# The MacNeille Completion of the Poset of Partial Injective Functions

### Marc Fortin \*

Submitted: Oct 27, 2007; Accepted: Apr 6, 2008; Published: Apr 18, 2008 Mathematics Subject Classification: 05C88

Abstract. Renner has defined an order on the set of partial injective functions from  $[n] = \{1, \ldots, n\}$  to [n]. This order extends the Bruhat order on the symmetric group. The poset  $P_n$  obtained is isomorphic to a set of square matrices of size n with its natural order. We give the smallest lattice that contains  $P_n$ . This lattice is in bijection with the set of alternating matrices. These matrices generalize the classical alternating sign matrices. The set of join-irreducible elements of  $P_n$  are increasing functions for which the domain and the image are intervals.

**Keywords:** alternating matrix, Bruhat, dissective, distributive lattice, join-irreducible, Key, MacNeille completion.

## 1 Introduction

The symmetric group  $S_n$ , the set of bijective functions from [n] into itself, with the Bruhat order is a poset; it is not a lattice. In [5], Lascoux and Schützenberger show that the *smallest* lattice that contains  $S_n$  as a subposet is the lattice of *triangles*; this lattice is in bijection with the set of alternating sign matrices. The main objective of this paper is to construct the smallest lattice that contains the poset  $P_n$  of the partial injective functions, partial meaning that the domain is a subset of  $\{1, \ldots, n\}$ .

In section 2, we give the theory on the construction for a finite poset P of the smallest lattice, noted L(P), which contains P as a subposet. We give also results [9] on join-irreducible and upper-dissector elements of a poset : L(P) is distributive iff a join-irreducible element of P is exactly an upper-dissector element of P. We will show in section 4.4 that  $L(P_n)$  is distributive.

In section 3.1, we give the definition of the set  $P_n$  with its order, due to Renner. This order extends the Bruhat order on  $S_n$ . In section 3.2, we associate to  $f \in P_n$  a matrix over  $\{0, \ldots, n\}$ . In section 3.3, we give two posets of matrices  $RG_n$  and  $R_n$ , the elements

<sup>\*</sup>Marc Fortin, Université du Québec à Montréal, Lacim; Case postale 8888, succursale Centre-Ville, Montréal (Québec) Canada, H3C 3P8 (mailing address); e-mail: marca.fortin@college-em.qc.ca.

of  $R_n \subseteq RG_n$  being the matrices defined in section 3.2, for which the order is the natural order. We show that  $P_n$  and  $R_n$  are in bijection. In section 3.4, we show that  $P_n$  and  $R_n$  are isomorphic posets : it is one of the main results of this article. Thus  $L(P_n)$  and  $L(R_n)$  are isomorphic lattices.

In section 4.1, after having observed that  $RG_n$  is a lattice, see [3], we show that  $R_n$  is not a lattice and we see that  $L(R_2) = RG_2$ . In sections 4.2 and 4.3, we define the matrices  $B_{r,s,a,n}$  and the matrices  $C_{r,s,a,n}$  which are  $\in R_n$ ; we show that all matrices of  $RG_n$  are the sup of matrices  $B_{r,s,a,n}$  and the *inf* of matrices  $C_{r,s,a,n}$ ; thus  $L(R_n) = RG_n$ : it is another one of the main results of this article. In sections 4.4, we show that the matrices  $B_{r,s,a,n}$ are the join-elements and the upper-elements of  $R_n$ : thus  $RG_n$  is distributive; we show also that the matrices  $C_{r,s,a,n}$  are the meet-elements of  $RG_n$ . In section 4.5, we obtain the the join-elements and the meet-elements of  $P_n$ . In section 4.6, we give a morphism of poset of  $P_n$  to  $S_{2n}$ : we may see  $P_n$  as a subposet of  $S_{2n}$ .

In section 5.1, we define the notion of a rectrice (and corectrice) which has been introduced by Lascoux and Schützenberger in [5]. A matrix  $A \in RG_n$  is the *sup* of its rectrices, a rectrice of A being a  $B_{r,s,a,n}$  matrix X with no  $B_{r,s,a,n}$  matrix strictly between X and A. In sections 5.2 and 5.3, we present the notions of Key and generalized Key : the keys and triangles we have in [5] are Keys and generalized Keys with no zero entry. The Keys form a poset  $K_n$ , the generalized Keys form a lattice  $KG_n$  and we have :  $L(K_n) = KG_n$ . In section 5.4, we show that  $P_n$  and  $K_n$  are isomorphic posets : so  $RG_n$ and  $KG_n$  are isomorphic lattices. We describe this isomorphism  $A \mapsto K(A)$  : we find the rectrices of A and we obtain the rectrices of K(A).

In section 6.1, we show that there is a bijection between  $RG_n$  and the set of alternating matrices  $At_n$  (which contains the classical alternating sign matrices). In section 6.2, we show that there is a bijection between  $At_n$  and  $KG_n$ : we obtain then a bijection between  $RG_n$  and  $KG_n$ . We show in section 6.3 that this bijection is an isomorphism of lattice.

This article is written from a PhD thesis [3] for which the director was Christophe Reutenauer.

## 2 Preliminaries on posets and MacNeille completion

Let  $\phi: P \to Q$  be a function between two posets. We say that  $\phi$  is a morphism of poset if  $x \leq_P y \Leftrightarrow \phi(x) \leq_Q \phi(y)$ . Note that  $\phi$  is necessarily injective. We say also that  $\phi$  is an embedding of P into Q.

All posets P considered here are *finite* with elements 0 and 1 such that:  $\forall x \in P, 0 \le x \le 1$ .

MacNeille [7] gave the construction for a poset P of a lattice L(P) which contains P as a subposet. We find this construction in [2]. We define :

$$\forall X \subseteq P : X^{-} = \{ y \in P \mid \forall x \in X, y \ge x \}; \ X^{+} = \{ y \in P \mid \forall x \in X, y \le x \}$$
$$L(P) = \{ X \subseteq P \mid X^{-+} = X \}, \ with \ Y \le Z \iff Y \subseteq Z$$

Theorem 2.1 ([2], theorem 2.16) L(P) is a lattice :

$$\forall X \in L(P), X \land Y = (X \cap Y)^{-+} = X \cap Y; \ X \lor Y = (X \cup Y)^{-+}$$

We simply write  $x^-$  for  $\{x\}^-$ ; and  $x^+$  for  $\{x\}^+$ . We define :

$$\varphi: P \to L(P), \ x \mapsto x^+$$

Theorem 2.2 ([2], theorem 2.33)

(i)  $\varphi$  is an embedding of P into L(P); (ii) if  $X \subseteq P$  and  $\wedge X$  exists in P, then  $\varphi(\wedge X) = \wedge(\varphi(X))$ ; (iii) if  $X \subseteq P$  and  $\vee X$  exists in P, then  $\varphi(\vee(\wedge X) = \vee(\varphi(X))$ .

Theorem 2.3 ([2], theorem 2.36 (i))  $\forall X \in L(P)$  :

$$\exists \ Q, R \subseteq P \ such \ that \ X = \lor(\varphi(Q)) = \land(\varphi(R)).$$

We give now some general properties of embeddings of posets into lattices, which allow to characterize the MacNeille completions and which will be used in the sequel.

#### Theorem 2.4

(i) Let P be a finite poset;
(ii) let be f an embedding of P into a lattice T;
(iii) let g be an embedding of P into a lattice S, such that :

 $\forall s \in S, s = \forall \{g(x) \mid x \in P \text{ and } g(x) \le s \}$  $= \land \{g(x) \mid x \in P \text{ and } g(x) \ge s \} \};$ 

then T contains S as a subposet : more precisely there is an embedding h of S into T such that  $h \circ g = f$ , where h is defined by :

$$h: S \to T, s \mapsto \bigvee_T \{ f(x) \mid x \in P \text{ and } g(x) \leq s \}.$$

**Lemma 2.5 ([2], Lemma 2.35)** Let f be an embedding of a finite poset P into a lattice S, such that :  $\forall s \in S$ ,  $\exists Q, R \subseteq P$  such that  $s = \lor(f(Q)) = \land(f(R))$ ; then

 $\forall s \in S, s = \forall \{f(x) \mid x \in P \text{ and } f(x) \le s\} \\ = \land \{f(x) \mid x \in P \text{ and } f(x) \ge s\} \}.$ 

**Theorem 2.6** Let P be a finite poset; then L(P) is the smallest lattice that contains P as a subposet. More precisely, if f an embedding of P into a lattice T, then  $card(L(P)) \leq card(T)$ .

**Theorem 2.7 ([2], Theorem 2.33 (iii))** Let P be a finite poset; let f be an embedding of P into a lattice S, such that :

$$\forall s \in S, \exists Q, R \subseteq P \text{ such that } s = \lor(f(Q)) = \land(f(R));$$

then the lattices L(P) and S are isomorphic.

The electronic journal of combinatorics 15 (2008), #R62

In the Appendix, we give a proof of Theorems 2.4, 2.6 and 2.7, since the statements of Theorems 2.4 and 2.6 in [2] are slightly different, and for the reader's convenience.

An element  $x \in P$  is *join-irreducible* if  $\forall Y \subseteq P, x \notin Y \Rightarrow x \neq sup(Y)$ . The set of join-irreducibles is denoted B(P) and is called the *base* of P in [5]. We have  $: x \in B(P)$  iff  $\forall y_1, \ldots, y_n \in P, x = y_1 \lor \ldots \lor y_n \Rightarrow \exists i, x = y_i$ .

An element  $x \in P$  is meet-irreducible if  $\forall Y \subseteq P$ ,  $x \notin Y \Rightarrow x \neq inf(Y)$ . The set of meet-irreducibles is denoted C(P) and is called the *cobase* of P in [5]. We have :  $x \in C(P)$  iff  $\forall y_1, \ldots, y_n \in P$ ,  $x = y_1 \land \ldots \land y_n \Rightarrow \exists i, x = y_i$ .

An element  $x \in P$  is an *upper-dissector* of P if  $\exists$  an element of P, denoted  $\beta(x)$ , such that  $P - x^- = \beta(x)^+$ . The set of upper-dissectors is denoted Cl(P). An element  $\in Cl(P)$  is called *clivant* in [5].

Theorem 2.8 ([9], Proposition 12)  $Cl(P) \subseteq B(P)$ .

P is dissective if Cl(P) = B(P).

Theorem 2.9 ([9], Proposition 28) B(P) = B(L(P)); Cl(P) = Cl(L(P)).

**Theorem 2.10 ([9])** If P is a lattice then  $x \in B(P)$  iff x is the immediate successor of one and only one element of P.

**Theorem 2.11 ([9], Theorem 7)** L(P) is distributive iff P is dissective.

## **3** Partial injective functions

### 3.1 Definition

A function  $f: X \subseteq [n] = \{1, ..., n\} \rightarrow [n]$  is called a *partial injective function*. Let  $P_n$  be the set of partial injective functions. If  $i \in [n] - dom(f)$ , we write f(i) = 0. So we can represent f by a vector :  $f = (f(1) \ f(2) \ \dots \ f(n))$ .

We define an order on  $P_n$ . This order is a generalization of the *Bruhat order* of  $S_n$ , the poset of bijective functions  $f : [n] \to [n]$ . Let  $f, g \in P_n$ ; we write  $f \to g$  if :

1) 
$$\exists i \in [n] \text{ such that}$$
  
a)  $f(j) = g(j) \forall j \neq i$   
b)  $f(i) < g(i)$   
or  
2)  $\exists i < j \in [n] \text{ such that}$   
a)  $f(k) = g(k) \forall k \neq i, j$   
b)  $g(j) = f(i) < f(j) = g(i)$ 

This definition is due to Pennell, Putcha and Renner: see [10], sections 8.7 and 8.8.

Example 3.1  $\begin{pmatrix} 3 & 0 & \underline{2} & 0 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & \underline{0} & 4 & 0 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 1 & 4 & \underline{0} & \underline{5} \end{pmatrix} \rightarrow \begin{pmatrix} 3 & \underline{1} & 4 & \underline{5} & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & 4 & 1 & 0 \end{pmatrix}.$ 

A pair (i, j) is called an *inversion* of  $f \in P_n$  if i < j and f(i) > f(j). We note inv(f) the set of inversions of f.

**Example 3.2** *inv*  $\begin{pmatrix} 3 & 1 & 0 & 5 & 0 \end{pmatrix} = \{(1,2), (1,3), (1,5), (2,3), (2,5), (4,5)\}.$ 

To any  $f \in P_n$ , we define the *length*  $L(f) = card(inv(f)) + \sum_{k=1}^n f(k)$ . L(f) is the number of inversions of f + the sum of the values of f.

We have :  $f \to g \Rightarrow L(f) < L(g)$ . So we can define a partial order on  $P_n$  :  $f \leq g \Leftrightarrow \exists m \geq 0 \text{ and } g_0, \ldots, g_m \in P_n \text{ such that } f = g_0 \to g_1 \to \ldots \to g_m = g$ .  $\forall f \in P_n$ , we have :

$$\mathbf{0}_{P_n} = \begin{pmatrix} 0 & \dots & 0 \end{pmatrix} \le f \le \begin{pmatrix} n & n-1 & \dots & 1 \end{pmatrix} = \mathbf{1}_{P_n}$$
$$0 = L(\mathbf{0}_{P_n}) \le L(f) \le L(\mathbf{1}_{P_n}) = \frac{n(n-1)}{2} + \frac{n(n+1)}{2} = n^2$$

The maximum element of  $P_n$  is not the identity map of [n].

### 3.2 Diagram

To any  $f \in P_n$ , we associate its graph, which is the subset of all points (i, f(i)) in  $\{1, \ldots, n\} \times \{0, \ldots, n\}$ , where *i* is the number of the row and *j* the number of the column. We represent each point by a cross  $\times$  and we obtain what we call the planar representation of *f*.

To any  $f \in P_n$ , we associate its *north-east diagram* NE(f): the planar representation of f is a part of NE(f); in addition, we put in each square  $[i, i + 1] \times [j, j + 1] \subseteq$  $[0, n + 1] \times [0, n + 1], 0 \le i, j \le n$ , the number of  $\times$  that lie above and to the right, i.e., in the north-east sector, of the square. We note this number  $NE(f)([i, i + 1] \times [j, j + 1])$ and we have :

$$NE(f)([i, i+1] \times [j, j+1]) = card\{k \le i \mid f(k) > j\}$$

**Example 3.3**  $f = ( \begin{array}{cccc} 3 & 0 & 2 & 4 & 1 \end{array} )$ 

And finally, to any  $f \in P_n$ , we associate a square matrix of size n M(f). The entries of M(f) are numbers in the squares of NE(f). Precisely,  $M(f)[i, j] = NE(f)([i, i+1] \times [j-1, j]), i, j = 1, ..., n$ .

**Example 3.4**  $f = ( \begin{array}{cccc} 3 & 0 & 2 & 4 & 1 \end{array} )$ 

$$M(f) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 \\ 3 & 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix}$$

### **3.3** The sets of matrices $R_n$ and $RG_n$

We define two sets of matrices  $RG_n$  and  $R_n$ , and we will show that  $R_n = \{M(f) \mid f \in P_n\}$ .

 $RG_n$  is a set of square matrices of size n with entries  $\in \{0, 1, ..., n\}$ . We consider that  $A \in RG_n$  has a row, numbered 0, and a column, numbered n + 1, of zeros.  $A \in RG_n$  if 1) the rows of A, from left to right, are decreasing, ending by 0 in column n + 1; 2) the columns of A, from top to bottom, are increasing, starting by 0 in row 0; and 3) any two adjacent numbers on a row or on a column are equal or differ by 1.

Example 3.5

The next two lemmas will be proved later.

**Lemma 3.6** If  $A \in RG_n$  has plus patterns (or minus patterns) in position  $r_1$ , s and  $r_2$ , s, with  $r_1 < r_2$ , then  $\exists r', r_1 < r' < r_2$  such that A has a minus pattern (respectively plus pattern) in position r', s;

if  $A \in RG_n$  has plus patterns (or minus patterns) in position  $r, s_1$  and  $r, s_2$ , with  $s_1 < s_2$ , then  $\exists s', s_1 < s' < s_2$  such that A has a minus pattern (respectively plus pattern) in position r, s'.

We rephrase this lemma by saying that the patterns plus and minus, horizontally and vertically, alternate in a matrix  $A \in RG_n$ .

**Lemma 3.7**  $\forall A \in RG_n$ , A[r,s] = the number of plus patterns - the number of minus patterns that lie above and to the right of the position r,s.

We define  $R_n$  by saying that  $A \in R_n \subseteq RG_n$  if A does not have any minus pattern.

**Theorem 3.8**  $\forall f \in P_n, M(f) \in R_n$ .

**Proof** :  $NE(f)([r, r+1] \times [s-1, s]) = NE(f)([r, r+1] \times [s, s+1]) + 1$  (= a+1 in the diagram below) iff there is a  $\times$  above, i.e.,  $\exists r' \leq r$  such that f(r') = s:

$$NE(f) = \begin{array}{ccc} \cdot & \cdot & \cdot \\ r' & \dots & \times \\ \cdot & \cdot & \cdot \\ r & \ddots & i \\ r & \cdot & a + 1 \\ a \end{array}$$

It follows that M(f) does not have any minus pattern because  $M(f)[r,s] = M(f)[r,s+1] + 1 \Rightarrow M(f)[r+1,s] = M(f)[r+1,s+1] + 1$ . This means  $M(f) \in R_n$ . Q.E.D.

To any  $A \in R_n$ , we associate  $f_A = \{(r, s) \in [n] \times [n] \mid A \text{ has a plus pattern in position } r-1, s\}.$ 

**Theorem 3.9**  $\forall A \in R_n, f_A \in P_n and M(f_A) = A.$ 

**Proof** :  $f_A \in P_n$  because, see lemma 3.6, the plus patterns and the minus patterns, horizontally and vertically, alternate and because A does not have any minus pattern.

We have, see lemma 3.7, that A[r, s] is the number of plus patterns that lie above and to the right of the position r, s.  $NE(f_A)([r, r+1] \times [s-1, s]) = M(f_A)[r, s]$  is the number of  $\times$  that lie above and to the right of the square  $[r, r+1] \times [s-1, s]$ . Thus  $M(f_A) = A$ . Q.E.D.

Example 3.10

If 
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 3 & 2 & 2 & 1 & 1 & 0 \\ 3 & 2 & 2 & 1 & 1 & 0 \\ 4 & 3 & 2 & 1 & 1 & 0 \\ 4 & 3 & 2 & 1 & 1 & 0 \\ \end{pmatrix}$$
 then  $f_A = (3, 1, 5, 0, 2)$ 

### **3.4** Isomorphism between $P_n$ and $R_n$

We consider the natural partial order on  $RG_n$ :

$$\forall A, B \in RG_n, \ A \leq B \Leftrightarrow A[i, j] \leq B[i, j] \ \forall i, j$$

To any couple (f,g),  $f,g \in P_n$ , we associate its north-east diagram NE(f,g): the planar representation of f, with a  $\times$  for the point (i, f(i)), and the planar representation of g, with a  $\odot$  for the point (i, g(i)), are parts of NE(f,g); in addition, we put in each square  $[i, i + 1] \times [j, j + 1] \subseteq [0, n + 1] \times [0, n + 1], 0 \leq i, j \leq n$ , the number of  $\odot$  - the number of  $\times$  that lie above and to the right, i.e., in the north-east sector, of the square. We note this number  $NE(f,g)[i, i + 1] \times [j, j + 1]$  and we have :

$$NE(f,g)[i,i+1] \times [j,j+1] = card\{k \le i \mid g(k) > j\} - card\{k \le i \mid f(k) > j\}$$

**Example 3.11** f = (3, 0, 2, 4, 1) and g = (3, 4, 5, 0, 0):

Observe that the squares sharing a common edge have the same value or differ by  $\pm 1$  following the rules, called *rules of passage*:

We show that  $P_n$  and  $R_n$  are isomorphic posets. The idea of the proof is essentially the idea of the proof of Proposition 7.1 of [4].

**Theorem 3.12**  $\forall f, g \in P_n, f \leq_{P_n} g \Leftrightarrow M(f) \leq_{R_n} M(g).$ 

**Proof** :  $(\Rightarrow)$  It is easy to see :  $f \to g$  in  $P_n \Rightarrow M(f) <_{R_n} M(g)$ . Hence the implication follows.

(⇐) Suppose M(f) < M(g). We show :  $\exists f' \in P_n$  such that f < f' and  $M(f') \leq M(g)$ . We conclude by induction that f < g.

1) Suppose :  $\exists i$  such that g(i) < f(i). We will show :  $\exists l < i$  such that (I) f(l) < f(i) and (II)  $NE(f,g)([r,r+1] \times [s,s+1]) > 0, \forall r,s$  such that  $l \le r < i, f(l) \le s < f(i)$  :

We will have then that  $f'(x) = \begin{cases} f(x) & \text{if } x \neq i, l \\ f(i) & \text{if } x = l \\ f(l) & \text{if } x = i \end{cases}$  is such that f < f'; and furthermore we will have  $M(f') \leq M(g)$  because, if  $l \leq r < i, f(l) \leq s < f(i)$ , then :

$$NE(f',g)([r,r+1] \times [s,s+1]) = NE(f,g)([r,r+1] \times [s,s+1]) - 1$$

By the rules of passage, we have  $NE(f,g)([i-1,i] \times [k',k'+1]) > 0$ ,  $\forall k'$  such that  $g(i) \leq k' < f(i)$ . Let  $k, 0 < k \leq g(i)$ , be the integer such that : 1)  $NE(f,g)([i-1,i] \times [k',k'+1]) > 0$ ,  $\forall k'$  such that  $k \leq k' < g(i)$ , and 2)  $NE(f,g)([i-1,i] \times [k-1,k]) = 0$ ; if there is no such k, set k = 0:

Let j be integer such that  $NE(f,g)[j',j'+1] \times [k',k'+1] > 0, \forall j',k'$  such that  $j \leq j' < i, k \leq k' < f(i)$ . Then  $\exists k'', k < k'' \leq f(i)$  such that  $NE(f,g)[j,j+1] \times [k''-1,k''] = 1$  and  $NE(f,g)[j-1,j] \times [k''-1,k''] = 0$ :

Applying the rules of passage, we have : f(j) < k'' and  $\exists l' < i$  such that f(l') = k.

If  $f(j) \ge k$ , we have l = j. If  $l' \ge j$ , we have l = l'. If k = 0 then  $k = 0 \le f(j) < k''$  and we have l = j. In all those cases, we have the conclusion desired.

Suppose f(j) < k and l' < j.

Then applying the rules of passage, we obtain with  $a = NE(f,g)[j-1,j] \times [k-1,k] \ge 0$ and  $b = NE(f,g)[i-1,i] \times [k''-1,k''] > 0$ :

The number of  $\odot$  - the number of  $\times$  inside the rectangle of corners (i, k), (i, k''), (j, k), (j, k'') is  $1 - (a+2) - b + 1 = -a - b \leq -b \leq -1$ . This means :  $\exists l', j < l' < i$  such that k < f(l') < k''. We have l = l' and we have the conclusion desired.

2) Suppose :  $\forall i, g(i) \ge f(i)$ , i.e., on each row of NE(f,g), we have  $\cdots \times \cdots \odot \cdots$  or  $\cdots \otimes \cdots$ .

Let *i* be such that 1) f(i) < g(i) and 2)  $\not\supseteq j, j \neq i$ , such that f(j) < g(j) and g(i) < g(j). By the rules of passage, we have  $NE(f,g)([r,r+1] \times [s,s+1]) > 0, \forall r,s$  such that  $r \geq i, f(i) \leq s < g(i)$ :

The fact that g is injective and the way we defined i imply that  $f'(x) = \begin{cases} f(x) & \text{if } x \neq i \\ g(i) & \text{if } x = i \end{cases}$  is in  $P_n$ . We have f' > f and furthermore  $M(f') \leq M(g)$  because, if  $r \geq i, f(i) \leq s < g(i)$ , then

$$NE(f',g)([r,r+1] \times [s,s+1]) = NE(f,g)([r,r+1] \times [s,s+1]) - 1$$

Q.E.D.

## 4 MacNeille completion of $P_n$

#### 4.1 The lattice $RG_n$

 $(RG_n, \leq)$  is a lattice with  $\forall A, A' \in RG_n$ :

$$(A \lor A')[i, j] = max\{A[i, j], A'[i, j]\}\$$
  
 $(A \land A')[i, j] = min\{A[i, j], A'[i, j]\}\$ 

 $\begin{pmatrix} R_n &\subseteq RG_n \text{ is not a lattice }: \text{ we can see in Figure 1 that} \\ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \lor_{R_2} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \text{ does not exist and that } L(R_2) = RG_2.$ We will show :  $\forall n, \ L(R_n) = RG_n.$ 



Figure 1: The poset  $R_2$  and the lattice  $RG_2$ 

## 4.2 The matrices $B_{r,s,a,n}$

 $\forall r, s, a \text{ such that } 1 \leq r, s \leq n, \ 0 < a \leq \min\{r, n+1-s\}, \text{ let } B_{r,s,a,n} \text{ be the matrix such that : } 1) \ B_{r,s,a,n}[r,s] = a \text{ and } 2) \ B_{r,s,a,n}[i,j], \ (i,j) \neq (r,s), \text{ is the smallest value we can have in order that } B_{r,s,a,n} \in RG_n.$ 

Example 4.1

$$B_{4,3,3,5} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 1 & 0 \\ 3 & 3 & 3 & 2 & 1 \\ 3 & 3 & 3 & 2 & 1 \end{pmatrix}$$

The following lemma is easy to prove. Details may be found in [3].

**Lemma 4.2**  $\forall r, s, a, such that 1 \leq r, s \leq n, 0 < a \leq min\{r, n + 1 - s\},$ 1)  $B_{r,s,a,n} = inf\{A \in RG_n \mid A[r,s] \geq a\} : A[r,s] \geq a \Rightarrow A \geq B_{r,s,a,n};$ 2)  $A \ngeq B_{r,s,a,n} \Leftrightarrow A[r,s] < a;$ 3)  $B_{r,s,a,n} \in R_n.$ 

**Theorem 4.3**  $\forall A \in RG_n, A = \sup\{B_{r,s,a,n} \mid 1 \le r, s \le n, A[r,s] = a\}.$ 

**Proof** :  $\forall r, s$ , such that A[r, s] > 0,  $A \ge B_{r,s,A[r,s],n}$ . Therefore  $A \ge sup\{B_{r,s,a,n} \mid 1 \le r, s \le n, A[r,s] = a\}.$ 

Suppose  $A[i, j] \neq 0$ ; then  $A[i, j] \geq (\sup\{B_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\})[i, j] \geq B_{i,j,A[i,j],n}[i, j] = A[i, j]$ . Therefore  $A[i, j] = (\sup\{B_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\})[i, j]$  and  $A = \sup\{B_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\}$ . Q.E.D.

**Corollary 4.4**  $\forall A \in RG_n$ ,  $\exists Q \subseteq R_n$  such that A = sup(Q).

**Proof** : Take  $Q = \{B_{r,s,a,n} \mid 1 \le r, s \le n, A[r,s] = a\}$ . Q.E.D.

## 4.3 The matrices $C_{r,s,a,n}$

 $\forall r, s, a \text{ such that } 1 \leq r, s \leq n, \ 0 \leq a < min\{r, n + 1 - s\}, \text{ let } C_{r,s,a,n} \text{ be the matrix such that : } 1) \ C_{r,s,a,n}[r,s] = a \text{ and } 2) \ C_{r,s,a,n}[i,j], \ (i,j) \neq (r,s), \text{ is the greatest value we can have in order that } C_{r,s,a,n} \in RG_n.$ 

**Example 4.5**  $C_{6,4,1,8}$  and  $C_{3,4,2,8}$  are respectively :

| ( | 1 | 1 | 1 | 1        | 1 | 1 | 1 | 1   |   | ( | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1   |
|---|---|---|---|----------|---|---|---|-----|---|---|---|---|---|---|---|---|---|-----|
|   | 2 | 2 | 2 | 1        | 1 | 1 | 1 | 1   |   |   | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1   |
|   | 3 | 3 | 2 | 1        | 1 | 1 | 1 | 1   |   |   | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1   |
|   | 4 | 3 | 2 | 1        | 1 | 1 | 1 | 1   |   |   | 4 | 4 | 4 | 3 | 3 | 3 | 2 | 1   |
|   | 4 | 3 | 2 | 1        | 1 | 1 | 1 | 1   | , |   | 5 | 5 | 5 | 4 | 4 | 3 | 2 | 1   |
|   | 4 | 3 | 2 | <u>1</u> | 1 | 1 | 1 | 1   |   |   | 6 | 6 | 6 | 5 | 4 | 3 | 2 | 1   |
|   | 5 | 4 | 3 | 2        | 2 | 2 | 2 | 1   |   |   | 7 | 7 | 6 | 5 | 4 | 3 | 2 | 1   |
|   | 6 | 5 | 4 | 3        | 3 | 3 | 2 | 1 / |   | ĺ | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 / |

The following lemma is easy to prove. Details may be found in [3].

Lemma 4.6  $\forall r, s, a, such that 1 \leq r, s \leq n, 0 \leq a < min\{r, n + 1 - s\},$ 1)  $C_{r,s,a,n} = sup\{A \in RG_n \mid A[r,s] \leq a\} : A[r,s] \leq a \Rightarrow A \leq C_{r,s,a,n};$ 2)  $A \nleq C_{r,s,a,n} \Leftrightarrow A[r,s] > a;$ 3)  $C_{r,s,a,n} \in R_n.$ 

**Theorem 4.7**  $\forall A \in RG_n, A = inf\{C_{r,s,a,n} \mid 1 \le r, s \le n, A[r,s] = a\}.$ 

**Proof** :  $\forall r, s$ , such that  $A[r, s] < min\{r, n + 1 - s\}, A \leq C_{r,s,A[r,s],n}$ . Therefore  $A \leq inf\{C_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\}.$ 

Suppose  $A[i, j] \neq min\{r, n + 1 - s\}$ ; then  $A[i, j] \leq (inf\{C_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\})[i, j] \leq C_{i,j,A[i,j],n}[i, j] = A[i, j]$ . Therefore  $A[i, j] = (inf\{C_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\})[i, j]$  and  $A = inf\{B_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r, s] = a\}$ . Q.E.D.

**Corollary 4.8**  $\forall A \in RG_n, \exists R \subseteq R_n \text{ such that } A = inf(R).$ 

**Proof** : Take  $R = \{C_{r,s,a,n} \mid 1 \le r, s \le n, A[r,s] = a\}$ . Q.E.D.

Corollaries 4.4 and 4.8 and Theorem 2.7 give :

**Theorem 4.9**  $L(R_n) \cong RG_n$ , *i.e.*, the MacNeille completion of  $R_n$  is isomorphic with  $RG_n$ .

### 4.4 The base and cobase of $R_n$

**Lemma 4.10**  $\forall r, s, a \text{ such that } 1 \leq r, s \leq n, \ 0 < a \leq \min\{r, n+1-s\}, B_{r,s,a,n} \in B(R_n).$ 

**Proof** :  $B(R_n) = B(RG_n)$  because (see Theorem 2.9)  $L(R_n) \cong RG_n$ ;  $B_{r,s,a,n} \in B(RG_n)$  if  $B_{r,s,a,n}$  is the immediate successor of one and only one matrix  $A \in RG_n$  (see Theorem 2.10).

Let A be the matrix such that  $A[i, j] = B_{r,s,a,n}[i, j] \ \forall (i, j) \neq (r, s) \text{ et } A[r, s] = a - 1.$   $A \in RG_n \text{ because } \begin{bmatrix} a - 1 \\ a & a & -1 \\ a & a & -1 \end{bmatrix} \text{ in } B_{r,s,a,n} \text{ becomes } \begin{bmatrix} a - 1 \\ a & a - 1 & a & -1 \\ a & a & -1 & a & -1 \\ a & a & -1 & a & -1 \end{bmatrix} \text{ in } A.$ We have  $A \leq Y \leq B_{r,s,a,n} \Rightarrow Y[r, s] = a \text{ or } a - 1 \Rightarrow Y = B_{r,s,a,n} \text{ or } Y = A.$ 

We have  $A \leq Y \leq B_{r,s,a,n} \Rightarrow Y[r,s] = a$  or  $a-1 \Rightarrow Y = B_{r,s,a,n}$  or Y = A. Therefore  $B_{r,s,a,n}$  is an immediate successor of A. Furthermore  $Z < B_{r,s,a,n} \Rightarrow \forall (i,j) \neq (r,s), Z[i,j] \leq B_{r,s,a,n}[i,j] = A[i,j]$  and (see Lemma 4.2)  $Z[r,s] \leq a-1$ . So  $Z < B_{r,s,a,n} \Rightarrow Z \leq A$ , which shows that A is the only matrix for which  $B_{r,s,a,n}$  is an immediate successor. Q.E.D.

**Lemma 4.11**  $\forall r, s, a \text{ such that } 1 \leq r, s \leq n, \ 0 \leq a < \min\{r, n+1-s\}, \ C_{r,s,a,n} \in C(R_n).$ 

**Proof:** Similar to the proof of the preceding lemma. Details in [3].

**Theorem 4.12** The matrices  $B_{r,s,a,n}$  form exactly the base of  $R_n$ .

**Proof** : By Lemma 4.10, we only need to show :  $A \in B(R_n) \Rightarrow A$  is a matrix  $B_{r,s,a,n}$ . By Theorem 4.3,  $A = \sup\{B_{r,s,a,n} \mid 1 \leq r, s \leq n, A[r,s] = a\}$ . Because  $A \in B(R_n)$ , A is one of these matrices. Q.E.D.

**Theorem 4.13** The matrices  $C_{r,s,a,n}$  form exactly the cobase of  $R_n$ .

**Proof:** Similar to the proof of the preceding theorem. Details in [3].

**Theorem 4.14**  $\forall r, s, a \text{ such that } 1 \leq r, s \leq n, \ 0 < a \leq \min\{r, n + 1 - s\}, \text{ we have } : RG_n - B^-_{r,s,a,n} = C^+_{r,s,a-1,n}, \text{ i.e., } B(RG_n) \subseteq Cl(RG_n).$ 

**Proof** : Let  $A \in RG_n$ ; by Lemma 4.2,  $A[r,s] \ge a \Leftrightarrow A \ge B_{r,s,a,n}$ ; by Lemma 4.6,  $A[r,s] \le a-1 \Leftrightarrow A \le C_{r,s,a-1,n}$ . Q.E.D.

**Corollary 4.15**  $B(R_n) = Cl(R_n)$ , *i.e.*,  $R_n$  is dissective.

**Proof** The conclusion follows from the preceding theorem and from Theorem 2.8. Q.E.D.

**Theorem 4.16**  $RG_n$  is a distributive lattice.

**Proof** : The conclusion follows from the preceding corollary and from Theorem 2.11. Q.E.D.

#### 4.5 The base and cobase of $P_n$

We have  $R_n \cong P_n$ . So  $B(P_n) = \{f_A \mid A \in B(R_n)\}$  and  $C(P_n) = \{f_A \mid A \in C(R_n)\}.$ 

**Theorem 4.17**  $f \in B(P_n)$  iff f is an increasing function for which dom(f) and im(f) are intervals of integers.

**Proof** : Let  $A = B_{r,s,a,n}, 1 \le r, s \le n, 0 < a \le \min\{r, n+1-s\}$ ; then :

We see : dom(f) = [r - a + 1, r] and im(f) = [s, s - a + 1]. Q.E.D.

**Example 4.18** If  $A = B_{4,3,3,5}$  (see Example 4.1) then

$$f_A = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 4 & 5 & 0 \end{array}\right)$$

Let  $A = C_{r,s,a,n}$ ,  $1 \le r, s \le n$ ,  $0 \le a < min\{r, n + 1 - s\}$ ; if a + s - 1 < r, i.e., if  $C_{r,s,a,n}[n, 1] < n$ , then  $f_A =$ 

**Example 4.19** If  $A = C_{6,4,1,8}$  (see Example 4.5) then

if  $a + s - 1 \ge r$ , i.e., if  $C_{r,s,a,n}[n, 1] = n$ , then  $f_A =$ 

$$\begin{pmatrix} 1 & \cdots & a & a+1 & \cdots & r & r+1 \\ n & \cdots & n-a+1 & s-1 & \cdots & a+s-r & n-a \\ \cdots & r+1+n-a-s & r+1+n-a-s+1 & \cdots & n \\ \cdots & s & a+s-r-1 & \cdots & 1 \end{pmatrix}$$

**Example 4.20** If  $A = C_{3,4,2,8}$  (see Example 4.5) then

The electronic journal of combinatorics 15 (2008), #R62

### **4.6** Injection of $P_n$ in $S_{2n}$ with Bruhat order

We show that there exists a morphism of poset from  $P_n$  to  $S_{2n}$ . This result was suggested by Lascoux.

To any  $f \in P_n$ , we associate an element  $f' \in P_{2n}$ :

$$f'(i) = \begin{cases} f(i) + n & if \ 1 \le i \le n \text{ and } i \in dom(f) \\ 0 & otherwise \end{cases}$$

$$M(f) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{pmatrix} \mapsto M(f') = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\ \end{pmatrix}$$

As shown in the example, the submatrix of size n in the north-east corner of M(f') is M(f).

## **Lemma 4.22** $\forall f, g \in P_n, f \leq_{P_n} g \Leftrightarrow f' \leq_{P_{2n}} g'.$

**Proof**: We have the conclusion of the lemma because 1)  $f \leq_{P_n} g \Leftrightarrow M(f) \leq_{R_n} M(g)$ ; 2) the submatrix of size n in the north-east corner of M(f') is M(f); 3) the submatrix of size n in the north-west corner of M(f') is n copies of the first column of M(f); 4) the submatrix of size n in the south-east corner of M(f') is n copies of the last row of M(f); 5) all the entries of the submatrix of size n in the south-west corner of M(f') are M(f)[n, 1]. Q.E.D.

**Lemma 4.23**  $\forall f \in P_n, f \lor \mathbf{1}_{[n]} \in S_n$  (where  $\mathbf{1}_{[n]}$  is the identity function).

**Proof** : We have:

$$M(\mathbf{1}_{[n]}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \\ n-2 & n-3 & n-4 & \dots & 0 \\ n-1 & n-2 & n-3 & \dots & 0 \\ n & n-1 & n-2 & \dots & 1 \end{pmatrix}$$

The minus pattern  $\begin{bmatrix} i+1 & i \\ i+1 & i+1 \end{bmatrix}$  can be obtained in only one way as the supremum of two non minus patterns :

$$\begin{bmatrix} i+1 & i \\ i+1 & i+1 \end{bmatrix} = \begin{bmatrix} i+1 & i \\ i+1 & i \end{bmatrix} \lor \begin{bmatrix} i & i \\ i+1 & i+1 \end{bmatrix}$$

Observe that  $M(\mathbf{1}_{[n]})$  does not have these two non minus patterns; so  $M(f) \vee M(\mathbf{1}_{[n]}) \in R_n$ and  $f \vee \mathbf{1}_{[n]} \in P_n$ . Since  $M(\mathbf{1}_{[n]})[n, 1] = n, f \vee \mathbf{1}_{[n]} \in S_n$ . Q.E.D.

**Theorem 4.24**  $P_n \to S_{2n}, f \mapsto f' \vee \mathbf{1}_{[2n]}, is a morphism of poset.$ 

**Proof** : By lemma 4.23,  $f' \vee \mathbf{1}_{[2n]} \in S_{2n}$ .

We have :  $f \leq g \Leftrightarrow$  (by Lemma 4.22)  $f' \leq g' \Rightarrow f' \vee \mathbf{1}_{[2n]} \leq g' \vee \mathbf{1}_{[2n]}$  because  $g' \vee \mathbf{1}_{[2n]} \geq g' \geq f'$ .

And  $f' \vee \mathbf{1}_{[2n]} \leq g' \vee \mathbf{1}_{[2n]} \Leftrightarrow M(f' \vee \mathbf{1}_{[2n]}) \leq M(g' \vee \mathbf{1}_{[2n]}) \Rightarrow$  the submatrix of size n in the north-east corner of  $M(f' \vee \mathbf{1}_{[2n]})$  is  $\leq$  the submatrix of size n in the north-east corner of  $M(g' \vee \mathbf{1}_{[2n]}) \Rightarrow$  the submatrix of size n in the north-east corner of M(f') is  $\leq$  the submatrix of size n in the north-east corner of M(f') is  $\leq$  the submatrix of size n in the north-east corner of M(g') (because the submatrix of size n in the north-east corner of  $M(g') \Rightarrow M(f) \leq M(g) \Rightarrow f \leq g$ .

We have proved :  $f \leq g \Leftrightarrow f' \vee \mathbf{1}_{[2n]} \leq g' \vee \mathbf{1}_{[2n]}$ . Q.E.D.

#### Example 4.25

$$f = \begin{pmatrix} 0 & 2 & 4 & 0 \end{pmatrix} \mapsto f' \lor \mathbf{1}_{[2n]} = \begin{pmatrix} 1 & 6 & 8 & 2 & 3 & 4 & 5 & 7 \end{pmatrix}$$

## 5 Rectrices and corectrices

#### 5.1 Rectrices and corectrices of $RG_n$

Let  $A \in RG_n$ ; recall that  $A^+ = \{X \in RG_n \mid X \leq A\}$  and that  $A^- = \{X \in RG_n \mid X \geq A\}$ . So by Theorem 4.3 and by Theorem 4.12,  $A = sup(A^+ \cap B(R_n))$ ; and by Theorem 4.7 and by Theorem 4.13,  $A = inf(A^- \cap C(R_n))$ . Following [5], a *rectrice* of A is a maximal element of  $(A^+ \cap B(R_n))$  and a *corectrice* of A is a minimal element of  $(A^- \cap C(R_n))$ .

Following [5], we say that  $A \in RG_n$  has an essential point a-1

 $a \ a \ a-1$  in position r, s, of value a > 0, if A[r-1, s] = A[r, s+1] = a - 1, a

 $\overline{A[r,s-1]} = A[r,s] = A[r+1,s] = a$ . In other terms, A has an essential point in position r, s, of value a > 0, if we can replace A[r,s] = a by a - 1 and still have a matrix  $\in RG_n$ . Hence A may have an essential point in position r, s, with r or  $s \in \{1, n\}$ . In brief, we will say that A has an essential point rsa.

Note that  $B_{r,s,a,n}$  has one and only one essential point rsa.

**Theorem 5.1**  $B_{r,s,a,n}$  is a rectrice of  $A \Leftrightarrow A$  has an essential point rsa.

**Proof:** ( $\Leftarrow$ )  $A[r,s] = a \Rightarrow$  (by Lemma 4.2)  $B_{r,s,a,n} \in (A^+ \cap B(R_n))$ . Suppose  $X \in (A^+ \cap B(R_n))$  with  $A \ge X \ge B_{r,s,a,n}$ . We find that X has an essential point rsa. Since X has only one essential point,  $X = B_{r,s,a,n}$ . Hence  $B_{r,s,a,n}$  is a rectrice of A.

 $(\Rightarrow) B_{r,s,a,n}$  is a rectrice of A and  $A = sup(A^+ \cap B(R_n)) \Rightarrow A[r,s] = a$ .

Suppose and A[r-1, s] = a (with r > 1). We have then:  $Z = B_{r-1,s,a,n} \in (A^+ \cap B(R_n))$ with  $Z \not\geq B_{r,s,a,n}$ ; by Theorem 4.2, Z[r, s] < a. Contradiction and A[r-1, s] = a - 1. In the same way, we show that A[r, s - 1] = a (if s > 1); A[r + 1, s] = a (if r < n); and A[r, s + 1] = a - 1 (if s < n). So A has an essential point rsa. Q.E.D.

**Corollary 5.2**  $A = \sup\{B_{r,s,a,n} \mid A \text{ has an essential point } rsa\}.$ 

**Proof:**  $A = sup(A^+ \cap B(R_n)) = sup\{B_{r,s,a,n} \mid B_{r,s,a,n} \text{ is a rectrice of } A\} = sup\{B_{r,s,a,n} \mid A \text{ has an essential point } rsa\}$ . Q.E.D.

We say that  $A \in RG_n$  has an coessential point  $\begin{bmatrix} a \\ a+1 \\ a \end{bmatrix}$  in position r, s of value  $0 \le a < min\{r, n+1-s\}$ , if A[r-1, s] = A[r, s] = A[r, s+1] = a, A[r, s-1] = A[r+1, s] = a + 1. In other terms, A has an coessential point rsa if we can replace A[r, s] = a by a + 1 and still have a matrix  $\in RG_n$ . Hence A may have an essential point in position r, s, with r or  $s \in \{1, n\}$ . In brief, we will say that A has an coessential point rsa.

Note that  $C_{r,s,a,n}$  has one and only one coessential point rsa.

**Theorem 5.3**  $C_{r,s,a,n}$  is a corectrice of  $A \Leftrightarrow A$  has an coessential point rsa.

**Proof:** Similar to the proof of Theorem 5.1. Details in [3].

**Corollary 5.4**  $A = inf\{C_{r,s,a,n} \mid A \text{ has an coessential point } rsa\}.$ 

**Proof:** Similar to the proof of Corollary 5.2. Details in [3].

Example 5.5

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 2 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix}$$

The essential points of A are : 131, 212, 241, 332, 351, 514. The coessential points of A are : 140, 221, 250, 312, 422, 541.

If we know the rectrices (or the essential points) of A, we can rebuild A: 1) A[r,s] = a for all rectrices  $B_{r,s,a,n}$  and 2) A[i,j], ij\* not an essential point, is the smallest value we can have in order that  $A \in RG_n$ .

**Example 5.6** Suppose the rectrices of A are :  $B_{2,3,1,4}$ ,  $B_{4,2,3,4}$ ; then

| ( * | *        | *        | * )    |           | ( 0        | 0        | 0        | 0 \                                         |
|-----|----------|----------|--------|-----------|------------|----------|----------|---------------------------------------------|
| *   | *        | <u>1</u> | *<br>* | and $A =$ | 1          | 1        | <u>1</u> | $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ |
| *   | *        | *        | *      |           | 2          | 2        | 1        | 0                                           |
| ( * | <u>3</u> | *        | * /    |           | $\sqrt{3}$ | <u>3</u> | 2        | $\begin{pmatrix} 0\\1 \end{pmatrix}$        |

If we know the corectrices (or the coessential points) of A, we can rebuild A: 1) A[r,s] = a for all corectrices  $C_{r,s,a,n}$  and 2) A[i,j], ij\* not an coessential point, is the greatest value we can have in order that  $A \in RG_n$ .

**Example 5.7** Suppose the corectrices of A are :  $C_{2,3,0,4}$ ,  $C_{4,2,2,4}$ ; then

| 1:       | * | * | *        | * ) |           | / 1 | 1        | 0        | 0 \ |
|----------|---|---|----------|-----|-----------|-----|----------|----------|-----|
| :        | * | * | <u>0</u> | *   | and $A =$ | 2   | 1        | <u>0</u> | 0   |
| :        | * | * | *        | *   |           | 3   | 2        | 1        | 1   |
| <b>\</b> | * | 2 | *        | * / |           | (3  | <u>2</u> | 2        | 1 / |

#### 5.2 The sets of Keys $K_n$ and generalized Keys $KG_n$

 $k = (k_j)_{j=1,\dots,n} \in KG_n$  if  $k_j$  is an injective partial functions  $k_j : \{1,\dots,j\} \to [n], i \mapsto k_j(i) = k_{ij}$ , such that 1)  $dom(k_j) = \{1,\dots,j'\}, j' \leq j; 2\}$   $k_j$  is decreasing; 3)  $k_{i+1,j+1} \leq k_{ij} \leq k_{i,j+1}, j = 1,\dots,n-1, 1 \leq i \leq j$ , with the convention that  $k_j(i) = k_{ij} = 0$  if  $j' < i \leq j$ . An element  $k \in KG_n$  will be called a *generalized Key*.

Example 5.8

We define a partial order on  $KG_n$ :  $k \leq k' \Leftrightarrow k_{ij} \leq k'_{ij} \forall i, j$ .  $KG_n$  is a lattice :  $sup(k, k')_{ij} = max(k_{ij}, k'_{ij})$  and  $min(k, k')_{ij} = inf(k_{ij}, k'_{ij})$ .

We define  $K_n$  by saying that  $k \in K_n \subseteq KG_n$  if  $k_{ij} = k_{i+1,j+1}$  or  $k_{ij} = k_{i,j+1}$ ,  $j = 1, \ldots n-1, 1 \le i \le j$ .  $K_n$  is not a lattice.

An element  $k \in K_n$  will be called a *Key*. In this section and in the next, we state results without proofs : details may be found in [3]. They generalize results that we can find in [5], where we deal with *keys* and with *triangles*. A key is a Key where the functions  $k_j$  are injective functions (not only partial injective functions) : a key has no zero entry. A triangle is a generalized Key with no zero entry.

To any  $f \in P_n$ , we can associate bijectively an element  $K(f) \in K_n$ . An example will show how.

Example 5.9

$$P_6 \ni f = \begin{pmatrix} 2 & 5 & 3 & 0 & 0 & 4 \end{pmatrix} \leftrightarrow k_f = \begin{pmatrix} 2 & 5 & 5 & 5 & 5 & 5 & 5 \\ 2 & 3 & 3 & 3 & 4 \\ & 2 & 2 & 2 & 3 & 4 \\ & & 0 & 0 & 2 & 6 & K_6 \\ & & & 0 & 0 & 2 & 0 & 0 \\ & & & & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

## **5.3** The Keys b[r, s, a, n] and c[r, s, a, n]

 $\forall r, s, a \text{ such that } 1 \leq s \leq n, \ 1 \leq r \leq s, \ 0 < a \leq n+1-r, \text{ let } b[r, s, a, n] \text{ be the Key such that : } 1) \ b[r, s, a, n]_{rs} = a \text{ and } 2) \ b[r, s, a, n]_{ij}, \ ij \neq rs$ , is the smallest value we can have in order that  $b[r, s, a, n] \in KG_n$ .

Example 5.10

**Lemma 5.11**  $\forall r, s, a, such that 1 \leq s \leq n, 1 \leq r \leq s, 0 < a \leq n+1-r,$ 1)  $b[r, s, a, n] = inf\{k \in KG_n \mid k_{rs} \geq a\} : k_{rs} \geq a \Rightarrow k \geq b[r, s, a, n];$ 2)  $k \not\geq b[r, s, a, n] \Leftrightarrow k_{rs} < a;$ 3)  $b[r, s, a, n] \in K_n.$ 

**Theorem 5.12**  $\forall k \in KG_n, k = \sup\{b[r, s, a, n] \mid k_{rs} = a\}.$ 

**Corollary 5.13**  $\forall k \in KG_n, \exists Q \subseteq K_n \text{ such that } k = sup(Q).$ 

 $\forall r, s, a \text{ such that } 1 \leq s \leq n, \ 1 \leq r \leq s, \ 0 \leq a < n+1-r, \text{ let } c[r, s, a, n] \text{ be the Key such that : } 1) \ c[r, s, a, n]_{rs} = a \text{ and } 2) \ c[r, s, a, n]_{ij}, \ ij \neq rs$ , is the greatest value we can have in order that  $c[r, s, a, n] \in KG_n$ .

Example 5.14

Lemma 5.15 
$$\forall r, s, a \text{ such that } 1 \leq s \leq n, \ 1 \leq r \leq s, \ 0 \leq a < n+1-r,$$
  
1)  $c[r, s, a, n] = \sup\{k \in KG_n \mid k_{rs} \leq a\} : k_{rs} \leq a \Rightarrow k \leq b[r, s, a, n];$   
2)  $k \nleq c[r, s, a, n] \Leftrightarrow k_{rs} > a;$   
3)  $c[r, s, a, n] \in K_n.$ 

**Theorem 5.16**  $\forall k \in KG_n, k = inf\{c[r, s, a, n] \mid k_{rs} = a\}.$ 

**Corollary 5.17**  $\forall k \in KG_n, \exists R \subseteq K_n \text{ such that } k = inf(R).$ 

**Theorem 5.18**  $L(K_n) \cong KG_n$ , *i.e.*, the MacNeille completion of  $K_n$  is isomorphic with  $KG_n$ .

**Theorem 5.19** The Keys b[r, s, a, n] form exactly the base of  $K_n$ ; the Keys c[r, s, a, n] form exactly the cobase of  $K_n$ .

#### **5.4** Rectrices and corectrices of $KG_n$

A rectrice of  $k \in KG_n$  is a maximal element of  $(k^+ \cap B(K_n))$  and a corectrice is a minimal element of  $(k^- \cap C(K_n))$ .

We say that  $k \in KG_n$  has an essential point  $\begin{bmatrix} b & a \\ c & d \end{bmatrix}$  in position r, s of value  $0 < a \le n+1-r$ , if :  $k_{rs} = a > b = k_{r,s-1}$ ,  $a > d = k_{r+1,s+1}$  and  $(a > c+1 = k_{r+1,s} + 1 \text{ or } c = 0)$ . In other terms, k has an essential point in position r, s of value  $0 < a \le n+1-r$ , if we can replace  $k_{rs} = a$  by a - 1 and still have an element  $\in KG_n$ . In brief, we will say that k has an essential point rsa.

Note that b[r, s, a, n] has one and only one essential point rsa.

**Theorem 5.20** b[r, s, a, n] is a rectrice of  $k \Leftrightarrow k$  has an essential point rsa.

**Corollary 5.21**  $k = \sup\{b[r, s, a, n] \mid k \text{ has an essential point } rsa\}.$ 

We say that  $k \in KG_n$  has an coessential point  $\begin{bmatrix} b & a \\ c & d \end{bmatrix}$  in position r, s of value  $0 < a \le n+1-r$ , if :  $k_{rs} = a > b = k_{r,s-1}$ ,  $a > d = k_{r+1,s+1}$  and  $(a > c+1 = k_{r+1,s}+1 \text{ or } c = 0)$ . In other terms, k has an coessential point rsa if we can replace  $k_{rs} = a$  by a + 1 and still have an element  $\in KG_n$ . In brief, we will say that k has an essential point rsa. Note that c[r, s, a, n] has one and only one coessential point rsa.

**Theorem 5.22** c[r, s, a, n] is a corectrice of  $k \Leftrightarrow k$  has an coessential point rsa.

**Corollary 5.23**  $k = inf\{kc[r, s, a, n] \mid k \text{ has an coessential point } rsa\}.$ 

If we know the rectrices (or the essential points) of k, or if we know the corectrices (or the coessential points) of k, we can rebuild k.

**Example 5.24** Suppose the rectrices of k are : b[1, 2, 3, 4], b[3, 3, 1, 4]; then

| * | 3 | * | * |           | 1 | 3 | 3        | 3 |
|---|---|---|---|-----------|---|---|----------|---|
|   | * | * | * | and $k =$ |   | 1 | 2        | 2 |
|   |   | 1 | * |           |   |   | <u>1</u> | 1 |
|   |   |   | * |           |   |   |          | 0 |

**Example 5.25** Suppose the corectrices of k are : c[1, 2, 3, 4], c[3, 3, 0, 4]; then

| * | 3 | *        | * |           | 3 | 3 | 4        | 4 |
|---|---|----------|---|-----------|---|---|----------|---|
|   | * | *        | * | and $k =$ |   | 2 | 3        | 3 |
|   |   | <u>0</u> | * |           |   |   | <u>0</u> | 2 |
|   |   |          | * |           |   |   |          | 0 |

We will show in the next section that the function between  $P_n$  and  $K_n$ ,  $f \leftrightarrow K(f)$ , as illustrated in Example 5.9, is in fact an isomorphism of posets. So  $A(\in R_n) \leftrightarrow f_A(\in P_n) \leftrightarrow K(f_A)(\in K_n)$  are isomorphisms of posets.

We have  $B_{r,s,a,n}(\in B(R_n)) \leftrightarrow f_{B_{r,s,a,n}}(\in B(P_n)) \leftrightarrow K(f_{B_{r,s,a,n}})$ =  $b[a, r, s, n](\in B(K_n))$ . If  $A \in R_n$  has an essential point rsa, then  $K(f_A) = K(A)$  has an essential point ars.

Example 5.26

$$B_{4,2,3,5} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 \\ 3 & 3 & 2 & 1 & 0 \\ 3 & 3 & 3 & 2 & 1 \end{pmatrix} \leftrightarrow f_{B_{4,2,3,5}} = \begin{pmatrix} 0 & 2 & 3 & 4 & 0 \end{pmatrix}$$
$$\overset{0 & 2 & 3 & 4 & 4 \\ 0 & 2 & 3 & 3 \\ \leftrightarrow K(f_{B_{4,2,3,5}}) = \begin{pmatrix} 0 & 2 & 3 & 4 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 2 & 2 & = b[3, 4, 2, 5] \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}$$

Example 5.27 The essential points of  $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & \frac{1}{2} & 0 \\ 2 & 2 & 1 & 0 \\ 3 & \frac{3}{2} & 2 & 1 \end{pmatrix}$  are : 231, 423. The essential points of  $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & \frac{1}{2} & 0 \\ 2 & 2 & 1 & 0 \\ 3 & \frac{3}{2} & 2 & 1 \end{pmatrix}$ 

tial points of K(A) are : 123, 342. So

We have also  $C_{r,s,a,n} (\in C(R_n)) \leftrightarrow f_{C_{r,s,a,n}} (\in C(P_n)) \leftrightarrow K(f_{C_{r,s,a,n}}) = c[a+1,r,s-1,n] (\in C(K_n))$ . If  $A \in R_n$  has a coessential point rsa, then  $K(f_A) = K(A)$  has an coessential point a + 1, r, s - 1.

Example 5.28

$$C_{4,2,1,5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 3 & 2 & 2 & 2 & 1 \end{pmatrix} \leftrightarrow f_{C_{4,2,1,5}} = \begin{pmatrix} 5 & 1 & 0 & 0 & 4 \end{pmatrix}$$

$$\Leftrightarrow K(f_{C_{4,2,1,5}}) = \begin{pmatrix} 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & = c[2, 4, 1, 5] \\ 0 & 0 \\ 0 \end{pmatrix}$$
Example 5.29 The coessential points of  $A = \begin{pmatrix} \frac{0}{1} & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 3 & 3 & 2 & 1 \end{pmatrix}$  are : 110, 331. The

coessential points of K(A) are : 110, 232. So

#### 5.5 Isomorphism between Keys and partial injective functions

We show that  $K_n$  and  $P_n$  are isomorphic posets. Theorem 5.30 is a generalization of Proposition 2.1.11 in [8] and of Proposition 1.19 of [6]. Moreover there is a little gap in the proofs of these propositions. We will show where while giving the proof of Theorem 5.30.

**Theorem 5.30**  $\forall f, g \in P_n, f \leq_{P_n} g \Leftrightarrow K(f) \leq_{K_n} K(g).$ 

**Proof** : ( $\Rightarrow$ ) It is easy to see :  $f \to g$  in  $P_n \Rightarrow K(f) <_{K_n} K(g)$ . Hence the implication follows.

( $\Leftarrow$ ) Suppose K(f) < K(g). We show :  $\exists f' \in P_n$  such that f < f' and  $K(f) < K(f') \le K(g)$  or  $\exists g' \in P_n$  such that g' < g and  $K(f) \le K(g') < K(g)$ . We conclude by induction that f < g.

Let  $s \ge 0$  be the smallest integer such that the columns  $1, \ldots, s-1$  of K(f) and K(g) are identical. Let a and b be the integers such that  $: 0 \le a = f(s) < g(s) = b$ .

(a) suppose :  $\exists s' > s$  such that  $a < f(s') = c \le b$ . We take the smallest s' and we then have :  $\forall s''$  such that s < s'' < s',  $f(s'') \le a$  or f(s'') > b.

In [8] and in [6], s' exists because f is bijective : s' is such that f(s') = b; the  $\ln [8] \text{ and } \ln [0], s \text{ cause bound } f(x) = \begin{cases} f(x) & \text{if } x \neq s, s' \\ b & \text{if } x = s \\ a & \text{if } x = s' \end{cases} \text{ is such that } f < f', \text{ but we cannot conclude that } \end{cases}$  $K(f') \le K(g) :$ 

**Example 5.31** Let  $f = \begin{pmatrix} 1 & 3 & 4 & 2 \end{pmatrix}$  and  $g = \begin{pmatrix} 4 & 2 & 3 & 1 \end{pmatrix}$ 

$$\begin{array}{c} a_m \\ \vdots \\ a_1 \\ a \end{array} \text{ such that } a_m < c < a_{m+1}. \end{array}$$

The function  $f'(x) = \begin{cases} f(x) & if \quad x \neq s, s' \\ c & if \quad x = s \\ a & if \quad x = s' \end{cases}$  is such that : 1) f < f' because a < c; 2) K(f) < K(f') because  $\begin{bmatrix} a_{m+1} \\ a_m \\ \vdots \\ a_1 \\ a \end{bmatrix}$  in columns  $s, s + 1, \dots, s' - 1$  of K(f) has been replaced by  $\begin{vmatrix} a_{m+1} \\ c \\ a_m \\ \vdots \\ a_1 \end{vmatrix}$  in K(f');

3) 
$$K(f') \leq K(g)$$
: we have in columns *s* of respectively  $K(f')$  and  $K(g)$   
 $a_{m+1}$   
 $a_m$   $a_m$   
 $a_m$   $a_m$   
 $a_1$   $a_1$   
 $a_1$   $a_1$ 

 $\mathbf{SO}$ the column of K(f')1Sthe column sof K(g); <furthermore K(f) < K(g) and the way we defined s' imply that the number of integers > b in columns s'' of K(f'),  $s \leq s'' < s'$ , is  $\leq$  the number of integers > b in columns s'' of K(g),  $s \leq s'' < s'$ ; this means that  $c, a_m, \ldots, a_1$ , in columns s'' of K(f'),  $s \leq s'' < s'$ , are on rows which are the same or are above the rows where are  $a_{m+1}, a_m, \ldots, a_1$ , in columns s'' of K(g),  $s \leq s'' < s'$ : thus the columns s'' of K(f'),  $s \leq s'' < s'$  are  $\leq$  the columns s'' of K(q), s < s'' < s'.

(b) suppose :  $\exists s' > s$  such that  $a \leq g(s') = d < b$ . We take the smallest s' and we have then:  $\forall s''$  such that s < s'' < s, g(s'') < a or g(s'') > b.

The function  $g'(x) = \begin{cases} g(x) & if \ x \neq s, s' \\ d & if \ x = s \\ b & if \ x = s' \end{cases}$  is such that : 1) g' < g;2) K(g') < K(g);3)  $K(f) \leq K(g').$ 

(c) suppose :  $\nexists s' > s$  such that  $a < f(s') = c \leq b$  or such that  $a \leq g(s') = d < b$ . This implies :  $b \notin im(f)$  and  $a \notin im(g)$ .

This implies :  $b \notin im(f)$  and  $a \notin im(g)$ . The function  $f'(x) = \begin{cases} f(x) & if \quad x \neq s \\ b & if \quad x = s \end{cases}$  is such that : 1) f < f';2) K(f) < K(f');3)  $K(f') \le K(g)$ . The proof is complete. Q.E.D.

## 6 Alternating matrices : $At_n$

### **6.1** Bijection between $RG_n$ and $At_n$

The set of alternating matrices is denoted  $At_n$ .  $At_n$  is a set of square matrices of size n with entries  $\in \{-1, 0, 1\}$ .  $A \in At_n$  if 1) the sum on each row and on each column is 0 or 1; 2) the 1 and -1 alternate on each row and on each column; 3) the first non-zero entry (if any) on each column is 1; 4) the last non-zero entry (if any) on each row is 1.

Note that an alternating sign matrix, see [1], is an alternating matrix for which the sum on each row and on each column is 1.

The pattern 
$$\begin{bmatrix} a \\ a+1 \end{bmatrix}$$
 in a matrix  $\in RG_n$  is followed by :  $\begin{bmatrix} a \\ a+1 \end{bmatrix}$ ,  $\begin{bmatrix} a-1 \\ a \end{bmatrix}$  or  $\begin{bmatrix} a \\ a \end{bmatrix}$ . The pattern  $\begin{bmatrix} a \\ a \end{bmatrix}$  in a matrix  $\in RG_n$  is followed by :  $\begin{bmatrix} a \\ a \end{bmatrix}$ ,  $\begin{bmatrix} a-1 \\ a-1 \end{bmatrix}$  or  $\begin{bmatrix} a-1 \\ a \end{bmatrix}$ . So the pattern  $\begin{bmatrix} a \\ a+1 \end{bmatrix}$  is the beginning of a pattern zero or a pattern plus, and the pattern plus  $\begin{bmatrix} a & a \\ a+1 & a \end{bmatrix}$  is followed by a pattern zero or by a pattern minus :  
 $\begin{bmatrix} a & a \\ a+1 & a \end{bmatrix}$ ,  $\begin{bmatrix} a & a-1 \\ a+1 & a \end{bmatrix}$ ,  $\begin{bmatrix} a & a-1 \\ a+1 & a \end{bmatrix}$ ;  $\begin{bmatrix} a & a & a \\ a+1 & a \end{bmatrix}$ ;  $\begin{bmatrix} a & a & a \\ a+1 & a & a \end{bmatrix}$ ,  $\begin{bmatrix} a & a & a-1 \\ a+1 & a & a \end{bmatrix}$ ,  $\begin{bmatrix} a & a & a-1 \\ a+1 & a & a \end{bmatrix}$ ; and the pattern  $\begin{bmatrix} a \\ a \end{bmatrix}$  is the end of a pattern zero or a pattern plus, and the pattern minus  $\begin{bmatrix} a+1 & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus, and the pattern minus  $\begin{bmatrix} a+1 & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a & a \\ a+1 & a+1 \end{bmatrix}$  is followed by a pattern zero or by a pattern plus.  $\begin{bmatrix} a & a & a & a \\ a+1 & a+1 & a & a \\ a+1 & a+1 & a & a \end{bmatrix}$ .

The work we did horizontally, we can make it vertically. So we have proved Lemma 3.6 : the patterns plus and minus, horizontally and vertically, alternate in a matrix  $A \in RG_n$ .

Furthermore, because the row 0 of  $A \in RG_n$  is a row of zeros and the column n + 1 a column of zeros, the first non-zero (if any) pattern on a column is 1 and the last non-zero (if any) pattern on a row is 1.

So the matrix 
$$A'$$
,  $A'[r,s] = \begin{cases} +1 & \text{if } A \text{ has a pattern plus in position } r-1, s \\ -1 & \text{if } A \text{ has a pattern minus in position } r-1, s \\ 0 & \text{if } A \text{ has a pattern zero in position } r-1, s \end{cases}$ 

an alternating matrix.

Example 6.1 : 
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 1 \end{pmatrix}$$
,  $A' = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{pmatrix}$ 

**Theorem 6.2**  $Card(RG_n) = card(At_n).$ 

**Proof** : The function  $RG_n \to At_n, A \mapsto A'$  in a bijection : A[r, s] is the number of 1 the number of -1 in position r', s' of A', r' < r and  $s' \ge s$ . This a consequence of lemma  $3.7: \forall A \in RG_n, A[r,s] =$  the number of plus patterns - the number of minus patterns that lie above and to the right of the position r, s. Thus  $\operatorname{card}(RG_n) = \operatorname{card}(At_n)$ . Q.E.D.

**Proof** of Lemma 3.7 : We define :

$$|r,s| = card\{(r',s') \mid r' < r, s' \ge s, A \text{ has a pattern plus in position } r', s'\}$$

 $- card\{(r', s') \mid r' < r, s' \ge s, A \text{ has a pattern minus in position } r', s'\};$ 

We prove that A[r, s] = |r, s|. If A has the pattern  $\begin{bmatrix} a \\ a+1 \end{bmatrix}$  in position r-1, s, it is the beginning of a pattern zero or a pattern plus; if it is a pattern zero, it is followed by pattern(s) zero and by a pattern plus; the number of patterns plus to the right of  $\begin{bmatrix} a \\ a+1 \end{bmatrix}$  is one more than the number of patterns minus because the patterns plus and minus alternate, ending by a pattern plus. So  $A[r,s] = A[r-1,s] + 1 \implies |r,s| = |r-1,s| + 1.$ 

If A has the pattern  $\begin{bmatrix} a \\ a \end{bmatrix}$  in position r-1, s, it is the beginning of a pattern zero or a pattern minus; if it is a pattern zero, it is followed by pattern(s) zero and, possibly, by a pattern minus; the number of patterns plus to the right of  $\begin{bmatrix} a \\ a \end{bmatrix}$  is the same than the number of patterns minus because the patterns plus and minus alternate, ending by a pattern plus. So  $A[r,s] = A[r-1,s] \Rightarrow |r,s| = |r-1,s|$ .

We have also :  $A[r, s + 1] = A[r, s] - 1 \implies |r, s| = |r, s + 1| - 1$  and A[r, s + 1] = A[r, s] = |r, s + 1| - 1 $A[r,s] \Rightarrow |r,s| = |r,s+1|.$ 

Since A[1,1] = 1 if A has a pattern plus in position 0, s, s being unique, and A[1,1] = 0, otherwise we have A[1,1] = [1,1]. We then have the conclusion of the lemma by double induction on r and s. Q.E.D.

#### 6.2 Bijection between $At_n$ and $KG_n$

Here is a bijection between  $KG_n$  and  $At_n$  that generalizes the bijection we find in [1], page 57, between alternating sign matrices and triangles.

To any  $A' \in At_n$ , we associate a square matrix  $X_A$  of size n in which  $X_A[i,j] =$  $\sum_{k=1}^{j} A'[i,k]$ .  $X_A[i,j]$  is the sum of the entries from rows 1 to *i* of the *j*th column of A'. We recover A' from  $X_A : A'[i, j] = X_A[i, j] - X_A[i - 1, j].$ 

Suppose row j of  $X_A$  has a 1 in columns  $j_1 < j_2 < \ldots < j_r$ . Let  $k(A)_j : \{1, \ldots, j\} \to [n]$ a partial injective function defined like this :  $k(A)_j(1) = k(A)_{1j} = j_r, k(A)_j(2) = k(A)_{2j} = k(A)_{2j}$  $j_{r-1}, \ldots, k(A)_j(r) = k(A)_{rj} = j_1$  and  $k(A)_j(r+1) = k(A)_{r+1,j} = \ldots = k(A)_j(j) = k(A)_j(r)$  $k(A)_{ii} = 0$ . We have then (see [3]) :

**Theorem 6.3**  $\forall A' \in At_n, \ k(A) = (k(A)_j)_{j=1,...,n} \in KG_n.$ 

**Theorem 6.4**  $At_n \to KG_n$ ,  $A' \mapsto k(A)$  is a bijection.

Example 6.5

$$A' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 \end{pmatrix}, X_A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}, k(A) = \begin{pmatrix} 3 & 3 & 4 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

#### **6.3** Isomorphism between $RG_n$ and $KG_n$

Since  $R_n$ ,  $P_n$  and  $K_n$  are isomorphic posets, by Theorem 2.7,  $L(R_n)$ ,  $L(P_n)$  and  $L(K_n)$  are isomorphic lattices. Since  $L(R_n)$  and  $RG_n$  are isomorphic lattices and since  $L(K_n)$  and  $KG_n$  are isomorphic lattices,  $RG_n$  and  $KG_n$  are isomorphic lattices. We give here another way to see this isomorphism.

Let  $A \in RG_n$ . Since  $A = inf\{C_{r,s,a,n} \mid A \text{ has an coessential point } rsa\}$  (see Corollary 5.4), A is the greatest matrix  $\in RG_n$  that has the coessential points the matrix A has. If A < B in  $RG_n$ , then A has a coessential point, say rsa, that B does not have because B cannot have the coessential points of A and be > A.

The matrix  $C[i, j] = \begin{cases} A[i, j] + 1 & if (i, j) = (r, s) \\ A[i, j] & otherwise \end{cases}$  is an immediate successor of A and it is easy to prove that  $C \leq B$ . Thus we have :

**Theorem 6.6**  $A < B \Rightarrow \sum_{i,j} A[i,j] < \sum_{i,j} B[i,j].$ 

**Corollary 6.7** B is an immediate successor of A iff A < B and  $1 + \sum_{i,j} A[i,j] = \sum_{i,j} B[i,j]$ .

**Corollary 6.8** The number of immediate successors of  $A \in RG_n$  is the number of coessential points of A.

**Corollary 6.9** The number of immediate predecessors of  $A \in RG_n$  is the number of essential points of A.

**Corollary 6.10**  $RG_n$  is a graded lattice of rank  $\frac{n(n+1)(2n+1)}{6}$ .

**proof** : We have the conclusion of the corollary because  $inf(RG_n) = 0$  and  $sup(RG_n) =$ 

 $\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ n-2 & n-2 & n-2 & \dots & 1 \\ n-1 & n-1 & n-2 & \dots & 1 \\ n & n-1 & n-2 & \dots & 1 \end{pmatrix} .$ Q.E.D.

**Theorem 6.11** Suppose A has a coessential point rsa; suppose B is an immediate successor of A such that B[r,s] = a + 1; then  $X_A$  and  $X_B$  have the same entries except  $X_A[r,s] = X_B[r,s+1] = 1$  and  $X_A[r,s+1] = X_B[r,s] = 0$ :  $X_A$  has the pattern  $\boxed{1 \ 0}$  in position r, s and  $X_B$  has the pattern  $\boxed{0 \ 1}$  in position r, s.

**Proof**: Since A has a coessential point rsa, A[r-1, s-1] = a+1 or a; A[r-1, s+1] = a or a-1; A[r+1, s-1] = a+1 or a+2; A[r+1, s+1] = a+1 or a. There are 16 possibilities.

aaLet us look at one of these possibilities. Suppose A has the pattern a+1a $a + 1 \quad a + 1$ aaaain position r-1, s-1; then B has the pattern  $\begin{vmatrix} a+1 & a+1 \end{vmatrix}$  in position r-1, s-1. a+1 a+1 aThe matrices A' and B' have the same entries except that A' has the pattern  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ position r, s and B' the pattern  $\begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$  in position r, s. We obtain then that the matrices  $X_A$  and  $X_B$  have the same entries except that  $X_A$  has the pattern  $\begin{bmatrix} 1 & 0 \end{bmatrix}$  in position r, sand  $X_B$  the pattern  $\begin{bmatrix} 0 & 1 \end{bmatrix}$  in position r, s.

The other 15 possibilities give the same result. Q.E.D.

Suppose A has a coessential point rsa; suppose B is an immediate successor of A such that B[r, s] = a + 1; suppose  $k(A)_{tr} = s$ , i.e., suppose  $card\{l \mid l \ge s \text{ and } X_A[r, l] = 1\} = t$ ; then the real meaning of theorem 6.11 is that  $k(B)_{tr} = s + 1$ , i.e., k(B) is an immediate successor of k(A).

And this proves :  $RG_n \to KG_n$ ,  $A \mapsto k(A)$  is an isomorphism of lattices. Q.E.D.

#### Example 6.12

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$
$$A' = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix}, B' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$X_A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, X_B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$k(A) = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 1 & 2 & k(B) = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}$$

## 7 Appendix

**Proof of the theorem 2.4**: Since f and g are embeddings, we have  $\forall x \in P$ ,  $\{y \in P \mid y \leq x\} = \{y \in P \mid g(y) \leq g(x)\} = \{y \in P \mid f(y) \leq f(x)\}$ ; thus  $(h \circ g)(x) = \lor\{f(y) \mid y \in P \text{ and } g(y) \leq g(x)\} = \lor\{f(y) \mid y \in P \text{ and } f(y) \leq f(x)\} = f(x)$ , and  $h \circ g = f$ .

We prove :  $\forall s, t \in S, s \leq t \Rightarrow h(s) \leq h(t)$ . We have :  $s \leq t \Rightarrow \{x \in P \mid g(x) \leq s\} \subseteq \{x \in P \mid g(x) \leq t\} \Rightarrow h(s) = \lor \{f(x) \mid x \in P \text{ and } g(x) \leq s\} \leq \lor \{f(x) \mid x \in P \text{ and } g(x) \leq t\} = h(t)$ .

We have :  $t \nleq s \Rightarrow (\exists x \in P \text{ such that } g(x) \leq t \text{ and } g(x) \nleq s)$ , because  $(\forall y \in P, g(y) \leq t \Rightarrow g(y) \leq s) \Rightarrow t = \lor \{g(y) \mid y \in P \text{ and } g(y) \leq t\} \leq \lor \{g(y) \mid y \in P \text{ and } g(y) \leq s\} = s$ .

Suppose  $t \nleq s$  and let x be such that  $g(x) \leq t$  and  $g(x) \nleq s$ . We prove :  $h(s) < (h(s) \lor f(x))$ . Suppose  $h(s) = (h(s) \lor f(x))$ , i.e., suppose  $f(x) \leq h(s)$ . Let  $z \in P$  be such that  $g(z) \geq s$ . Then  $f(z) \geq \lor \{f(y) \mid y \in P \text{ and } g(y) \leq s\} = h(s) \geq f(x)$ ; thus  $z \geq x$  which imply that  $g(x) \leq \land \{g(y) \mid y \in P \text{ and } g(y) \geq s\} = s$ . Contradiction.

We prove now :  $s < t \Rightarrow h(s) < h(t)$ . Since  $t \nleq s$ ,  $\exists x \in P$  such that  $g(x) \le t$  and  $g(x) \nleq s$ , and such that  $h(s) < (h(s) \lor f(x))$ . We have :  $s < t \Rightarrow h(s) \le h(t)$ ; and we have :  $g(x) \le t \Rightarrow f(x) = h(g(x)) \le h(t)$ . Thus  $h(s) < (h(s) \lor f(x)) \le h(t)$ .

We prove now :  $h(s) = h(t) \Rightarrow s = t$ . Suppose  $t \nleq s$ ; then  $\exists x \in P$  be such that  $g(x) \leq t$  and  $g(x) \nleq s$ , and such that  $h(s) < (h(s) \lor f(x))$ . We have :  $g(x) \leq t \Rightarrow f(x) = h(g(x)) \leq h(t)$ . Thus  $h(s) < (h(s) \lor f(x)) = (h(t) \lor f(x)) \leq h(t)$ . Contradiction. Thus  $t \leq s$ ; similarly we have  $s \leq t$ . Thus s = t.

We prove finally:  $h(s) < h(t) \Rightarrow s < t$ . Suppose  $s \nleq t$ ; then  $\exists x \in P$  such that  $g(x) \le s$  and  $g(x) \nleq t$ . We have:  $g(x) \nleq t \Rightarrow \exists y \in P$  such that  $t \le g(y)$  and  $g(x) \measuredangle g(y)$ , because  $t = \land \{g(z) \mid z \in P \text{ and } g(z) \ge t\}$ . Then  $f(x) = h(g(x)) \le h(s) < h(t) \le h(g(y)) = f(y)$ , which imply x < y and g(x) < g(y). Contradiction. And since  $h(s) = h(t) \Rightarrow s = t$ , we have  $h(s) < h(t) \Rightarrow s < t$ . Q.E.D.

**Proof of the theorem 2.6**: The function  $h : L(P) \to T$ ,  $X \mapsto \bigvee_T \{f(x) \mid x \in P \text{ and } \varphi(x) \leq X\}$ , where  $\varphi : P \to L(P), x \mapsto x^+$ , is injective. Thus  $card(L(P)) \leq card(T)$ . Q.E.D.

**Proof of the theorem 2.7**: The function  $h: S \to L(P), s \mapsto \forall_{L(P)} \{\varphi(x) \mid x \in P \text{ and } f(x) \leq s\}$ , where  $\varphi: P \to L(P), x \mapsto x^+$ , is injective. Thus  $card(S) \leq card(L(P))$ . Thus card(L(P)) = card(S) and h is an isomorphism. Q.E.D.

To prove that for a poset P, a lattice  $T \supseteq P$  is isomorphic with L(P), we must have  $\forall t \in T, t = \lor \{x \in P \mid x \leq t\}$ , and  $\forall t \in T, t = \land \{x \in P \mid x \geq t\}$ . In the example that follows, T contains P as a subposet,  $\forall t \in T, t = \lor \{x \in P \mid x \leq t\}$ , but  $T \ncong L(P)$ .



## References

- [1] David M. Bressoud. Proofs and Confirmations The Story of the Alternating Sign Matrix Conjecture. Spectrum series. The Mathematical Association of America, 1999.
- [2] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University press, 1990.
- [3] Marc Fortin. *Treillis enveloppant des fonctions partielles injectives*. PhD thesis, Université du Québec à Montréal, 2007.
- [4] Christian Kassel, Alain Lascoux, and Christophe Reutenauer. The singular locus of a Schubert variety. *Journal of Algebra*, (269):74–108, 2003.
- [5] Alain Lascoux and Marcel-Paul Schützenberger. Treillis et bases des groupes de Coxeter. *Electron. J. of Combin.*, (3, # R27), 1996.
- [6] I.G. Macdonald. Notes on Schubert Polynomials. Number 6. Laboratoire de Combinatoire et d'Informatique Mathématique, 1991.
- [7] H. MacNeille. Partially ordered sets. Trans. Amer. Math Soc. 42(3), pages 416–460, 1937.
- [8] Laurent Manivel. Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence. Cours spécialisés 3. Société Mathématique de France 1998, 1998.
- [9] Nathan Reading. Order Dimension, Strong Bruhat Order and Lattice Properties for Posets. Order 19, pages 73–100, 2002.
- [10] Lex E. Renner. Linear Algebraic Monoids. Encyclopaedia of Mathematical Sciences, Volume 134. Springer Verlag, 2005.