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Abstract. Renner has defined an order on the set of partial injective functions from
[n] = {1, . . . , n} to [n]. This order extends the Bruhat order on the symmetric group.
The poset Pn obtained is isomorphic to a set of square matrices of size n with its natural
order. We give the smallest lattice that contains Pn. This lattice is in bijection with
the set of alternating matrices. These matrices generalize the classical alternating sign
matrices. The set of join-irreducible elements of Pn are increasing functions for which the
domain and the image are intervals.
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1 Introduction

The symmetric group Sn, the set of bijective functions from [n] into itself, with the Bruhat
order is a poset; it is not a lattice. In [5], Lascoux and Schützenberger show that the
smallest lattice that contains Sn as a subposet is the lattice of triangles; this lattice is in
bijection with the set of alternating sign matrices. The main objective of this paper is to
construct the smallest lattice that contains the poset Pn of the partial injective functions,
partial meaning that the domain is a subset of {1, . . . , n}.

In section 2, we give the theory on the construction for a finite poset P of the small-
est lattice, noted L(P ), which contains P as a subposet. We give also results [9] on
join-irreducible and upper-dissector elements of a poset : L(P ) is distributive iff a join-
irreducible element of P is exactly an upper-dissector element of P . We will show in
section 4.4 that L(Pn) is distributive.

In section 3.1, we give the definition of the set Pn with its order, due to Renner. This
order extends the Bruhat order on Sn. In section 3.2, we associate to f ∈ Pn a matrix
over {0, . . . , n}. In section 3.3, we give two posets of matrices RGn and Rn, the elements
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of Rn ⊆ RGn being the matrices defined in section 3.2, for which the order is the natural
order. We show that Pn and Rn are in bijection. In section 3.4, we show that Pn and
Rn are isomorphic posets : it is one of the main results of this article. Thus L(Pn) and
L(Rn) are isomorphic lattices.

In section 4.1, after having observed that RGn is a lattice, see [3], we show that Rn is
not a lattice and we see that L(R2) = RG2. In sections 4.2 and 4.3, we define the matrices
Br,s,a,n and the matrices Cr,s,a,n which are ∈ Rn; we show that all matrices of RGn are the
sup of matrices Br,s,a,n and the inf of matrices Cr,s,a,n; thus L(Rn) = RGn : it is another
one of the main results of this article. In sections 4.4, we show that the matrices Br,s,a,n

are the join-elements and the upper-elements of Rn : thus RGn is distributive; we show
also that the matrices Cr,s,a,n are the meet-elements of RGn. In section 4.5, we obtain
the the join-elements and the meet-elements of Pn. In section 4.6, we give a morphism of
poset of Pn to S2n : we may see Pn as a subposet of S2n.

In section 5.1, we define the notion of a rectrice (and corectrice) which has been
introduced by Lascoux and Schützenberger in [5]. A matrix A ∈ RGn is the sup of its
rectrices, a rectrice of A being a Br,s,a,n matrix X with no Br,s,a,n matrix strictly between
X and A. In sections 5.2 and 5.3, we present the notions of Key and generalized Key :
the keys and triangles we have in [5] are Keys and generalized Keys with no zero entry.
The Keys form a poset Kn, the generalized Keys form a lattice KGn and we have :
L(Kn) = KGn. In section 5.4, we show that Pn and Kn are isomorphic posets : so RGn

and KGn are isomorphic lattices. We describe this isomorphism A 7→ K(A) : we find the
rectrices of A and we obtain the rectrices of K(A).

In section 6.1, we show that there is a bijection between RGn and the set of alternating
matrices Atn (which contains the classical alternating sign matrices). In section 6.2, we
show that there is a bijection between Atn and KGn : we obtain then a bijection between
RGn and KGn. We show in section 6.3 that this bijection is an isomorphism of lattice.

This article is written from a PhD thesis [3] for which the director was Christophe
Reutenauer.

2 Preliminaries on posets and MacNeille completion

Let φ : P → Q be a function between two posets. We say that φ is a morphism of poset
if x ≤P y ⇔ φ(x) ≤Q φ(y). Note that φ is necessarily injective. We say also that φ is an
embedding of P into Q.

All posets P considered here are finite with elements 0 and 1 such that: ∀x ∈ P, 0 ≤
x ≤ 1.

MacNeille [7] gave the construction for a poset P of a lattice L(P ) which contains P
as a subposet. We find this construction in [2]. We define :

∀X ⊆ P : X− = {y ∈ P | ∀x ∈ X, y ≥ x}; X+ = {y ∈ P | ∀x ∈ X, y ≤ x}

L(P ) = {X ⊆ P | X−+ = X}, with Y ≤ Z ⇔ Y ⊆ Z
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Theorem 2.1 ([2], theorem 2.16) L(P ) is a lattice :

∀X ∈ L(P ), X ∧ Y = (X ∩ Y )−+ = X ∩ Y ; X ∨ Y = (X ∪ Y )−+

We simply write x− for {x}−; and x+ for {x}+. We define :

ϕ : P → L(P ), x 7→ x+

Theorem 2.2 ([2], theorem 2.33)
(i) ϕ is an embedding of P into L(P );
(ii) if X ⊆ P and ∧X exists in P, then ϕ(∧X) = ∧(ϕ(X));
(iii) if X ⊆ P and ∨X exists in P, then ϕ(∨(∧X) = ∨(ϕ(X)).

Theorem 2.3 ([2], theorem 2.36 (i)) ∀X ∈ L(P ) :

∃ Q, R ⊆ P such that X = ∨(ϕ(Q)) = ∧(ϕ(R)).

We give now some general properties of embeddings of posets into lattices, which allow
to characterize the MacNeille completions and which will be used in the sequel.

Theorem 2.4
(i) Let P be a finite poset;
(ii) let be f an embedding of P into a lattice T;
(iii) let g be an embedding of P into a lattice S, such that :

∀s ∈ S, s = ∨{g(x) | x ∈ P and g(x) ≤ s}
= ∧{g(x) | x ∈ P and g(x) ≥ s}};

then T contains S as a subposet : more precisely there is an embedding h of S into T
such that h ◦ g = f , where h is defined by :

h : S → T, s 7→ ∨T {f(x) | x ∈ P and g(x) ≤ s}.

Lemma 2.5 ([2], Lemma 2.35) Let f be an embedding of a finite poset P into a lattice
S, such that : ∀s ∈ S, ∃ Q, R ⊆ P such that s = ∨(f(Q)) = ∧(f(R)); then

∀s ∈ S, s = ∨{f(x) | x ∈ P and f(x) ≤ s}
= ∧{f(x) | x ∈ P and f(x) ≥ s}}.

Theorem 2.6 Let P be a finite poset; then L(P) is the smallest lattice that contains P
as a subposet. More precisely, if f an embedding of P into a lattice T, then card(L(P)) ≤
card(T).

Theorem 2.7 ([2], Theorem 2.33 (iii)) Let P be a finite poset; let f be an embedding
of P into a lattice S, such that :

∀s ∈ S, ∃Q, R ⊆ P such that s = ∨(f(Q)) = ∧(f(R));

then the lattices L(P) and S are isomorphic.
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In the Appendix, we give a proof of Theorems 2.4, 2.6 and 2.7, since the statements
of Theorems 2.4 and 2.6 in [2] are slightly different, and for the reader’s convenience.

An element x ∈ P is join-irreducible if ∀Y ⊆ P, x ∈/ Y ⇒ x 6= sup(Y ). The set of
join-irreducibles is denoted B(P ) and is called the base of P in [5]. We have : x ∈ B(P )
iff ∀y1, . . . , yn ∈ P, x = y1 ∨ . . . ∨ yn ⇒ ∃i, x = yi.

An element x ∈ P is meet-irreducible if ∀Y ⊆ P, x ∈/ Y ⇒ x 6= inf(Y ). The set of
meet-irreducibles is denoted C(P ) and is called the cobase of P in [5]. We have : x ∈ C(P )
iff ∀y1, . . . , yn ∈ P, x = y1 ∧ . . . ∧ yn ⇒ ∃i, x = yi.

An element x ∈ P is an upper-dissector of P if ∃ an element of P , denoted β(x), such
that P −x− = β(x)+. The set of upper-dissectors is denoted Cl(P ). An element ∈ Cl(P )
is called clivant in [5].

Theorem 2.8 ([9], Proposition 12) Cl(P ) ⊆ B(P ).

P is dissective if Cl(P ) = B(P ).

Theorem 2.9 ([9], Proposition 28) B(P ) = B(L(P )); Cl(P ) = Cl(L(P )).

Theorem 2.10 ([9]) If P is a lattice then x ∈ B(P ) iff x is the immediate successor of
one and only one element of P.

Theorem 2.11 ([9], Theorem 7) L(P) is distributive iff P is dissective.

3 Partial injective functions

3.1 Definition

A function f : X ⊆ [n] = {1, ..., n} → [n] is called a partial injective function. Let Pn be
the set of partial injective functions. If i ∈ [n] − dom(f), we write f(i) = 0. So we can
represent f by a vector : f =

(

f(1) f(2) . . . f(n)
)

.

We define an order on Pn. This order is a generalization of the Bruhat order of Sn,
the poset of bijective functions f : [n] → [n]. Let f, g ∈ Pn; we write f → g if :

1) ∃ i ∈ [n] such that

a) f(j) = g(j) ∀ j 6= i

b) f(i) < g(i)

or

2) ∃ i < j ∈ [n] such that

a) f(k) = g(k) ∀ k 6= i, j

b) g(j) = f(i) < f(j) = g(i)

This definition is due to Pennell, Putcha and Renner: see [10], sections 8.7 and 8.8.
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Example 3.1
(

3 0 2 0 5
)

→
(

3 0 4 0 5
)

→
(

3 1 4 0 5
)

→
(

3 1 4 5 0
)

→
(

3 5 4 1 0
)

.

A pair (i, j) is called an inversion of f ∈ Pn if i < j and f(i) > f(j). We note inv(f)
the set of inversions of f .

Example 3.2 inv
(

3 1 0 5 0
)

= {(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}.

To any f ∈ Pn, we define the length L(f) = card(inv(f)) +
∑n

k=1 f(k). L(f) is the
number of inversions of f + the sum of the values of f .

We have : f → g ⇒ L(f) < L(g). So we can define a partial order on Pn : f ≤ g ⇔
∃ m ≥ 0 and g0, . . . , gm ∈ Pn such that f = g0 → g1 → . . . → gm = g.

∀f ∈ Pn, we have :

0Pn
=

(

0 . . . 0
)

≤ f ≤
(

n n − 1 . . . 1
)

= 1Pn

0 = L(0Pn
) ≤ L(f) ≤ L(1Pn

) =
n(n − 1)

2
+

n(n + 1)

2
= n2

The maximum element of Pn is not the identity map of [n].

3.2 Diagram

To any f ∈ Pn, we associate its graph, which is the subset of all points (i, f(i)) in
{1, . . . , n}×{0, . . . , n}, where i is the number of the row and j the number of the column.
We represent each point by a cross × and we obtain what we call the planar representation
of f .

To any f ∈ Pn, we associate its north-east diagram NE(f) : the planar representation
of f is a part of NE(f); in addition, we put in each square [i, i + 1] × [j, j + 1] ⊆
[0, n + 1] × [0, n + 1], 0 ≤ i, j ≤ n, the number of × that lie above and to the right, i.e.,
in the north-east sector, of the square. We note this number NE(f)([i, i + 1] × [j, j + 1])
and we have :

NE(f)([i, i + 1] × [j, j + 1]) = card{k ≤ i | f(k) > j}

Example 3.3 f =
(

3 0 2 4 1
)

NE(f) =

0 1 2 3 4 5

1 · · · × · ·
2 × · · · · ·
3 · · × · · ·
4 · · · · × ·
5 · × · · · ·

0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
2 2 1 0 0 0
3 3 2 1 0 0
4 3 2 1 0 0

And finally, to any f ∈ Pn, we associate a square matrix of size n M(f). The entries
of M(f) are numbers in the squares of NE(f). Precisely, M(f)[i, j] = NE(f)([i, i + 1]×
[j − 1, j]), i, j = 1, . . . , n.
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Example 3.4 f =
(

3 0 2 4 1
)

M(f) =













1 1 1 0 0
1 1 1 0 0
2 2 1 0 0
3 3 2 1 0
4 3 2 1 0













3.3 The sets of matrices Rn and RGn

We define two sets of matrices RGn and Rn, and we will show that Rn = {M(f) | f ∈ Pn}.
RGn is a set of square matrices of size n with entries ∈ {0, 1, ..., n}. We consider that

A ∈ RGn has a row, numbered 0, and a column, numbered n + 1, of zeros. A ∈ RGn if
1) the rows of A, from left to right, are decreasing, ending by 0 in column n + 1; 2) the
columns of A, from top to bottom, are increasing, starting by 0 in row 0; and 3) any two
adjacent numbers on a row or on a column are equal or differ by 1.

Example 3.5









1 1 0 0
2 1 1 1
3 2 1 1
3 2 2 1









A =

0 0 0 0 0
0
0
0
0

∈ RG4

We say that A ∈ RGn has the pattern

a11 . . . a1p

...
...

am1 . . . amp

in position r, s if A[r, s] =

a11, . . . , A[r, s + p− 1] = a1p, . . . , A[r + m− 1, s] = am1, . . . , A[r + m− 1, s + p− 1] = amp.
a a

a + 1 a
is called plus pattern;

a + 1 a
a + 1 a + 1

is called minus pattern;

a a
a a

,
a a

a + 1 a + 1
,

a + 1 a
a + 1 a

,
a + 1 a
a + 2 a + 1

are called zero pattern.

The next two lemmas will be proved later.

Lemma 3.6 If A ∈ RGn has plus patterns (or minus patterns) in position r1, s and r2, s,
with r1 < r2, then ∃ r′, r1 < r′ < r2 such that A has a minus pattern (respectively plus
pattern) in position r′, s;

if A ∈ RGn has plus patterns (or minus patterns) in position r, s1 and r, s2, with
s1 < s2, then ∃ s′, s1 < s′ < s2 such that A has a minus pattern (respectively plus pattern)
in position r, s′.

We rephrase this lemma by saying that the patterns plus and minus, horizontally and
vertically, alternate in a matrix A ∈ RGn.
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Lemma 3.7 ∀A ∈ RGn, A[r, s] = the number of plus patterns - the number of minus
patterns that lie above and to the right of the position r,s.

We define Rn by saying that A ∈ Rn ⊆ RGn if A does not have any minus pattern.

Theorem 3.8 ∀f ∈ Pn, M(f) ∈ Rn.

Proof : NE(f)([r, r + 1] × [s − 1, s]) = NE(f)([r, r + 1] × [s, s + 1]) + 1 (= a+1 in the
diagram below) iff there is a × above, i.e., ∃r′ ≤ r such that f(r′) = s :

NE(f) =

s
· ·
r′ . . . ×
· ·
r . . . ·

a + 1 a

It follows that M(f) does not have any minus pattern because
M(f)[r, s] = M(f)[r, s + 1] + 1 ⇒ M(f)[r + 1, s] = M(f)[r + 1, s + 1] + 1. This means
M(f) ∈ Rn. Q.E.D.

To any A ∈ Rn, we associate fA = {(r, s) ∈ [n]× [n] | A has a plus pattern in position
r − 1, s}.

Theorem 3.9 ∀A ∈ Rn, fA ∈ Pn and M(fA) = A.

Proof : fA ∈ Pn because, see lemma 3.6, the plus patterns and the minus patterns,
horizontally and vertically, alternate and because A does not have any minus pattern.

We have, see lemma 3.7, that A[r, s] is the number of plus patterns that lie above and
to the right of the position r, s. NE(fA)([r, r +1]× [s− 1, s]) = M(fA)[r, s] is the number
of × that lie above and to the right of the square [r, r + 1]× [s− 1, s]. Thus M(fA) = A.
Q.E.D.

Example 3.10

If A = then fA = (3, 1, 5, 0, 2)













1 1 1 0 0
2 1 1 0 0
3 2 2 1 1
3 2 2 1 1
4 3 2 1 1













0 0 0 0 0 0

0
0

0
0
0

3.4 Isomorphism between Pn and Rn

We consider the natural partial order on RGn :

∀A, B ∈ RGn, A ≤ B ⇔ A[i, j] ≤ B[i, j] ∀i, j
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To any couple (f, g), f, g ∈ Pn, we associate its north-east diagram NE(f, g) : the
planar representation of f , with a × for the point (i, f(i)), and the planar representation
of g, with a � for the point (i, g(i)), are parts of NE(f, g)); in addition, we put in each
square [i, i + 1] × [j, j + 1] ⊆ [0, n + 1] × [0, n + 1], 0 ≤ i, j ≤ n, the number of � - the
number of × that lie above and to the right, i.e., in the north-east sector, of the square.
We note this number NE(f, g)[i, i + 1] × [j, j + 1] and we have :

NE(f, g)[i, i + 1] × [j, j + 1] = card{k ≤ i | g(k) > j} − card{k ≤ i | f(k) > j}

Example 3.11 f = (3, 0, 2, 4, 1) and g = (3, 4, 5, 0, 0) :

NE(f, g) =

1 · · · ⊗ · ·
2 × · · · � ·
3 · · × · · �
4 � · · · × ·
5 � × · · · ·

0 1 2 3 4 5

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
1 1 2 2 1 0
0 0 1 1 1 0
−1 0 1 1 1 0

Observe that the squares sharing a common edge have the same value or differ by ±1
following the rules, called rules of passage:

×

i i + 1

·
·
·
·

×

i i + 1

·
·
·
·
�

�

i + 1 i

·
·
·
·

�

i + 1 i

·
·
·
·
×

�
i + 1

i
×· · · · ×

i
i + 1

�· · · ·

We show that Pn and Rn are isomorphic posets. The idea of the proof is essentially
the idea of the proof of Proposition 7.1 of [4].

Theorem 3.12 ∀f, g ∈ Pn, f ≤Pn
g ⇔ M(f) ≤Rn

M(g).

Proof : (⇒) It is easy to see : f → g in Pn ⇒ M(f) <Rn
M(g). Hence the implication

follows.

(⇐) Suppose M(f) < M(g). We show : ∃f ′ ∈ Pn such that f < f ′ and M(f ′) ≤ M(g).
We conclude by induction that f < g.

1) Suppose : ∃ i such that g(i) < f(i).
We will show : ∃ l < i such that
(I) f(l) < f(i) and
(II) NE(f, g)([r, r + 1] × [s, s + 1]) > 0, ∀ r, s such that l ≤ r < i, f(l) ≤ s < f(i) :
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NE(f, g) =

0 · · · g(i) · · · f(l) · · · f(i) · · ·
...

...
...

...
...

l · · · · · · · · × · · · · · · ·
...

...
...

...
...

i · · · · � · · · · · · · × · · ·
...

...
...

...
...

> 0

We will have then that f ′(x) =







f(x) if x 6= i, l
f(i) if x = l
f(l) if x = i

is such that f < f ′;

and furthermore we will have M(f ′) ≤ M(g) because, if l ≤ r < i, f(l) ≤ s < f(i),
then :

NE(f ′, g)([r, r + 1] × [s, s + 1]) = NE(f, g)([r, r + 1] × [s, s + 1]) − 1

By the rules of passage, we have NE(f, g)([i − 1, i] × [k′, k′ + 1]) > 0, ∀k′ such that
g(i) ≤ k′ < f(i). Let k, 0 < k ≤ g(i), be the integer such that : 1) NE(f, g)([i − 1, i] ×
[k′, k′ + 1]) > 0, ∀k′ such that k ≤ k′ < g(i), and 2) NE(f, g)([i − 1, i] × [k − 1, k]) = 0;
if there is no such k, set k = 0 :

NE(f, g) =

0 · · · k · · · g(i) · · · f(i) · · ·
...

...
...

...
...

i · · · · · · · · � · · · × · · ·
0 1 > 0> 0

Let j be integer such that NE(f, g)[j ′, j ′+1]×[k′, k′+1] > 0, ∀ j ′, k′ such that j ≤ j ′ <
i, k ≤ k′ < f(i). Then ∃ k′′, k < k′′ ≤ f(i) such that NE(f, g)[j, j + 1] × [k′′ − 1, k′′] = 1
and NE(f, g)[j − 1, j] × [k′′ − 1, k′′] = 0 :

NE(f, g) =

0 · · · k · · · k′′ · · · g(i) · · · f(i) · · ·
...

...
...

...
...

...
j · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
i · · · · · · · · · · · · � · · · × · · ·

0 1
> 0

0
1

Applying the rules of passage, we have : f(j) < k′′ and ∃l′ < i such that f(l′) = k.
If f(j) ≥ k, we have l = j. If l′ ≥ j, we have l = l′. If k = 0 then k = 0 ≤ f(j) < k′′

and we have l = j. In all those cases, we have the conclusion desired.

Suppose f(j) < k and l′ < j.
Then applying the rules of passage, we obtain with a = NE(f, g)[j−1, j]×[k−1, k] ≥ 0

and b = NE(f, g)[i − 1, i] × [k′′ − 1, k′′] > 0 :
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NE(f, g) =

0 · · · k · · · k′′ · · · g(i) · · · f(i) · · ·
...

...
...

...
...

...
j · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
i · · · · · · · · · · · · � · · · × · · ·

0 1
> 0

0
1

b

a a+1
a+1 a+2

The number of � - the number of × inside the rectangle of corners (i, k), (i, k′′), (j, k),
(j, k′′) is 1− (a + 2)− b + 1 = −a− b ≤ −b ≤ −1. This means : ∃ l′, j < l′ < i such that
k < f(l′) < k′′. We have l = l′ and we have the conclusion desired.

2) Suppose : ∀ i, g(i) ≥ f(i), i.e., on each row of NE(f, g), we have · · · × · · ·� · · · or
· · · ⊗ · · · .

Let i be such that 1) f(i) < g(i) and 2) ∃/ j, j 6= i, such that f(j) < g(j) and
g(i) < g(j). By the rules of passage, we have NE(f, g)([r, r + 1] × [s, s + 1]) > 0, ∀ r, s
such that r ≥ i, f(i) ≤ s < g(i) :

NE(f, g) =

0 · · · f(i) · · · g(i) · · ·
...

...
...

...
i · · · · × · · · � · · ·
...

...
...

...> 0

The fact that g is injective and the way we defined i imply that

f ′(x) =

{

f(x) if x 6= i
g(i) if x = i

is in Pn. We have f ′ > f and furthermore M(f ′) ≤ M(g)

because, if r ≥ i, f(i) ≤ s < g(i), then

NE(f ′, g)([r, r + 1] × [s, s + 1]) = NE(f, g)([r, r + 1] × [s, s + 1]) − 1

Q.E.D.

4 MacNeille completion of Pn

4.1 The lattice RGn

(RGn,≤) is a lattice with ∀A, A′ ∈ RGn :

(A ∨ A′)[i, j] = max{A[i, j], A′[i, j]}

(A ∧ A′)[i, j] = min{A[i, j], A′[i, j]}

Rn ⊆ RGn is not a lattice : we can see in Figure 1 that
(

1 0
1 0

)

∨R2

(

0 0
1 1

)

does not exist and that L(R2) = RG2.

We will show : ∀n, L(Rn) = RGn.
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(

0 0
0 0

) (

0 0
0 0

)

(

0 0
1 0

)

aaa
!!!

(

0 0
1 0

)

aaa
!!!

(

1 0
1 0

) (

0 0
1 1

)

%
%

%
%

%
%%

e
e

e
e

e
ee

(

1 0
1 0

) (

0 0
1 1

)

!!!
aaa

(

1 0
1 1

)

aaa
!!!

(

1 0
2 1

) (

1 1
1 1

) (

1 0
2 1

) (

1 1
1 1

)

!!!
aaa

(

1 1
2 1

)

!!!
aaa

(

1 1
2 1

)

Figure 1: The poset R2 and the lattice RG2

4.2 The matrices Br,s,a,n

∀r, s, a such that 1 ≤ r, s ≤ n, 0 < a ≤ min{r, n + 1 − s}, let Br,s,a,n be the matrix such
that : 1) Br,s,a,n[r, s] = a and 2) Br,s,a,n[i, j], (i, j) 6= (r, s), is the smallest value we can
have in order that Br,s,a,n ∈ RGn.

Example 4.1

B4,3,3,5 =













0 0 0 0 0
1 1 1 0 0
2 2 2 1 0
3 3 3 2 1
3 3 3 2 1













The following lemma is easy to prove. Details may be found in [3].

Lemma 4.2 ∀r, s, a, such that 1 ≤ r, s ≤ n, 0 < a ≤ min{r, n + 1 − s},
1) Br,s,a,n = inf{A ∈ RGn | A[r, s] ≥ a} : A[r, s] ≥ a ⇒ A ≥ Br,s,a,n;
2) A � Br,s,a,n ⇔ A[r, s] < a;
3) Br,s,a,n ∈ Rn.

Theorem 4.3 ∀A ∈ RGn, A = sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}.
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Proof : ∀r, s, such that A[r, s] > 0, A ≥ Br,s,A[r,s],n. Therefore A ≥
sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}.

Suppose A[i, j] 6= 0; then A[i, j] ≥ (sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a})[i, j] ≥
Bi,j,A[i,j],n[i, j] = A[i, j]. Therefore A[i, j] = (sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a})[i, j]
and A = sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}. Q.E.D.

Corollary 4.4 ∀A ∈ RGn, ∃Q ⊆ Rn such that A = sup(Q).

Proof : Take Q = {Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}. Q.E.D.

4.3 The matrices Cr,s,a,n

∀r, s, a such that 1 ≤ r, s ≤ n, 0 ≤ a < min{r, n + 1 − s}, let Cr,s,a,n be the matrix such
that : 1) Cr,s,a,n[r, s] = a and 2) Cr,s,a,n[i, j], (i, j) 6= (r, s), is the greatest value we can
have in order that Cr,s,a,n ∈ RGn.

Example 4.5 C6,4,1,8 and C3,4,2,8 are respectively :
























1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1
3 3 2 1 1 1 1 1
4 3 2 1 1 1 1 1
4 3 2 1 1 1 1 1
4 3 2 1 1 1 1 1
5 4 3 2 2 2 2 1
6 5 4 3 3 3 2 1

























,

























1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 1
3 3 3 2 2 2 2 1
4 4 4 3 3 3 2 1
5 5 5 4 4 3 2 1
6 6 6 5 4 3 2 1
7 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1

























The following lemma is easy to prove. Details may be found in [3].

Lemma 4.6 ∀r, s, a, such that 1 ≤ r, s ≤ n, 0 ≤ a < min{r, n + 1 − s},
1) Cr,s,a,n = sup{A ∈ RGn | A[r, s] ≤ a} : A[r, s] ≤ a ⇒ A ≤ Cr,s,a,n;
2) A � Cr,s,a,n ⇔ A[r, s] > a;
3) Cr,s,a,n ∈ Rn.

Theorem 4.7 ∀A ∈ RGn, A = inf{Cr,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}.

Proof : ∀r, s, such that A[r, s] < min{r, n + 1 − s}, A ≤ Cr,s,A[r,s],n. Therefore A ≤
inf{Cr,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}.

Suppose A[i, j] 6= min{r, n + 1 − s}; then A[i, j] ≤ (inf{Cr,s,a,n | 1 ≤ r, s ≤
n, A[r, s] = a})[i, j] ≤ Ci,j,A[i,j],n[i, j] = A[i, j]. Therefore A[i, j] = (inf{Cr,s,a,n | 1 ≤
r, s ≤ n, A[r, s] = a})[i, j] and A = inf{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}. Q.E.D.

Corollary 4.8 ∀A ∈ RGn, ∃R ⊆ Rn such that A = inf(R).

Proof : Take R = {Cr,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}. Q.E.D.

Corollaries 4.4 and 4.8 and Theorem 2.7 give :
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Theorem 4.9 L(Rn) ∼= RGn, i.e., the MacNeille completion of Rn is isomorphic with
RGn.

4.4 The base and cobase of Rn

Lemma 4.10 ∀r, s, a such that 1 ≤ r, s ≤ n, 0 < a ≤ min{r, n+1−s}, Br,s,a,n ∈ B(Rn).

Proof : B(Rn) = B(RGn) because (see Theorem 2.9) L(Rn) ∼= RGn; Br,s,a,n ∈ B(RGn)
if Br,s,a,n is the immediate successor of one and only one matrix A ∈ RGn (see Theorem
2.10).

Let A be the matrix such that A[i, j] = Br,s,a,n[i, j] ∀(i, j) 6= (r, s) et A[r, s] = a − 1.

A ∈ RGn because
a − 1

a a a − 1
a

in Br,s,a,n becomes
a − 1

a a − 1 a − 1
a

in A.

We have A ≤ Y ≤ Br,s,a,n ⇒ Y [r, s] = a or a − 1 ⇒ Y = Br,s,a,n or Y = A.
Therefore Br,s,a,n is an immediate successor of A. Furthermore Z < Br,s,a,n ⇒ ∀(i, j) 6=
(r, s), Z[i, j] ≤ Br,s,a,n[i, j] = A[i, j] and (see Lemma 4.2) Z[r, s] ≤ a−1. So Z < Br,s,a,n ⇒
Z ≤ A, which shows that A is the only matrix for which Br,s,a,n is an immediate successor.
Q.E.D.

Lemma 4.11 ∀r, s, a such that 1 ≤ r, s ≤ n, 0 ≤ a < min{r, n+1−s}, Cr,s,a,n ∈ C(Rn).

Proof: Similar to the proof of the preceding lemma. Details in [3].

Theorem 4.12 The matrices Br,s,a,n form exactly the base of Rn.

Proof : By Lemma 4.10, we only need to show : A ∈ B(Rn) ⇒ A is a matrix Br,s,a,n.
By Theorem 4.3, A = sup{Br,s,a,n | 1 ≤ r, s ≤ n, A[r, s] = a}. Because A ∈ B(Rn), A is
one of these matrices. Q.E.D.

Theorem 4.13 The matrices Cr,s,a,n form exactly the cobase of Rn.

Proof: Similar to the proof of the preceding theorem. Details in [3].

Theorem 4.14 ∀r, s, a such that 1 ≤ r, s ≤ n, 0 < a ≤ min{r, n + 1 − s}, we have :
RGn − B−

r,s,a,n = C+
r,s,a−1,n, i.e., B(RGn) ⊆ Cl(RGn).

Proof : Let A ∈ RGn; by Lemma 4.2, A[r, s] ≥ a ⇔ A ≥ Br,s,a,n; by Lemma 4.6,
A[r, s] ≤ a − 1 ⇔ A ≤ Cr,s,a−1,n. Q.E.D.

Corollary 4.15 B(Rn) = Cl(Rn), i.e., Rn is dissective.

Proof The conclusion follows from the preceding theorem and from Theorem 2.8. Q.E.D.

Theorem 4.16 RGn is a distributive lattice.

Proof : The conclusion follows from the preceding corollary and from Theorem 2.11.
Q.E.D.
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4.5 The base and cobase of Pn

We have Rn
∼= Pn. So B(Pn) = {fA | A ∈ B(Rn)} and C(Pn) = {fA | A ∈ C(Rn)}.

Theorem 4.17 f ∈ B(Pn) iff f is an increasing function for which dom(f) and im(f)
are intervals of integers.

Proof : Let A = Br,s,a,n, 1 ≤ r, s ≤ n, 0 < a ≤ min{r, n + 1 − s}; then :

fA =

(

1 · · · r − a r − a + 1 · · · r r + 1 · · · n
0 · · · 0 s · · · s + a − 1 0 · · · 0

)

We see : dom(f) = [r − a + 1, r] and im(f) = [s, s − a + 1]. Q.E.D.

Example 4.18 If A = B4,3,3,5 (see Example 4.1) then

fA =

(

1 2 3 4 5
0 3 4 5 0

)

Let A = Cr,s,a,n, 1 ≤ r, s ≤ n, 0 ≤ a < min{r, n + 1 − s}; if a + s − 1 < r, i.e., if
Cr,s,a,n[n, 1] < n, then fA =

(

1 · · · a a + 1 · · · a + s · · · r r + 1 · · · n
n · · · n − a + 1 s − 1 · · · 0 · · · 0 n − a · · · r − a + 1

)

Example 4.19 If A = C6,4,1,8 (see Example 4.5) then

fA =

(

1 2 3 4 5 6 7 8
8 3 2 1 0 0 7 6

)

if a + s − 1 ≥ r, i.e., if Cr,s,a,n[n, 1] = n, then fA =













1 · · · a a + 1 · · · r r + 1
n · · · n − a + 1 s − 1 · · · a + s − r n − a

. . . r + 1 + n − a − s r + 1 + n − a − s + 1 . . . n

. . . s a + s − r − 1 . . . 1













Example 4.20 If A = C3,4,2,8 (see Example 4.5) then

fA =

(

1 2 3 4 5 6 7 8
8 7 3 6 5 4 2 1

)
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4.6 Injection of Pn in S2n with Bruhat order

We show that there exists a morphism of poset from Pn to S2n. This result was suggested
by Lascoux.

To any f ∈ Pn, we associate an element f ′ ∈ P2n :

f ′(i) =

{

f(i) + n if 1 ≤ i ≤ n and i ∈ dom(f)
0 otherwise

Example 4.21 f =
(

0 2 4 0
)

7→ f ′ =
(

0 6 8 0 0 0 0 0
)

M(f) =









0 0 0 0
1 1 0 0
2 2 1 1
2 2 1 1









7→ M(f ′) =

























0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0

2 2 2 2 2 2 1 1

2 2 2 2 2 2 1 1

2 2 2 2 2 2 1 1
2 2 2 2 2 2 1 1
2 2 2 2 2 2 1 1
2 2 2 2 2 2 1 1

























As shown in the example, the submatrix of size n in the north-east corner of M(f ′) is
M(f).

Lemma 4.22 ∀f, g ∈ Pn, f ≤Pn
g ⇔ f ′ ≤P2n

g′.

Proof : We have the conclusion of the lemma because 1) f ≤Pn
g ⇔ M(f) ≤Rn

M(g);
2) the submatrix of size n in the north-east corner of M(f ′) is M(f); 3) the submatrix
of size n in the north-west corner of M(f ′) is n copies of the first column of M(f); 4)
the submatrix of size n in the south-east corner of M(f ′) is n copies of the last row of
M(f); 5) all the entries of the submatrix of size n in the south-west corner of M(f ′) are
M(f)[n, 1]. Q.E.D.

Lemma 4.23 ∀f ∈ Pn, f ∨ 1[n] ∈ Sn (where 1[n] is the identity function).

Proof : We have:

M(1[n]) =















1 0 0 0 0
...

...
n − 2 n − 3 n − 4 . . . 0
n − 1 n − 2 n − 3 . . . 0

n n − 1 n − 2 . . . 1















The minus pattern
i + 1 i
i + 1 i + 1

can be obtained in only one way as the supremum of

two non minus patterns :

i + 1 i
i + 1 i + 1

=
i + 1 i
i + 1 i

∨
i i

i + 1 i + 1
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Observe that M(1[n]) does not have these two non minus patterns; so M(f)∨M(1[n]) ∈ Rn

and f ∨ 1[n] ∈ Pn. Since M(1[n])[n, 1] = n, f ∨ 1[n] ∈ Sn. Q.E.D.

Theorem 4.24 Pn → S2n, f 7→ f ′ ∨ 1[2n], is a morphism of poset.

Proof : By lemma 4.23, f ′ ∨ 1[2n] ∈ S2n.
We have : f ≤ g ⇔ (by Lemma 4.22) f ′ ≤ g′ ⇒ f ′ ∨ 1[2n] ≤ g′ ∨ 1[2n] because

g′ ∨ 1[2n] ≥ g′ ≥ f ′.
And f ′ ∨ 1[2n] ≤ g′ ∨ 1[2n] ⇔ M(f ′ ∨ 1[2n]) ≤ M(g′ ∨ 1[2n]) ⇒ the submatrix of size

n in the north-east corner of M(f ′ ∨ 1[2n]) is ≤ the submatrix of size n in the north-east
corner of M(g′ ∨ 1[2n]) ⇒ the submatrix of size n in the north-east corner of M(f ′) is ≤
the submatrix of size n in the north-east corner of M(g ′) (because the submatrix of size
n in the north-east corner of 1[2n] is the matrix 0) ⇒ M(f) ≤ M(g) ⇒ f ≤ g.

We have proved : f ≤ g ⇔ f ′ ∨ 1[2n] ≤ g′ ∨ 1[2n]. Q.E.D.

Example 4.25

f =
(

0 2 4 0
)

7→ f ′ ∨ 1[2n] =
(

1 6 8 2 3 4 5 7
)

5 Rectrices and corectrices

5.1 Rectrices and corectrices of RGn

Let A ∈ RGn; recall that A+ = {X ∈ RGn | X ≤ A} and that A− = {X ∈ RGn | X ≥
A}. So by Theorem 4.3 and by Theorem 4.12, A = sup(A+∩B(Rn)); and by Theorem 4.7
and by Theorem 4.13, A = inf(A− ∩ C(Rn)). Following [5], a rectrice of A is a maximal
element of (A+ ∩ B(Rn)) and a corectrice of A is a minimal element of (A− ∩ C(Rn)).

Following [5], we say that A ∈ RGn has an essential point
a − 1

a a a − 1
a

in position r, s, of value a > 0, if A[r − 1, s] = A[r, s + 1] = a − 1,

A[r, s− 1] = A[r, s] = A[r + 1, s] = a. In other terms, A has an essential point in position
r, s, of value a > 0, if we can replace A[r, s] = a by a − 1 and still have a matrix ∈ RGn.
Hence A may have an essential point in position r, s, with r or s ∈ {1, n}. In brief, we
will say that A has an essential point rsa.

Note that Br,s,a,n has one and only one essential point rsa.

Theorem 5.1 Br,s,a,n is a rectrice of A ⇔ A has an essential point rsa.

Proof: (⇐) A[r, s] = a ⇒ (by Lemma 4.2) Br,s,a,n ∈ (A+ ∩ B(Rn)). Suppose X ∈
(A+ ∩ B(Rn)) with A ≥ X ≥ Br,s,a,n. We find that X has an essential point rsa. Since
X has only one essential point, X = Br,s,a,n. Hence Br,s,a,n is a rectrice of A.

(⇒) Br,s,a,n is a rectrice of A and A = sup(A+ ∩ B(Rn)) ⇒ A[r, s] = a.
Suppose and A[r−1, s] = a (with r > 1). We have then: Z = Br−1,s,a,n ∈ (A+∩B(Rn))

with Z � Br,s,a,n; by Theorem 4.2, Z[r, s] < a. Contradiction and A[r − 1, s] = a − 1.
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In the same way, we show that A[r, s − 1] = a (if s > 1); A[r + 1, s] = a (if r < n);
and A[r, s + 1] = a − 1 (if s < n). So A has an essential point rsa. Q.E.D.

Corollary 5.2 A = sup{Br,s,a,n | A has an essential point rsa}.

Proof: A = sup(A+∩B(Rn)) = sup{Br,s,a,n | Br,s,a,n is a rectrice of A} = sup{Br,s,a,n | A
has an essential point rsa}. Q.E.D.

We say that A ∈ RGn has an coessential point
a

a + 1 a a
a + 1

in position r, s of

value 0 ≤ a < min{r, n + 1 − s}, if A[r − 1, s] = A[r, s] = A[r, s + 1] = a, A[r, s − 1] =
A[r + 1, s] = a + 1. In other terms, A has an coessential point rsa if we can replace
A[r, s] = a by a + 1 and still have a matrix ∈ RGn. Hence A may have an essential point
in position r, s, with r or s ∈ {1, n}. In brief, we will say that A has an coessential point
rsa.

Note that Cr,s,a,n has one and only one coessential point rsa.

Theorem 5.3 Cr,s,a,n is a corectrice of A ⇔ A has an coessential point rsa.

Proof: Similar to the proof of Theorem 5.1. Details in [3].

Corollary 5.4 A = inf{Cr,s,a,n | A has an coessential point rsa}.

Proof: Similar to the proof of Corollary 5.2. Details in [3].

Example 5.5

A =













1 1 1 0 0
2 1 1 1 0
2 2 2 1 1
3 2 2 1 1
4 3 2 1 1













The essential points of A are : 131, 212, 241, 332, 351, 514. The coessential points of A
are : 140, 221, 250, 312, 422, 541.

If we know the rectrices (or the essential points) of A, we can rebuild
A : 1) A[r, s] = a for all rectrices Br,s,a,n and 2) A[i, j], ij∗ not an essential point, is
the smallest value we can have in order that A ∈ RGn.

Example 5.6 Suppose the rectrices of A are : B2,3,1,4, B4,2,3,4; then









∗ ∗ ∗ ∗
∗ ∗ 1 ∗
∗ ∗ ∗ ∗
∗ 3 ∗ ∗









and A =









0 0 0 0
1 1 1 0
2 2 1 0
3 3 2 1
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If we know the corectrices (or the coessential points) of A, we can rebuild A : 1)
A[r, s] = a for all corectrices Cr,s,a,n and 2) A[i, j], ij∗ not an coessential point, is the
greatest value we can have in order that A ∈ RGn.

Example 5.7 Suppose the corectrices of A are : C2,3,0,4, C4,2,2,4; then









∗ ∗ ∗ ∗
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
∗ 2 ∗ ∗









and A =









1 1 0 0
2 1 0 0
3 2 1 1
3 2 2 1









5.2 The sets of Keys Kn and generalized Keys KGn

k = (kj)j=1,...,n ∈ KGn if kj is an injective partial functions kj : {1, . . . , j} → [n], i 7→
kj(i) = kij, such that 1) dom(kj) = {1, . . . , j ′}, j ′ ≤ j; 2) kj is decreasing; 3) ki+1,j+1 ≤
kij ≤ ki,j+1, j = 1, . . . n − 1, 1 ≤ i ≤ j, with the convention that kj(i) = kij = 0 if
j ′ < i ≤ j. An element k ∈ KGn will be called a generalized Key.

We represent k like this : k =

k11 k12 · · · k1n

k22 · · · k2n

. . .
...

knn

Example 5.8
2 5 5 5 5 5 7

2 3 3 3 4 4
2 2 2 2 3

0 1 1 2
0 0 1

0 0
0

∈ KG7

We define a partial order on KGn : k ≤ k′ ⇔ kij ≤ k′

ij ∀i, j. KGn is a lattice :
sup(k, k′)ij = max(kij, k

′

ij) and min(k, k′)ij = inf(kij, k
′

ij).

We define Kn by saying that k ∈ Kn ⊆ KGn if kij = ki+1,j+1 or kij = ki,j+1, j =
1, . . . n − 1, 1 ≤ i ≤ j. Kn is not a lattice.

An element k ∈ Kn will be called a Key. In this section and in the next, we state
results without proofs : details may be found in [3]. They generalize results that we can
find in [5], where we deal with keys and with triangles. A key is a Key where the functions
kj are injective functions (not only partial injective functions) : a key has no zero entry.
A triangle is a generalized Key with no zero entry.

To any f ∈ Pn, we can associate bijectively an element K(f) ∈ Kn. An example will
show how.
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Example 5.9

P6 3 f =
(

2 5 3 0 0 4
)

↔ kf =

2 5 5 5 5 5
2 3 3 3 4

2 2 2 3
0 0 2

0 0
0

∈ K6

5.3 The Keys b[r, s, a, n] and c[r, s, a, n]

∀r, s, a such that 1 ≤ s ≤ n, 1 ≤ r ≤ s, 0 < a ≤ n +1− r, let b[r, s, a, n] be the Key such
that : 1) b[r, s, a, n]rs = a and 2) b[r, s, a, n]ij, ij 6= rs, is the smallest value we can have
in order that b[r, s, a, n] ∈ KGn.

Example 5.10

b[3, 4, 2, 5] =

0 2 3 4 4
0 2 3 3

0 2 2
0 0

0

Lemma 5.11 ∀r, s, a, such that 1 ≤ s ≤ n, 1 ≤ r ≤ s, 0 < a ≤ n + 1 − r,
1) b[r, s, a, n] = inf{k ∈ KGn | krs ≥ a} : krs ≥ a ⇒ k ≥ b[r, s, a, n];
2) k � b[r, s, a, n] ⇔ krs < a;
3) b[r, s, a, n] ∈ Kn.

Theorem 5.12 ∀k ∈ KGn, k = sup{b[r, s, a, n] | krs = a}.

Corollary 5.13 ∀k ∈ KGn, ∃Q ⊆ Kn such that k = sup(Q).

∀r, s, a such that 1 ≤ s ≤ n, 1 ≤ r ≤ s, 0 ≤ a < n + 1 − r, let c[r, s, a, n] be the Key
such that : 1) c[r, s, a, n]rs = a and 2) c[r, s, a, n]ij, ij 6= rs, is the greatest value we can
have in order that c[r, s, a, n] ∈ KGn.

Example 5.14

c[3, 4, 2, 5] =

5 5 5 5 5
4 4 4 4

2 2 3
1 2

1

, c[2, 4, 1, 5] =

5 5 5 5 5
1 1 1 4

0 0 1
0 0

0

Lemma 5.15 ∀r, s, a such that 1 ≤ s ≤ n, 1 ≤ r ≤ s, 0 ≤ a < n + 1 − r,
1) c[r, s, a, n] = sup{k ∈ KGn | krs ≤ a} : krs ≤ a ⇒ k ≤ b[r, s, a, n];
2) k � c[r, s, a, n] ⇔ krs > a;
3) c[r, s, a, n] ∈ Kn.
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Theorem 5.16 ∀k ∈ KGn, k = inf{c[r, s, a, n] | krs = a}.

Corollary 5.17 ∀k ∈ KGn, ∃R ⊆ Kn such that k = inf(R).

Theorem 5.18 L(Kn) ∼= KGn, i.e., the MacNeille completion of Kn is isomorphic with
KGn.

Theorem 5.19 The Keys b[r, s, a, n] form exactly the base of Kn; the Keys c[r, s, a, n]
form exactly the cobase of Kn.

5.4 Rectrices and corectrices of KGn

A rectrice of k ∈ KGn is a maximal element of (k+∩B(Kn)) and a corectrice is a minimal
element of (k− ∩ C(Kn)).

We say that k ∈ KGn has an essential point
b a

c d
in position r, s of value 0 <

a ≤ n + 1 − r, if : krs = a > b = kr,s−1, a > d = kr+1,s+1 and (a > c + 1 = kr+1,s + 1 or
c = 0). In other terms, k has an essential point in position r, s of value 0 < a ≤ n+1− r,
if we can replace krs = a by a − 1 and still have an element ∈ KGn. In brief, we will say
that k has an essential point rsa.

Note that b[r, s, a, n] has one and only one essential point rsa.

Theorem 5.20 b[r, s, a, n] is a rectrice of k ⇔ k has an essential point rsa.

Corollary 5.21 k = sup{b[r, s, a, n] | k has an essential point rsa}.

We say that k ∈ KGn has an coessential point
b a

c d
in position r, s of value

0 < a ≤ n+1− r, if : krs = a > b = kr,s−1, a > d = kr+1,s+1 and (a > c+1 = kr+1,s +1 or
c = 0). In other terms, k has an coessential point rsa if we can replace krs = a by a + 1
and still have an element ∈ KGn. In brief, we will say that k has an essential point rsa.

Note that c[r, s, a, n] has one and only one coessential point rsa.

Theorem 5.22 c[r, s, a, n] is a corectrice of k ⇔ k has an coessential point rsa.

Corollary 5.23 k = inf{kc[r, s, a, n] | k has an coessential point rsa}.

If we know the rectrices (or the essential points) of k, or if we know the corectrices (or
the coessential points) of k, we can rebuild k.

Example 5.24 Suppose the rectrices of k are : b[1, 2, 3, 4], b[3, 3, 1, 4]; then

∗ 3 ∗ ∗
∗ ∗ ∗

1 ∗
∗

and k =

1 3 3 3
1 2 2

1 1
0
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Example 5.25 Suppose the corectrices of k are : c[1, 2, 3, 4], c[3, 3, 0, 4]; then

∗ 3 ∗ ∗
∗ ∗ ∗

0 ∗
∗

and k =

3 3 4 4
2 3 3

0 2
0

We will show in the next section that the function between Pn and Kn, f ↔ K(f),
as illustrated in Example 5.9, is in fact an isomorphism of posets. So A(∈ Rn) ↔ fA(∈
Pn) ↔ K(fA)(∈ Kn) are isomorphisms of posets.

We have Br,s,a,n(∈ B(Rn)) ↔ fBr,s,a,n
(∈ B(Pn)) ↔ K(fBr,s,a,n

)
= b[a, r, s, n](∈ B(Kn)). If A ∈ Rn has an essential point rsa, then K(fA) = K(A)
has an essential point ars.

Example 5.26

B4,2,3,5 =













0 0 0 0 0
1 1 1 0 0
2 2 1 0 0
3 3 2 1 0
3 3 3 2 1













↔ fB4,2,3,5
=

(

0 2 3 4 0
)

↔ K(fB4,2,3,5
) =

0 2 3 4 4
0 2 3 3

0 2 2
0 0

0

= b[3, 4, 2, 5]

Example 5.27 The essential points of A =









0 0 0 0
1 1 1 0
2 2 1 0
3 3 2 1









are : 231, 423. The essen-

tial points of K(A) are : 123, 342. So

. 3 . .
. . .

. 2
.

and K(A) =

0 3 3 4
0 2 3

0 2
0

We have also Cr,s,a,n(∈ C(Rn)) ↔ fCr,s,a,n
(∈ C(Pn)) ↔ K(fCr,s,a,n

) =
c[a + 1, r, s− 1, n](∈ C(Kn)). If A ∈ Rn has a coessential point rsa, then K(fA) = K(A)
has an coessential point a + 1, r, s − 1.
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Example 5.28

C4,2,1,5 =













1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 2 2 2 1













↔ fC4,2,1,5
=

(

5 1 0 0 4
)

↔ K(fC4,2,1,5
) =

5 5 5 5 5
1 1 1 4

0 0 1
0 0

0

= c[2, 4, 1, 5]

Example 5.29 The coessential points of A =









0 0 0 0
1 1 1 1
2 2 1 1
3 3 2 1









are : 110, 331. The

coessential points of K(A) are : 110, 232. So

0 . . .
. 2 .

. .
.

and K(A) =

0 4 4 4
0 2 3

0 2
0

5.5 Isomorphism between Keys and partial injective functions

We show that Kn and Pn are isomorphic posets. Theorem 5.30 is a generalization of
Proposition 2.1.11 in [8] and of Proposition 1.19 of [6]. Moreover there is a little gap in
the proofs of these propositions. We will show where while giving the proof of Theorem
5.30.

Theorem 5.30 ∀f, g ∈ Pn, f ≤Pn
g ⇔ K(f) ≤Kn

K(g).

Proof : (⇒) It is easy to see : f → g in Pn ⇒ K(f) <Kn
K(g). Hence the implication

follows.

(⇐) Suppose K(f) < K(g). We show : ∃f ′ ∈ Pn such that f < f ′ and K(f) <
K(f ′) ≤ K(g) or ∃g′ ∈ Pn such that g′ < g and K(f) ≤ K(g′) < K(g). We conclude by
induction that f < g.

Let s ≥ 0 be the smallest integer such that the columns 1, . . . , s−1 of K(f) and K(g)
are identical. Let a and b be the integers such that : 0 ≤ a = f(s) < g(s) = b.

(a) suppose : ∃ s′ > s such that a < f(s′) = c ≤ b. We take the smallest s′ and we
then have : ∀s′′ such that s < s′′ < s′, f(s′′) ≤ a or f(s′′) > b.
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In [8] and in [6], s′ exists because f is bijective : s′ is such that f(s′) = b; the

function f ′(x) =







f(x) if x 6= s, s′

b if x = s
a if x = s′

is such that f < f ′, but we cannot conclude that

K(f ′) ≤ K(g) :

Example 5.31 Let f =
(

1 3 4 2
)

and g =
(

4 2 3 1
)

K(f) =

1 3 4 4
1 3 3

1 2
1

≤ K(g) =

4 4 4 4
2 3 3

2 2
1

f < f ′ =
(

4 3 1 2
)

but K(f ′) =

4 4 4 4
3 3 3

1 2
1

� K(g)

Let a0 = a, a1, . . . , am, am+1 be the numbers in successive rows in column s of K(f)
am+1

am

...
a1

a

such that am < c < am+1.

The function f ′(x) =







f(x) if x 6= s, s′

c if x = s
a if x = s′

is such that :

1) f < f ′ because a < c;

2) K(f) < K(f ′) because

am+1

am

...
a1

a

in columns s, s + 1, . . . , s′ − 1 of K(f) has been

replaced by

am+1

c
am

...
a1

in K(f ′);
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3) K(f ′) ≤ K(g) : we have in columns s of respectively K(f ′) and K(g)

b
...

am+1

c am+1

am am

...
a1 a1

,

so the column s of K(f ′) is ≤ the column s of K(g);
furthermore K(f) < K(g) and the way we defined s′ imply that the number of inte-
gers > b in columns s′′ of K(f ′), s ≤ s′′ < s′, is ≤ the number of integers > b in columns
s′′ of K(g), s ≤ s′′ < s′; this means that c, am, . . . , a1, in columns s′′ of K(f ′), s ≤ s′′ < s′,
are on rows which are the same or are above the rows where are am+1, am, . . . , a1, in
columns s′′ of K(g), s ≤ s′′ < s′ : thus the columns s′′ of K(f ′), s ≤ s′′ < s′ are ≤ the
columns s′′ of K(g), s ≤ s′′ < s′.

(b) suppose : ∃ s′ > s such that a ≤ g(s′) = d < b. We take the smallest s′ and we
have then: ∀s′′ such that s < s′′ < s, g(s′′) < a or g(s′′) > b.

The function g′(x) =







g(x) if x 6= s, s′

d if x = s
b if x = s′

is such that :

1) g′ < g;
2) K(g′) < K(g);
3) K(f) ≤ K(g′).

(c) suppose : @ s′ > s such that a < f(s′) = c ≤ b or such that a ≤ g(s′) = d < b.
This implies : b ∈/ im(f) and a ∈/ im(g).

The function f ′(x) =

{

f(x) if x 6= s
b if x = s

is such that :

1) f < f ′;
2) K(f) < K(f ′);
3) K(f ′) ≤ K(g).
The proof is complete. Q.E.D.

6 Alternating matrices : Atn

6.1 Bijection between RGn and Atn

The set of alternating matrices is denoted Atn. Atn is a set of square matrices of size n
with entries ∈ {−1, 0, 1}. A ∈ Atn if 1) the sum on each row and on each column is 0 or
1; 2) the 1 and -1 alternate on each row and on each column; 3) the first non-zero entry
(if any) on each column is 1; 4) the last non-zero entry (if any) on each row is 1.
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Note that an alternating sign matrix, see [1], is an alternating matrix for which the
sum on each row and on each column is 1.

The pattern
a

a + 1
in a matrix ∈ RGn is followed by :

a
a + 1

,
a − 1

a
or

a
a

. The

pattern
a
a

in a matrix ∈ RGn is followed by :
a
a

,
a − 1
a − 1

or
a − 1

a
.

So the pattern
a

a + 1
is the beginning of a pattern zero or a pattern plus, and the

pattern plus
a a

a + 1 a
is followed by a pattern zero or by a pattern minus :

a a
a + 1 a + 1

,
a a − 1

a + 1 a
,

a a
a + 1 a

;

a a a
a + 1 a a

,
a a a − 1

a + 1 a a − 1
,

a a a − 1
a + 1 a a

;

and the pattern
a
a

is the end of a pattern zero or a pattern plus, and the pattern

minus
a + 1 a
a + 1 a + 1

is followed by a pattern zero or by a pattern plus :

a a
a a

,
a + 1 a
a + 1 a

,
a a

a + 1 a
;

a + 1 a a
a + 1 a + 1 a + 1

,
a + 1 a a − 1
a + 1 a + 1 a

,
a + 1 a a
a + 1 a + 1 a

.

The work we did horizontally, we can make it vertically. So we have proved Lemma 3.6 :
the patterns plus and minus, horizontally and vertically, alternate in a matrix A ∈ RGn.

Furthermore, because the row 0 of A ∈ RGn is a row of zeros and the column n + 1 a
column of zeros, the first non-zero (if any) pattern on a column is 1 and the last non-zero
(if any) pattern on a row is 1.

So the matrix A′, A′[r, s] =







+1 if A has a pattern plus in position r − 1, s
−1 if A has a pattern minus in position r − 1, s
0 if A has a pattern zero in position r − 1, s

, is

an alternating matrix.

Example 6.1 : A =













1 1 1 0 0
2 1 1 1 0
2 2 2 1 1
2 2 2 1 1
2 2 2 2 1













, A′ =













0 0 1 0 0
1 0 −1 1 0
−1 0 1 −1 1
0 0 0 0 0
0 0 −1 1 0
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Theorem 6.2 Card(RGn) = card(Atn).

Proof : The function RGn → Atn, A 7→ A′ in a bijection : A[r, s] is the number of 1 -
the number of -1 in position r′, s′ of A′, r′ < r and s′ ≥ s. This a consequence of lemma
3.7 : ∀A ∈ RGn, A[r, s] = the number of plus patterns - the number of minus patterns
that lie above and to the right of the position r, s. Thus card(RGn) = card(Atn). Q.E.D.

Proof of Lemma 3.7 : We define :

|r, s| = card{(r′, s′) | r′ < r, s′ ≥ s, A has a pattern plus in position r′, s′}

− card{(r′, s′) | r′ < r, s′ ≥ s, A has a pattern minus in position r′, s′};

We prove that A[r, s] = |r, s|.

If A has the pattern
a

a + 1
in position r − 1, s, it is the beginning of a pattern zero

or a pattern plus; if it is a pattern zero, it is followed by pattern(s) zero and by a pattern

plus; the number of patterns plus to the right of
a

a + 1
is one more than the number of

patterns minus because the patterns plus and minus alternate, ending by a pattern plus.
So A[r, s] = A[r − 1, s] + 1 ⇒ |r, s| = |r − 1, s| + 1.

If A has the pattern
a
a

in position r − 1, s, it is the beginning of a pattern zero or

a pattern minus; if it is a pattern zero, it is followed by pattern(s) zero and, possibly, by

a pattern minus; the number of patterns plus to the right of
a
a

is the same than the

number of patterns minus because the patterns plus and minus alternate, ending by a
pattern plus. So A[r, s] = A[r − 1, s] ⇒ |r, s| = |r − 1, s|.

We have also : A[r, s + 1] = A[r, s] − 1 ⇒ |r, s| = |r, s + 1| − 1 and A[r, s + 1] =
A[r, s] ⇒ |r, s| = |r, s + 1|.

Since A[1, 1] = 1 if A has a pattern plus in position 0, s, s being unique, and A[1, 1] = 0,
otherwise we have A[1, 1] = |1, 1|. We then have the conclusion of the lemma by double
induction on r and s. Q.E.D.

6.2 Bijection between Atn and KGn

Here is a bijection between KGn and Atn that generalizes the bijection we find in [1],
page 57, between alternating sign matrices and triangles.

To any A′ ∈ Atn, we associate a square matrix XA of size n in which XA[i, j] =
∑j

k=1 A′[i, k]. XA[i, j] is the sum of the entries from rows 1 to i of the j th column of A′.
We recover A′ from XA : A′[i, j] = XA[i, j] − XA[i − 1, j].

Suppose row j of XA has a 1 in columns j1 < j2 < . . . < jr. Let k(A)j : {1, . . . , j} → [n]
a partial injective function defined like this : k(A)j(1) = k(A)1j = jr, k(A)j(2) = k(A)2j =
jr−1, . . . , k(A)j(r) = k(A)rj = j1 and k(A)j(r + 1) = k(A)r+1,j = . . . = k(A)j(j) =
k(A)jj = 0. We have then (see [3]) :
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Theorem 6.3 ∀A′ ∈ Atn, k(A) = (k(A)j)j=1,...,n ∈ KGn.

Theorem 6.4 Atn → KGn, A′ 7→ k(A) is a bijection.

Example 6.5

A′ =









0 0 1 0
1 0 0 0
−1 1 −1 1
1 −1 1 0









, XA =









0 0 1 0
1 0 1 0
0 1 0 1
1 0 1 1









, k(A) =

3 3 4 4
1 2 3

0 1
0

6.3 Isomorphism between RGn and KGn

Since Rn, Pn and Kn are isomorphic posets, by Theorem 2.7, L(Rn), L(Pn) and L(Kn)
are isomorphic lattices. Since L(Rn) and RGn are isomorphic lattices and since L(Kn)
and KGn are isomorphic lattices, RGn and KGn are isomorphic lattices. We give here
another way to see this isomorphism.

Let A ∈ RGn. Since A = inf{Cr,s,a,n | A has an coessential point rsa} (see Corollary
5.4), A is the greatest matrix ∈ RGn that has the coessential points the matrix A has. If
A < B in RGn, then A has a coessential point, say rsa, that B does not have because B
cannot have the coessential points of A and be > A.

The matrix C[i, j] =

{

A[i, j] + 1 if (i, j) = (r, s)
A[i, j] otherwise

is an immediate successor of A

and it is easy to prove that C ≤ B. Thus we have :

Theorem 6.6 A < B ⇒
∑

i,j A[i, j] <
∑

i,j B[i, j].

Corollary 6.7 B is an immediate successor of A iff A < B and 1 +
∑

i,j A[i, j] =
∑

i,j B[i, j].

Corollary 6.8 The number of immediate successors of A ∈ RGn is the number of co-
essential points of A.

Corollary 6.9 The number of immediate predecessors of A ∈ RGn is the number of
essential points of A.

Corollary 6.10 RGn is a graded lattice of rank n(n+1)(2n+1)
6

.

proof : We have the conclusion of the corollary because inf(RGn) = 0 and sup(RGn) =














1 1 1 . . . 1
...

...
...

...
n − 2 n − 2 n − 2 . . . 1
n − 1 n − 1 n − 2 . . . 1

n n − 1 n − 2 . . . 1















. Q.E.D.
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Theorem 6.11 Suppose A has a coessential point rsa; suppose B is an immediate suc-
cessor of A such that B[r, s] = a + 1; then XA and XB have the same entries except
XA[r, s] = XB[r, s + 1] = 1 and XA[r, s + 1] = XB[r, s] = 0 : XA has the pattern 1 0 in

position r, s and XB has the pattern 0 1 in position r, s.

Proof : Since A has a coessential point rsa, A[r−1, s−1] = a+1 or a; A[r−1, s+1] = a
or a − 1; A[r + 1, s − 1] = a + 1 or a + 2; A[r + 1, s + 1] = a + 1 or a. There are 16
possibilities.

Let us look at one of these possibilities. Suppose A has the pattern
a a a

a + 1 a a
a + 1 a + 1 a

in position r − 1, s− 1; then B has the pattern
a a a

a + 1 a + 1 a
a + 1 a + 1 a

in position r − 1, s− 1.

The matrices A′ and B′ have the same entries except that A′ has the pattern
1 0
−1 1

in

position r, s and B′ the pattern
0 1
0 0

in position r, s. We obtain then that the matrices

XA and XB have the same entries except that XA has the pattern 1 0 in position r, s

and XB the pattern 0 1 in position r, s.
The other 15 possibilities give the same result. Q.E.D.

Suppose A has a coessential point rsa; suppose B is an immediate successor of A such
that B[r, s] = a+1; suppose k(A)tr = s, i.e., suppose card{l | l ≥ s and XA[r, l] = 1} = t;
then the real meaning of theorem 6.11 is that k(B)tr = s + 1, i.e., k(B) is an immediate
successor of k(A).

And this proves : RGn → KGn, A 7→ k(A) is an isomorphism of lattices. Q.E.D.

Example 6.12

A =





1 1 1
2 1 1
2 2 1



 , B =





1 1 1
2 2 1
2 2 1





A′ =





0 0 1
1 0 0
−1 1 0



 , B′ =





0 0 1
0 1 0
0 0 0





XA =





0 0 1
1 0 1
0 1 1



 , XB =





0 0 1
0 1 1
0 1 1





k(A) =
3 3 3

1 2
0

, k(B) =
3 3 3

2 2
0
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7 Appendix

Proof of the theorem 2.4 : Since f and g are embeddings, we have ∀x ∈ P, {y ∈ P | y ≤
x} = {y ∈ P | g(y) ≤ g(x)} = {y ∈ P | f(y) ≤ f(x)}; thus (h ◦ g)(x) = ∨{f(y) | y ∈ P
and g(y) ≤ g(x)} = ∨{f(y) | y ∈ P and f(y) ≤ f(x)} = f(x), and h ◦ g = f .

We prove : ∀s, t ∈ S, s ≤ t ⇒ h(s) ≤ h(t). We have : s ≤ t ⇒ {x ∈ P | g(x) ≤
s} ⊆ {x ∈ P | g(x) ≤ t} ⇒ h(s) = ∨{f(x) | x ∈ P and g(x) ≤ s} ≤ ∨{f(x) | x ∈ P and
g(x) ≤ t} = h(t).

We have : t � s ⇒ (∃x ∈ P such that g(x) ≤ t and g(x) � s), because (∀y ∈
P, g(y) ≤ t ⇒ g(y) ≤ s) ⇒ t = ∨{g(y) | y ∈ P and g(y) ≤ t} ≤ ∨{g(y) | y ∈
P and g(y) ≤ s} = s.

Suppose t � s and let x be such that g(x) ≤ t and g(x) � s. We prove : h(s) <
(h(s)∨ f(x)). Suppose h(s) = (h(s)∨ f(x)), i.e., suppose f(x) ≤ h(s). Let z ∈ P be such
that g(z) ≥ s. Then f(z) ≥ ∨{f(y) | y ∈ P and g(y) ≤ s} = h(s) ≥ f(x); thus z ≥ x
which imply that g(x) ≤ ∧{g(y) | y ∈ P and g(y) ≥ s} = s. Contradiction.

We prove now : s < t ⇒ h(s) < h(t). Since t � s, ∃x ∈ P such that g(x) ≤ t and
g(x) � s, and such that h(s) < (h(s) ∨ f(x)). We have : s < t ⇒ h(s) ≤ h(t); and we
have : g(x) ≤ t ⇒ f(x) = h(g(x)) ≤ h(t). Thus h(s) < (h(s) ∨ f(x)) ≤ h(t).

We prove now : h(s) = h(t) ⇒ s = t. Suppose t � s; then ∃x ∈ P be such that g(x) ≤
t and g(x) � s, and such that h(s) < (h(s) ∨ f(x)). We
have : g(x) ≤ t ⇒ f(x) = h(g(x)) ≤ h(t). Thus h(s) < (h(s) ∨ f(x)) = (h(t) ∨ f(x)) ≤
h(t). Contradiction. Thus t ≤ s; similarly we have s ≤ t. Thus s = t.

We prove finally : h(s) < h(t) ⇒ s < t. Suppose s � t; then ∃x ∈ P such that g(x) ≤
s and g(x) � t. We have : g(x) � t ⇒ ∃y ∈ P such that t ≤ g(y) and g(x) ≮ g(y), because
t = ∧{g(z) | z ∈ P and g(z) ≥ t}. Then f(x) = h(g(x)) ≤ h(s) < h(t) ≤ h(g(y)) = f(y),
which imply x < y and g(x) < g(y). Contradiction. And since h(s) = h(t) ⇒ s = t, we
have h(s) < h(t) ⇒ s < t. Q.E.D.

Proof of the theorem 2.6 : The function h : L(P ) → T, X 7→ ∨T{f(x) | x ∈
P and ϕ(x) ≤ X}, where ϕ : P → L(P ), x 7→ x+, is injective. Thus card(L(P )) ≤
card(T ). Q.E.D.

Proof of the theorem 2.7 : The function h : S → L(P ), s 7→ ∨L(P ){ϕ(x) | x ∈
P and f(x) ≤ s}, where ϕ : P → L(P ), x 7→ x+, is injective. Thus card(S) ≤ card(L(P )).
Thus card(L(P )) = c̈ard(S) and h is an isomorphism. Q.E.D.

To prove that for a poset P , a lattice T ⊇ P is isomorphic with L(P ), we must have
∀t ∈ T, t = ∨{x ∈ P | x ≤ t}, and ∀t ∈ T, t = ∧{x ∈ P | x ≥ t}. In the example that
follows, T contains P as a subposet, ∀t ∈ T, t = ∨{x ∈ P | x ≤ t}, but T � L(P ).
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