start with a couple of lemmas which are basic counting tools we shall use in the
proof of our main result. For convenience, a sequence c1, c2, · · · , cn of integers 0 or 1 will
be referred to as a binary sequence.

Lemma 2.1. Let a1, a2, · · · , an be n positive integers which have the properties that a1 = 1
and ai ≤ ai+1 ≤

∑i

j=1 aj +1 for i = 1, 2, · · · , n− 1. Then, for each ` ∈ [1,
∑n

j=1 aj], there
exists a binary sequence c1, c2, · · · , cn such that ` =

∑n

j=1 cjaj.

Proof. By induction on n. Clearly, it holds for n = 1. Assume that it holds for n = k ≥ 1.
Let ` ∈ [1,

∑k+1
j=1 aj]. If ` ≤

∑k

j=1 aj, then by induction hypothesis, there is a binary

sequence c′1, c
′

2, · · · , c′k such that ` =
∑k

j=1 c′jaj. Let cj = c′j for j = 1, 2, · · · , k and

ck+1 = 0. Then ` =
∑k+1

j=1 cjaj. Otherwise, (
∑k

j=1 aj) + 1 ≤ ` ≤
∑k+1

j=1 aj . Since

ak+1 ≤
∑k

j=1 aj + 1 ≤ `, there is an integer `′ ≥ 0 such that ` = ak+1 + `′. If `′ = 0,

then ` = ak+1 and we are done. Otherwise, 1 ≤ `′ = ` − ak+1 ≤
∑k

j=1 aj. By induction

hypothesis, there is a binary sequence c′1, c
′

2, · · · , c′k such that `′ =
∑k

j=1 c′jaj. Let cj = c′j
for j = 1, 2, · · · , k and ck+1 = 1. Then ` = `′ + ak+1 =

∑k

j=1 c′jaj + ak+1 =
∑k+1

j=1 cjaj.
This concludes the proof.

Lemma 2.2. Let s0, s1, · · · , sn be a sequence of integers. Then for each i ∈ [1, n], there
exists ri such that si =

∑i−1
j=0 sj + ri and the sum

∑n

j=0 sj is equal to 2ns0 +
∑n

j=1 2n−jrj.

Next, we explore several necessary conditions for the existence of an IC-coloring of
a graph G. Without mention otherwise, all graphs we consider in what follows are con-
nected. For graph terms, we refer to [17].

Lemma 2.3. Let f be an IC-coloring of a graph G such that f(ui) ≤ f(ui+1) for
i = 1, 2, · · · , n − 1, where V (G) = {u1, u2, · · · , un}. Then f(u1) = 1 and f(ui+1) ≤∑i

j=1 f(uj) + 1 for i = 1, 2, · · · , n − 1.

Proof. Clearly, f(u1) = 1. Suppose that f(ui+1) >
∑i

j=1 f(uj) + 1 for some i ∈ [1, n − 1]

and H is a subgraph of G with f(H) =
∑i

j=1 f(uj)+1. By the assumption, f(uj) > f(H)
for each j ∈ [i + 1, n]. This implis that V (H) ⊆ {u1, u2, · · · , ui} and we have f(H) ≤∑i

j=1 f(uj). Hence, we have a contradiction and the proof is complete.
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Lemma 2.4. Let f be an IC-coloring of a graph G such that f(ui) < f(ui+1) for i =
1, 2, · · · , n − 1, where V (G) = {u1, u2, · · · , un}. For each pair i1, i2, 1 ≤ i1 < i2 ≤ n, if
f(ui1) =

∑i1−1
j=1 f(uj) + 1 and ui1ui2 ∈\ E(G), then either f(ui2) ≤

∑i2−1
j=1 f(uj)− f(ui1) or

f(ui2+1) ≤ f(ui1) + f(ui2) when i2 + 1 ≤ n.

Proof. Suppose, to the contrary, f(ui2) >
∑i2−1

j=1 f(uj) − f(ui1) and f(ui2+1) > f(ui1) +
f(ui2) when i2 + 1 ≤ n. Let k = f(ui1) + f(ui2) and let H be an induced connected
subgraph of G such that f(H) = k. By the assumption, f(ui) ≥ f(ui2+1) > k for each
i ∈ [i2 + 1, n]. This implies that V (H) ⊆ {u1, u2, · · · , ui2}. Also by the assumption, it is
easy to see ui2 ∈ V (H). Since f(H) = f(ui1)+f(ui2) and {ui1, ui2} is an independent set,
ui1 /∈ V (H). If uj /∈ V (H) for each j ∈ [i1 + 1, i2 − 1], then by the hypothesis, we have
f(H) ≤ f(u2)+

∑i1−1
j=1 f(uj) < f(ui2)+f(ui1) = k, a contradiction. Otherwise, uj ∈ V (H)

for some j ∈ [i1 + 1, i2 − 1]. This implies f(H) ≥ f(ui2) + f(uj) > f(ui2) + f(ui1) = k, a
contradiction. Therefore, we have the proof.

The following facts are useful in proving our main result.

Lemma 2.5. Let r1, r2, · · · , rn be n numbers. If there are two integers i and k such that
1 ≤ i < k ≤ n and ri < rk, then

∑n

j=1 2n−jrj <
∑n

j=1 2n−jrj−(2n−iri+2n−krk)+(2n−kri+

2n−irk).

Lemma 2.6. Let f be an IC-coloring of a graph G, and let G has ` induced connected
subgraphs. If there are 2k distinct induced connected subgraphs H1, G1, H2, G2, · · · , Hk,
Gk of G such that f(Hi) = f(Gi) for i = 1, 2, · · · , k, then f(G) ≤ ` − k.

Now, we are ready for the main result.

3 Main Result

First, we establish the lower bound of M(Km,n).

Proposition 3.1. M(Km,n) ≥ 3 · 2m+n−2 − 2m−2 + 2 for 2 ≤ m ≤ n.

Proof. Let G = (A, B) = Km,n, 2 ≤ m ≤ n, with vertex sets A = {a1, a2, · · · , am} and
B = {b1, b2, · · · , bn}, and let f : V (G) → N be defined by (see Figure 1 for an example):

(i) f(a1) = 1, f(a2) = 2 and f(b1) = 3;

(ii) f(bi) = f(a1) + f(a2) +
∑i−1

j=1 f(bj) for i = 2, 3, · · · , n − 1;

(iii) f(bn) = [f(a1) + f(a2) +
∑n−1

j=1 f(bj)] + 1; and

(iv) f(ai) = f(a1) + f(a2) +
∑n

j=1 f(bj) +
∑i−1

j=3 f(aj) − 2 for i = 3, 4, · · · , m.

First, we evaluate f(G). Let s0, s1, · · · , sm+n−2 be a sequence defined by
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1 2 191 382 764

3 6 12 24 48 97

Figure 1: An IC-coloring of K5,6

(a) s0 = f(a1) + f(a2) = 3;

(b) si = f(bi) for i = 1, 2, · · · , n; and

(c) sn+i = f(ai+2) for i = 1, 2, · · · , m − 2.

Then, we have si =
∑i−1

j=0 sj + 0 for i = 1, 2, · · · , n − 1, sn =
∑n−1

j=0 sj + 1, and si =
∑i−1

j=0 sj − 2 for i = n + 1, n + 2, · · · , m + n − 2. By Lemma 2.2, we have

f(G) =
∑m

j=1 f(aj) +
∑n

j=1 f(bj)

=
∑m+n−2

j=0 sj = 2m+n−2s0 +
∑m+n−2

j=n+1 2(m+n−2)−j(−2) + 1 · 2(m+n−2)−n

= 3 · 2m+n−2 − 2(2m−2 − 1) + 2m−2 = 3 · 2m+n−2 − 2m−2 + 2.

It is left to show that f is an IC-coloring of G. For convenience, we rename the
vertices of G to be u1, u2, · · · , um+n such that f(u1) < f(u2) < · · · < f(um+n). By the
definition of f , we have f(u1) = f(a1) = 1 and f(ui) < f(ui+1) ≤

∑i

j=1 f(uj) + 1 for

i = 1, 2, · · · , m + n − 1. Then, by Lemma 2.1, for each k ∈ [1,
∑m+n

j=1 f(uj)] = [1, f(G)],

there is a binary sequence c1, c2, · · · , cm+n such that k =
∑m+n

j=1 cjf(uj).

Now, we will prove that there is an induced connected subgraph H of G such that
f(H) = k =

∑m+n

j=1 cjf(uj). Let S = {uj|cj = 1 and j ∈ [1, m + n]}. Clearly, we have
f(< S >G) = k where < S >G is the induced subgraph of G induced by S. Since k > 0,
S is nonempty. If < S >G is connected, then H = < S >G is desired. Otherwise, < S >G

is disconnected and thus S is an independent set of size at least two. Since G = (A, B)
is a complete bipartite graph, we also have S ⊆ A or S ⊆ B but not both. Note that
A = {u1, u2}

⋃
{uj|j ∈ [n + 3, m + n]} and B = {uj|j ∈ [3, n + 2]} by the definition of f .

To complete the proof, we consider the following four cases.

Case 1. {u1, u2} ⊆ S ⊆ A.
Let S1 = (S\{u1, u2}) ∪ {u3} and let H = < S1 >G. Then, H is connected and

f(H) = k − f(u1) − f(u2) + f(u3) = k.

the electronic journal of combinatorics 15 (2008), #R43 4



Case 2. u1 ∈ S, u2 /∈ S and S ⊆ A
Let ` = min{j|cj = 1 and j ≥ n + 3}. Then by the definition of f , we have f(u`) =

∑`−1
j=1 f(uj)−2. This implies that f(u`)+f(u1) =

∑`−1
j=2 f(uj)+2f(u1)−2 =

∑`−1
j=2 f(uj).

Let S1 = (S\{u1, u`}) ∪ {uj|j ∈ [2, ` − 1]}, and let H = < S1 >G. Then, H is connected

and f(H) = k − (f(u1) + f(u`)) +
∑`−1

j=2 f(uj) = k.

Case 3. u1 /∈ S and S ⊆ A.
Let ` = min{j|cj = 1 and j ≥ n + 3}. Then f(u`) =

∑`−1
j=1 f(uj) − 2 =

∑`−1
j=1 f(uj) −

f(u2) = f(u1)+
∑`−1

j=3 f(uj). Let S1 = (S\{u`})∪{u1, u3, u4, · · · , u`−1}, and H = < S1 >G.

Then, H is connected and f(H) = k − f(u`) + f(u1) +
∑`−1

j=3 f(uj) = k.

Case 4. S ⊆ B.
Let ` = min{j|cj = 1 and j ≥ 3}. Since |S| ≥ 2, we have 3 ≤ ` ≤ n − 1. By the

definition of f , f(u`) =
∑`−1

j=1 f(uj). Let S1 = (S\{u`}) ∪ {u1, u2, · · · , u`−1}. Then, H =

< S1 >G is connected and f(H) = k − f(u`) +
∑`−1

j=1 f(uj) = k. This concludes the
proof.

We remark here that we intend to prove that M(Km,n) is equal to the lower bound
obtained in Proposition 3.1. Therefore, we shall prove that the lower bound is also the
upper bound. First, we estimate the number of induced connected subgraphs of Km,n.

Proposition 3.2. Km,n has 2m+n − (2m +2n)+ (m+n+1) induced connected subgraphs.

Proof. Let G = (A, B) = Km,n. For any induced connected subgraph H, either |V (H)| =
1 or V (H) ∩ A 6= φ and V (H) ∩ B 6= φ. Therefore, the number of induced connected
subgraphs of Km,n is equal to (m + n) + (2m − 1)(2n − 1).

Note that the number of distinct induced connected subgraphs of G does provide a
natural upper bound for M(G). But, after an IC-coloring is given, we may have distinct
induced connected subgraphs which receive common values and thus the upper bound
will be smaller. In what follows, we obtain several properties of a maximal IC-coloring f
of Km,n.

Proposition 3.3. If f is a maximal IC-coloring of G = (A, B) = Km,n, then all the
colorings of vertices of G are distinct.

Proof. Suppose, to the contrary, there exist two distinct vertices u and v such that f(u) =
f(v). Now, depending on the distribution of u and v in A ∪ B, we have three cases to
consider: (1) u ∈ A and v ∈ B, (2) u, v ∈ A and (3) u, v ∈ B. Observe that if there exists
a set S ⊆ (A∪B)\{u, v} such that H1 = 〈S∪{u}〉G and H2 = 〈S∪{v}〉G are two induced
connected subgraphs of G, then f(H1) = f(H2). Therefore, the number α of such subsets
S gives the number of graph pairs which have the same function value. Then, by Lemma
2.6 and Proposition 3.2, we conclude that f(G) ≤ 2m+n − (2m + 2n) + (m + n + 1) − α.
So, α determines the upper bound of f(G).
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By direct counting, it is not difficult to see that there are (2m−1 − 1)(2n−1 − 1) + 1,
2m−2(2n − 1) + 1 and (2m − 1)2n−2 + 1 subsets S for the above three cases respectively to
produce graph pairs with the same function value. Thus,

f(G) ≤ 2m+n − (2m + 2n) + (m + n + 1)

−min{(2m−1 − 1)(2n−1 − 1) + 1, 2m−2(2n − 1) + 1, (2m − 1)2n−2 + 1}

= 2m+n − (2m + 2n) + (m + n + 1) − (2m+n−2 − 2m−1 − 2n−1 + 2)

< 3 · 2m+n−2 − 2m−2 + 2.

Hence, by Proposition 3.1, f is not a maximal IC-coloring, a contradiction. This concludes
the proof.

Now, we let G = (A, B) = Km,n, 2 ≤ m ≤ n, and let f be a maximal IC-coloring
of G. By Proposition 3.3, we may let f(ui) < f(ui+1) for i = 1, 2, · · · , m + n − 1.
where V (G) = {u1, u2, · · · , um+n}. For convenience, we also define fi =

∑i

j=1 f(uj) for
i = 1, 2, · · · , m+n. The following proposition is essential to the proof of the main theorem.

Proposition 3.4. Let f be a maximal IC-coloring of G = Km,n. Then, we have

(1) f(u1) = 1, f(u2) = 2 and f(u3) = 3 or 4, moreover, f(u3) = 3 if u1u2 ∈\ E(G).

(2) f4 ≤ 13 and equality holds only if < {u1, u2, u3, u4} >G
∼= K2,2.

(3) If j ∈ [5, m + n] and ujut ∈\ E(G) where t = 1 or 2, then f(uj) ≤ fj−1 − t.

(4) fj > 3 · 2j−2 − 2j−(n+2) − 1 for each j ∈ [1, m + n].

Proof. The conclusion of (1) and f4 ≤ 13 are easy to see, we assume that f4 = 13. We
claim that H = 〈{u1, u2, u3, u4}〉G ∼= K2,2. First, we need an inequality.

For each i ∈ [1, m + n] and each j ∈ [i, m + n], fj < 2j−i(fi + 1). . . . . . . . . . . . . . . . . (∗)

By Lemma 2.3, we have f(ui+k) ≤ fi+k−1 + 1 = fi +
∑k−1

`=1 f(ui+`) + 1 for each
k ∈ [1, m + n− i]. Then considering the sequence fi, f(ui+1) · · · , f(uj) in Lemma 2.2, we
obtain

fj =
∑j

k=1 f(uk) = fi +
∑j−i

k=1 f(ui+k) ≤ 2j−ifi + (2j−i − 1) < 2j−i(fi + 1).

Therefore, we have (∗). Now, we are ready for the proof of (2).
Note that f(ui1) =

∑i1−1
j=1 f(uj) + 1 for i1 = 1 or 2. Suppose that f4 = 13 and H is

not isomorphic to K2,2. Since G is a complete bipartite graph, H is ismorphic to either
K1,3 or I4 (an independent set of size 4).
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Case 1. u1u2 /∈ E(G).

By (1), f(u3) = 3 > f2 − f(u1). If {u1, u2, u3} is an independent set, then f(u4) ≤
f(u3) + f(u1) = 4 by Lemma 2.4. This contradicts to the assumption that f4 = 13.
Hence, u3u1 ∈ E(G) and u3u2 ∈ E(G). By the assumption, f(u4) = 7 > f3 − f(u1) and
{u1, u2, u4} is an independent set. If m + n = 4, then we have a contradiction to that
f is an IC-coloring of G by Lemma 2.4. Otherwise, m + n ≥ 5 and hence n ≥ 3. By
Lemma 2.4, f(u5) ≤ f(u1)+f(u4) = 8. This implies that f5 ≤ 21. Hence, by (∗), we have

f(G) < 2m+n−5(f5 + 1) = 2m+n−5 · 22 < 24 · 2m+n−5 − 2m+n−5

≤ 3 · 2m+n−2 − 2m−2 + 2.

By Proposition 3.1, it contradicts to that f is a maximal IC-coloring of G.

Case 2. u1u2 ∈ E(G).

Since G is a complete bipartitle graph, either u3u1 /∈ E(G) or u3u2 /∈ E(G). If
u1u3 /∈ E(G), we have f(u4) ≤ f(u1) + f(u3) ≤ 5 by (1) and Lemma 2.4. This implies
that f4 ≤ 12. This is a contradiction to our assumption. Hence, u2u3 /∈ E(G) and so
f(u4) ≤ f(u2) + f(u3) ≤ 6 by (1) and Lemma 2.4. Also, by our assumption, it is easy
to see that f(u3) = 4, f(u4) = 6 > f3 − f(u2) and {u2, u3, u4} is an independent set. By
Lemma 2.4, f(u5) ≤ f(u2) + f(u4) = 8. This implies that f5 ≤ 21. Then by (∗) in Case
1, we have f(G) < 3 · 2m+n−2 − 2m−2 + 2, a contradiction. Hence, (2) is proved. Next, we
prove (3). Since t = 2 is a similar case, we prove the case t = 1.

Suppose, to the contrary, that f(uj) > fj−1−1 = fj−1−f(u1) for some j ∈ [5, m+n].
Then by Lemma 2.4, if j = m + n, then f is not an IC-coloring of G and we are done.
Otherwise, f(uj+1) ≤ f(uj) + f(u1) = f(uj) + 1. By (∗), we have

fj ≤ 2j−4(f4 + 1) − 1 = 14 · 2j−4 − 1 and fj−1 ≤ 2j−5(f4 + 1) − 1 ≤ 14 · 2j−5 − 1.

This implies that

fj+1 = fj + f(uj+1) ≤ fj + f(uj) + 1 ≤ fj + fj−1 + 2

≤ (14 · 2j−4 − 1) + (14 · 2j−5 − 1) + 2 = 21 · 2j−4.

Since j ≥ 5 and n ≥ 2, we have

f(G) < 2m+n−(j+1)(fj+1 + 1) ≤ 2m+n−(j+1)(22 · 2j−4)

= 3 · 2m+n−2 − 2m+n−4 < 3 · 2m+n−2 − 2m−2 + 2.
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By Proposition 3.1, it contradicts to the assumption that f is a maximal IC-coloring of
G and we have the proof of (3). Finally, we prove (4).

Suppose that fj ≤ 3 · 2j−2− 2j−(n+2) − 1 for some j ∈ [1, m+n]. Then by (∗), we have

f(G) = fm+n < 2m+n−j(fj + 1) ≤ 2m+n−j(3 · 2j−2 − 2j−(n+2))

< 3 · 2m+n−2 − 2m−2 + 2.

This is a contradiction and we have the proof of (4).

Theorem 3.5. M(Km,n) = 3 · 2m+n−2 − 2m−2 + 2 for 2 ≤ m ≤ n.

Proof. Let G = Km,n, V (G) = {u1, u2, · · · , um+n} and f be a maximal IC-coloring of
G. Since M(Km,n) ≥ 3 · 2m+n−2 − 2m−2 + 2 by Proposition 3.1, it sufficies to show
that M(Km,n) ≤ 3 · 2m+n−2 − 2m−2 + 2 . From (2) of Proposition 3.4, it is true for
m = n = 2. So, assume that n ≥ 3. By Proposition 3.3, we may let f(ui) < f(ui+1)
for i ∈ [1, m + n − 1]. For convenience of calculation, we also let fi =

∑i

`=1 f(u`) for
i ∈ [1, m + n] and f(ui+`) = fi+`−1 + r` for ` ∈ [1, m + n − i]. By Lemma 2.3, we have
r` ≤ 1 for ` ∈ [1, m + n − i]. Now, by Lemma 2.2, we have

fi+j =
∑i+j

`=1 f(u`) = fi +
∑j

`=1 f(ui+`) = 2jfi +
∑j

`=1 2j−`r`. . . . . . . . . . . . . . . . . . . . (∗′)

This implies that (by letting i = 4)

f(G) = fm+n = f4+(m+n−4) = 2m+n−4f4 +
∑m+n−4

`=1 2m+n−4−`r`. . . . . . . . . . . . . . . . . . (∗′′)

First, if u1u2 ∈ E(G), then either u4+`u1 /∈ E(G) or u4+`u2 /∈ E(G) (but not both)
for each ` ∈ [1, m + n − 4]. Since f is a maximal coloring, by (3) of Proposition 3.4.
we have f(uj) ≤ fj−1 − t provided j ∈ [5, m + n] and ujut /∈ E(G) where t = 1 or
2. This implies r` ≤ −1 or −2 depending on t = 1 or 2. Thus, by (∗′′), we have
f(G) ≤ 2m+n−4 · f4 +

∑m+n−4
`=1 2m+n−4−` · (−1). Now, in case that f4 ≤ 12, f(G) ≤

3 · 2m+n−2 − (2m+n−4 − 1) ≤ 3 · 2m+n−2 − 2m−2 + 2. On the other hand, f4 = 13 and the
graph H induced by 〈{u1, u2, u3, u4}〉G is isomorphic to K2,2 by (2) of Proposition 3.4.
Clearly, there are m − 2 vertices in one partite set of G − H and n − 2 vertices in the
other partite set. Therefore, since n − 2 ≥ m − 2,

f(G) ≤ 2m+n−4 · f4 +
∑n−2

j=1 2m+n−4−j · (−1) +
∑m+n−4

j=n−1 2(m+n−4)−j · (−2) ( by (∗′′))

= 13 · 2m+n−4 + (−1)[2m+n−4 − 1] + (−1)[2m−2 − 1]

= 3 · 2m+n−2 − 2m−2 + 2.

Hence, we have the proof. In what follows, we assume that u1u2 /∈ E(G). By (1) and
(2) of Proposition 3.4, we have f(u3) = 3 and 4 ≤ f(u4) ≤ 7. If f(u4) = 4, then since
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n ≥ 3, we have f4 = 10 ≤ 3 · 24−2 − 24−(n+2) − 1. This is a contradiction to that f is
a maximal IC-coloring of G by (4) of Proposition 3.4. Hence, 5 ≤ f(u4) ≤ 7. First, we
claim that H is isomorphic to K2,2. Suppose not. If {u1, u2, u3} is an independent set,
then by Lemma 2.4 and f(u3) = 3 > f2 − f(u1), we have f(u4) ≤ f(u1) + f(u3) = 4, a
contradiction. Hence, u3 is adjacent to u1 and u2. Thus, {u1, u2, u4} must be an indepen-
dent set. Since f(u4) ≥ 5 > 4 = f3−f(u2), we have f(u5) ≤ f(u2)+f(u4) ≤ 9 by Lemma
2.4. This implies f5 ≤ 22 ≤ 3 · 25−2 − 25−(n+2) − 1 and we have a contradiction by (4)
of proposition 3.4. So, H ∼= K2,2 = (A, B) where A = {u1, u2} and B = {u3, u4}. Now,
let V1 = {v ∈ V (G)\V (H)|vu2 /∈ E(G)} and V2 = {v ∈ V (G)\V (H)|vu4 /∈ E(G)}. Then
{V1, V2} is a partition of V (G)\V (H) such that |V1| = n−2, |V2| = m−2 or |V1| = m−2,
|V2| = n− 2. Then by (3) of Proposition 3.4, r` ≤ −2 in (∗′′) if u4+` ∈ V1. Now, the proof
follows by considering the following two cases.

Case 1. 5 ≤ f(u4) ≤ 6.

Clearly, we have f4 ≤ 12. If for each uk ∈ V2, f(uk) ≤ fk−1, then r` ≤ 0 provided that
u4+` ∈ V2 in (∗′′). By Lemma 2.5 and (∗′′), we have

f(G) ≤ 2m+n−4f4 +
∑n−2

j=1 2m+n−4−j · 0 +
∑m+n−4

j=n−1 2m+n−4−j · (−2)

= 2m+n−4 · 12 + (2m−2 − 1) · (−2) ≤ 3 · 2m+n−2 − 2m−2 + 2.

Otherwise, there exists a uk ∈ V2 such that f(uk) = fk−1 +1. Let i be the smallest integer
such that f(ui) = fi−1 + 1 and ui ∈ V2. Then for each k ∈ [5, i − 1], rk−4 ≤ 0 in (∗′).
This implies that fi−1 = f4+(i−5) ≤ 2i−5f4 ≤ 3 × 2i−3. Again, by (4) of Proposition 3.4,
we have fi−1 > 3 · 2i−3 − 2i−(n+3) − 1. This implies that

3 · 2i−3 − 2i−(n+3) < f(ui) ≤ 3 × 2i−3 + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (∗∗)

Moreover, let |V2| = t. We claim that i = max{k|vk ∈ V2}. Suppose not. Let j be the
smallest positive integer such ui+j ∈ V2. Then i + j ≤ m + n and by Lemma 2.4, either
f(ui+j) ≤ fi+j−1 − f(ui) or f(ui+j+1) ≤ f(ui) + f(ui+j) when i + j + 1 ≤ m + n.

First, if f(ui+j) ≤ fi+j−1 − f(ui), then, for j = 1, f(ui+1) ≤ fi − f(ui) = fi−1 <
f(ui). This contradicts to the definition of f . Hence j ≥ 2. This implies that for
k ∈ [i + 1, i + j − 1], uk ∈ V1 and rk−i ≤ −2 in (∗′) by (3) of Proposition 3.4. Therefore,
by Lemma 2.5, (∗′) and (∗∗),

fi+j−1 ≤ 2j−1 · fi +
∑j−1

`=1 2(j−1)−` · (−2) = 2j−1[fi−1 + f(ui)] − 2(2j−1 − 1)

≤ 2j−1(3 · 2i−2 + 1) − 2(2j−1 − 1) = 3 · 2i+j−3 − 2j−1 + 2. . . . . . . . . . . . . . . . (∗∗′)

Again, by (∗∗), (∗∗′) and the fact i ≥ 5, we also have
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fi+j = fi+j−1 + f(ui+j) ≤ fi+j−1 + fi+j−1 − f(ui)

≤ 2(3 · 2i+j−3 − 2j−1 + 2) − (3 · 2i−3 − 2i−(n+3))

= 3 · 2i+j−2 − 2j − 3 · 2i−3 + 2i−(n+3) + 4

≤ 3 · 2i+j−2 − 2j − 2i−3 − 1

= 3 · 2i+j−2 − 2(i+j)−i − 2(i+j)−(j+3) − 1.

Since i + (j + 3) ≤ m + n + 3 ≤ 2n + 3, either i < n + 2 or j + 3 < n + 2. This implies
fi+j ≤ 3 · 2(i+j)−2 − 2(i+j)−(n+2) − 1 and we have a contradiction by (4) of Proposition 3.4.

On the other hand, if f(ui+j+1) ≤ f(ui)+ f(ui+j), then by (∗∗), (∗∗′) and Lemma 2.3,

fi+j+1 = fi+j−1 + f(ui+j) + f(ui+j+1) ≤ fi+j−1 + f(ui+j) + [f(ui) + f(ui+j)]

≤ fi+j−1 + 2(fi+j−1 + 1) + f(ui) = 3fi+j−1 + f(ui) + 2.

≤ 3(3 · 2i+j−3 − 2j−1 + 2) + 3 · 2i−3 + 3

= 9 · 2i+j−3 − 3 · 2j−1 + 3 · 2i−3 + 9.

Since i ≥ 5 and j ≥ 2, we have 2i+j−3 ≥ −3 · 2j−1 + 10 and 2i+j−3 ≥ 3 · 2i−3. This implies
fi+j+1 ≤ 11 · 2i+j−3 − 1 ≤ 3 · 2(i+j+1)−2 − 2(i+j+1)−(n+2) − 1. Again, this is not possible.
Hence, we have the claim i = max{k|vk ∈ V2}.

Now, since i = max{k|uk ∈ V2}, we have i− 4 ≥ t ≤ n− 2 and r`−4 ≤ 0 provided that
u` ∈ V2 and ` 6= i in (∗′′). By Lemma 2.5 and (∗′′), we have

f(G) ≤ 2m+n−4f4 +
∑t−1

j=1 2m+n−4−j · 0 + 2m+n−4−t · 1 +
∑m+n−4

j=t+1 2m+n−4−j · (−2)

= 2m+n−4 · 12 + 2m+n−4−t − 2(2m+n−4−t − 1) = 3 · 2m+n−2 − 2m+n−4−t + 2

≤ 3 · 2m+n−2 − 2m+n−4−(n−2) + 2 = 3 · 2m+n−2 − 2m−2 + 2.

Case 2. f(u4) = 7.
Review that V1 = {v ∈ V (G)\V (H)|vu2 /∈ E(G)} and V2 = {v ∈ V (G)\V (H)|vu4 /∈

E(G)}. Clearly, f4 = 13. Now, if V2 = ∅, then r` ≤ −2 for each ` ∈ [1, m + n− 4] in (∗′′).
By Lemma 2.5 and (∗′′), we have

f(G) ≤ 2m+n−4f4 +
∑m+n−4

j=1 2m+n−4−j(−2) = 13 · 2m+n−4 − 2(2m+n−4 − 1)

≤ 3 · 2m+n−2 − 2m−2 + 2.
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Otherwise, V2 6= ∅. Let i = min{j|uj ∈ V2}. Clearly i ≥ 5. Since uk ∈ V1 for k ∈ [5, i−1],
rk−4 ≤ −2 for k ∈ [5, i − 1] in (∗′). By Lemma 2.5 and (∗′), we have

fi−1 = f4+(i−5) ≤ 2i−5f4 +
∑i−5

j=1 2i−5−j(−2) = 11 · 2i−5 + 2. . . . . . . . . . . . . . . . . . . (∗ ∗ ∗)

If m + n = 5, then by Lemma 2.4, f(u5) ≤ f4 − f(u4) = 13 − 7 = 6 < f(u4), which is
impossible. Hence, consider m+n ≥ 6. Again, by Lemma 2.4, either f(ui) ≤ fi−1−f(u4)
or f(ui+1) ≤ f(ui) + f(u4) when i + 1 ≤ m + n. First, if f(ui) ≤ fi−1 − f(u4), then
fi = fi−1 + f(ui) ≤ 2fi−1 − f(u4). By (∗) and (∗ ∗ ∗),

f(G) < 2m+n−i(fi + 1) ≤ 2m+n−i[2fi−1 − f(u4) + 1] ≤ 2m+n−i[11 · 2i−4 − 2]

≤ 11 · 2m+n−4 ≤ 3 · 2m+n−2 − 2m−2 + 2.

On the other hand, if f(ui+1) ≤ f(ui) + f(u4), then by (∗ ∗ ∗), we have

fi+1 = fi−1 + f(ui) + f(ui+1) ≤ fi−1 + f(ui) + [f(ui) + f(u4)]

≤ fi−1 + 2(fi−1 + 1) + f(u4) = 33 · 2i−5 + 15.

If i ≥ 6, then by (∗), we have

f(G) < 2m+n−(i+1)(fi+1 + 1) ≤ 2m+n−(i+1)(33 · 2i−5 + 16)

= 33 · 2m+n−6 + 16 · 2m+n−(i+1) ≤ 33 · 2m+n−6 + 16 · 2m+n−7

= 41 · 2m+n−6 < 3 · 2m+n−2 − 2m−2 + 2.

Therefore, the case left to check is that i = 5. First, we evaluate f(u6) and f6. By
assumption and Lemma 2.3, f(u6) ≤ f(u5) + f(u4) ≤ (f4 + 1) + f(u4) = 21, and
f6 = f4 + f(u5) + f(u6) ≤ f4 + (f4 + 1) + f(u6) ≤ 48. Now, if there exist a k′ ≥ 7
such that uk′ ∈ V2. Let ` = min{j ≥ 7|uj ∈ V2}. Then for each k ∈ [7, `− 1], uk ∈ V1 and
hence rk−6 ≤ −2 in (∗′). By Lemma 2.5 and (∗′), we have

f`−1 ≤ 2`−7f6 +
∑`−7

j=1 2`−7−j(−2) ≤ 46 · 2`−7 + 2.

Also, by Lemma 2.4, either f(u`) ≤ f`−1 − f(u4) or f(u`+1) ≤ f(u`) + f(u4) when
` + 1 ≤ m + n. First, if f(u`) ≤ f`−1 − f(u4), then

f` = f`−1 + f(u`) ≤ 2f`−1 − f(u4) ≤ 92 · 2`−7 − 3

≤ 96 · 2`−7 − 2`−5 − 3 ≤ 3 · 2`−2 − 2`−(n+2) − 1.
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This is a contradiction. On the other hand, if f(u`+1) ≤ f(u`) + f(u4), then since ` ≥ 7,
we have

f`+1 = f`−1 + f(u`) + f(u`+1) ≤ f`−1 + 2f(u`) + f(u4)

≤ f`−1 + 2(f`−1 + 1) + f(u4) ≤ 3 · (46 · 2`−7 + 2) + 9

= 69 · 2`−6 + 8 · 2 − 1 ≤ 77 · 2`−6 − 1

≤ 96 · 2`−6 − 16 · 2`−6 − 1 ≤ 3 · 2(`+1)−2 − 2(`+1)−(n+2) − 1.

We also have a contradiction.
This implies that uk ∈ V1 for each k ∈ [7, m + n] . Therefore, rk−6 ≤ −2 for each

k ∈ [7, m + n] in (∗′). By Lemma 2.5 and (∗′), we have

f(G) = f6+(m+n−6) ≤ 2m+n−6f6 +
∑m+n−6

j=1 2m+n−6−j(−2)

≤ 48 · 2m+n−6 − 2(2m+n−6 − 1) ≤ 3 · 2m+n−2 − 2m−2 + 2.
This concludes the proof of the theorem.
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