The MacNeille Completion of the Poset of Partial Injective Functions

Marc Fortin *
Submitted: Oct 27, 2007; Accepted: Apr 6, 2008; Published: Apr 18, 2008
Mathematics Subject Classification: 05C88

Abstract

Renner has defined an order on the set of partial injective functions from $[n]=\{1, \ldots, n\}$ to $[n]$. This order extends the Bruhat order on the symmetric group. The poset P_{n} obtained is isomorphic to a set of square matrices of size n with its natural order. We give the smallest lattice that contains P_{n}. This lattice is in bijection with the set of alternating matrices. These matrices generalize the classical alternating sign matrices. The set of join-irreducible elements of P_{n} are increasing functions for which the domain and the image are intervals.

Keywords: alternating matrix, Bruhat, dissective, distributive lattice, join-irreducible, Key, MacNeille completion.

1 Introduction

The symmetric group S_{n}, the set of bijective functions from $[n]$ into itself, with the Bruhat order is a poset; it is not a lattice. In [5], Lascoux and Schützenberger show that the smallest lattice that contains S_{n} as a subposet is the lattice of triangles; this lattice is in bijection with the set of alternating sign matrices. The main objective of this paper is to construct the smallest lattice that contains the poset P_{n} of the partial injective functions, partial meaning that the domain is a subset of $\{1, \ldots, n\}$.

In section 2, we give the theory on the construction for a finite poset P of the smallest lattice, noted $L(P)$, which contains P as a subposet. We give also results [9] on join-irreducible and upper-dissector elements of a poset : $L(P)$ is distributive iff a joinirreducible element of P is exactly an upper-dissector element of P. We will show in section 4.4 that $L\left(P_{n}\right)$ is distributive.

In section 3.1, we give the definition of the set P_{n} with its order, due to Renner. This order extends the Bruhat order on S_{n}. In section 3.2, we associate to $f \in P_{n}$ a matrix over $\{0, \ldots, n\}$. In section 3.3, we give two posets of matrices $R G_{n}$ and R_{n}, the elements

[^0]of $R_{n} \subseteq R G_{n}$ being the matrices defined in section 3.2, for which the order is the natural order. We show that P_{n} and R_{n} are in bijection. In section 3.4, we show that P_{n} and R_{n} are isomorphic posets : it is one of the main results of this article. Thus $L\left(P_{n}\right)$ and $L\left(R_{n}\right)$ are isomorphic lattices.

In section 4.1, after having observed that $R G_{n}$ is a lattice, see [3], we show that R_{n} is not a lattice and we see that $L\left(R_{2}\right)=R G_{2}$. In sections 4.2 and 4.3, we define the matrices $B_{r, s, a, n}$ and the matrices $C_{r, s, a, n}$ which are $\in R_{n}$; we show that all matrices of $R G_{n}$ are the sup of matrices $B_{r, s, a, n}$ and the inf of matrices $C_{r, s, a, n}$; thus $L\left(R_{n}\right)=R G_{n}$: it is another one of the main results of this article. In sections 4.4, we show that the matrices $B_{r, s, a, n}$ are the join-elements and the upper-elements of R_{n} : thus $R G_{n}$ is distributive; we show also that the matrices $C_{r, s, a, n}$ are the meet-elements of $R G_{n}$. In section 4.5, we obtain the the join-elements and the meet-elements of P_{n}. In section 4.6, we give a morphism of poset of P_{n} to $S_{2 n}$: we may see P_{n} as a subposet of $S_{2 n}$.

In section 5.1, we define the notion of a rectrice (and corectrice) which has been introduced by Lascoux and Schützenberger in [5]. A matrix $A \in R G_{n}$ is the sup of its rectrices, a rectrice of A being a $B_{r, s, a, n}$ matrix X with no $B_{r, s, a, n}$ matrix strictly between X and A. In sections 5.2 and 5.3 , we present the notions of Key and generalized Key: the keys and triangles we have in [5] are Keys and generalized Keys with no zero entry. The Keys form a poset K_{n}, the generalized Keys form a lattice $K G_{n}$ and we have : $L\left(K_{n}\right)=K G_{n}$. In section 5.4, we show that P_{n} and K_{n} are isomorphic posets : so $R G_{n}$ and $K G_{n}$ are isomorphic lattices. We describe this isomorphism $A \mapsto K(A)$: we find the rectrices of A and we obtain the rectrices of $K(A)$.

In section 6.1, we show that there is a bijection between $R G_{n}$ and the set of alternating matrices $A t_{n}$ (which contains the classical alternating sign matrices). In section 6.2, we show that there is a bijection between $A t_{n}$ and $K G_{n}$: we obtain then a bijection between $R G_{n}$ and $K G_{n}$. We show in section 6.3 that this bijection is an isomorphism of lattice.

This article is written from a PhD thesis [3] for which the director was Christophe Reutenauer.

2 Preliminaries on posets and MacNeille completion

Let $\phi: P \rightarrow Q$ be a function between two posets. We say that ϕ is a morphism of poset if $x \leq_{P} y \Leftrightarrow \phi(x) \leq_{Q} \phi(y)$. Note that ϕ is necessarily injective. We say also that ϕ is an embedding of P into Q.

All posets P considered here are finite with elements 0 and 1 such that: $\forall x \in P, 0 \leq$ $x \leq 1$.

MacNeille [7] gave the construction for a poset P of a lattice $L(P)$ which contains P as a subposet. We find this construction in [2]. We define :

$$
\begin{gathered}
\forall X \subseteq P: X^{-}=\{y \in P \mid \forall x \in X, y \geq x\} ; X^{+}=\{y \in P \mid \forall x \in X, y \leq x\} \\
L(P)=\left\{X \subseteq P \mid X^{-+}=X\right\}, \text { with } Y \leq Z \Leftrightarrow Y \subseteq Z
\end{gathered}
$$

Theorem 2.1 ([2], theorem 2.16) $L(P)$ is a lattice:

$$
\forall X \in L(P), X \wedge Y=(X \cap Y)^{-+}=X \cap Y ; X \vee Y=(X \cup Y)^{-+}
$$

We simply write x^{-}for $\{x\}^{-}$; and x^{+}for $\{x\}^{+}$. We define :

$$
\varphi: P \rightarrow L(P), x \mapsto x^{+}
$$

Theorem 2.2 ([2], theorem 2.33)

(i) φ is an embedding of P into $L(P)$;
(ii) if $X \subseteq P$ and $\wedge X$ exists in P, then $\varphi(\wedge X)=\wedge(\varphi(X))$;
(iii) if $X \subseteq P$ and $\vee X$ exists in P, then $\varphi(\vee(\wedge X)=\vee(\varphi(X))$.

Theorem 2.3 ([2], theorem 2.36 (i)) $\forall X \in L(P)$:

$$
\exists Q, R \subseteq P \text { such that } X=\vee(\varphi(Q))=\wedge(\varphi(R))
$$

We give now some general properties of embeddings of posets into lattices, which allow to characterize the MacNeille completions and which will be used in the sequel.

Theorem 2.4

(i) Let P be a finite poset;
(ii) let be f an embedding of P into a lattice T;
(iii) let g be an embedding of P into a lattice S, such that:

$$
\begin{aligned}
\forall s \in S, \quad s & =\vee\{g(x) \mid x \in P \text { and } g(x) \leq s\} \\
& =\wedge\{g(x) \mid x \in P \text { and } g(x) \geq s\}\}
\end{aligned}
$$

then T contains S as a subposet : more precisely there is an embedding h of S into T such that $h \circ g=f$, where h is defined by:

$$
h: S \rightarrow T, s \mapsto \vee_{T}\{f(x) \mid x \in P \text { and } g(x) \leq s\}
$$

Lemma 2.5 ([2], Lemma 2.35) Let f be an embedding of a finite poset P into a lattice S, such that : $\forall s \in S, \exists Q, R \subseteq P$ such that $s=\vee(f(Q))=\wedge(f(R))$; then

$$
\begin{aligned}
\forall s \in S, \quad s & =\vee\{f(x) \mid x \in P \text { and } f(x) \leq s\} \\
& =\wedge\{f(x) \mid x \in P \text { and } f(x) \geq s\}\}
\end{aligned}
$$

Theorem 2.6 Let P be a finite poset; then $L(P)$ is the smallest lattice that contains P as a subposet. More precisely, if f an embedding of P into a lattice T, then card $(L(P)) \leq$ $\operatorname{card}(T)$.

Theorem 2.7 ([2], Theorem 2.33 (iii)) Let P be a finite poset; let f be an embedding of P into a lattice S, such that :

$$
\forall s \in S, \exists Q, R \subseteq P \text { such that } s=\vee(f(Q))=\wedge(f(R))
$$

then the lattices $L(P)$ and S are isomorphic.

In the Appendix, we give a proof of Theorems 2.4, 2.6 and 2.7, since the statements of Theorems 2.4 and 2.6 in [2] are slightly different, and for the reader's convenience.

An element $x \in P$ is join-irreducible if $\forall Y \subseteq P, x \notin Y \Rightarrow x \neq \sup (Y)$. The set of join-irreducibles is denoted $B(P)$ and is called the base of P in [5]. We have : $x \in B(P)$ iff $\forall y_{1}, \ldots, y_{n} \in P, x=y_{1} \vee \ldots \vee y_{n} \Rightarrow \exists i, x=y_{i}$.

An element $x \in P$ is meet-irreducible if $\forall Y \subseteq P, x \notin Y \Rightarrow x \neq \inf (Y)$. The set of meet-irreducibles is denoted $C(P)$ and is called the cobase of P in [5]. We have : $x \in C(P)$ iff $\forall y_{1}, \ldots, y_{n} \in P, x=y_{1} \wedge \ldots \wedge y_{n} \Rightarrow \exists i, x=y_{i}$.

An element $x \in P$ is an upper-dissector of P if \exists an element of P, denoted $\beta(x)$, such that $P-x^{-}=\beta(x)^{+}$. The set of upper-dissectors is denoted $C l(P)$. An element $\in C l(P)$ is called clivant in [5].

Theorem 2.8 ([9], Proposition 12) $C l(P) \subseteq B(P)$.
P is dissective if $C l(P)=B(P)$.
Theorem 2.9 ([9], Proposition 28) $B(P)=B(L(P)) ; C l(P)=C l(L(P))$.
Theorem 2.10 ([9]) If P is a lattice then $x \in B(P)$ iff x is the immediate successor of one and only one element of P.

Theorem 2.11 ([9], Theorem 7) $L(P)$ is distributive iff P is dissective.

3 Partial injective functions

3.1 Definition

A function $f: X \subseteq[n]=\{1, \ldots, n\} \rightarrow[n]$ is called a partial injective function. Let P_{n} be the set of partial injective functions. If $i \in[n]-\operatorname{dom}(f)$, we write $f(i)=0$. So we can represent f by a vector : $f=\left(\begin{array}{llll}f(1) & f(2) & \ldots & f(n)\end{array}\right)$.

We define an order on P_{n}. This order is a generalization of the Bruhat order of S_{n}, the poset of bijective functions $f:[n] \rightarrow[n]$. Let $f, g \in P_{n}$; we write $f \rightarrow g$ if :

1) $\exists i \in[n]$ such that
a) $f(j)=g(j) \forall j \neq i$
b) $f(i)<g(i)$
or
2) $\exists i<j \in[n]$ such that
a) $f(k)=g(k) \forall k \neq i, j$
b) $g(j)=f(i)<f(j)=g(i)$

This definition is due to Pennell, Putcha and Renner: see [10], sections 8.7 and 8.8.

Example $3.1\left(\begin{array}{lllll}3 & 0 & \underline{2} & 0 & 5\end{array}\right) \rightarrow\left(\begin{array}{lllll}3 & \underline{0} & 4 & 0 & 5\end{array}\right) \rightarrow\left(\begin{array}{lllll}3 & 1 & 4 & \underline{0} & \underline{5}\end{array}\right) \rightarrow$
$\left(\begin{array}{lllll}3 & \underline{1} & 4 & \underline{5} & 0\end{array}\right) \rightarrow\left(\begin{array}{lllll}3 & 5 & 4 & 1 & 0\end{array}\right)$.
A pair (i, j) is called an inversion of $f \in P_{n}$ if $i<j$ and $f(i)>f(j)$. We note $\operatorname{inv}(f)$ the set of inversions of f.

Example 3.2 inv $\left(\begin{array}{ccccc}3 & 1 & 0 & 5 & 0\end{array}\right)=\{(1,2),(1,3),(1,5),(2,3),(2,5),(4,5)\}$.
To any $f \in P_{n}$, we define the length $L(f)=\operatorname{card}(\operatorname{inv}(f))+\sum_{k=1}^{n} f(k) . L(f)$ is the number of inversions of $f+$ the sum of the values of f.

We have : $f \rightarrow g \Rightarrow L(f)<L(g)$. So we can define a partial order on $P_{n}: f \leq g \Leftrightarrow$ $\exists m \geq 0$ and $g_{0}, \ldots, g_{m} \in P_{n}$ such that $f=g_{0} \rightarrow g_{1} \rightarrow \ldots \rightarrow g_{m}=g$.
$\forall f \in P_{n}$, we have :

$$
\begin{gathered}
\mathbf{0}_{P_{n}}=\left(\begin{array}{lll}
0 & \ldots & 0
\end{array}\right) \leq f \leq\left(\begin{array}{llll}
n & n-1 & \ldots & 1
\end{array}\right)=\mathbf{1}_{P_{n}} \\
0=L\left(\mathbf{0}_{P_{n}}\right) \leq L(f) \leq L\left(\mathbf{1}_{P_{n}}\right)=\frac{n(n-1)}{2}+\frac{n(n+1}{2}=n^{2}
\end{gathered}
$$

The maximum element of P_{n} is not the identity map of $[n]$.

3.2 Diagram

To any $f \in P_{n}$, we associate its graph, which is the subset of all points $(i, f(i))$ in $\{1, \ldots, n\} \times\{0, \ldots, n\}$, where i is the number of the row and j the number of the column. We represent each point by a cross \times and we obtain what we call the planar representation of f.

To any $f \in P_{n}$, we associate its north-east diagram $N E(f)$: the planar representation of f is a part of $N E(f)$; in addition, we put in each square $[i, i+1] \times[j, j+1] \subseteq$ $[0, n+1] \times[0, n+1], 0 \leq i, j \leq n$, the number of \times that lie above and to the right, i.e., in the north-east sector, of the square. We note this number $N E(f)([i, i+1] \times[j, j+1])$ and we have :

$$
N E(f)([i, i+1] \times[j, j+1])=\operatorname{card}\{k \leq i \mid f(k)>j\}
$$

Example $3.3 f=\left(\begin{array}{lllll}3 & 0 & 2 & 4 & 1\end{array}\right)$

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

And finally, to any $f \in P_{n}$, we associate a square matrix of size $n M(f)$. The entries of $M(f)$ are numbers in the squares of $N E(f)$. Precisely, $M(f)[i, j]=N E(f)([i, i+1] \times$ $[j-1, j]), i, j=1, \ldots, n$.

Example $3.4 f=\left(\begin{array}{lllll}3 & 0 & 2 & 4 & 1\end{array}\right)$

$$
M(f)=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
3 & 3 & 2 & 1 & 0 \\
4 & 3 & 2 & 1 & 0
\end{array}\right)
$$

3.3 The sets of matrices R_{n} and $R G_{n}$

We define two sets of matrices $R G_{n}$ and R_{n}, and we will show that $R_{n}=\left\{M(f) \mid f \in P_{n}\right\}$.
$R G_{n}$ is a set of square matrices of size n with entries $\in\{0,1, \ldots, n\}$. We consider that $A \in R G_{n}$ has a row, numbered 0 , and a column, numbered $n+1$, of zeros. $A \in R G_{n}$ if 1) the rows of A, from left to right, are decreasing, ending by 0 in column $n+1 ; 2$) the columns of A, from top to bottom, are increasing, starting by 0 in row 0 ; and 3) any two adjacent numbers on a row or on a column are equal or differ by 1 .

Example 3.5

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 \\
3 & 2 & 2 & 1
\end{array}\right) \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \in R G_{4}
$$

We say that $A \in R G_{n}$ has the pattern $\begin{array}{ccc}\begin{array}{ccc}a_{11} & \ldots & a_{1 p} \\ \vdots & & \vdots \\ a_{m 1} & \ldots & a_{m p}\end{array} \\ a_{11}, \ldots, A[r, s+p-1]=a_{1 p}, \ldots, A[r+m-1, s]=a_{m 1}, \ldots, A[r+m-1, s+p-1]=a_{m p} .\end{array} . . \begin{aligned} & \text { in position } r, s \text { if } A[r, s]=\end{aligned}$.

a	a			
$a+1$	a	is called plus pattern;	$a+1$	a
:---:	:---:			
$a+1$	$a+1$	is called minus pattern;		

a	a
a	a

a+1 \& a+1\end{array},, $$
\begin{array}{ll}a+1 & a \\
a+1 & a\end{array}
$$ \left\lvert\,, ~ $$
\begin{array}{|cc|}\hline a+1 & a \\
a+2 & a+1\end{array}
$$\right.\right.\) are called zero pattern. \right.

The next two lemmas will be proved later.
Lemma 3.6 If $A \in R G_{n}$ has plus patterns (or minus patterns) in position r_{1}, s and r_{2}, s, with $r_{1}<r_{2}$, then $\exists r^{\prime}, r_{1}<r^{\prime}<r_{2}$ such that A has a minus pattern (respectively plus pattern) in position r^{\prime}, s;
if $A \in R G_{n}$ has plus patterns (or minus patterns) in position r, s_{1} and r, s_{2}, with $s_{1}<s_{2}$, then $\exists s^{\prime}, s_{1}<s^{\prime}<s_{2}$ such that A has a minus pattern (respectively plus pattern) in position r, s^{\prime}.

We rephrase this lemma by saying that the patterns plus and minus, horizontally and vertically, alternate in a matrix $A \in R G_{n}$.

Lemma 3.7 $\forall A \in R G_{n}, A[r, s]=$ the number of plus patterns - the number of minus patterns that lie above and to the right of the position r, s.

We define R_{n} by saying that $A \in R_{n} \subseteq R G_{n}$ if A does not have any minus pattern.
Theorem 3.8 $\forall f \in P_{n}, M(f) \in R_{n}$.
Proof : $N E(f)([r, r+1] \times[s-1, s])=N E(f)([r, r+1] \times[s, s+1])+1(=a+1$ in the diagram below) iff there is a \times above, i.e., $\exists r^{\prime} \leq r$ such that $f\left(r^{\prime}\right)=s$:

$$
N E(f)=\begin{array}{ccc}
& & \\
\cdot & & s \\
r^{\prime} & \ldots & \times \\
\cdot & & \cdot \\
& \cdot & \ldots \\
& \ldots+1 & a
\end{array}
$$

It follows that $M(f)$ does not have any minus pattern because $M(f)[r, s]=M(f)[r, s+1]+1 \Rightarrow M(f)[r+1, s]=M(f)[r+1, s+1]+1$. This means $M(f) \in R_{n}$. Q.E.D.

To any $A \in R_{n}$, we associate $f_{A}=\{(r, s) \in[n] \times[n] \mid A$ has a plus pattern in position $r-1, s\}$.

Theorem 3.9 $\forall A \in R_{n}, f_{A} \in P_{n}$ and $M\left(f_{A}\right)=A$.
Proof : $f_{A} \in P_{n}$ because, see lemma 3.6, the plus patterns and the minus patterns, horizontally and vertically, alternate and because A does not have any minus pattern.

We have, see lemma 3.7, that $A[r, s]$ is the number of plus patterns that lie above and to the right of the position $r, s . N E\left(f_{A}\right)([r, r+1] \times[s-1, s])=M\left(f_{A}\right)[r, s]$ is the number of \times that lie above and to the right of the square $[r, r+1] \times[s-1, s]$. Thus $M\left(f_{A}\right)=A$. Q.E.D.

Example 3.10

3.4 Isomorphism between P_{n} and R_{n}

We consider the natural partial order on $R G_{n}$:

$$
\forall A, B \in R G_{n}, A \leq B \Leftrightarrow A[i, j] \leq B[i, j] \forall i, j
$$

To any couple $(f, g), f, g \in P_{n}$, we associate its north-east diagram $N E(f, g)$: the planar representation of f, with a \times for the point $(i, f(i))$, and the planar representation of g, with a \odot for the point $(i, g(i))$, are parts of $N E(f, g))$; in addition, we put in each square $[i, i+1] \times[j, j+1] \subseteq[0, n+1] \times[0, n+1], 0 \leq i, j \leq n$, the number of $\odot-$ the number of \times that lie above and to the right, i.e., in the north-east sector, of the square. We note this number $N E(f, g)[i, i+1] \times[j, j+1]$ and we have :

$$
N E(f, g)[i, i+1] \times[j, j+1]=\operatorname{card}\{k \leq i \mid g(k)>j\}-\operatorname{card}\{k \leq i \mid f(k)>j\}
$$

Example $3.11 f=(3,0,2,4,1)$ and $g=(3,4,5,0,0)$:

$$
N E(f, g)=\begin{array}{ccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 \\
1 & \cdot 0 & 0 & 0 & 0 & \otimes_{0}^{0} & \cdot 0
\end{array} \cdot 0
$$

Observe that the squares sharing a common edge have the same value or differ by ± 1 following the rules, called rules of passage:

We show that P_{n} and R_{n} are isomorphic posets. The idea of the proof is essentially the idea of the proof of Proposition 7.1 of [4].

Theorem $3.12 \forall f, g \in P_{n}, f \leq_{P_{n}} g \Leftrightarrow M(f) \leq_{R_{n}} M(g)$.
Proof : (\Rightarrow) It is easy to see : $f \rightarrow g$ in $P_{n} \Rightarrow M(f)<_{R_{n}} M(g)$. Hence the implication follows.
(\Leftarrow) Suppose $M(f)<M(g)$. We show : $\exists f^{\prime} \in P_{n}$ such that $f<f^{\prime}$ and $M\left(f^{\prime}\right) \leq M(g)$. We conclude by induction that $f<g$.

1) Suppose : $\exists i$ such that $g(i)<f(i)$.

We will show : $\exists l<i$ such that
(I) $f(l)<f(i)$ and
(II) $N E(f, g)([r, r+1] \times[s, s+1])>0, \forall r, s$ such that $l \leq r<i, f(l) \leq s<f(i)$:

We will have then that $f^{\prime}(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \neq i, l \\ f(i) & \text { if } x=l \\ f(l) & \text { if } x=i\end{array}\right.$ is such that $f<f^{\prime} ;$ and furthermore we will have $M\left(f^{\prime}\right) \leq M(g)$ because, if $l \leq r<i, f(l) \leq s<f(i)$, then :

$$
N E\left(f^{\prime}, g\right)([r, r+1] \times[s, s+1])=N E(f, g)([r, r+1] \times[s, s+1])-1
$$

By the rules of passage, we have $N E(f, g)\left([i-1, i] \times\left[k^{\prime}, k^{\prime}+1\right]\right)>0, \forall k^{\prime}$ such that $g(i) \leq k^{\prime}<f(i)$. Let $k, 0<k \leq g(i)$, be the integer such that: 1) $N E(f, g)([i-1, i] \times$ $\left.\left[k^{\prime}, k^{\prime}+1\right]\right)>0, \forall k^{\prime}$ such that $k \leq k^{\prime}<g(i)$, and 2) $N E(f, g)([i-1, i] \times[k-1, k])=0$; if there is no such k, set $k=0$:

$$
N E(f, g)=\begin{array}{ccccccccc}
& 0 & \cdots & k & \cdots & g(i) & \cdots & f(i) & \cdots \\
\vdots & \vdots & & \vdots & & & & & \\
i & \cdot & \cdots & 0 & \cdots & \odot & & \cdots & \\
& \times & \cdots
\end{array}
$$

Let j be integer such that $N E(f, g)\left[j^{\prime}, j^{\prime}+1\right] \times\left[k^{\prime}, k^{\prime}+1\right]>0, \forall j^{\prime}, k^{\prime}$ such that $j \leq j^{\prime}<$ $i, k \leq k^{\prime}<f(i)$. Then $\exists k^{\prime \prime}, k<k^{\prime \prime} \leq f(i)$ such that $N E(f, g)[j, j+1] \times\left[k^{\prime \prime}-1, k^{\prime \prime}\right]=1$ and $N E(f, g)[j-1, j] \times\left[k^{\prime \prime}-1, k^{\prime \prime}\right]=0:$

Applying the rules of passage, we have : $f(j)<k^{\prime \prime}$ and $\exists l^{\prime}<i$ such that $f\left(l^{\prime}\right)=k$.
If $f(j) \geq k$, we have $l=j$. If $l^{\prime} \geq j$, we have $l=l^{\prime}$. If $k=0$ then $k=0 \leq f(j)<k^{\prime \prime}$ and we have $l=j$. In all those cases, we have the conclusion desired.

Suppose $f(j)<k$ and $l^{\prime}<j$.
Then applying the rules of passage, we obtain with $a=N E(f, g)[j-1, j] \times[k-1, k] \geq 0$ and $b=N E(f, g)[i-1, i] \times\left[k^{\prime \prime}-1, k^{\prime \prime}\right]>0$:

The number of $\odot-$ the number of \times inside the rectangle of corners $(i, k),\left(i, k^{\prime \prime}\right),(j, k)$, $\left(j, k^{\prime \prime}\right)$ is $1-(a+2)-b+1=-a-b \leq-b \leq-1$. This means : $\exists l^{\prime}, j<l^{\prime}<i$ such that $k<f\left(l^{\prime}\right)<k^{\prime \prime}$. We have $l=l^{\prime}$ and we have the conclusion desired.
2) Suppose : $\forall i, g(i) \geq f(i)$, i.e., on each row of $N E(f, g)$, we have $\cdots \times \cdots \odot \cdots$ or $\cdots \otimes \cdots$.

Let i be such that 1) $f(i)<g(i)$ and 2) $\nexists j, j \neq i$, such that $f(j)<g(j)$ and $g(i)<g(j)$. By the rules of passage, we have $N E(f, g)([r, r+1] \times[s, s+1])>0, \forall r, s$ such that $r \geq i, f(i) \leq s<g(i)$:

$$
N E(f, g)=\begin{array}{ccccccc}
& 0 & \cdots & f(i) & \cdots & g(i) & \cdots \\
\vdots & \vdots & & \vdots & & \vdots & \\
i & \cdot & \cdots & \times & \cdots & \odot & \cdots \\
\vdots & \vdots & & \vdots & >0 & \vdots &
\end{array}
$$

The fact that g is injective and the way we defined i imply that $f^{\prime}(x)=\left\{\begin{array}{lll}f(x) & \text { if } & x \neq i \\ g(i) & \text { if } & x=i\end{array}\right.$ is in P_{n}. We have $f^{\prime}>f$ and furthermore $M\left(f^{\prime}\right) \leq M(g)$ because, if $r \geq i, f(i) \leq s<g(i)$, then

$$
N E\left(f^{\prime}, g\right)([r, r+1] \times[s, s+1])=N E(f, g)([r, r+1] \times[s, s+1])-1
$$

Q.E.D.

4 MacNeille completion of P_{n}

4.1 The lattice $R G_{n}$

$\left(R G_{n}, \leq\right)$ is a lattice with $\forall A, A^{\prime} \in R G_{n}$:

$$
\begin{aligned}
& \left(A \vee A^{\prime}\right)[i, j]=\max \left\{A[i, j], A^{\prime}[i, j]\right\} \\
& \left(A \wedge A^{\prime}\right)[i, j]=\min \left\{A[i, j], A^{\prime}[i, j]\right\}
\end{aligned}
$$

$R_{n} \subseteq R G_{n}$ is not a lattice: we can see in Figure 1 that $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right) \vee_{R_{2}}\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ does not exist and that $L\left(R_{2}\right)=R G_{2}$.

We will show : $\forall n, L\left(R_{n}\right)=R G_{n}$.

Figure 1: The poset R_{2} and the lattice $R G_{2}$

4.2 The matrices $B_{r, s, a, n}$

$\forall r, s, a$ such that $1 \leq r, s \leq n, 0<a \leq \min \{r, n+1-s\}$, let $B_{r, s, a, n}$ be the matrix such that : 1) $B_{r, s, a, n}[r, s]=a$ and 2) $B_{r, s, a, n}[i, j],(i, j) \neq(r, s)$, is the smallest value we can have in order that $B_{r, s, a, n} \in R G_{n}$.

Example 4.1

$$
B_{4,3,3,5}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 1 & 0 \\
3 & 3 & 3 & 2 & 1 \\
3 & 3 & 3 & 2 & 1
\end{array}\right)
$$

The following lemma is easy to prove. Details may be found in [3].
Lemma $4.2 \forall r, s, a$, such that $1 \leq r, s \leq n, 0<a \leq \min \{r, n+1-s\}$,

1) $B_{r, s, a, n}=\inf \left\{A \in R G_{n} \mid A[r, s] \geq a\right\}: A[r, s] \geq a \Rightarrow A \geq B_{r, s, a, n}$;
2) $A \nsupseteq B_{r, s, a, n} \Leftrightarrow A[r, s]<a$;
3) $B_{r, s, a, n} \in R_{n}$.

Theorem $4.3 \forall A \in R G_{n}, A=\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$.

Proof : $\forall r, s$, such that $A[r, s]>0, A \geq B_{r, s, A[r, s], n}$. Therefore $A \geq$ $\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$.

Suppose $A[i, j] \neq 0$; then $A[i, j] \geq\left(\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}\right)[i, j] \geq$ $B_{i, j, A[i, j], n}[i, j]=A[i, j]$. Therefore $A[i, j]=\left(\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}\right)[i, j]$ and $A=\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$. Q.E.D.

Corollary $4.4 \forall A \in R G_{n}, \exists Q \subseteq R_{n}$ such that $A=\sup (Q)$.
Proof : Take $Q=\left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$. Q.E.D.

4.3 The matrices $C_{r, s, a, n}$

$\forall r, s, a$ such that $1 \leq r, s \leq n, 0 \leq a<\min \{r, n+1-s\}$, let $C_{r, s, a, n}$ be the matrix such that : 1) $C_{r, s, a, n}[r, s]=a$ and 2) $C_{r, s, a, n}[i, j],(i, j) \neq(r, s)$, is the greatest value we can have in order that $C_{r, s, a, n} \in R G_{n}$.

Example $4.5 C_{6,4,1,8}$ and $C_{3,4,2,8}$ are respectively :

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
3 & 3 & 2 & 1 & 1 & 1 & 1 & 1 \\
4 & 3 & 2 & 1 & 1 & 1 & 1 & 1 \\
4 & 3 & 2 & 1 & 1 & 1 & 1 & 1 \\
4 & 3 & 2 & 1 & 1 & 1 & 1 & 1 \\
5 & 4 & 3 & 2 & 2 & 2 & 2 & 1 \\
6 & 5 & 4 & 3 & 3 & 3 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 \\
3 & 3 & 3 & 2 & 2 & 2 & 2 & 1 \\
4 & 4 & 4 & 3 & 3 & 3 & 2 & 1 \\
5 & 5 & 5 & 4 & 4 & 3 & 2 & 1 \\
6 & 6 & 6 & 5 & 4 & 3 & 2 & 1 \\
7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

The following lemma is easy to prove. Details may be found in [3].
Lemma 4.6 $\forall r, s, a$, such that $1 \leq r, s \leq n, 0 \leq a<\min \{r, n+1-s\}$,

1) $C_{r, s, a, n}=\sup \left\{A \in R G_{n} \mid A[r, s] \leq a\right\}: A[r, s] \leq a \Rightarrow A \leq C_{r, s, a, n}$;
2) $A \not \leq C_{r, s, a, n} \Leftrightarrow A[r, s]>a$;
3) $C_{r, s, a, n} \in R_{n}$.

Theorem 4.7 $\forall A \in R G_{n}, A=\inf \left\{C_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$.
Proof : $\forall r, s$, such that $A[r, s]<\min \{r, n+1-s\}, A \leq C_{r, s, A[r, s], n}$. Therefore $A \leq$ $\inf \left\{C_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$.

Suppose $A[i, j] \neq \min \{r, n+1-s\} ;$ then $A[i, j] \leq\left(\inf \left\{C_{r, s, a, n} \mid 1 \leq r, s \leq\right.\right.$ $n, A[r, s]=a\})[i, j] \leq C_{i, j, A[i, j], n}[i, j]=A[i, j]$. Therefore $A[i, j]=\left(\inf \left\{C_{r, s, a, n} \mid 1 \leq\right.\right.$ $r, s \leq n, A[r, s]=a\})[i, j]$ and $A=\inf \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$. Q.E.D.

Corollary $4.8 \forall A \in R G_{n}, \exists R \subseteq R_{n}$ such that $A=\inf (R)$.
Proof : Take $R=\left\{C_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$. Q.E.D.
Corollaries 4.4 and 4.8 and Theorem 2.7 give :

Theorem 4.9 $L\left(R_{n}\right) \cong R G_{n}$, i.e., the MacNeille completion of R_{n} is isomorphic with $R G_{n}$.

4.4 The base and cobase of R_{n}

Lemma $4.10 \forall r, s, a$ such that $1 \leq r, s \leq n, 0<a \leq \min \{r, n+1-s\}, B_{r, s, a, n} \in B\left(R_{n}\right)$.
Proof : $B\left(R_{n}\right)=B\left(R G_{n}\right)$ because (see Theorem 2.9) $L\left(R_{n}\right) \cong R G_{n} ; B_{r, s, a, n} \in B\left(R G_{n}\right)$ if $B_{r, s, a, n}$ is the immediate successor of one and only one matrix $A \in R G_{n}$ (see Theorem 2.10).

Let A be the matrix such that $A[i, j]=B_{r, s, a, n}[i, j] \forall(i, j) \neq(r, s)$ et $A[r, s]=a-1$.
$A \in R G_{n}$ because \(\begin{aligned} \& $$
\begin{array}{c}a-1 \\
a \\
a\end{array}
$$ \quad a-1

\& a\end{aligned}\) in $B_{r, s, a, n}$ becomes | $\begin{array}{c}a-1 \\ a \\ a-1\end{array}$ |
| :---: |
| $a-1$ |
| a |

\quad We have $A \leq Y \leq B_{r, s, a, n} \Rightarrow Y[r, s]=a$ or $a-1 \Rightarrow Y=B_{r, s, a, n}$ or $Y=A$. Therefore $B_{r, s, a, n}$ is an immediate successor of A. Furthermore $Z<B_{r, s, a, n} \Rightarrow \forall(i, j) \neq$ $(r, s), Z[i, j] \leq B_{r, s, a, n}[i, j]=A[i, j]$ and (see Lemma 4.2) $Z[r, s] \leq a-1$. So $Z<B_{r, s, a, n} \Rightarrow$ $Z \leq A$, which shows that A is the only matrix for which $B_{r, s, a, n}$ is an immediate successor. Q.E.D.

Lemma $4.11 \forall r, s, a$ such that $1 \leq r, s \leq n, 0 \leq a<\min \{r, n+1-s\}, C_{r, s, a, n} \in C\left(R_{n}\right)$.
Proof: Similar to the proof of the preceding lemma. Details in [3].
Theorem 4.12 The matrices $B_{r, s, a, n}$ form exactly the base of R_{n}.
Proof : By Lemma 4.10, we only need to show : $A \in B\left(R_{n}\right) \Rightarrow A$ is a matrix $B_{r, s, a, n}$. By Theorem 4.3, $A=\sup \left\{B_{r, s, a, n} \mid 1 \leq r, s \leq n, A[r, s]=a\right\}$. Because $A \in B\left(R_{n}\right), A$ is one of these matrices. Q.E.D.

Theorem 4.13 The matrices $C_{r, s, a, n}$ form exactly the cobase of R_{n}.
Proof: Similar to the proof of the preceding theorem. Details in [3].
Theorem $4.14 \forall r, s, a$ such that $1 \leq r, s \leq n, 0<a \leq \min \{r, n+1-s\}$, we have : $R G_{n}-B_{r, s, a, n}^{-}=C_{r, s, a-1, n}^{+}$, i.e., $B\left(R G_{n}\right) \subseteq C l\left(R G_{n}\right)$.

Proof : Let $A \in R G_{n}$; by Lemma 4.2, $A[r, s] \geq a \Leftrightarrow A \geq B_{r, s, a, n}$; by Lemma 4.6, $A[r, s] \leq a-1 \Leftrightarrow A \leq C_{r, s, a-1, n}$. Q.E.D.

Corollary $4.15 B\left(R_{n}\right)=C l\left(R_{n}\right)$, i.e., R_{n} is dissective.
Proof The conclusion follows from the preceding theorem and from Theorem 2.8. Q.E.D.
Theorem $4.16 R G_{n}$ is a distributive lattice.
Proof : The conclusion follows from the preceding corollary and from Theorem 2.11. Q.E.D.

4.5 The base and cobase of P_{n}

We have $R_{n} \cong P_{n}$. So $B\left(P_{n}\right)=\left\{f_{A} \mid A \in B\left(R_{n}\right)\right\}$ and $C\left(P_{n}\right)=\left\{f_{A} \mid A \in C\left(R_{n}\right)\right\}$.
Theorem $4.17 f \in B\left(P_{n}\right)$ iff f is an increasing function for which $\operatorname{dom}(f)$ and $\operatorname{im}(f)$ are intervals of integers.

Proof : Let $A=B_{r, s, a, n}, 1 \leq r, s \leq n, 0<a \leq \min \{r, n+1-s\}$; then :

$$
f_{A}=\left(\begin{array}{ccccccccc}
1 & \cdots & r-a & r-a+1 & \cdots & r & r+1 & \cdots & n \\
0 & \cdots & 0 & s & \cdots & s+a-1 & 0 & \cdots & 0
\end{array}\right)
$$

We see : $\operatorname{dom}(f)=[r-a+1, r]$ and $i m(f)=[s, s-a+1]$. Q.E.D.
Example 4.18 If $A=B_{4,3,3,5}$ (see Example 4.1) then

$$
f_{A}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 3 & 4 & 5 & 0
\end{array}\right)
$$

Let $A=C_{r, s, a, n}, 1 \leq r, s \leq n, 0 \leq a<\min \{r, n+1-s\}$; if $a+s-1<r$, i.e., if $C_{r, s, a, n}[n, 1]<n$, then $f_{A}=$

$$
\left(\begin{array}{ccccccccccc}
1 & \cdots & a & a+1 & \cdots & a+s & \cdots & r & r+1 & \cdots & n \\
n & \cdots & n-a+1 & s-1 & \cdots & 0 & \cdots & 0 & n-a & \cdots & r-a+1
\end{array}\right)
$$

Example 4.19 If $A=C_{6,4,1,8}$ (see Example 4.5) then

$$
f_{A}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 3 & 2 & 1 & 0 & 0 & 7 & 6
\end{array}\right)
$$

if $a+s-1 \geq r$, i.e., if $C_{r, s, a, n}[n, 1]=n$, then $f_{A}=$

$$
\left(\begin{array}{ccccccc}
1 & \cdots & a & a+1 & \cdots & r & r+1 \\
n & \cdots & n-a+1 & s-1 & \cdots & a+s-r & n-a \\
& & & & & & \\
\cdots & & r+1+n-a-s & r+1+n-a-s+1 & \cdots & n & \\
\cdots & s & a+s-r-1 & \cdots & 1 &
\end{array}\right)
$$

Example 4.20 If $A=C_{3,4,2,8}$ (see Example 4.5) then

$$
f_{A}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 7 & 3 & 6 & 5 & 4 & 2 & 1
\end{array}\right)
$$

4.6 Injection of P_{n} in $S_{2 n}$ with Bruhat order

We show that there exists a morphism of poset from P_{n} to $S_{2 n}$. This result was suggested by Lascoux.

To any $f \in P_{n}$, we associate an element $f^{\prime} \in P_{2 n}$:

$$
f^{\prime}(i)= \begin{cases}f(i)+n & \text { if } 1 \leq i \leq n \text { and } i \in \operatorname{dom}(f) \\ 0 & \text { otherwise }\end{cases}
$$

Example $4.21 f=\left(\begin{array}{llll}0 & 2 & 4 & 0\end{array}\right) \mapsto f^{\prime}=\left(\begin{array}{llllllll}0 & 6 & 8 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
M(f)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 2 & 1 & 1 \\
2 & 2 & 1 & 1
\end{array}\right) \mapsto M\left(f^{\prime}\right)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} \\
1 & 1 & 1 & 1 & \mathbf{1} & \mathbf{1} & \boldsymbol{O} & \boldsymbol{0} \\
2 & 2 & 2 & 2 & \boldsymbol{2} & \boldsymbol{2} & \mathbf{1} & \mathbf{1} \\
2 & 2 & 2 & 2 & \boldsymbol{2} & \boldsymbol{2} & \mathbf{1} & \mathbf{1} \\
2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 1 & 1
\end{array}\right)
$$

As shown in the example, the submatrix of size n in the north-east corner of $M\left(f^{\prime}\right)$ is $M(f)$.

Lemma 4.22 $\forall f, g \in P_{n}, f \leq_{P_{n}} g \Leftrightarrow f^{\prime} \leq_{P_{2 n}} g^{\prime}$.
Proof: We have the conclusion of the lemma because 1) $f \leq_{P_{n}} g \Leftrightarrow M(f) \leq_{R_{n}} M(g)$; 2) the submatrix of size n in the north-east corner of $M\left(f^{\prime}\right)$ is $\left.M(f) ; 3\right)$ the submatrix of size n in the north-west corner of $M\left(f^{\prime}\right)$ is n copies of the first column of $\left.M(f) ; 4\right)$ the submatrix of size n in the south-east corner of $M\left(f^{\prime}\right)$ is n copies of the last row of $M(f) ; 5)$ all the entries of the submatrix of size n in the south-west corner of $M\left(f^{\prime}\right)$ are $M(f)[n, 1]$. Q.E.D.

Lemma $4.23 \forall f \in P_{n}, f \vee \mathbf{1}_{[n]} \in S_{n}$ (where $\mathbf{1}_{[n]}$ is the identity function).
Proof : We have:

$$
M\left(\mathbf{1}_{[n]}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\vdots & & & & \vdots \\
n-2 & n-3 & n-4 & \ldots & 0 \\
n-1 & n-2 & n-3 & \ldots & 0 \\
n & n-1 & n-2 & \ldots & 1
\end{array}\right)
$$

The minus pattern $\begin{array}{cc}i+1 & i \\ i+1 & i+1\end{array}$ can be obtained in only one way as the supremum of two non minus patterns :

$$
\begin{array}{|cc|}
\hline i+1 & i \\
i+1 & i+1
\end{array}=\begin{array}{|cc|}
\hline i+1 & i \\
i+1 & i
\end{array} \vee \vee \begin{array}{cc}
i & i \\
i+1 & i+1 \\
\hline
\end{array}
$$

Observe that $M\left(\mathbf{1}_{[n]}\right)$ does not have these two non minus patterns; so $M(f) \vee M\left(\mathbf{1}_{[n]}\right) \in R_{n}$ and $f \vee \mathbf{1}_{[n]} \in P_{n}$. Since $M\left(\mathbf{1}_{[n]}\right)[n, 1]=n, f \vee \mathbf{1}_{[n]} \in S_{n}$. Q.E.D.

Theorem $4.24 P_{n} \rightarrow S_{2 n}, f \mapsto f^{\prime} \vee \boldsymbol{1}_{[2 n]}$, is a morphism of poset.
Proof : By lemma 4.23, $f^{\prime} \vee \mathbf{1}_{[2 n]} \in S_{2 n}$.
We have : $f \leq g \Leftrightarrow$ (by Lemma 4.22) $f^{\prime} \leq g^{\prime} \Rightarrow f^{\prime} \vee \mathbf{1}_{[2 n]} \leq g^{\prime} \vee \mathbf{1}_{[2 n]}$ because $g^{\prime} \vee \mathbf{1}_{[2 n]} \geq g^{\prime} \geq f^{\prime}$.

And $f^{\prime} \vee \mathbf{1}_{[2 n]} \leq g^{\prime} \vee \mathbf{1}_{[2 n]} \Leftrightarrow M\left(f^{\prime} \vee \mathbf{1}_{[2 n]}\right) \leq M\left(g^{\prime} \vee \mathbf{1}_{[2 n]}\right) \Rightarrow$ the submatrix of size n in the north-east corner of $M\left(f^{\prime} \vee \mathbf{1}_{[2 n]}\right)$ is \leq the submatrix of size n in the north-east corner of $M\left(g^{\prime} \vee \mathbf{1}_{[2 n]}\right) \Rightarrow$ the submatrix of size n in the north-east corner of $M\left(f^{\prime}\right)$ is \leq the submatrix of size n in the north-east corner of $M\left(g^{\prime}\right)$ (because the submatrix of size n in the north-east corner of $\mathbf{1}_{[2 n]}$ is the matrix 0$) \Rightarrow M(f) \leq M(g) \Rightarrow f \leq g$.

We have proved : $f \leq g \Leftrightarrow f^{\prime} \vee \mathbf{1}_{[2 n]} \leq g^{\prime} \vee \mathbf{1}_{[2 n]}$. Q.E.D.
Example 4.25

$$
f=\left(\begin{array}{llll}
0 & 2 & 4 & 0
\end{array}\right) \mapsto f^{\prime} \vee \mathbf{1}_{[2 n]}=\left(\begin{array}{llllllll}
1 & 6 & 8 & 2 & 3 & 4 & 5 & 7
\end{array}\right)
$$

5 Rectrices and corectrices

5.1 Rectrices and corectrices of $R G_{n}$

Let $A \in R G_{n}$; recall that $A^{+}=\left\{X \in R G_{n} \mid X \leq A\right\}$ and that $A^{-}=\left\{X \in R G_{n} \mid X \geq\right.$ $A\}$. So by Theorem 4.3 and by Theorem $4.12, A=\sup \left(A^{+} \cap B\left(R_{n}\right)\right)$; and by Theorem 4.7 and by Theorem 4.13, $A=\inf \left(A^{-} \cap C\left(R_{n}\right)\right)$. Following [5], a rectrice of A is a maximal element of $\left(A^{+} \cap B\left(R_{n}\right)\right)$ and a corectrice of A is a minimal element of $\left(A^{-} \cap C\left(R_{n}\right)\right)$.

Following [5], we say that $A \in R G_{n}$ has an essential point
 $A[r, s-1]=A[r, s]=A[r+1, s]=a$. In other terms, A has an essential point in position r, s, of value $a>0$, if we can replace $A[r, s]=a$ by $a-1$ and still have a matrix $\in R G_{n}$. Hence A may have an essential point in position r, s, with r or $s \in\{1, n\}$. In brief, we will say that A has an essential point $r s a$.

Note that $B_{r, s, a, n}$ has one and only one essential point rsa.
Theorem 5.1 $B_{r, s, a, n}$ is a rectrice of $A \Leftrightarrow A$ has an essential point rsa.
Proof: $(\Leftarrow) A[r, s]=a \Rightarrow$ (by Lemma 4.2) $B_{r, s, a, n} \in\left(A^{+} \cap B\left(R_{n}\right)\right.$). Suppose $X \in$ $\left(A^{+} \cap B\left(R_{n}\right)\right)$ with $A \geq X \geq B_{r, s, a, n}$. We find that X has an essential point $r s a$. Since X has only one essential point, $X=B_{r, s, a, n}$. Hence $B_{r, s, a, n}$ is a rectrice of A.
$(\Rightarrow) B_{r, s, a, n}$ is a rectrice of A and $A=\sup \left(A^{+} \cap B\left(R_{n}\right)\right) \Rightarrow A[r, s]=a$.
Suppose and $A[r-1, s]=a$ (with $r>1$). We have then: $Z=B_{r-1, s, a, n} \in\left(A^{+} \cap B\left(R_{n}\right)\right.$) with $Z \nsupseteq B_{r, s, a, n}$; by Theorem 4.2, $Z[r, s]<a$. Contradiction and $A[r-1, s]=a-1$.

In the same way, we show that $A[r, s-1]=a($ if $s>1) ; A[r+1, s]=a($ if $r<n)$; and $A[r, s+1]=a-1$ (if $s<n$). So A has an essential point rsa. Q.E.D.

Corollary 5.2 $A=\sup \left\{B_{r, s, a, n} \mid A\right.$ has an essential point rsa $\}$.
Proof: $A=\sup \left(A^{+} \cap B\left(R_{n}\right)\right)=\sup \left\{B_{r, s, a, n} \mid B_{r, s, a, n}\right.$ is a rectrice of $\left.A\right\}=\sup \left\{B_{r, s, a, n} \mid A\right.$ has an essential point $r s a\}$. Q.E.D.

We say that $A \in R G_{n}$ has an coessential point $\begin{array}{cc}\begin{array}{c}a \\ a+1 \\ a\end{array} \quad a \\ a+1\end{array}$
lue $0 \leq a<\min \{r, n+1-s\}$, if $A[r-1, s]=A[r, s]=A[r, s+1]=a, A[r, s-1]=$ $A[r+1, s]=a+1$. In other terms, A has an coessential point $r s a$ if we can replace $A[r, s]=a$ by $a+1$ and still have a matrix $\in R G_{n}$. Hence A may have an essential point in position r, s, with r or $s \in\{1, n\}$. In brief, we will say that A has an coessential point rsa.

Note that $C_{r, s, a, n}$ has one and only one coessential point rsa.
Theorem 5.3 $C_{r, s, a, n}$ is a corectrice of $A \Leftrightarrow A$ has an coessential point rsa.
Proof: Similar to the proof of Theorem 5.1. Details in [3].
Corollary 5.4 $A=\inf \left\{C_{r, s, a, n} \mid A\right.$ has an coessential point rsa $\}$.
Proof: Similar to the proof of Corollary 5.2. Details in [3].

Example 5.5

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 1 & 0 \\
2 & 2 & 2 & 1 & 1 \\
3 & 2 & 2 & 1 & 1 \\
4 & 3 & 2 & 1 & 1
\end{array}\right)
$$

The essential points of A are : 131, 212, 241, 332, 351, 514. The coessential points of A are : 140, 221, 250, 312, 422, 541.

If we know the rectrices (or the essential points) of A, we can rebuild $A: 1) A[r, s]=a$ for all rectrices $B_{r, s, a, n}$ and 2) $A[i, j], i j *$ not an essential point, is the smallest value we can have in order that $A \in R G_{n}$.

Example 5.6 Suppose the rectrices of A are : $B_{2,3,1,4}, B_{4,2,3,4}$; then

$$
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & \underline{1} & * \\
* & * & * & * \\
* & \underline{3} & * & *
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 1 & \underline{1} & 0 \\
2 & 2 & 1 & 0 \\
3 & \underline{3} & 2 & 1
\end{array}\right)
$$

If we know the corectrices (or the coessential points) of A, we can rebuild $A: 1$) $A[r, s]=a$ for all corectrices $C_{r, s, a, n}$ and 2) $A[i, j], i j *$ not an coessential point, is the greatest value we can have in order that $A \in R G_{n}$.

Example 5.7 Suppose the corectrices of A are : $C_{2,3,0,4}, C_{4,2,2,4}$; then

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & \underline{0} & * \\
* & * & * & * \\
* & \underline{2} & * & *
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
2 & 1 & \underline{0} & 0 \\
3 & 2 & 1 & 1 \\
3 & \underline{2} & 2 & 1
\end{array}\right)
$$

5.2 The sets of Keys K_{n} and generalized Keys $K G_{n}$

$k=\left(k_{j}\right)_{j=1, \ldots, n} \in K G_{n}$ if k_{j} is an injective partial functions $k_{j}:\{1, \ldots, j\} \rightarrow[n], i \mapsto$ $k_{j}(i)=k_{i j}$, such that 1) $\left.\operatorname{dom}\left(k_{j}\right)=\left\{1, \ldots, j^{\prime}\right\}, j^{\prime} \leq j ; 2\right) k_{j}$ is decreasing; 3) $k_{i+1, j+1} \leq$ $k_{i j} \leq k_{i, j+1}, j=1, \ldots n-1,1 \leq i \leq j$, with the convention that $k_{j}(i)=k_{i j}=0$ if $j^{\prime}<i \leq j$. An element $k \in K G_{n}$ will be called a generalized Key.

We represent k like this : $k=$

$$
\begin{array}{cccc}
k_{11} & k_{12} & \cdots & k_{1 n} \\
& k_{22} & \cdots & k_{2 n} \\
& & \ddots & \vdots \\
& & & k_{n n}
\end{array}
$$

Example 5.8

$$
\begin{array}{llllllll}
2 & 5 & 5 & 5 & 5 & 5 & 7 & \\
& 2 & 3 & 3 & 3 & 4 & 4 & \\
& & 2 & 2 & 2 & 2 & 3 & \\
& & & 0 & 1 & 1 & 2 & \in K G_{7} \\
& & & & 0 & 0 & 1 & \\
& & & & & 0 & 0 & \\
& & & & & & 0
\end{array}
$$

We define a partial order on $K G_{n}: k \leq k^{\prime} \Leftrightarrow k_{i j} \leq k_{i j}^{\prime} \forall i, j$. $K G_{n}$ is a lattice : $\sup \left(k, k^{\prime}\right)_{i j}=\max \left(k_{i j}, k_{i j}^{\prime}\right)$ and $\min \left(k, k^{\prime}\right)_{i j}=\inf \left(k_{i j}, k_{i j}^{\prime}\right)$.

We define K_{n} by saying that $k \in K_{n} \subseteq K G_{n}$ if $k_{i j}=k_{i+1, j+1}$ or $k_{i j}=k_{i, j+1}, j=$ $1, \ldots n-1,1 \leq i \leq j . K_{n}$ is not a lattice.

An element $k \in K_{n}$ will be called a Key. In this section and in the next, we state results without proofs : details may be found in [3]. They generalize results that we can find in [5], where we deal with keys and with triangles. A key is a Key where the functions k_{j} are injective functions (not only partial injective functions) : a key has no zero entry. A triangle is a generalized Key with no zero entry.

To any $f \in P_{n}$, we can associate bijectively an element $K(f) \in K_{n}$. An example will show how.

Example 5.9

$$
\left.P_{6} \ni f=\left(\begin{array}{llllll}
2 & 5 & 3 & 0 & 0 & 4
\end{array}\right) \leftrightarrow k_{f}=\begin{array}{llllll}
2 & 5 & 5 & 5 & 5 \\
2 & 3 & 3 & 3 & 4 \\
2 & 2 & 2 & 3 \\
0 & & & 0 & 2 \\
& & & & 0 & 0 \\
& & & & & \\
& & &
\end{array}\right] K_{6}
$$

5.3 The Keys $b[r, s, a, n]$ and $c[r, s, a, n]$

$\forall r, s, a$ such that $1 \leq s \leq n, 1 \leq r \leq s, 0<a \leq n+1-r$, let $b[r, s, a, n]$ be the Key such that: 1) $b[r, s, a, n]_{r s}=a$ and 2) $b[r, s, a, n]_{i j}, i j \neq r s$, is the smallest value we can have in order that $b[r, s, a, n] \in K G_{n}$.

Example 5.10

$$
b[3,4,2,5]=\begin{array}{ccccc}
0 & 2 & 3 & 4 & 4 \\
& 0 & 2 & 3 & 3 \\
& & 0 & \underline{2} & 2 \\
& & & 0 & 0 \\
& & & & \\
\hline
\end{array}
$$

Lemma $5.11 \forall r, s, a$, such that $1 \leq s \leq n, 1 \leq r \leq s, 0<a \leq n+1-r$,

1) $b[r, s, a, n]=\inf \left\{k \in K G_{n} \mid k_{r s} \geq a\right\}: k_{r s} \geq a \Rightarrow k \geq b[r, s, a, n]$;
2) $k \nsupseteq b[r, s, a, n] \Leftrightarrow k_{r s}<a$;
3) $b[r, s, a, n] \in K_{n}$.

Theorem $5.12 \forall k \in K G_{n}, k=\sup \left\{b[r, s, a, n] \mid k_{r s}=a\right\}$.
Corollary $5.13 \forall k \in K G_{n}, \exists Q \subseteq K_{n}$ such that $k=\sup (Q)$.
$\forall r, s, a$ such that $1 \leq s \leq n, 1 \leq r \leq s, 0 \leq a<n+1-r$, let $c[r, s, a, n]$ be the Key such that: 1) $c[r, s, a, n]_{r s}=a$ and 2) $c[r, s, a, n]_{i j}, i j \neq r s$, is the greatest value we can have in order that $c[r, s, a, n] \in K G_{n}$.

Example 5.14

$$
c[3,4,2,5]=\begin{array}{ccccc}
5 & 5 & 5 & 5 & 5 \\
& 4 & 4 & 4 & 4 \\
& & 2 & \underline{2} & 3 \\
& & & 1 & 2 \\
\\
& & & & 1
\end{array}, c[2,4,1,5]=\begin{array}{ccccc}
5 & 5 & 5 & 5 & 5 \\
& 1 & 1 & \underline{1} & 4 \\
& & 0 & 0 & 1 \\
& & & 0 & 0 \\
& & & & \\
0
\end{array}
$$

Lemma $5.15 \forall r, s, a$ such that $1 \leq s \leq n, 1 \leq r \leq s, 0 \leq a<n+1-r$,

1) $c[r, s, a, n]=\sup \left\{k \in K G_{n} \mid k_{r s} \leq a\right\}: k_{r s} \leq a \Rightarrow k \leq b[r, s, a, n]$;
2) $k \not \leq c[r, s, a, n] \Leftrightarrow k_{r s}>a$;
3) $c[r, s, a, n] \in K_{n}$.

Theorem 5.16 $\forall k \in K G_{n}, k=\inf \left\{c[r, s, a, n] \mid k_{r s}=a\right\}$.
Corollary $5.17 \forall k \in K G_{n}, \exists R \subseteq K_{n}$ such that $k=\inf (R)$.
Theorem $5.18 L\left(K_{n}\right) \cong K G_{n}$, i.e., the MacNeille completion of K_{n} is isomorphic with $K G_{n}$.

Theorem 5.19 The Keys $b[r, s, a, n]$ form exactly the base of K_{n}; the Keys $c[r, s, a, n]$ form exactly the cobase of K_{n}.

5.4 Rectrices and corectrices of $K G_{n}$

A rectrice of $k \in K G_{n}$ is a maximal element of $\left(k^{+} \cap B\left(K_{n}\right)\right)$ and a corectrice is a minimal element of $\left(k^{-} \cap C\left(K_{n}\right)\right)$.

We say that $k \in K G_{n}$ has an essential point | b | a | |
| :---: | :---: | :---: |
| | c | d | in position r, s of value $0<$ $a \leq n+1-r$, if : $k_{r s}=a>b=k_{r, s-1}, a>d=k_{r+1, s+1}$ and $\left(a>c+1=k_{r+1, s}+1\right.$ or $c=0$). In other terms, k has an essential point in position r, s of value $0<a \leq n+1-r$, if we can replace $k_{r s}=a$ by $a-1$ and still have an element $\in K G_{n}$. In brief, we will say that k has an essential point $r s a$.

Note that $b[r, s, a, n]$ has one and only one essential point $r s a$.
Theorem $5.20 b[r, s, a, n]$ is a rectrice of $k \Leftrightarrow k$ has an essential point rsa.
Corollary $5.21 k=\sup \{b[r, s, a, n] \mid k$ has an essential point rsa $\}$.
We say that $k \in K G_{n}$ has an coessential point $\left.\begin{array}{|ccc}b & a & \\ & c & d\end{array}\right]$ in position r, s of value $0<a \leq n+1-r$, if : $k_{r s}=a>b=k_{r, s-1}, a>d=k_{r+1, s+1}$ and $\left(a>c+1=k_{r+1, s}+1\right.$ or $c=0$). In other terms, k has an coessential point $r s a$ if we can replace $k_{r s}=a$ by $a+1$ and still have an element $\in K G_{n}$. In brief, we will say that k has an essential point $r s a$.

Note that $c[r, s, a, n]$ has one and only one coessential point $r s a$.
Theorem 5.22 $c[r, s, a, n]$ is a corectrice of $k \Leftrightarrow k$ has an coessential point rsa.
Corollary $5.23 k=\inf \{k c[r, s, a, n] \mid k$ has an coessential point rsa $\}$.
If we know the rectrices (or the essential points) of k, or if we know the corectrices (or the coessential points) of k, we can rebuild k.

Example 5.24 Suppose the rectrices of k are : b[1, 2, 3, 4], b[3, 3, 1, 4]; then

$$
\left.\begin{array}{cccc}
* & \underline{3} & * & * \\
& * & * & * \\
& \underline{1} & * \\
& & *
\end{array} \text { and } k=\begin{array}{llll}
1 & \underline{3} & 3 & 3 \\
& & 1 & 2
\end{array}\right)
$$

Example 5.25 Suppose the corectrices of k are : c $[1,2,3,4], c[3,3,0,4]$; then

$$
\begin{array}{cccc}
* & \underline{3} & * & * \\
& * & * & * \\
& \underline{0} & * \\
& & & \\
& & \text { and } k=
\end{array}
$$

We will show in the next section that the function between P_{n} and $K_{n}, f \leftrightarrow K(f)$, as illustrated in Example 5.9, is in fact an isomorphism of posets. So $A\left(\in R_{n}\right) \leftrightarrow f_{A}(\in$ $\left.P_{n}\right) \leftrightarrow K\left(f_{A}\right)\left(\in K_{n}\right)$ are isomorphisms of posets.

We have $B_{r, s, a, n}\left(\in B\left(R_{n}\right)\right) \quad \leftrightarrow \quad f_{B_{r, s, a, n}}\left(\in \quad B\left(P_{n}\right)\right) \quad \leftrightarrow \quad K\left(f_{B_{r, s, a, n}}\right)$ $=b[a, r, s, n]\left(\in B\left(K_{n}\right)\right)$. If $A \in R_{n}$ has an essential point $r s a$, then $K\left(f_{A}\right)=K(A)$ has an essential point ars.

Example 5.26

$$
\begin{aligned}
B_{4,2,3,5} & =\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
3 & \underline{3} & 2 & 1 & 0 \\
3 & 3 & 3 & 2 & 1
\end{array}\right) \leftrightarrow f_{B_{4,2,3,5}}=\left(\begin{array}{lllll}
0 & 2 & 3 & 4 & 0
\end{array}\right) \\
& \left.\leftrightarrow K\left(f_{B_{4,2,3,5}}\right)=\begin{array}{llllll}
0 & 2 & 3 & 4 & 4 \\
& 0 & 2 & 3 & 3 \\
0 & & \underline{2} & 2 \\
0 & & & & \\
&
\end{array}\right)=b[3,4,2,5]
\end{aligned}
$$

Example 5.27 The essential points of $A=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 2 & 1 & 0 \\ 3 & \underline{3} & 2 & 1\end{array}\right)$ are : 231, 423. The essential points of $K(A)$ are : 123, 342. So

$$
\begin{array}{rlll}
\cdot \underline{3} & \cdot & \cdot \\
\cdot & \cdot & \cdot \tag{2}\\
& \cdot & \underline{2}
\end{array} \text { and } K(A)=\begin{array}{llll}
0 & \underline{3} & 3 & 4 \\
& 0 & 2 & 3 \\
& & & \\
& & \underline{2}
\end{array}
$$

We have also $C_{r, s, a, n}\left(\in C\left(R_{n}\right)\right) \leftrightarrow f_{C_{r, s, a, n}}\left(\in C\left(P_{n}\right)\right) \leftrightarrow K\left(f_{C_{r, s, a, n}}\right)=$ $c[a+1, r, s-1, n]\left(\in C\left(K_{n}\right)\right)$. If $A \in R_{n}$ has a coessential point $r s a$, then $K\left(f_{A}\right)=K(A)$ has an coessential point $a+1, r, s-1$.

Example 5.28

$$
\begin{aligned}
& C_{4,2,1,5}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
3 & 2 & 2 & 2 & 1
\end{array}\right) \leftrightarrow f_{C_{4,2,1,5}}=\left(\begin{array}{lllll}
5 & 1 & 0 & 0 & 4
\end{array}\right) \\
& \begin{array}{lllll}
5 & 5 & 5 & 5 & 5
\end{array} \\
& \begin{array}{llll}
1 & 1 & 1
\end{array} \\
& \leftrightarrow K\left(f_{C_{4,2,1,5}}\right)=\quad \begin{array}{rrrr}
1 & 1 & \underline{1} & 4 \\
& 0 & 0 & 1 \\
& & 0 & 0
\end{array}=c[2,4,1,5] \\
& 0
\end{aligned}
$$

Example 5.29 The coessential points of $A=\left(\begin{array}{cccc}\frac{0}{1} & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 3 & 3 & 2 & 1\end{array}\right)$ are : 110, 331. The coessential points of $K(A)$ are : 110, 232. So

5.5 Isomorphism between Keys and partial injective functions

We show that K_{n} and P_{n} are isomorphic posets. Theorem 5.30 is a generalization of Proposition 2.1.11 in [8] and of Proposition 1.19 of [6]. Moreover there is a little gap in the proofs of these propositions. We will show where while giving the proof of Theorem 5.30.

Theorem 5.30 $\forall f, g \in P_{n}, f \leq_{P_{n}} g \Leftrightarrow K(f) \leq_{K_{n}} K(g)$.
Proof : (\Rightarrow) It is easy to see : $f \rightarrow g$ in $P_{n} \Rightarrow K(f)<_{K_{n}} K(g)$. Hence the implication follows.
(\Leftarrow) Suppose $K(f)<K(g)$. We show : $\exists f^{\prime} \in P_{n}$ such that $f<f^{\prime}$ and $K(f)<$ $K\left(f^{\prime}\right) \leq K(g)$ or $\exists g^{\prime} \in P_{n}$ such that $g^{\prime}<g$ and $K(f) \leq K\left(g^{\prime}\right)<K(g)$. We conclude by induction that $f<g$.

Let $s \geq 0$ be the smallest integer such that the columns $1, \ldots, s-1$ of $K(f)$ and $K(g)$ are identical. Let a and b be the integers such that : $0 \leq a=f(s)<g(s)=b$.
(a) suppose : $\exists s^{\prime}>s$ such that $a<f\left(s^{\prime}\right)=c \leq b$. We take the smallest s^{\prime} and we then have : $\forall s^{\prime \prime}$ such that $s<s^{\prime \prime}<s^{\prime}, f\left(s^{\prime \prime}\right) \leq a$ or $f\left(s^{\prime \prime}\right)>b$.

In [8] and in [6], s^{\prime} exists because f is bijective : s^{\prime} is such that $f\left(s^{\prime}\right)=b$; the function $f^{\prime}(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \neq s, s^{\prime} \\ b & \text { if } x=s \\ a & \text { if } x=s^{\prime}\end{array}\right.$ is such that $f<f^{\prime}$, but we cannot conclude that $K\left(f^{\prime}\right) \leq K(g):$

Example 5.31 Let $f=\left(\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right)$ and $g=\left(\begin{array}{llll}4 & 2 & 3 & 1\end{array}\right)$

$$
\left.K(f)=\begin{array}{cccc}
1 & 3 & 4 & 4 \\
& 1 & 3 & 3 \\
& & 1 & 2 \\
& & & 1
\end{array} \leq K(g)=\begin{array}{llll}
4 & 4 & 4 & 4 \\
& 2 & 3 & 3 \\
& & & 2 \\
2
\end{array}\right]
$$

Let $a_{0}=a, a_{1}, \ldots, a_{m}, a_{m+1}$ be the numbers in successive rows in column s of $K(f)$ | a_{m+1} |
| :---: |
| a_{m} |
| \vdots |
| a_{1} |
| a | such that $a_{m}<c<a_{m+1}$.

The function $f^{\prime}(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \neq s, s^{\prime} \\ c & \text { if } x=s \\ a & \text { if } x=s^{\prime}\end{array}\right.$ is such that:

1) $f<f^{\prime}$ because $a<c$;
2) $K(f)<K\left(f^{\prime}\right)$ because | a_{m+1} |
| :---: |
| a_{m} |
| \vdots |
| a_{1} |
| a | in columns $s, s+1, \ldots, s^{\prime}-1$ of $K(f)$ has been replaced by | a_{m+1} |
| :---: |
| c |
| a_{m} |
| \vdots |
| a_{1} | in $K\left(f^{\prime}\right)$;
3) $K\left(f^{\prime}\right) \leq K(g)$: we have in columns s of respectively $K\left(f^{\prime}\right)$ and $K(g)$

$\left.\begin{array}{cc}\hline & b \\ \vdots & \\ a_{m+1} & \\ c & a_{m+1} \\ a_{m} & a_{m} \\ \vdots & \\ a_{1} & a_{1} \\ \hline & \text { of }\end{array}\right]$,

so the column s of $K\left(f^{\prime}\right)$ is \leq the column furthermore $K(f)<K(g)$ and the way we defined s^{\prime} imply that the number of integers $>b$ in columns $s^{\prime \prime}$ of $K\left(f^{\prime}\right), s \leq s^{\prime \prime}<s^{\prime}$, is \leq the number of integers $>b$ in columns $s^{\prime \prime}$ of $K(g), s \leq s^{\prime \prime}<s^{\prime}$; this means that c, a_{m}, \ldots, a_{1}, in columns $s^{\prime \prime}$ of $K\left(f^{\prime}\right), s \leq s^{\prime \prime}<s^{\prime}$, are on rows which are the same or are above the rows where are $a_{m+1}, a_{m}, \ldots, a_{1}$, in columns $s^{\prime \prime}$ of $K(g), s \leq s^{\prime \prime}<s^{\prime}$: thus the columns $s^{\prime \prime}$ of $K\left(f^{\prime}\right), s \leq s^{\prime \prime}<s^{\prime}$ are \leq the columns $s^{\prime \prime}$ of $K(g), s \leq s^{\prime \prime}<s^{\prime}$.
(b) suppose : $\exists s^{\prime}>s$ such that $a \leq g\left(s^{\prime}\right)=d<b$. We take the smallest s^{\prime} and we have then: $\forall s^{\prime \prime}$ such that $s<s^{\prime \prime}<s, g\left(s^{\prime \prime}\right)<a$ or $g\left(s^{\prime \prime}\right)>b$.

The function $g^{\prime}(x)=\left\{\begin{array}{ll}g(x) & \text { if } x \neq s, s^{\prime} \\ d & \text { if } x=s \\ b & \text { if } x=s^{\prime}\end{array}\right.$ is such that:

1) $g^{\prime}<g$;
2) $K\left(g^{\prime}\right)<K(g)$;
3) $K(f) \leq K\left(g^{\prime}\right)$.
(c) suppose : $\nexists s^{\prime}>s$ such that $a<f\left(s^{\prime}\right)=c \leq b$ or such that $a \leq g\left(s^{\prime}\right)=d<b$. This implies : $b \notin \operatorname{im}(f)$ and $a \notin \operatorname{im}(g)$.

The function $f^{\prime}(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \neq s \\ b & \text { if } x=s\end{array}\right.$ is such that:

1) $f<f^{\prime}$;
2) $K(f)<K\left(f^{\prime}\right)$;
3) $K\left(f^{\prime}\right) \leq K(g)$.

The proof is complete. Q.E.D.

6 Alternating matrices : $A t_{n}$

6.1 Bijection between $R G_{n}$ and $A t_{n}$

The set of alternating matrices is denoted $A t_{n} . A t_{n}$ is a set of square matrices of size n with entries $\in\{-1,0,1\}$. $A \in A t_{n}$ if 1) the sum on each row and on each column is 0 or $1 ; 2)$ the 1 and -1 alternate on each row and on each column; 3) the first non-zero entry (if any) on each column is $1 ; 4$) the last non-zero entry (if any) on each row is 1 .

Note that an alternating sign matrix, see [1], is an alternating matrix for which the sum on each row and on each column is 1 .

The pattern \(\begin{gathered}a

a+1\end{gathered}\) in a matrix $\in R G_{n}$ is followed by : \begin{tabular}{c}
a

$a+1$

\hline

,

\hline$a-1$

a
\end{tabular} or \(\begin{aligned} \& a

\& a\end{aligned}\). The pattern $\begin{array}{l}a \\ a\end{array}$ in a matrix $\in R G_{n}$ is followed by : $\left.\left.\begin{array}{l}a \\ a\end{array}\right], \begin{array}{c}a-1 \\ a-1\end{array}\right]$ or $\begin{gathered}a-1 \\ a\end{gathered}$.

So the pattern | a |
| :---: |
| $a+1$ | is the beginning of a pattern zero or a pattern plus, and the pattern plus $\begin{array}{cc}a & a \\ a+1 & a\end{array}$ is followed by a pattern zero or by a pattern minus :

$$
\begin{gathered}
\left.\begin{array}{|cc|}
\hline a & a \\
a+1 & a+1
\end{array},, \begin{array}{|cc|}
\hline a & a-1 \\
a+1 & a
\end{array}\right], \\
\begin{array}{ccc}
a & a & a \\
a+1 & a \\
a+1 & a & a
\end{array},, \begin{array}{ccc}
a & a & a-1 \\
a+1 & a & a-1
\end{array},, \\
\end{gathered}
$$

and the pattern $\begin{aligned} & a \\ & a\end{aligned}$ is the end of a pattern zero or a pattern plus, and the pattern minus | $a+1$ | a |
| :---: | :---: |
| $a+1$ | $a+1$ | is followed by a pattern zero or by a pattern plus:

$$
\begin{array}{|ll}
\hline a & a \\
a & a
\end{array},, \begin{array}{|cc|}
\hline a+1 & a \\
a+1 & a
\end{array},, \begin{array}{|cc|}
\hline a & a \\
a+1 & a
\end{array}, ;
$$

$a+1$	a	a				
$a+1$	$a+1$	$a+1$,\quad	$a+1$	a	$a-1$
:---:	:---:	:---:				
$a+1$	$a+1$	a	,,	$a+1$	a	a
:---:	:---:	:---:				
$a+1$	$a+1$	a	.			

The work we did horizontally, we can make it vertically. So we have proved Lemma 3.6 : the patterns plus and minus, horizontally and vertically, alternate in a matrix $A \in R G_{n}$.

Furthermore, because the row 0 of $A \in R G_{n}$ is a row of zeros and the column $n+1$ a column of zeros, the first non-zero (if any) pattern on a column is 1 and the last non-zero (if any) pattern on a row is 1 .

So the matrix $A^{\prime}, A^{\prime}[r, s]=\left\{\begin{array}{ll}+1 & \text { if } A \text { has a pattern plus in position } r-1, s \\ -1 & \text { if } A \text { has a pattern minus in position } r-1, s, \\ 0 & \text { if } A \text { has a pattern zero in position } r-1, s\end{array}\right.$ is an alternating matrix.

Example 6.1 : $A=\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 & 1\end{array}\right), \quad A^{\prime}=\left(\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0\end{array}\right)$

Theorem 6.2 $\operatorname{Card}\left(R G_{n}\right)=\operatorname{card}\left(A t_{n}\right)$.
Proof: The function $R G_{n} \rightarrow A t_{n}, A \mapsto A^{\prime}$ in a bijection : $A[r, s]$ is the number of $1-$ the number of -1 in position r^{\prime}, s^{\prime} of $A^{\prime}, r^{\prime}<r$ and $s^{\prime} \geq s$. This a consequence of lemma $3.7: \forall A \in R G_{n}, A[r, s]=$ the number of plus patterns - the number of minus patterns that lie above and to the right of the position r, s. Thus $\operatorname{card}\left(R G_{n}\right)=\operatorname{card}\left(A t_{n}\right)$. Q.E.D.

Proof of Lemma 3.7: We define :

$$
\begin{aligned}
& |r, s|=\operatorname{card}\left\{\left(r^{\prime}, s^{\prime}\right) \mid r^{\prime}<r, s^{\prime} \geq s, A \text { has a pattern plus in position } r^{\prime}, s^{\prime}\right\} \\
& \quad-\operatorname{card}\left\{\left(r^{\prime}, s^{\prime}\right) \mid r^{\prime}<r, s^{\prime} \geq s, A \text { has a pattern minus in position } r^{\prime}, s^{\prime}\right\}
\end{aligned}
$$

We prove that $A[r, s]=|r, s|$.

If A has the pattern $\begin{gathered}a \\ a+1\end{gathered}$ in position $r-1, s$, it is the beginning of a pattern zero or a pattern plus; if it is a pattern zero, it is followed by pattern(s) zero and by a pattern plus; the number of patterns plus to the right of | a |
| :---: |
| $a+1$ | is one more than the number of patterns minus because the patterns plus and minus alternate, ending by a pattern plus. So $A[r, s]=A[r-1, s]+1 \Rightarrow|r, s|=|r-1, s|+1$.

If A has the pattern $\begin{aligned} & a \\ & a\end{aligned}$ in position $r-1, s$, it is the beginning of a pattern zero or a pattern minus; if it is a pattern zero, it is followed by pattern(s) zero and, possibly, by a pattern minus; the number of patterns plus to the right of $\begin{aligned} & a \\ & a\end{aligned}$ is the same than the number of patterns minus because the patterns plus and minus alternate, ending by a pattern plus. So $A[r, s]=A[r-1, s] \Rightarrow|r, s|=|r-1, s|$.

We have also : $A[r, s+1]=A[r, s]-1 \Rightarrow|r, s|=|r, s+1|-1$ and $A[r, s+1]=$ $A[r, s] \Rightarrow|r, s|=|r, s+1|$.

Since $A[1,1]=1$ if A has a pattern plus in position $0, s$, s being unique, and $A[1,1]=0$, otherwise we have $A[1,1]=|1,1|$. We then have the conclusion of the lemma by double induction on r and s. Q.E.D.

6.2 Bijection between $A t_{n}$ and $K G_{n}$

Here is a bijection between $K G_{n}$ and $A t_{n}$ that generalizes the bijection we find in [1], page 57 , between alternating sign matrices and triangles.

To any $A^{\prime} \in A t_{n}$, we associate a square matrix X_{A} of size n in which $X_{A}[i, j]=$ $\sum_{k=1}^{j} A^{\prime}[i, k] . X_{A}[i, j]$ is the sum of the entries from rows 1 to i of the j th column of A^{\prime}. We recover A^{\prime} from $X_{A}: A^{\prime}[i, j]=X_{A}[i, j]-X_{A}[i-1, j]$.

Suppose row j of X_{A} has a 1 in columns $j_{1}<j_{2}<\ldots<j_{r}$. Let $k(A)_{j}:\{1, \ldots, j\} \rightarrow[n]$ a partial injective function defined like this : $k(A)_{j}(1)=k(A)_{1 j}=j_{r}, k(A)_{j}(2)=k(A)_{2 j}=$ $j_{r-1}, \ldots, k(A)_{j}(r)=k(A)_{r j}=j_{1}$ and $k(A)_{j}(r+1)=k(A)_{r+1, j}=\ldots=k(A)_{j}(j)=$ $k(A)_{j j}=0$. We have then (see [3]) :

Theorem 6.3 $\forall A^{\prime} \in A t_{n}, k(A)=\left(k(A)_{j}\right)_{j=1, \ldots, n} \in K G_{n}$.
Theorem 6.4 $A t_{n} \rightarrow K G_{n}, A^{\prime} \mapsto k(A)$ is a bijection.
Example 6.5

$$
A^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & 0
\end{array}\right), X_{A}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right), k(A)=\begin{array}{cccc}
3 & 3 & 4 & 4 \\
& 1 & 2 & 3 \\
& & 0 & 1 \\
& & & 0
\end{array}
$$

6.3 Isomorphism between $R G_{n}$ and $K G_{n}$

Since R_{n}, P_{n} and K_{n} are isomorphic posets, by Theorem 2.7, L($\left.R_{n}\right), L\left(P_{n}\right)$ and $L\left(K_{n}\right)$ are isomorphic lattices. Since $L\left(R_{n}\right)$ and $R G_{n}$ are isomorphic lattices and since $L\left(K_{n}\right)$ and $K G_{n}$ are isomorphic lattices, $R G_{n}$ and $K G_{n}$ are isomorphic lattices. We give here another way to see this isomorphism.

Let $A \in R G_{n}$. Since $A=\inf \left\{C_{r, s, a, n} \mid A\right.$ has an coessential point $\left.r s a\right\}$ (see Corollary 5.4), A is the greatest matrix $\in R G_{n}$ that has the coessential points the matrix A has. If $A<B$ in $R G_{n}$, then A has a coessential point, say rsa, that B does not have because B cannot have the coessential points of A and be $>A$.

The matrix $C[i, j]=\left\{\begin{array}{ll}A[i, j]+1 & \text { if }(i, j)=(r, s) \\ A[i, j] & \text { otherwise }\end{array}\right.$ is an immediate successor of A and it is easy to prove that $C \leq B$. Thus we have :

Theorem 6.6 $A<B \Rightarrow \sum_{i, j} A[i, j]<\sum_{i, j} B[i, j]$.
Corollary 6.7 B is an immediate successor of A iff $A<B$ and $1+\sum_{i, j} A[i, j]=$ $\sum_{i, j} B[i, j]$.

Corollary 6.8 The number of immediate successors of $A \in R G_{n}$ is the number of coessential points of A.

Corollary 6.9 The number of immediate predecessors of $A \in R G_{n}$ is the number of essential points of A.

Corollary 6.10 $R G_{n}$ is a graded lattice of rank $\frac{n(n+1)(2 n+1)}{6}$.
proof : We have the conclusion of the corollary because $\inf \left(R G_{n}\right)=0$ and $\sup \left(R G_{n}\right)=$ $\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ n-2 & n-2 & n-2 & \ldots & 1 \\ n-1 & n-1 & n-2 & \ldots & 1 \\ n & n-1 & n-2 & \ldots & 1\end{array}\right)$. Q.E.D.

Theorem 6.11 Suppose A has a coessential point rsa; suppose B is an immediate successor of A such that $B[r, s]=a+1$; then X_{A} and X_{B} have the same entries except $X_{A}[r, s]=X_{B}[r, s+1]=1$ and $X_{A}[r, s+1]=X_{B}[r, s]=0: X_{A}$ has the pattern 100 in position r, s and X_{B} has the pattern $0 \quad 1$ in position r, s.
Proof : Since A has a coessential point $r s a, A[r-1, s-1]=a+1$ or $a ; A[r-1, s+1]=a$ or $a-1 ; A[r+1, s-1]=a+1$ or $a+2 ; A[r+1, s+1]=a+1$ or a. There are 16 possibilities.

Let us look at one of these possibilities. Suppose A has the pattern \begin{tabular}{|ccc|}
\hlinea \& a \& a

$a+1$ \& a \& a

$a+1$ \& $a+1$ \& a

\hline

 in position $r-1, s-1$; then B has the pattern

a \& a \& a

$a+1$ \& $a+1$ \& a

$a+1$ \& $a+1$ \& a

\hline

 in position $r-1, s-1$. The matrices A^{\prime} and B^{\prime} have the same entries except that A^{\prime} has the pattern

1 \& 0

-1 \& 1

\hline
\end{tabular} in position r, s and B^{\prime} the pattern $\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}$ in position r, s. We obtain then that the matrices X_{A} and X_{B} have the same entries except that X_{A} has the pattern 10 in position r, s and X_{B} the pattern $0 \quad 1$ in position r, s.

The other 15 possibilities give the same result. Q.E.D.
Suppose A has a coessential point rsa; suppose B is an immediate successor of A such that $B[r, s]=a+1$; suppose $k(A)_{t r}=s$, i.e., suppose $\operatorname{card}\left\{l \mid l \geq s\right.$ and $\left.X_{A}[r, l]=1\right\}=t$; then the real meaning of theorem 6.11 is that $k(B)_{t r}=s+1$, i.e., $k(B)$ is an immediate successor of $k(A)$.

And this proves : $R G_{n} \rightarrow K G_{n}, A \mapsto k(A)$ is an isomorphism of lattices. Q.E.D.

Example 6.12

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right), B=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & \underline{2} & 1 \\
2 & 2 & 1
\end{array}\right) \\
A^{\prime}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right), B^{\prime}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
X_{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \quad X_{B}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \\
k(A)=\begin{array}{lll}
3 & 3 & 3 \\
3 & 1 & 2 \\
3
\end{array}, \quad k(B)=\begin{array}{ll}
2 & 2 \\
0
\end{array}
\end{gathered}
$$

7 Appendix

Proof of the theorem 2.4: Since f and g are embeddings, we have $\forall x \in P,\{y \in P \mid y \leq$ $x\}=\{y \in P \mid g(y) \leq g(x)\}=\{y \in P \mid f(y) \leq f(x)\} ;$ thus $(h \circ g)(x)=\vee\{f(y) \mid y \in P$ and $g(y) \leq g(x)\}=\vee\{f(y) \mid y \in P$ and $f(y) \leq f(x)\}=f(x)$, and $h \circ g=f$.

We prove : $\forall s, t \in S, s \leq t \Rightarrow h(s) \leq h(t)$. We have : $s \leq t \Rightarrow\{x \in P \mid g(x) \leq$ $s\} \subseteq\{x \in P \mid g(x) \leq t\} \Rightarrow h(s)=\vee\{f(x) \mid x \in P$ and $g(x) \leq s\} \leq \vee\{f(x) \mid x \in P$ and $g(x) \leq t\}=h(t)$.

We have : $t \not \leq s \Rightarrow(\exists x \in P$ such that $g(x) \leq t$ and $g(x) \not \leq s)$, because $(\forall y \in$ $P, g(y) \leq t \Rightarrow g(y) \leq s) \Rightarrow t=\vee\{g(y) \mid y \in P$ and $g(y) \leq t\} \leq \vee\{g(y) \mid y \in$ P and $g(y) \leq s\}=s$.

Suppose $t \not \leq s$ and let x be such that $g(x) \leq t$ and $g(x) \not \leq s$. We prove: $h(s)<$ $(h(s) \vee f(x))$. Suppose $h(s)=(h(s) \vee f(x))$, i.e., suppose $f(x) \leq h(s)$. Let $z \in P$ be such that $g(z) \geq s$. Then $f(z) \geq \vee\{f(y) \mid y \in P$ and $g(y) \leq s\}=h(s) \geq f(x)$; thus $z \geq x$ which imply that $g(x) \leq \wedge\{g(y) \mid y \in P$ and $g(y) \geq s\}=s$. Contradiction.

We prove now : $s<t \Rightarrow h(s)<h(t)$. Since $t \not \leq s, \exists x \in P$ such that $g(x) \leq t$ and $g(x) \not \leq s$, and such that $h(s)<(h(s) \vee f(x))$. We have : $s<t \Rightarrow h(s) \leq h(t)$; and we have : $g(x) \leq t \Rightarrow f(x)=h(g(x)) \leq h(t)$. Thus $h(s)<(h(s) \vee f(x)) \leq h(t)$.

We prove now : $h(s)=h(t) \Rightarrow s=t$. Suppose $t \not \leq s$; then $\exists x \in P$ be such that $g(x) \leq$ t and $g(x) \not \leq s, \quad$ and such that $h(s)<(h(s) \vee f(x))$. We have : $g(x) \leq t \Rightarrow f(x)=h(g(x)) \leq h(t)$. Thus $h(s)<(h(s) \vee f(x))=(h(t) \vee f(x)) \leq$ $h(t)$. Contradiction. Thus $t \leq s$; similarly we have $s \leq t$. Thus $s=t$.

We prove finally : $h(s)<h(t) \Rightarrow s<t$. Suppose $s \not \leq t$; then $\exists x \in P$ such that $g(x) \leq$ s and $g(x) \not \leq t$. We have : $g(x) \not \approx t \Rightarrow \exists y \in P$ such that $t \leq g(y)$ and $g(x) \nless g(y)$, because $t=\wedge\{g(z) \mid z \in P$ and $g(z) \geq t\}$. Then $f(x)=h(g(x)) \leq h(s)<h(t) \leq h(g(y))=f(y)$, which imply $x<y$ and $g(x)<g(y)$. Contradiction. And since $h(s)=h(t) \Rightarrow s=t$, we have $h(s)<h(t) \Rightarrow s<t$. Q.E.D.

Proof of the theorem 2.6: The function $h: L(P) \rightarrow T, X \mapsto \vee_{T}\{f(x) \mid x \in$ P and $\varphi(x) \leq X\}$, where $\varphi: P \rightarrow L(P), x \mapsto x^{+}$, is injective. Thus $\operatorname{card}(L(P)) \leq$ $\operatorname{card}(T)$. Q.E.D.

Proof of the theorem 2.7: The function $h: S \rightarrow L(P), s \mapsto \vee_{L(P)}\{\varphi(x) \mid x \in$ P and $f(x) \leq s\}$, where $\varphi: P \rightarrow L(P), x \mapsto x^{+}$, is injective. Thus $\operatorname{card}(S) \leq \operatorname{card}(L(P))$. Thus $\operatorname{card}(L(P))=\ddot{\operatorname{card}}(S)$ and h is an isomorphism. Q.E.D.

To prove that for a poset P, a lattice $T \supseteq P$ is isomorphic with $L(P)$, we must have $\forall t \in T, t=\vee\{x \in P \mid x \leq t\}$, and $\forall t \in T, t=\wedge\{x \in P \mid x \geq t\}$. In the example that follows, T contains P as a subposet, $\forall t \in T, t=\vee\{x \in P \mid x \leq t\}$, but $T \nsubseteq L(P)$.

References

[1] David M. Bressoud. Proofs and Confirmations The Story of the Alternating Sign Matrix Conjecture. Spectrum series. The Mathematical Association of America, 1999.
[2] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University press, 1990.
[3] Marc Fortin. Treillis enveloppant des fonctions partielles injectives. PhD thesis, Université du Québec à Montréal, 2007.
[4] Christian Kassel, Alain Lascoux, and Christophe Reutenauer. The singular locus of a Schubert variety. Journal of Algebra, (269):74-108, 2003.
[5] Alain Lascoux and Marcel-Paul Schützenberger. Treillis et bases des groupes de Coxeter. Electron. J. of Combin., (3, \# R27), 1996.
[6] I.G. Macdonald. Notes on Schubert Polynomials. Number 6. Laboratoire de Combinatoire et d'Informatique Mathématique, 1991.
[7] H. MacNeille. Partially ordered sets. Trans. Amer. Math Soc. 42(3), pages 416-460, 1937.
[8] Laurent Manivel. Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence. Cours spécialisés 3. Société Mathématique de France 1998, 1998.
[9] Nathan Reading. Order Dimension, Strong Bruhat Order and Lattice Properties for Posets. Order 19, pages 73-100, 2002.
[10] Lex E. Renner. Linear Algebraic Monoids. Encyclopaedia of Mathematical Sciences, Volume 134. Springer Verlag, 2005.

[^0]: *Marc Fortin, Université du Québec à Montréal, Lacim; Case postale 8888, succursale Centre-Ville, Montréal (Québec) Canada, H3C 3P8 (mailing address); e-mail: marca.fortin@college-em.qc.ca.

